
ISSN 1653-2090

ISBN 978-91-7295-180-8

Background: The software market is becoming
more dynamic which can be seen in frequent-
ly changing customer needs. Hence, software
companies need to be able to quickly respond
to these changes. For software companies this
means that they have to become agile with the
objective of developing features with very short
lead-time and of high quality. A consequence of
this challenge is the appearance of agile and lean
software development. Practices and principles
of agile software development aim at increasing
flexibility with regard to changing requirements.
Lean software development aims at systemati-
cally identifying waste to focus all resources on
value adding activities.

Objective: The objective of the thesis is to evalua-
te the usefulness of agile practices in a large-scale
industrial setting. In particular, with regard to agi-
le the goal is to understand the effect of migra-
ting from a plan-driven to an agile development
approach. A positive effect would underline the
usefulness of agile practices. With regard to lean
software development the goal is to propose no-
vel solutions inspired by lean manufacturing and
product development, and to evaluate their use-
fulness in further improving agile development.

Method: The primary research method used
throughout the thesis is case study. As secon-
dary methods for data collection a variety of
approaches have been used, such as semi-struc-
tured interviews, workshops, study of process
documentation, and use of quantitative data.

Results: The agile situation was investigated
through a series of case studies. The baseline
situation (plan-driven development) was eva-
luated and the effect of the introduction of agile
practices was captured, followed by an in-depth
analysis of the new situation. Finally, a novel ap-
proach, Software Process Improvement through
the Lean Measurement (SPI-LEAM) method, was
introduced providing a comprehensive measu-
rement approach supporting the company to
manage their work in process and capacity. SPI-
LEAM focuses on the overall process integrating
different dimensions (requirements, maintenance,
testing, etc.). When undesired behavior is obser-
ved a drill-down analysis for the individual dimen-
sions should be possible. Therefore, we provided
solutions for the main product development flow
and for software maintenance. The lean solutions
were evaluated through case studies.

Conclusion: With regard to agile we found that
the migration from plan-driven to agile develop-
ment is beneficial. Due to the scaling of agile new
challenges arise with the introduction. The lean
practices introduced in this thesis were percei-
ved as useful by the practitioners. The practitio-
ners identified concrete decisions in which the
lean solutions could support them. In addition,
the lean solutions allowed identifying concrete
improvement proposals to achieve a lean soft-
ware process.

ABSTRACT

2010:04

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2010:04

School of Computing

Implementing Lean and Agile
Software Development in Industry

Kai Petersen

Im
p

l
e

m
e

n
ti

n
g

 L
e

a
n

 a
n

d

A
g

il
e

 S
o

f
t

w
ar

e

 D
e

v
e

l
o

p
m

e
n

t
 in

 In
d

u
str

y

K
ai Petersen

2010:04

Implementing Lean and Agile Software
Development in Industry

Kai Petersen

Implementing Lean and Agile Software
Development in Industry

Kai Petersen

Blekinge Institute of Technology Doctoral Dissertation Series
No 2010:04

School of Computing
Blekinge Institute of Technology

SWEDEN

© 2010 Kai Petersen
School of Computing
Publisher: Blekinge Institute of Technology
Printed by Printfabriken, Karlskrona, Sweden 2010
ISBN 978-91-7295-180-8
Blekinge Institute of Technology Doctoral Dissertation Series
ISSN 1653-2090
urn:nbn:se:bth-00465

Q: What are the most exciting, promising software engineering ideas or
techniques on the horizon?

A: I don’t think that the most promising ideas are on the horizon. They
are already here and have been for years, but are not being used properly.

–David L. Parnas

v

vi

Abstract
Background: The software market is becoming more dynamic which can be seen in
frequently changing customer needs. Hence, software companies need to be able to
quickly respond to these changes. For software companies this means that they have to
become agile with the objective of developing features with very short lead-time and
of high quality. A consequence of this challenge is the appearance of agile and lean
software development. Practices and principles of agile software development aim at
increasing flexibility with regard to changing requirements. Lean software develop-
ment aims at systematically identifying waste to focus all resources on value adding
activities.

Objective: The objective of the thesis is to evaluate the usefulness of agile practices
in a large-scale industrial setting. In particular, with regard to agile the goal is to un-
derstand the effect of migrating from a plan-driven to an agile development approach.
A positive effect would underline the usefulness of agile practices. With regard to lean
software development the goal is to propose novel solutions inspired by lean manufac-
turing and product development, and to evaluate their usefulness in further improving
agile development.

Method: The primary research method used throughout the thesis is case study.
As secondary methods for data collection a variety of approaches have been used, such
as semi-structured interviews, workshops, study of process documentation, and use of
quantitative data.

Results: The agile situation was investigated through a series of case studies. The
baseline situation (plan-driven development) was evaluated and the effect of the in-
troduction of agile practices was captured, followed by an in-depth analysis of the
new situation. Finally, a novel approach, Software Process Improvement through the
Lean Measurement (SPI-LEAM) method, was introduced providing a comprehensive
measurement approach supporting the company to manage their work in process and
capacity. SPI-LEAM focuses on the overall process integrating different dimensions
(requirements, maintenance, testing, etc.). When undesired behavior is observed a
drill-down analysis for the individual dimensions should be possible. Therefore, we
provided solutions for the main product development flow and for software mainte-
nance. The lean solutions were evaluated through case studies.

Conclusion: With regard to agile we found that the migration from plan-driven
to agile development is beneficial. Due to the scaling of agile new challenges arise
with the introduction. The lean practices introduced in this thesis were perceived as
useful by the practitioners. The practitioners identified concrete decisions in which the
lean solutions could support them. In addition, the lean solutions allowed identifying
concrete improvement proposals to achieve a lean software process.

vii

viii

Acknowledgements
First and foremost, I would like to thank my supervisor and collaborator Professor
Claes Wohlin for his support and feedback on my work, for the fruitful collaboration
on papers, and for always responding to my questions at any time of day or night.

I would also like to thank all colleagues at Ericsson AB for participating in my
studies. These include participants in interviews, workshops, and in the TiQ analysis
team. All of you have provided valuable input and feedback to my work despite your
busy schedules, for which I am thankful. In particular, I also would like to express
my gratitude to Eva Nilsson at Ericsson for her strong support and thus for making the
implementations of the solutions presented in this thesis possible, and for providing
important feedback. Thanks also go to PerOlof Bengtsson for his continuous support
and commitment throughout my studies.

The support from my friends and colleagues from the SERL and DISL research
groups is also highly appreciated. In particular, I would like to thank Dejan Baca and
Shahid Mujtaba for their collaboration on papers, and for the good times after work.

Last but not least, I would like to express my sincere gratitude to my mother Frauke
for always supporting me in what I wanted to achieve against all obstacles, and to my
brother Stephan for always being there.

This work was funded jointly by Ericsson AB and the Knowledge Foundation in Swe-
den under a research grant for the project “Blekinge - Engineering Software Qualities
(BESQ)” (http://www.bth.se/besq).

ix

x

Overview of Papers
Papers included in this thesis.

Chapter 2. Kai Petersen.
’Is Lean Agile and Agile Lean? A Comparison Between Two Development Paradigms’,
To be published in: Modern Software Engineering Concepts and Practices: Advanced
Approaches; Ali Dogru and Veli Bicer (Eds.), IGI Global, 2010

Chapter 3. Kai Petersen, Claes Wohlin, and Dejan Baca.
’The Waterfall Model in Large-Scale Development’, Proceedings of the 10th Interna-
tional Conference on Product Focused Software Development and Process Improve-
ment (PROFES 2009), Springer, Oulu, Finland, pp. 386-400, 2009.

Chapter 4. Kai Petersen and Claes Wohlin.
’The Effect of Moving from a Plan-Driven to an Incremental and Agile Development
Approach: An Industrial Case Study’, Submitted to a journal, 2009.

Chapter 5. Kai Petersen and Claes Wohlin.
’A Comparison of Issues and Advantages in Agile and Incremental Development Be-
tween State of the Art and Industrial Case’. Journal of Systems and Software, 82(9),
pp. 1479-1490, 2009.

Chapter 6. Kai Petersen.
’An Empirical Study of Lead-Times in Incremental and Agile Development’, To ap-
pear in: Proceedings of the International Conference on Software Process (ICSP
2010), 2010.

Chapter 7. Kai Petersen and Claes Wohlin.
’Software Process Improvement through the Lean Measurement (SPI-LEAM) Method’.
Journal of Systems and Software, in print, 2010.

Chapter 8. Kai Petersen and Claes Wohlin.
’Measuring the Flow of Lean Software Development’, Software: Practice and Experi-
ence, in print, 2010.

Chapter 9. Kai Petersen.
’Lean Software Maintenance’, submitted to a conference, 2010.

xi

Papers that are related to but not included in this thesis.

Paper 1. Kai Petersen.
’A Systematic Review of Software Productivity Measurement and Prediction’, submit-
ted to a journal, 2010.

Paper 2. Dejan Baca and Kai Petersen.
’Prioritizing Countermeasures through the Countermeasure Method for Software Secu-
rity (CM-Sec)’, To appear in: Proceedings of the International Conference on Product
Focused Software Development and Process Improvement (PROFES 2010), 2010.

Paper 3. Shahid Mujtaba, Kai Petersen, and Robert Feldt.
’A Comparative Study Between Two Industrial Approaches for Realizing Software
Product Customizations’, submitted to a conference, 2010.

Paper 4. Dejan Baca, Bengt Carlsson, and Kai Petersen.
’Static analysis as a security touch point: an industrial case study’, submitted to a jour-
nal, 2010.

Paper 5. Shahid Mujtaba, Robert Feldt, and Kai Petersen.
’Waste and Lead Time Reduction in a Software Product Customization Process with
Value Stream Maps’, To appear in: Proceedings of the Australian Software Engineer-
ing Conference (ASWEC 2010), IEEE, Auckland, New Zealand, 2010.

Paper 6. Kai Petersen and Claes Wohlin.
’Context in Industrial Software Engineering Research’, Proceedings of the 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM 2009),
IEEE, Florida, USA, pp. 401-404, 2009.

Paper 7. Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg.
’Static Code Analysis to Detect Software Security Vulnerabilities: Does Experience
Matter?’, Proceedings of the 3rd International Workshop on Secure Software Engi-
neering (SecSE 2009), IEEE, Fukuoka, Japan, pp. 804-810, 2009.

Paper 8. Joachim Bayer, Michael Eisenbarth, Theresa Lehner, and Kai Petersen.
’Service Engineering Methodology’, In: Semantic Service Provisioning, Eds. Dominik
Kuropka, Peter Tröger, Steffen Staab , Springer, April 2008.

xii

Paper 9. Kai Petersen and Claes Wohlin.
’Issues and Advantages of Using Agile and Incremental Practices: Industrial Case
Study vs. State of the Art’, Proceedings of the 8th Software Engineering Research
and Practice Conference in Sweden (SERPS 2008), Karlskrona, Sweden, 2008. Chap-
ter 5 is an extension of this paper.

Paper 10. Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.
’Systematic Mapping Studies in Software Engineering’, Proceedings of the 12th Inter-
national Conference on Empirical Assessment and Evaluation in Software Engineering
(EASE 2008), British Computer Society, Bari, Italy, pp. 71-80, 2008.

Paper 11. Kai Petersen, Kari Rönkkö, and Claes Wohlin.
’The Impact of Time Controlled Reading on Software Inspection Effectiveness and Ef-
ficiency: A Controlled Experiment’, Proceedings of the 2nd International Symposium
on Empirical Software Engineering and Measurement (ESEM 2008), ACM, Kaiser-
slautern, Germany, pp. 139-148, 2008.

Paper 12. Kai Petersen, Johannes Maria Zaha, and Andreas Metzger.
’Variability-Driven Selection of Services for Service Compositions’, Proceedings of
the ICSOC Workshops 2007, Springer, Vienna, Austria, pp. 388-400, 2007.

xiii

xiv

Table of Contents

1 Introduction 1
1.1 Preamble . 1
1.2 Background . 3

1.2.1 Plan-Driven Software Development 3
1.2.2 Agile Software Development 5
1.2.3 Lean Software Development 6

1.3 Research Gaps and Contributions . 7
1.4 Research Questions . 12
1.5 Research Method . 14

1.5.1 Method Selection . 14
1.5.2 Case and Units of Analysis 18
1.5.3 Data Collection and Analysis 19
1.5.4 Validity Threats . 21

1.6 Results . 23
1.7 Synthesis . 29
1.8 Conclusions . 31
1.9 References . 32

2 Is Lean Agile and Agile Lean? A Comparison between Two Software De-
velopment Paradigms 37
2.1 Introduction . 37
2.2 Background . 39
2.3 Comparison . 40

2.3.1 Goals . 41
2.3.2 Principles . 43
2.3.3 Practices . 53
2.3.4 Processes . 68

xv

Table of Contents

2.4 Discussion . 69
2.4.1 Practical Implications . 69
2.4.2 Research Implications . 69

2.5 Conclusion . 70
2.6 References . 71

3 The Waterfall Model in Large-Scale Development 75
3.1 Introduction . 75
3.2 Related Work . 76
3.3 The Waterfall Model at the Company 78
3.4 Case Study Design . 79

3.4.1 Research Questions . 80
3.4.2 Case Selection and Units of Analysis 80
3.4.3 Data Collection Procedures 80
3.4.4 Data Analysis Approach . 83
3.4.5 Threats to Validity . 84

3.5 Qualitative Data Analysis . 85
3.5.1 A Issues . 86
3.5.2 B Issues . 87
3.5.3 C Issues . 87
3.5.4 D Issues . 88

3.6 Quantitative Data Analysis . 89
3.7 Comparative Analysis of Case Study and SotA 89
3.8 Conclusion . 91
3.9 References . 91

4 The Effect of Moving from a Plan-Driven to an Incremental and Agile Soft-
ware Development Approach: An Industrial Case Study 93
4.1 Introduction . 93
4.2 Related Work . 95

4.2.1 Plan-Driven Development 95
4.2.2 Incremental and Agile Development 97
4.2.3 Empirical Studies on Comparison of Models 98

4.3 The Plan-Driven and Agile Models at the Company 98
4.3.1 Plan-Driven Approach . 98
4.3.2 Agile and Incremental Model 99
4.3.3 Comparison with General Process Models 102

4.4 Case Study Design . 104
4.4.1 Study Context . 104

xvi

Table of Contents

4.4.2 Research Questions and Propositions 104
4.4.3 Case Selection and Units of Analysis 106
4.4.4 Data Collection Procedures 107
4.4.5 Data Analysis . 112
4.4.6 Threats to Validity . 115

4.5 Qualitative Data Analysis . 118
4.5.1 General Issues . 119
4.5.2 Very Common Issues . 121
4.5.3 Common Issues . 122
4.5.4 Comparison of Issues . 124
4.5.5 Commonly Perceived Improvements 124

4.6 Quantitative Data Analysis . 126
4.6.1 Requirements Waste . 126
4.6.2 Software Quality . 127

4.7 Discussion . 129
4.7.1 Improvement Areas . 129
4.7.2 Open Issues . 130
4.7.3 Implications . 131

4.8 Conclusions and Future Work . 132
4.9 References . 133

5 A Comparison of Issues and Advantages in Agile and Incremental Devel-
opment between State of the Art and an Industrial Case 139
5.1 Introduction . 139
5.2 State of the Art . 141
5.3 Incremental and Agile Process Model 142

5.3.1 Model Description . 144
5.3.2 Mapping . 147

5.4 Research Method . 148
5.4.1 Case Study Context . 148
5.4.2 Research Questions and Propositions 149
5.4.3 Case Selection and Units of Analysis 149
5.4.4 Data Collection Procedures 149
5.4.5 Data Analysis Approach . 152
5.4.6 Threats to Validity . 154

5.5 Results . 155
5.5.1 Advantages . 156
5.5.2 Issues . 158

5.6 Discussion . 159

xvii

Table of Contents

5.6.1 Practices Lead to Advantages and Issues 160
5.6.2 Similarities and Differences between SotA and Industrial Case

Study . 162
5.6.3 A Research Framework for Empirical Studies on Agile Devel-

opment . 162
5.7 Conclusions and Future Work . 163
5.8 References . 164

6 An Empirical Study of Lead-Times in Incremental and Agile Software De-
velopment 167
6.1 Introduction . 167
6.2 Related Work . 169
6.3 Research Method . 169

6.3.1 Research Context . 170
6.3.2 Hypotheses . 171
6.3.3 Data Collection . 172
6.3.4 Data Analysis . 173
6.3.5 Threats to Validity . 173

6.4 Results . 174
6.4.1 Time Distribution Phases . 174
6.4.2 Multi-System vs. Single-System Requirements 174
6.4.3 Difference Between Small / Medium / Large 176

6.5 Discussion . 178
6.5.1 Practical Implications . 178
6.5.2 Research Implications . 179

6.6 Conclusion . 179
6.7 References . 180

7 Software Process Improvement through the Lean Measurement (SPI-LEAM)
Method 183
7.1 Introduction . 183
7.2 Related Work . 185

7.2.1 Lean in Software Engineering 185
7.2.2 Lean Manufacturing and Lean Product Development 186

7.3 SPI-LEAM . 188
7.3.1 Lean Measurement Method at a Glance 191
7.3.2 Measure and Analyze Inventory Levels 193
7.3.3 Analysis and Flow Between States 199

7.4 Evaluation . 203

xviii

Table of Contents

7.4.1 Static Validation and Implementation 203
7.4.2 Preliminary Data . 206
7.4.3 Improvements Towards Lean 208

7.5 Discussion . 209
7.5.1 Comparison with Related Work 209
7.5.2 Practical Implications . 209
7.5.3 Research Implications . 210

7.6 Conclusion . 211
7.7 References . 212

8 Measuring the Flow of Lean Software Development 215
8.1 Introduction . 215
8.2 Related Work . 217

8.2.1 Lean in Software Engineering 217
8.2.2 Lean Performance Measures in Manufacturing 219
8.2.3 Lean Performance Measures in Software Engineering 219

8.3 Visualization and Measures . 220
8.3.1 Visualization with Cumulative Flow Diagrams 220
8.3.2 Measures in Flow Diagrams 222

8.4 Research Method . 227
8.4.1 Research Context . 227
8.4.2 Case Description . 228
8.4.3 Units of Analysis . 229
8.4.4 Research Questions . 230
8.4.5 Data Collection . 231
8.4.6 Data Analysis . 233
8.4.7 Threats to Validity . 233

8.5 Results . 235
8.5.1 Application of Visualization and Measures 235
8.5.2 Industry Evaluation of Visualization and Measures 237

8.6 Discussion . 242
8.6.1 Practical Implications and Improvements to the Measures . . 242
8.6.2 Research Implications . 244
8.6.3 Comparison with State of the Art 244

8.7 Conclusion . 245
8.8 References . 246

xix

Table of Contents

9 Lean Software Maintenance 251
9.1 Introduction . 251
9.2 Related Work . 253
9.3 Lean Software Maintenance . 256

9.3.1 Maintenance Inflow (M1) 258
9.3.2 Visualization Through Cumulative Flow Diagrams (M2) . . . 258
9.3.3 Lead-time measurement (M3) 259
9.3.4 Work-load (M4) . 261
9.3.5 Prerequisites . 261

9.4 Research Method . 261
9.4.1 Case and Context . 262
9.4.2 Unit of Analysis . 262
9.4.3 Proposition . 263
9.4.4 Data Collection and Analysis 264
9.4.5 Validity Threats . 265

9.5 Results . 266
9.5.1 Maintenance Inflow (M1) 266
9.5.2 Visualization Through Cumulative Flow Diagrams (M2) . . . 266
9.5.3 Lead-Time Measurement (M3) 268
9.5.4 Work-Load (M4) . 270

9.6 Discussion . 270
9.7 Conclusion . 273
9.8 References . 273

A Appendix A: Interview Protocol 277
A.1 Introduction . 277
A.2 Warm-up and Experience . 278
A.3 Main Body of the Interview . 278

A.3.1 Plan-Driven Development 278
A.3.2 Incremental and Agile Approach 280

A.4 Closing . 280

B Appendix B: Example of the Qualitative Analysis 281

List of Figures 283

List of Tables 284

xx

Chapter 1

Introduction

1.1 Preamble

The market for software is fast paced with frequently changing customer needs. In
order to stay competitive companies have to be able to react to the changing needs in
a rapid manner. Failing to do so often results in a higher risk of market lock-out [34],
reduced probability of market dominance [15], and it is less likely that the product
conforms to the needs of the market. In consequence software companies need to take
action in order to be responsive whenever there is a shift in the customers’ needs on
the market. That is, they need to meet the current requirements of the market, the re-
quirements being function or quality related. Two development paradigms emerged in
the last decade to address this challenge, namely agile and lean software development.

Throughout this thesis agile software development is defined as a development
paradigm using a set of principles and practices allowing to respond flexibly and
quickly to changes in customers’ needs. All agile methods, such as the most prominent
ones (SCRUM and eXtreme programming), are driven by similar values. The individ-
ual methods differ with regard to the selection of their practices. The values driving the
agile community are (1) “Individuals and interactions over processes and tools”, (2)
“Working software over comprehensive documentation”, (3) “Customer collaboration
over contract negotiation”, and “Responding to change over following a plan” [17].

We define the lean software development paradigm as a set of principles and prac-
tices focused on the removal of waste leading to a lean software development process.
Waste thereby is defined as everything that does not contribute to the value creation for
the customer. It is important to acknowledge that it is challenging to define and quan-

1

Chapter 1. Introduction

tify value, which is a relatively new research field on its own referred to as value-based
software engineering [4]. In the field of value-based software engineering the focus
is not only on the customer, but concerns all stakeholders involved in the creation of
software. Thereby, different stakeholders may value certain aspects of software devel-
opment (e.g. quality attributes of the software product) differently (cf. [2]). However,
in lean manufacturing and software engineering the main focus has been on the value
created for the customer (see [23] and Chapter 2). In Chapter 2 we also provide a de-
scription of different wastes that are considered as not contributing to the value of the
customer, and hence should be removed.

Lean software engineering received much attention primarily from industry after
the publication of a book on lean software development by Poppendieck and Pop-
pendieck [23]. The Poppendiecks have practical experience from lean manufacturing
and product development. When Mary Poppendick got to k now about the waterfall
model in software development, she recognized that the software community could
benefit from the ideas of flexible production processes. This was the motivation for
them to look into how the lean principles and practices from product development and
manufacturing could be used in the case of software development. The main ideas
behind lean are to focus all development effort on value adding activities from a cus-
tomers’ perspective and to systematically analyze software processes to identify the
waste and then remove it [21, 23], as is reflected in the definition.

The thesis investigates the implementation of lean and agile practices in the soft-
ware industry. The primary research method used throughout the thesis is case study
[38, 29]. The case is a development site of Ericsson AB, located in Sweden. The com-
pany produces software applications in the telecommunication and multimedia domain.
At the case company agile practices were first introduced. That is, the company studied
is coming from a plan-driven approach and step-wise moved towards an agile develop-
ment approach. In order to further improve the agile approach in place lean analysis
tools and measurements were used with the goal of further improving the companies’
ability to respond to changes in the market needs.

In relation to the introduction of the lean and agile development approaches the
thesis makes two contributions. As the first contribution (from hereon referred to as
Contribution I) of the thesis, the impact of migrating from a plan-driven to an agile
development approach is investigated empirically. For this, first the baseline situation
(plan-driven development) is analyzed empirically. Secondly, the effect of the migra-
tion from a plan-driven to an agile approach is investigated. Finally, the new situation
is analyzed in more depth. As the second contribution (from hereon referred to as Con-
tribution II), new solutions inspired by lean ideas are proposed and their usefulness is
evaluated in industrial case studies to further improve the processes established in the
migration from plan-driven to agile development. A bridge between the two contribu-

2

tion is built by comparing the goals, principles, practices, and processes of lean and
agile software development.

As this thesis focuses on the implementation of lean as well as agile software devel-
opment it is important to mention that both paradigms share principles and practices,
but that there are some distinguishing characteristics as well. When focusing on the
lean implementation principles and practices unique to the lean software development
paradigm are investigated to determine whether these provide additional benefits to
agile software development.

The introduction is synthesizing the individual contributions of the papers included.
Section 1.2 provides background information on the investigated software development
paradigms. Section 1.3 identifies research gaps in the related work and discusses how
the individual studies address these research gaps. The research questions arising from
the research gaps are stated and motivated in Section 1.4. The research method used
to answer the research questions is presented in Section 1.5. The results (Section 1.6)
summarize the outcomes of the individual studies and are the input for synthesizing the
evidence from the studies for the lean and agile part 1.7). Finally, Section 1.8 concludes
the introduction.

1.2 Background
Three development paradigms are investigated in this thesis, namely plan-driven soft-
ware development, agile software development, and lean software development. This
section provides a brief description of the studied paradigms.

1.2.1 Plan-Driven Software Development
Plan-driven software development is focused on planning everything from the start of a
project (as suggested by the name). In addition, the plan-driven approach is character-
ized as very documentation centric with designated responsibilities for the individual
software development disciplines (e.g. requirements engineering, architecture design,
implementation, and quality assurance).

The most prominent instantiation of plan-driven software development is the wa-
terfall process as suggested by Royce [28], the process being shown in Figure 1.1. The
waterfall process is executed sequentially, following steps representing the different
software development disciplines. The goal Royce was pursuing was to provide some
structure for executing software processes by assigning the disciplines to distinct soft-
ware process phases. When a phase is completed the product of that phase is handed
over to the following phase, e.g. when the software requirements are specified the

3

Chapter 1. Introduction

System

Requirements

Software

Requirements

Analysis

Coding

Testing

Operations

Figure 1.1: Waterfall Process According to Royce

specification is handed over to the analysis phase. It is also apparent that, according to
the specification of the waterfall model, each phase only knows the input its preceding
phase. For example, the input for testing is the developed code.

The rational unified process (RUP) [16] is another representative of plan-driven ap-
proaches. RUP is more relaxed when it comes to the sequence in which the disciplines
are executed. That is, the engineering disciplines defined by the process (business
modeling, requirements specification, analysis and design, implementation, test, and
deployment) are executed throughout the overall development life-cycle consisting of
inception, elaboration, construction, and transition. In the inception phase and early
elaboration phase the main activities are business modeling and requirements, while
these receive less attention in the construction and transition phase. Hence, one can
say that the disciplines are overlapping, but have different emphasis depending on the
development phase. RUP also proposes several plans to be documented, such as mea-
surement plans, risk management plans, plans for resolving problems, and plans for
the current and upcoming iteration. The process is also supported by Rational products

4

providing tools for modeling and automation aspects related to the software process
(e.g. Rational DOORS [14] for requirements management, and ClearCase [35]/ Clear-
Quest [5] for change and configuration management). To support the tailoring of the
RUP process to specific company needs the Rational Method Composer supports in the
composition of methods and tools.

The V-Model [30] can be seen as an extension of the waterfall process by mapping
verification and validation activities to each sequential development step. That is, the
delivered product is verified through operation and supported by maintenance activ-
ities, the specification of the requirements is verified through acceptance and system
integration testing, and the detailed design and coding activities are verified through
unit and component testing.

1.2.2 Agile Software Development

The agile approach stands in strong contrast to the plan-driven methods. This be-
comes particularly visible considering the four values of agile software development.
“Individuals and interactions over processes and tools” conflicts with plan-driven as
plan-driven prefers strictly separated phases and the communication between phases
relies heavily on documentation. In addition the value contradicts RUP as this process
relies heavily on planning. “Working software over comprehensive documentation”
puts an emphasis on the implementation phase and stresses the importance to create
a working and valuable product early in the process, which would not be possible in
waterfall development where each phase has to be complete before the next one can be
started, i.e. deliveries in small increments and iterations are not considered. “Customer
collaboration over contract negation” contradicts plan-driven development where the
requirements specification is a measure of whether the contract has been fulfilled, the
requirements specification being established early in the process. In agile develop-
ment the content of the contract is not set in stone in the beginning as the practice of
software engineering has shown that the specification changes continuously. Hence,
agile proposes that the customer should be continuously involved throughout the pro-
cess. “Responding to change over following the plan” is not supported by plan-driven
development as any change would require a tremendous effort. Looking at the water-
fall process in Figure 1.1 a change in the requirements when being in the test phase
would lead to changes in the analysis, and coding phase. Working in small increments
and iterations allows much shorter feedback cycles and with that supports the ability
to change, as proposed by agile development. In Table 1.1 the differences between
plan-driven and agile developed are summarized.

5

Chapter 1. Introduction

Table 1.1: Contrasting Plan-Driven and Agile Development (Inspired by [12])
Aspect Plan-Driven Agile

Assumption Problem is well understood and the
desired output is well defined from
the beginning.

The desired output is not known
completely until the solution is de-
livered.

Process Models Waterfall, Rational Unified Process,
V-Model

Incremental and iterative, eXtreme
programming, SCRUM, Crystal,
and other agile models.

Planning Detailed planning of time-line with
clearly defined products and docu-
ments to be delivered.

High-level plan for the overall prod-
uct development life-cycle with de-
tails only planned for current itera-
tions.

Requirements engineering Clearly defined specification phase;
requirements specification of over-
all product with sign-off; de-
tailed requirements specification
often part of the contract, require-
ments change is a formal and work
intensive process.

Welcoming change to requirements
specs leading to continuous evolu-
tion; relaxed change request pro-
cess; communication with cus-
tomer over detailed product speci-
fications.

Architecture Specification of architecture and
designs is comprehensive and de-
tailed; Architecture design concen-
trated on one phase.

Minimal draft of architecture
and design specification and
re-evaluation of architecture con-
tinuously throughput development
life-cycle.

Implementation Programming work concentrated
in one phase and coders concen-
trate mainly on the programming
task; programming is specification
driven.

Programming work throughout the
entire project; programmers have
the possibility to interact with cus-
tomers; collective code ownership
and egoless programming; pair pro-
gramming.

Testing Testing activities at the end of the
implementation phase (big-bang in-
tegration); Testers are specialists
mainly responsible for testing.

Testing activities throughout devel-
opment life-cycle (developers have
test responsibility); tests also speci-
fied and executed by end users.

Reviews and inspections Formal roles in the review process
(e.g. inspection); Use of quality
doors to approve software artifacts
for hand over between phases.

No explicit roles for reviews and in-
spections; no formal reviews (ex-
cept in e.g. feature driven develop-
ment, but not as formal as the in-
spection process)

1.2.3 Lean Software Development

The ideas of lean software development are drawn from lean manufacturing and lean
product development. Lean manufacturing focused solely on the production process

6

and focused on removing waste from the production process. Waste is defined as ev-
erything that does not contribute to the creation of value for the customer. In production
seven types of waste were defined (physical transportation of intermediate products, in-
ventory in form of unfinished work in process, motion of people and equipment, wait-
ing time, over production, over processing by executing activities that are not value
adding, and defects) [37]. In lean product development not only the manufacturing
process for mass production was in the center of attention, but the overall product de-
velopment process [21], from creating an idea for the product and specifying it until
the delivery of the final product. Hence, lean product development is somewhat closer
to software engineering than the pure manufacturing view. Much attention in prac-
tice was generated by Mary and Tom Poppendieck who published several books (cf.
[23, 24, 25]) on the translation and application of lean manufacturing and product de-
velopment practices to a software engineering context. Lean software development
shares many principles and practices with agile software development. However, at
the same time there are differences making the potential for the complementary use of
the two paradigms explicit. For example, if a practice found in lean is not included in
agile it might be a useful complement. The detailed comparison of the two paradigms
is provided in Chapter 2.

1.3 Research Gaps and Contributions

The research gaps have been identified based on the literature reviews of the individual
studies. Overall, studying the literature on agile software development we observed
that:

• The majority of empirical studies of sufficient quality focused on a single process
model, namely eXtreme programming (XP) [3] as identified in the systematic
review by Dybå and Dingsøyr [8].

• Studies were focused on projects with development teams, but do not take pre-
and post-project activities into account, as they are often found in larger-scale
software development. For example, pre-project activities are related to product
management and to distributing requirements to development projects. Post-
project activities are concerned with integration of individual project results and
the release of the software product [11].

• The studies on agile often focused on agile implementations in a smaller scale
(focus on teams with a size range from 4 to 23 [8]).

7

Chapter 1. Introduction

• Mostly immature agile implementations have been studied, which means that we
know little about how very experienced organizations perform [8].

• When studying agile the baseline situation is not presented which makes it hard
to judge the effect/ improvement potential of agile development in comparison
to other models [8].

This makes the general need for studying agile implementations in a large-scale
environment under consideration of the overall development life-cycle explicit. The
first bullet is partially addressed in this thesis as we do not investigate a particular agile
process (such as XP, or SCRUM [31]). Instead, an agile implementation based on a
selection of practices that a company found most useful in its specific context (large-
scale, market-driven) is investigated. The second bullet is covered in this thesis as we
take the end-to-end perspective into account, covering the overall software develop-
ment life-cycle. The third bullet is addressed by investigating an agile software process
where the products developed include more than 500 people overall at the development
site of the case company, with multiple projects being run in parallel. The fourth bullet
is not addressed as the studied company was in the migration from a plan-driven to an
agile process. The fifth bullet is addressed by investigating the baseline situation in
detail, then investigating the effect of the migration, and finally taking a closer look at
the new situation with the agile practices in place.

With regard to lean it can be observed that lean practices have been well described
in a software engineering context in the books by Poppendieck and Poppendieck
[23, 24, 25]. However, little empirical evidence on their usefulness in the software
engineering context has been provided so far. That is, Middleton [19] studied the lean
approach in industry with two teams of different experiences, implementing the princi-
ple of building quality in (i.e. assuring quality of the product as early as possible in the
development process) by stopping all work and immediately correcting defects, which
was the main practice introduced. Another study of Middleton showed lessons learned
from introducing several lean practices in the organization (such as minimizing inven-
tory, balance work-load, elimination of rework, and standard procedures). Results were
briefly presented in lessons learned. Overall the study of related work showed that there
was only one study reporting on the impact of a lean implementation [20]. However,
to the best of our knowledge no studies on lean software development have been con-
ducted using the case study approach, and discussing elemental parts of empirical work
(such as validity threats, data collection approaches, etc.). Hence, this makes the need
explicit to (1) provide and tailor solutions of lean manufacturing/product development
to the specific needs in the software industry that are not as explicitly addressed in agile
development, and (2) use empirical methods to show their merits and limitations.

8

As mentioned earlier the thesis makes two contributions, namely the investigation
of the effect of moving from plan-driven to agile (Contribution I), and from agile to lean
software development (Contribution II). The two contributions are realized through
sub-contributions provided by the individual studies. For Contribution I studies S2 to
S5 provide the sub-contributions shown in Table 1.3. The sub-contributions relating
to Contribution II are shown in Table 1.4, namely studies S6 to S8. Agile and lean
software development are introduced and systematically compared prior to the sub-
contributions reported in S2 to S8 to provide the reader with sufficient background on
the software development principles and practices associated with the paradigms (see
study S1 in Table 1.2).

The first study S1 is a comparison of the lean and agile development paradigms
(see Table 1.2). It is motivated by the need to understand the differences of the two
approaches, as to the best of our knowledge, this has not been done systematically.
The understanding facilitates the reuse of knowledge as lessons learned in regard to
practices used in lean and agile are useful to understand both paradigms. Furthermore,
understanding the differences allows to make informed decisions on how to comple-
ment the approaches. The comparison focuses on contrasting the goals, principles,
practices, and processes that characterize the two paradigms. Thereby, the first study
also provides the reader with a detailed introduction of the principles and practices that
will be referred to in the remainder of the thesis. It also shows the differences between
the two contributions of the thesis, the first one being related to agile software devel-
opment (Contribution I), and the second one being primarily related to aspects that are
unique to the lean software development paradigm (Contribution II).

Contribution I of the thesis is to understand the effect of the migration from plan-
driven to agile software development. This contribution can be broken down into four
sub-contributions, each addressing a research gap observed by studying the related
work. An overview of the research gaps and individual chapters related to Contribution
I are summarized in Table 1.3. Study S2 (Chapter 3) is the first step in understanding

Table 1.2: Comparison of Lean and Agile
Study Research gap Sub-Contribution

S1 (Chapter 2) Need to understand difference be-
tween lean and agile aiding in gen-
eralizing benefits of lean and agile
at the same time, and to show op-
portunities of complementing them
for the identified differences.

Comparative analysis of lean and
agile goals, principles, practices,
and processes.

9

Chapter 1. Introduction

Table 1.3: Sub-Contributions of the Chapters Relating to the Migration from Plan-
Driven to Agile Development (Contribution I)

Study Research gap Sub-Contributions

S2 (Chapter 3) Few empirical studies on waterfall/
plan-driven, need for evidence sup-
porting claims.

Qualitative study investigating bot-
tlenecks/ unnecessary work/ avoid-
able rework in plan-driven and
comparison with related work con-
tributing empirical evidence.

S3 (Chapter 4) Clear need for qualitative studies on
agile to gain in-depth understand-
ing, ans specifically with regard to
the transition between development
approaches and in large-scale con-
text.

Capture change in perception of
bottlenecks/ unnecessary work/
avoidable rework when migrating
from plan-driven to agile develop-
ment in a large-scale context.

S4 (Chapter 5) Agile studies so far focus on small
scale and single agile process (XP).

Qualitative study investigating bot-
tlenecks/ unnecessary work/ avoid-
able rework in more detail after
transition in large-scale context and
comparison with related work.

S5 (Chapter 6) No empirical analysis of lead-times
in an agile context, open question
in industry of how lead times are
distributed between phases, the in-
fluence of number of impacted sys-
tems on lead-time, and unknown
impact of size of requirements.

Quantitative analysis of lead-times
with regard to distribution, impact,
and size.

the effect of the migration from plan-driven to agile development by characterizing the
baseline situation. The study in itself is motivated by the research gap that we were not
able to identify studies with a sole focus on evaluating the benefits and drawbacks of
plan-driven approaches empirically. To address this research gap and thus confirm or
contradict the claims made in a wide range of software engineering books a qualitative
study was conducted investigating the waterfall model as the prime representative of
plan-driven approaches. Study S3 (Chapter 4) was motivated by the observation that
most of the agile studies included in the systematic review by Dybå and Dingsøyr [8]
were not explicitly investigating the migration, and hence little can be said about the
effect of migrating in general, and in regard to large-scale software development in
particular. In response we investigated what the effect of moving from the baseline
situation presented in S2 to an agile process was. The focus here was on the change

10

of perception with regard to issues (e.g. bottlenecks) before and after the migration.
Study S4 (Chapter 5) is different from Study S3 as it makes a more in-depth analysis
of the new situation and compares the findings with those in the related work. In
particular, the issues and advantages associated with agile software development were
compared between the case study and empirical studies conducted by others. Finally,
the lead-times of the new situation two years after the migration were investigated in
Study S5 (Chapter 6) to capture the speed with which the requirements are delivered
to the market. The goal of the company was to reduce the lead-time by setting realistic
improvement targets. In order to set these targets it was necessary to understand how
lead-times differ between phases, between requirements affecting single and multiple
systems, and requirements with different sizes. If there is a difference it has to be
taken into consideration. As this was an open question to the company it motivated an
empirical study. In order to actually improve the lead-times lean provides a number of
analysis tools and ideas that are focused on improving throughput and speed, leading
to the Contribution II of the thesis, i.e. the proposal and evaluation of novel analysis
approaches to improve the process with a focus of making it more lean and with that
increase speed and throughput.

The second contribution (Contribution II) is the proposal and evaluation of lean
software development tools to improve the agile processes in place. In Study S6 (Chap-
ter 7) an approach for continuous improvement towards a lean process is presented.
The study was motivated by the observation in related work that when introducing
lean software development with a big bang strategy the introduction often failed. This
observation has been made in lean manufacturing/ product development and in the soft-
ware engineering context. Hence, the solution proposed (Software Process Improve-
ment through Lean Measurement (SPI-LEAM Method) uses a measurement approach
showing the absence of a lean process in different disciplines (e.g. development of
software requirements, quality and test efficiency, maintenance, and so forth). The ap-
proach is based on the measurement of work in process (queues/inventories) and aims
at achieving an integrated view on an abstract level to avoid sub-optimization. When
detecting the absence in specific disciplines (e.g. maintenance) a more detailed look at
the performance in this discipline should be possible. Approaches for the detailed anal-
ysis (i.e. drill-down view of each of the disciplines) are investigated in study S7 and S8.
In study S7 (Chapter 8) a solution for the drill-down of main product development (i.e.
inventory of requirements in the process life-cycle) is presented and evaluated. The
goal in main product development is to achieve a smooth and continuous throughput.
Whether this goal is achieved is not obvious with many requirements being developed
in parallel in the large-scale context. Hence, we propose a visualization and measure-
ment solution to be used in order to show the presence or absence of a continuous flow
with high throughput. The approach has been evaluated empirically in a case study.

11

Chapter 1. Introduction

Table 1.4: Sub-Contributions of the Chapters Relating to the Implementation of Lean
Software Development (Contribution II)

Study Research gap Sub-Contributions

S6 (Chapter 7) Observed failure when introducing
lean software development with a
big bang approach.

Provide an analysis/ measurement
approach allowing for continuous
improvements towards a lean soft-
ware process.

S7 (Chapter 8) Goal of lean is smooth and con-
tinuous throughput which requires
support in large-scale development
with many requirements being de-
veloped in parallel.

Proposal of a visualization and
measurement approach for the flow
of main/ new product development
and their industrial evaluation.

S8 (Chapter 9) Isolated proposal of lean measures,
no solution for holistic analysis,
methods require much effort and
many data points, no visualization
to support management.

Proposal of a solution for lean
maintenance driven by goals of lean
software development and indus-
trial evaluation.

Finally, Study S8 (Chapter 9) provides a solution for the drill-down of the maintenance
discipline with regard to lean principles. As we observed some measures related to
lean have been proposed, but they were proposed in isolation and thus do not provide
a holistic picture of the maintenance flow. Hence, the proposed solution visualizes
and measures the performance of lean maintenance and systematically integrates the
individual measures.

1.4 Research Questions

Figure 1.2 provides an overview of the main research questions (QI.I, QI.II, and QII).
The main research questions are linked to the research questions answered in the in-
dividual chapters, as illustrated by the arrows linking the main research questions and
those stated for the chapters.

The first research contribution (Contribution I) is the evaluation of the migration
from plan-driven development to agile development. For that contribution two main
research questions are asked, one related to the usefulness of agile practices (QI.I) and
one related to open issues being raised with the introduction of agile (QI.II). These main
questions are linked to the research questions being answered in the papers. Question
QI.I is linked to Chapters 3, 4, and 5 as those investigate questions that show the use-

12

Contribution I: Research questions related to migration from plan-driven to agile:

QI.I: Are agile practices useful in an industrial context?

QI.II: What challenges and open issues arise with their introduction?

Baseline situation (Chapter 3):

• RQ1.1: What are the most common (critical) issues in waterfall

development in a large-scale context, and what are the differences and

similarities between state of the art and related work?

Migration (Chapter 4):

• RQ1.2: What issues in terms of bottlenecks, unnecessary work, and

rework were perceived before and after migration from plan-driven to

an agile process?

• RQ1.3: How commonly perceived are the issues for each of the

development approaches and in comparison to each other?development approaches and in comparison to each other?

New agile situation (Chapter 5):

• RQ1.4: What are the advantages and issues in industrial large-scale

software development informed by agile practices, and

what are the differences and similarities to the related work?

Lead-time in the agile situation (Chapter 6):

• RQ1.5: How does the lead-time differ between phases, number of affected

modules per requirement, and size?

Contribution II: Research questions related to migration from agile to lean:

QII: Are lean practices useful in the analysis and further improvement agile software

development?

SPI-LEAM (Chapter 7):

• RQ2.1: Is SPI-LEAM (solution to continuously improve the process to • RQ2.1: Is SPI-LEAM (solution to continuously improve the process to

become more lean) perceived as useful in the static validation?

Drilldown main requirements flow (Chapter 8):

• RQ2.2: Are the proposed visualization and measures useful in terms of

their ability to support decision making, and in the identification of

improvement actions?

Drilldown software maintenance (Chapter 9):

• RQ2.3: Are the proposed visualizations and measures able to detect the

presence and absence of inefficiencies and ineffectiveness?

Figure 1.2: Research Questions

13

Chapter 1. Introduction

fulness by investigating whether an improvement is achieved from migrating from the
baseline situation (plan-driven) to the new situation (agile). Question QI.II is looking
for open issues that need to be addressed in order to leverage on the full benefits that
agile software development seeks to achieve. Open issues are investigated in S3 by de-
termining which of the issues in agile development are still perceived as very common.
The questions in S4 have an explicit focus on the comparison of the issues identified
in the case study with those reported in related work. Finally, study S5 looks at open
issues from a lead-time perspective as the speed with which the company can react to
customer needs was considered of high priority in the studied context.

The second research contribution (Contribution II) evaluates whether the addition
of lean practices is useful in further improving the agile situation in place. The ques-
tions are very much related to the usefulness of the individual solutions proposed in
the chapters. Study S6 evaluates the perceived usefulness of SPI-LEAM, an approach
that evaluates how lean a software process is on a high level integrating different disci-
plines in one view (e.g. requirements flow, software maintenance, software testing, and
so forth). The questions of Chapters 8 and 9 are related to the drill down to understand
the behavior of the disciplines in more depth.

Chapter 2 connects Contribution I and II by answering the question of how the lean
and agile development paradigms are different with regard to their goals, principles,
practices, and processes.

1.5 Research Method
The choice of research method is motivated, followed by a description of the research
questions, case and units of analysis, data collection and analysis, and validity threats.

1.5.1 Method Selection
Commonly used research methods in the software engineering context are controlled
experiments [36], surveys [9], case studies [38], action research [33], and simulation
[32].

Controlled Experiments: This research method is used to test theories in a con-
trolled environment. For that purpose hypotheses are formulated regarding the cause-
effect relationship between one or more independent variables and independent (out-
come) variables. The experiment is conducted in a controlled environment, meaning
that variables other than the independent variables should not have an effect on the
outcome variables. For example, when testing the effect of two testing techniques on
testing efficiency other factors such as experience should be controlled so they do not

14

affect the outcome. In practice it is often challenging to control the other factors, which
makes it important to consider possible threats to validity when designing the exper-
iment study. It is important to note that experiments with human subjects often need
a sufficient number of participants carrying out a task for a longer period of time. In
consequence, experiments are often conducted in a laboratory setting with students as
subjects due to the limited availability of practitioners. The analysis of experiments is
mainly based on statistical inference, e.g. by comparing whether there is a statistically
significant difference with regard to the outcome variable for two different treatments.

Surveys: A survey studies a phenomena for a population by surveying a sample
that is representative for that population. In order to collect the data from the sample
questionnaires and interviews are often used. Online questionnaires are preferred as
they allow to reach a larger sample and are less time consuming from the researchers
point of view, and are thus more efficient than interviews with regard to the number
of data points that could be collected (see, for example, [10] who received more than
3000 answers on their questionnaire). Having collected the data of the sample statistical
inference is used to draw conclusions for the overall population.

Case Studies: Case studies are an in-depth investigation of a phenomena focusing
on a specific case. The cases are objects of the real world studied in a natural setting, in
software engineering this means they are real software organizations, software projects,
software developers, etc. Case studies are conducted by defining the case to be studied,
the units of analysis, as well as a data collection strategy. With regard to case studies
a number of decisions have to be made. The first one being whether the study is of
confirmative or exploratory nature [26]. A confirmative case study sets out with a
proposition or hypotheses to be tested in the real world. In the case of the exploratory
case study little knowledge about the phenomena in the real world is available and
hence the study aims at identifying theories and propositions. When these are defined
they can be confirmed in forthcoming confirmative case studies or by other research
methods, such as experiments. Another decision to be made is whether a flexible or
fixed design should be used [26]. A flexible design allows to change the design based
on new information gathered while executing the case study, e.g. leading to a change of
research questions or data sources. In a fixed design the researcher sticks with the initial
design throughout the case study process. In comparison to controlled experiments
there is much less control in an industrial case study, which means that confounding
factors very likely play a role when making inferences, e.g. as is the case in this thesis
where inferences were made about the effect of the transition between two development
paradigms. The analysis of case studies ranges from a purely qualitative analysis where
raw data from interviewees is categorized and coded to the exclusive use of statistical
inference.

Simulation: Simulations are executable models of a real world phenomena (e.g.

15

Chapter 1. Introduction

software processes, software architecture) to study their behavior [32]. After building
the simulation model complex real-world processes can be simulated by calibrating the
model parameters based on empirical data, be it from existing publications or directly
collected from software industry. Simulation is able to capture complex processes and
systems to determine their performance, the calculation of the performance outcome
being too complex for a human to calculate in a time-efficient manner. This is due
to that software processes have complex looping mechanisms and the flow through the
processes is determined by many different factors that occur with specific probabilities.
Simulations have been used in many different application areas, e.g. release planning
[1], requirements engineering [13], and quality assurance [7]. In these application
areas simulation can be, for example, used for software productivity prediction [27]
or to manage risk. Simulation as a tool for empirical research can be used to test a
new solution in a “what-if” scenario, such as introducing a new testing technique into
a process and determine the impact on multiple process performance parameters.

Action Research: In action research the goal is to introduce an intervention in a real-
world setting and then observe what the affect of the intervention is. The researcher
is actively involved in introducing the intervention and making the observations [26],
in fact the researcher takes an active part in the organization (e.g. by participating
in a development team affected by the intervention introduced). The steps of action
research are planning of the intervention and the collection of the data to capture the
intervention effect, the implementation of the actual intervention, and the collection of
data and their interpretation [33]. As pointed out by Martella et al. [18] much can be
learned by continuously observing the effect of a change after inducing it. However, as
the researcher is actively involved in the team work action research is an effort intensive
approach from the researcher’s point of view.

Motivation for Choice of Research Method: The research method of choice for this
thesis was case study. The motivation for the choice is given by a direct comparison
with the other methods.

• Case study vs. experiment: As mentioned earlier, the contribution of this thesis
is the investigation of the implementation of lean and agile practices in a real-
world setting. As processes are concerned and the goal was to focus on large-
scale software development with hundreds of people involved it is not possible
to replicate such a solution in a lab environment with students.

• Case study vs. survey: A survey is classified as research in the large to get
an overall overview of a phenomena with regard to a population, hence being
referred to as research in the large [26], or research in the breadth. As in this
study the aim was to gain an in-depth understanding research in the breadth is
not an option. For example, asking too many detailed and free-text questions in a

16

survey would likely result in respondents not completing the survey. Hence, case
study is more suitable when it is agreed with a company that people are available
for detailed interviews allowing for the in-depth understanding.

• Case study vs. simulation: Simulation primarily focuses on measurable charac-
teristics of a process. As in-depth understanding requires a qualitative approach
for research case study is given preference over simulation.

• Case study vs. action research: Action research is very much based on plan-
ning an action or intervention and observing its effect. In the first contribution
of the thesis this was not possible as the action has been taken (i.e. the mi-
gration from plan-driven to agile). For the second contribution (introduction of
novel approaches to lean software engineering) action research would have been
a suitable alternative for the research goals, but was not chosen due to the ef-
fort connected with that, specifically as the intervention was done throughout the
overall development site at the studied company. Thus, instead of taking active
part in all implementations the researcher acted more as an observer.

Overall, the comparison shows that case study was considered the most suitable re-
search method in order to achieve the research contributions. The case studies are
confirmative as propositions could either be defined based on literature (studies S2 to
S5), or the case studies seek to confirm the usefulness of solutions (S6 to S8). The case
study design was fixed and agreed on with the company.

It is also important to distinguish between static and dynamic validation. Static
validation means to present the solution to practitioners and then incorporate their
feedback. This step is important to receive early feedback and to get a buy-in for
the implementation of the solution. Dynamic validation is the evaluation of the actual
usage of the solution in an industrial setting. The actual use (dynamic validation) is
conducted through case study research. If no dynamic validation was used yet, but we
presented the solution to the practitioners to receive early feedback, we refer to the
research method as static validation.

Within the case studies a number of sub-methods have been used, namely inter-
views (S2 to S4) and workshops (S6 and S7) for data collection, and grounded theory
(S2 to S4) as well as statistical analysis (S3, S6 to S8).

Interviews: Interviews are conversations guided by an interview protocol and are
considered one of the most important resources for data when conducting case studies
[38]. The interview protocol can vary in the degree of structure, ranging from very
structured (interviewee has to stick with research questions) over semi-structured (in-
terviewee has a guide, but can change the course of the interview to follow interesting
directions) to unstructured (rough definitions of topics to be covered). In this case

17

Chapter 1. Introduction

study we used semi-structured interviews to allow for some flexibility in the conversa-
tion. Unstructured interviews were not considered as interviews with some structures
seem to be the most efficient way of eliciting information [6].

Workshops: In a workshop a group of people is working together to solve a task.
A moderator is leading the workshop to guide the participants in achieving the task.
Workshops have been used in the studies where a new solution was provided to the
company to gather feedback. Workshops have been chosen to allow for an open dis-
cussion and reflection on the introduced solutions considering different roles. The
advantage of workshops is that they are very efficient in collecting data from several
perspectives in only one occasion. The disadvantage is that workshops require several
people to be available at the same time on one occasion, which can be a challenge when
conducting research with industry. Hence, workshops were used in the later phases of
the research (implementation of lean in studies S6 to S8) as it was easier to get the
right people at the same time. That is, the solution was under implementation at the
studied company with management support, assigning people to reflect and support the
improvement of the solution implementation.

Grounded Theory: The goal of grounded theory is to develop theories [26]. In
this research the goal was not to develop theories. However, grounded theory provides
valuable tools to analyze an overwhelming amount of qualitative data [26]. The fol-
lowing concepts from grounded theory have been applied to this research: reduction of
data through coding, display of data (use of matrices and tables), and documenting re-
lationships in mind-maps with narrative descriptions of the branches of the maps. The
detailed descriptions of the analysis process can be found in the chapters describing
studies S2 to S4.

Statistical Analysis: Descriptive statistics are also a means of reducing the amount
of data, and to visualize quantitative data in order to aid analysis [26]. Different kinds
of diagrams have been used in the studies, such as box-plots (S5 and S8), bar charts
(S7), etc. In study S5 we were interested in establishing relationships between different
variables. Hence, correlation analysis and regression was used to determine whether
one variable accounts for the variance in another variable.

1.5.2 Case and Units of Analysis
The case being studied is Ericsson AB located in Sweden. The company is developing
software in the telecommunication and multimedia domain. The market to which the
products are delivered can be characterized as highly dynamic and customized. Cus-
tomized means that customers often ask the delivered product to be adapted to their
specific needs after release. The company is ISO 9001:2000 certified. As the company
is delivering to a dynamic market the type of development is market-driven. That is,

18

the customers to which products are delivered are not all known beforehand. Instead,
the product is developed for many potential customers operating on the market. In
contrast, in bespoke development the customer and the users are known beforehand
and thus the main customers with that users are very clear when developing the soft-
ware. Additional details on the context elements relevant for the individual studies are
presented within the chapters.

The units of analysis were the systems developed at the case company. Two major
systems are developed at the development site that was investigated in this thesis. Each
of the systems is of very large scale and thus the systems are broken down into nodes
(also referred to as sub-systems). Different nodes have been studied throughout the
chapters of the thesis and are labeled and discussed within the chapters. The number
of sub-systems studied in each study are also stated in Table 1.5.

1.5.3 Data Collection and Analysis
Table 1.5 provides an overview of the data collection approaches and the evaluation
criteria for determining the usefulness of lean and agile development. In addition, the
research methods used and the units of analysis are summarized. For the collection
in the industry studies we used interviews, quantitative data collected at the company,
process documentation, and workshops.

Interviews: Chapters 3, 4, and 5 are based on a large-scale industry case study
and the data was primarily collected from a total of 33 interviews. The interviews
were semi-structured meaning that the interviewee used an interview guide, but was
allowed to depart from the guide and ask follow-up questions on interesting answers
raised during the interviews [26]. In that way the semi-structured interviews provide
some flexibility to the interviewee. Questions regarding the experience of the inter-
viewees were closed questions while the actual interview only contained open-ended
questions. Interviews have been chosen as they allow to gain an in-depth understand-
ing of the situation at the company. A systematic review in the context of requirements
elicitation, requirements elicitation aiming at gaining an in-depth understanding of the
customers’ needs regarding a software system to be developed, showed that interviews
with some structure seem to be the most effective way to elicit information [6], which
is supporting our choice of method.

Quantitative data: In addition to the qualitative data collected in Chapters 3, 4,
and 5 quantitative data on the effect of the migration from plan-driven to an agile de-
velopment approach has been used. The data source for that was data collected at the
company, which was closed source. That means, the original data sources were not
visible to the researchers and with that there was little control on the data collection
and with that constitutes a risk to validity. The collected data in Chapters 6, 7, and

19

Chapter 1. Introduction

Table
1.5:D

ata
A

nalysis
and

E
valuation

C
riteria

Study
R

esearch
M

ethod
U

nits
ofA

nalysis
D

ata
C

ollection
E

valuation
C

riteria

S1
(C

hapter2)
L

iterature
Survey

G
eneric

descriptions
of

de-
velopm

ent
approaches

for
lean

and
agile

softw
are

de-
velopm

ent.

R
eference

databases
Pairw

ise
com

parison
of

goals,
principles,

practices,and
processesto

identify
sim

ilar-
ities

and
differences.

S2
(C

hapter3)
C

ase
Study

T
hree

sub-system
s

at
the

case
com

pany
Interview

s,quantitative
data

collected
at

the
com

pany,
process

docum
entation

C
om

m
onality

of
perception

of
bottlenecks

/
unnecessary

w
ork

/
avoidable

rew
ork

in
the

plan-driven
(baseline)situation.

S3
(C

hapter4)
C

ase
Study

T
hree

sub-system
s

at
the

case
com

pany
Interview

s,quantitative
data

collected
at

the
com

pany,
process

docum
entation

C
om

m
onality

of
perception

of
bottlenecks

/unnecessary
w

ork
/avoidable

rew
ork

be-
fore

and
after

m
igration;

A
dditional

data
source

(closed
com

pany
data)

as
a

support
foranalyzing

the
change.

S4
(C

hapter5)
C

ase
Study

T
hree

sub-system
s

at
the

case
com

pany
Interview

s,
process

docu-
m

entation
C

om
m

onality
of

perception
of

bottlenecks
/

unnecessary
w

ork
/

avoidable
rew

ork
in

the
agile

situation
S5

(C
hapter6)

C
ase

Study
A

ll
sub-system

s
developed

at
developm

ent
site

studied
atcase

com
pany.

C
om

pany-proprietary
sys-

tem
developed

for
the

lean
solution

presented
in

this
paper.

D
escriptive

statistics
(box-plots)

and
an

analysis
ofw

hethervariables
(size,system

im
pact,phase)

accountfor
the

variance
in

lead-tim
e.

S6
(C

hapter7)
Static

V
alidation

O
ne

sub-system
at

case
com

pany
to

exem
plify

approach
forone

inventory

C
om

pany-proprietary
sys-

tem
developed

for
the

lean
solution

presented
in

this
paper,W

orkshops

Show
ing

applicability
on

an
industrialex-

am
ple

and
practitionerfeedback

S7
(C

hapter8)
C

ase
Study

N
ine

of
the

sub-system
s

de-
veloped

at
developm

ent
site

studied
at

case
com

pany,il-
lustration

ofthe
approach

on
a

sub-setofthese
system

s

C
om

pany-proprietary
sys-

tem
developed

for
the

lean
solution

presented
in

this
paper,W

orkshops

Practitioner
feedback

w
here

practitioners
identify

decisionsin
w

hich
they

believe
the

approach
is

an
useful

support.
A

bility
of

the
approach

in
aiding

practitioners
in

us-
ing

the
m

easuresto
identify

im
provem

ents.
S8

(C
hapter9)

C
ase

Study
M

aintenance
processforone

sub-system
at

studied
com

-
pany.

C
om

pany
proprietary

tool
that

w
as

already
in

place
for

softw
are

m
aintenance,

W
orkshops

A
bility

of
the

solution
to

show
presence

/
absence

of
inefficiencies

or
ineffective-

ness.

20

8 was based on a company-proprietary tool constructed by the author and a colleague
at Ericsson. Hence, in that case the data was available to the researcher having full
access, and thus was able to conduct quality checks on the data to assure completeness
and consistency. The study presented in study S8 also made use of a company propri-
etary tool for defect tracking with full access to the researcher. Therefore, the data in
study S8 was also under the researcher’s control.

Process documentation: Process documentation played an important role in the
early studies of the paper presented in Chapters 3 to 5 as they allowed to gain knowl-
edge about the terminology used in the company. Furthermore, a basic understanding
of the processes and ways of working was achieved, which was useful when conducting
the interviews. That is, the study of company documentation made the communication
between the researcher and practitioners much easier and hence allowed to focus the
interviews on the actual issues rather than clarifying terminology.

Practitioner Workshops: Practitioner workshops were used to gather feedback on
the proposed solutions as well as the researcher’s interpretation of the research results.
In general workshops were organized by providing an introduction to the theme(s) of
the workshop and then the themes were openly discussed in the workshops. Some
workshops also provided tasks to the workshop participants, such as writing notes and
presenting them to the audience (see e.g. study S7). How individual workshops were
organized and who participated in them is presented in the individual chapters. Over-
all, we found workshops to be efficient in gathering feedback as they allow to openly
discuss the same theme from different perspectives and roles at a single occasion.

Regarding the analysis different evaluation criteria have been used. Studies 2, 3,
and 4 used the commonality of responses across different roles in the development
life-cycle and across sub-systems for evaluation purposes. If an issue, for example, is
not perceived as common in the new way of working (agile) in comparison to the old
way of working (plan-driven) then this indicates an improvement. The evaluation of
the lean approaches was primarily based on the feedback of the practitioners, and their
reflections when using them. The evaluation criteria for each study are summarized in
the very right column in Table 1.5.

1.5.4 Validity Threats
Four types of validity threats are commonly discussed in empirical studies such as ex-
periments [36] and case studies [38, 29]. Construct validity is concerned with choos-
ing and collecting the right measures for the concept being studied. Internal validity is
concerned with the ability to establish a casual relationship statistically or the ability to
make inferences. External validity is about the ability to generalize the findings of the
study. Finally, conclusion validity is concerned with the ability of replicating the study

21

Chapter 1. Introduction

and obtaining the same results. Table 1.6 provides an overview of the validity threats
observed throughout the case study, stating and describing the threats with a reference
to the concerned studies.

A threat to validity in studies S2 to S4 is the unbiased selection of people for the
interviews. Possible biases could be that only interviewees are selected that are pos-
itive towards one of the models. To avoid this threat the interviewees were randomly
selected to collect the data for studies S2 to S4.

Reactive bias is concerned with the presence of the researcher affecting the outcome
of the study. This threat is only relevant when people are involved in either interviews
(S2 to S4) or workshops (S6 and S7) that might perceive the researcher as external
and hence behave differently in comparison to being only with their peers. As the
researcher was partly employed at the company he was perceived as internal, which
mitigates the threat of reactive bias.

Correct data is a validity threat throughout all studies (S2 to S8) as they are all of
empirical nature. In the case of the interviews the correct data was assured by taping the
interviews (S2 to S4). In S2 and S3 we also used closed data sources of data provided
by the company, which remains a validity threat as the original data source cannot be
examined. Therefore, the quantitative data in S2 and S3 only serves as an additional
data source to the qualitative data collected in the interviews, but should not be used as
an indicator of how much quantitative improvement could be achieved when migrat-
ing from one development paradigm to the other. The correctness of the data in the
workshops (S6 and S7) was assured by comparing notes with a fellow colleague at the
company who also documented the outcome of meetings and workshops. The quanti-
tative data collected in studies S5 to S7 were based on a company proprietary system
specifically designed for the purpose of collecting data related to the lean principles
introduced in this thesis and hence were available to the researchers. The software
maintenance study in S8 is based on a defect tracking system already in place at the
company, which was also fully accessible to the researcher. Hence, the main threat to
correct data remaining in this thesis is the closed data source concerning studies S2 and
S3.

The background and goals of the researcher could bias the interpretation by the
researcher. In order to reduce this threat to validity in studies S2 to S4 the analysis
steps for the interviews were reproduced in a workshop with practitioners and the au-
thors present, showing that all agreed with the analysis done. The interpretations of
the quantitative data (S5 to S8) and the data from the workshops (S6 and S7) was dis-
cussed with colleagues at the company. In addition, all studies have been reviewed by a
colleague of the company who was involved in the introduction of the approaches, and
also was present in the workshops and meetings. The colleague confirmed the findings
and approved the studies, hence being an important quality control with regard to bias.

22

Another threat is that one specific company and thus company specific processes
are studied. Therefore, the context and processes have been carefully described to
aid other researchers and practitioners in the generalization of the results. In order
to identify the relevant context information for the studies included in this thesis we
used a checklist of context elements introduced in Petersen and Wohlin [22], except
for study S2 and S4 as the checklist has been developed after having the possibility to
make changes to these studies.

Confounding factors are important when making inferences about a root-cause re-
lationship which is the case for study S3 in which inferences are made about the change
due to the migration from plan-driven to agile development. The confounding factors
cannot be ruled out as the study was conducted in an uncontrolled industrial environ-
ment. In order to address the validity threat the most obvious factors were ruled out
and a person involved in the measurement collection was asked about confounding fac-
tors, saying that at least partially the change could be attributed to the migration from
plan-driven to agile development.

The ability to make inferences in study S3 could be negatively influenced if the
instrument for data collection (interview) is not able to capture the change due to the
migration. This threat has been reduced by explicitly asking for the situation before
and after migration, and has been documented through citing the statements made by
the interviewees which explicitly contained the inferences made in the presentation of
the case study. In study S5 statistical analysis was used to determine whether lead-time
varies with regard to phase, system impact, and size. The inference to a population
is limited as the data is not drawn from a random sample. Hence, the context was
carefully described as companies in a similar context (large-scale development, parallel
system development, and incremental deliveries to system test) are more likely to make
similar observations.

Overall, the analysis of the threats to validity shows that throughout the studies
included in the thesis actions have been taken to minimize the threats. Further details
about the threats in the context of the individual studies is provided within the chapters.

1.6 Results
Table 1.7 summarizes the results of the individual studies. The table shows the sub-
contributions of the individual study/chapter and shortly provides a description of the
main result. The results of studies S2 to S5 are linked to Contribution I and the results
of studies S6 to S8 to Contribution II. The descriptions of the study results provide
answers to the research questions linked to the individual chapters (see Figure 1.2).

In the very first study (S1) the lean and agile development paradigms evaluated

23

Chapter 1. Introduction

Table 1.6: Validity Threats Observed in Empirical Studies at Case Company
Threat Description Concerned Studies

Unbiased selection Researcher not biased in selecting
people in interviews

S2, S3, S4

Reactive bias Presence of researcher influences
outcome

S2, S3, S4, S6, S7

Correct data Complete and accurate data S2, S3, S4, S5, S6,
S7, S8

Researcher bias The interpretation of the data is bi-
ased by the researcher

S2, S3, S4, S5, S6,
S7, S8

One company Company specific context and pro-
cesses

S2, S3, S4, S5, S6,
S7, S8

Confounding factors Other factors affecting the outcome
that are not controlled

S3

Inference Ability to make an inference re-
garding improvements

S3, S5

in the thesis were compared with each other to make the differences and similarities
between the two development paradigms explicit. Lean and agile are similar in goals.
Hence, some principles are similar as well related to people management leadership,
technical quality of the product, and release of the product. In addition, the paradigms
complement each other. For example, lean provides concrete examples for overhead
in the development process to become lightweight and agile. Unique to lean is the
principle of seeing the whole of the software development process, e.g. using systems
thinking, value stream maps, and other lean tools. With regard to quality assurance
and software release the same practices are considered (e.g. test driven development).
Unique to agile are the principles agile on-site customer, coding standards, team-code
owner ship, planning game, 40 hour week, and stand-up meetings.

Study S2 analyzes the baseline (plan-driven) situation before the migration to ag-
ile development. The issues identified through interviews were classified into groups
based on the commonality of responses that were mentioned by the interviewees across
different systems studied, and across different roles. Four classes (A to D) were defined
by setting thresholds with regard to the number of responses, the thresholds being used
as a means to structure the results with regard to commonality of the issues. The study
provides the following answer to research question RQ1.1: The most common issues
(A and B) were related to requirements and verification. In the requirements phase
many requirements were discarded as they became obsolete due to long lead-times in
the plan-driven process. That is, everything has to be finished before it can be delivered,

24

Table 1.7: Overview of Results
Study Sub-

Contribution
Result

S1 (Chapter 2) Comparison
lean and agile

Main difference is that lean focuses on the end to end
analysis of the development flow to get a complete picture
of the behavior of development. All other principles can
be found to some degree in both paradigms; Principles
unique to agile and principles unique to lean could be
identified.

S2 (Chapter 3) Migration
plan-driven to
agile

Most common issues related to requirements (large
amount of discarded requirements) and verification (re-
duced test coverage, increased amount of faults due to
late testing, faults found late hard to fix), hence not suit-
able in large-scale development.

S3 (Chapter 4) Problems originally perceived in waterfall development
are less commonly perceived in agile development in-
dicating improvement. Measures support this outcome.
Some open issues specific to agile remain.

S4 (Chapter 5) High overlap in advantages identified for benefits in
smaller scale (literature) and large scale. Few issues have
been mentioned in empirical studies as many issues re-
lated to scaling agile. Hard to compare studies in agile as
context descriptions need improvement.

S5 (Chapter 6) No significant difference between phases. System impact
does not lead to difference in lead-time. Size increases
lead-time in implementation phase.

S6 (Chapter 7) Evaluation of
lean practices

Practitioners agreed with the assumptions of the approach
and they found illustration of measurements easy to un-
derstand/ use. Overall, the approach was perceived as
useful.

S7 (Chapter 8) Practitioners identified short-term and long-term deci-
sions in which the approach is useful. In addition, the
measures led the practitioners to identify a number of im-
provement proposals.

S8 (Chapter 9) Approach was able to show presence and absence of inef-
ficiencies and ineffectiveness in the maintenance process.

which takes some time and during that time the needs of the customers change. The
most common issues with regard to verification were test coverage, amount of faults

25

Chapter 1. Introduction

increase with late testing, and faults found in the process are hard to fix. All issues
classified as A and B were mentioned in literature supporting the generalizability of
the results. Hence, overall the study confirms the findings in literature, while adding
some new, but less commonly perceived issues, as described in S2. The conclusion was
that the waterfall approach was not suitable in the studied context. Hence, the study
supports the decision made by the company to change towards a more agile process.

Study S3 compares the plan-driven situation (from S2) with the situation after mi-
gration to agile development. In research question RQ1.2 we asked for the perceived
issues before and after the migration. The most common issues before the migration
are presented in S2 and S3. The most common issues remaining after the migration for
the agile situation were:

• Test cycle planning prolong lead-times in case of a rejection of an increment
by the test, or if an increment is delivered too late (increment has to wait for
completion of the following test cycle);

• Reduction of test coverage due to lack of independent verification and validation
and short projects putting time pressure on teams; (3) people concerned with the
release are not involved early in the process;

• Project management overhead due to high number of teams (much coordination
and communication).

The benefits of the migration were:

• More stable requirements led to less rework and reduced waste in the require-
ments phase; (2) estimations are more precise;

• Early fault detection allows to get feedback from test early on;

• The lead-time for testing was reduced;

• Moving people together reduced the amount of documentation needed as direct
communication could replace documentation.

Given the results we can answer research question RQ1.3 by saying that the problems
reported in S2 with regard to requirements and verification are not perceived as that
common anymore after the change, the exact ratings of the commonalities being stated
within the Chapters presenting S2 and S3. The measurements, which were based on
a closed data source and were used for the purpose of triangulation, supported the
qualitative results. Overall this is already a positive result as the introduction of the
new practices had been done quite recently at the time the case study was conducted.

26

In study S4 an in-depth investigation of the situation after migration is conducted.
For that purpose the thresholds with regard of how often an issue (or advantage) has
been mentioned is reduced to gain a more in-depth understanding of the new situation,
the results of the study answering research question RQ1.4. Additional issues to those
identified in study S3 were:

• Handover from requirements to implementation takes time due to complex deci-
sion processes;

• The requirements priority list used is essential in for company’s model to work
and is hard to create and maintain;

• Design has free capacity due to long lead-times as in requirements engineering
complex decision making takes place (though as shown in previous study this is
less severe);

• Too much documentation in testing, but less severe;

• Many releases on the market mean many different versions of the system that
needs to be supported which might increase maintenance effort;

• Configuration management requires high effort to coordinate the high number of
internal releases;

• The development of the configuration environment to select features for cus-
tomizing solutions takes a long time;

• Product packaging effort is increased as it is still viewed from a technical point
of view, but not from a commercial point of view;

• Dependencies rooted in implementation details are hard to identify and not cov-
ered in the anatomy plan.

Additional benefits were:

• Time of testers used more efficiently as testing and design can be easily paral-
lelized due to short ways of communication;

• Higher transparency of who is responsible for developing increments, this gen-
erating incentives for delivering quality.

With regard to the comparison with related work we found that existing empirical stud-
ies and study S4 agreed on the advantages that could be achieved with agile software

27

Chapter 1. Introduction

development. However, some new issues have been identified that need to be addressed
to fully leverage on the benefits of agile software development.

Study S5 set out to investigate effects of different attributes related to requirements
on lead-time (difference between phases, difference with regard to the number of sys-
tems affected, and difference with regard to size). The following answers for research
question RQ1.5 were obtained:

• No significant difference between lead-times of phases could be established
based on statistical tests (i.e. no specific time intensive activity);

• No difference between requirements affecting one or multiple systems, which
was considered a surprising result;

• Large requirements have a tendency of increased lead-time in the implementation
phase, but not in other phases.

In order to further improve the lead-time situation observed in study S5 lean tools are
proposed to identify and remove wastes in the development process, which leads to the
results of Contribution II of this thesis (see Table 1.7).

Study S6 presents a novel approach called software process improvement through
the lean measurement (SPI-LEAM) method. SPI-LEAM evaluates how well an overall
software process performs considering the work in process in comparison to capacity.
The approach facilitates a combined analysis of different dimensions of the software
process (such as main product development, software testing, software maintenance,
and so forth). The dynamic validation conducted with practitioners showed that the
overall approach was perceived positively, and that the practitioners agreed with the
underlying assumptions of the approach, e.g. that the work-load should be below ca-
pacity as this allows for a continuous flow of development (research question RQ2.1).
At the same time being below capacity provides flexibility in case of required mainte-
nance or other high priority tasks emerging.

The previous study (S6) analyzed the overall process. When undesired behavior is
discovered (e.g. in particular dimension of the process) it might be necessary to take
a closer look at these dimensions. Study S7 proposes a visualization of the flow of re-
quirements through development in combination with a set of measures. The measures
allow for the discovery of bottlenecks, discontinuous work flow, and the discovery of
waste in forms of discarded requirements. The approach was evaluated by practitioners
using the approach and then reflecting upon it. The findings were that:

• Requirements prioritization is supported;

• The measures aid in allocating staff;

28

• The measures provide transparency for teams and project managers of what work
is to be done in the future and what has been completed;

• Software process improvement drivers can use the measures as indicators to
identify problems and achieve improvements from a long-term perspective.

In addition we evaluated what improvement actions practitioners identified based on
the measurements. The identified improvements were:

• An increased focus on continuous development by limiting the allowed number
of requirements in inventories;

• Earlier and more frequent integration and system testing of the software system
to increase quality.

The case study showed that the visualization and measures are perceived as valuable
from an industrial perspective and that the practitioners could identify improvement
actions (research question RQ2.2).

Study S8 proposed lean measures and visualizations specifically tailored towards
the needs of software maintenance. Individual visualizations and measures were pro-
posed for the inflow of maintenance requests, flow of requests for maintenance tasks
throughout the maintenance process, lead-times, and work-load. The approach has
been applied to an industrial case for one system and it was demonstrated that the pres-
ence or absence of inefficiencies and ineffectiveness in the maintenance process could
be identified (research question RQ2.3). The major improvement potential identified
was the reduction of waiting times and the need for a more continuous work-flow in
some phases of the maintenance process.

1.7 Synthesis
The synthesis draws together the obtained results in order to provide answers to the
main research questions asked in this thesis.

• QI.I: Are agile practices useful in an industrial context? In the study investigat-
ing the baseline (plan-driven development) it was shown that many critical issues
were identified, making the need for more agility and flexibility explicit (S2).
The need is further strengthened by the fact that the company decided to move
towards agile practices across all its development sites. With the introduction of
agile practices we have shown that the practitioners perceived the migration pos-
itively, mentioning multiple advantages. At the same time major issues that were

29

Chapter 1. Introduction

commonly perceived for the plan-driven approach are less commonly perceived
in the new process (S3). Finally, study S4 adds further advantages when look-
ing at the process in detail, as presented in the previous section (Results). The
quantitative data, though facing validity threats of a closed data source, supports
the qualitative results, which further strengthens the qualitative result from the
interviews. In addition it has to be considered that the migration was done quite
recently and for that considerable improvements have already been achieved.
Hence, the answer to the first research question is that agile practices appear to
be useful in a large-scale industrial context.

• QI.II: What challenges and open issues arise with the introduction of agile prac-
tices? Though, the result showed improvement there is still potential to further
improve the new situation after migration as open issues have been identified.
The most critical open issues were reported in study S3 investigating the effect
of the migration, namely long lead-times due to test cycle planning, reduction of
test coverage, release planning involved too late in the process, and overhead due
to coordination needs. Further open issues have been identified in study S4. In
study S5 lead-times were analyzed showing no difference in lead-times between
phases, and no differences between requirements affecting one system and sev-
eral systems. Based on the lead-time analysis the company seeks to achieve
further improvements. This leads to the next question concerning lean practices,
which have shown major improvements in lead-time reduction and value creation
for customers in the manufacturing and product development domain.

• QII: Are lean practices useful in the analysis and further improvement of ag-
ile software development? The lean approaches proposed in this thesis have
been evaluated using practitioner feedback and the reflection of the practition-
ers when using them. The approaches were perceived useful, this is true for
the SPI-LEAM solution, but also for the solutions of analyzing main product
development and the maintenance process. SPI-LEAM is able to integrate the
different dimensions of the process. However, the individual solutions presented
in studies S6 and S8 were also perceived as valuable stand-alone, meaning that
SPI-LEAM (S6) is not a pre-requisite for the solutions presented in S7 and S8
to be useful. In addition, the usefulness of the approaches is supported by the
fact that the company is adopting them, and in particular is using the solution
presented in S7 continuously. Now that the lean practices have been used for
almost a year it can also be said that they are a driver for improvements, e.g. the
implementation of Kanban principles (see Chapter 2 for a description) and other
improvements. In consequence, the answer to this research question is that lean
practices are useful in further improving agile processes.

30

1.8 Conclusions
In this thesis two contributions are made, namely the usefulness of the implementation
of agile software development (Contribution I) and the added benefit of using lean
practices on top of that (Contribution II).

In order to determine the usefulness of agile practices (Contribution I) a series of
four studies was used. In the first study the baseline situation was analyzed (i.e. the
plan-driven situation). Thereafter, the effect of moving from the plan-driven to an
agile process was investigated. Finally, an in-depth analysis of the new situation was
described. In addition an analysis of lead-times in the situation after the migration has
been conducted.

With regard to the lean practices the goal was to determine if they have some added
value to agile practices (Contribution II). Therefore, novel approaches strongly inspired
by lean thinking as presented in the context of lean manufacturing and product develop-
ment were proposed. The first approach (referred to as software process improvement
through the lean measurement method, short SPI-LEAM) analyzes the capacity of the
process in comparison to the workload in order to avoid overload situations and with
that realize a smooth flow of development. The solution is multi-dimensional in that it
integrates different dimensions of the process (such as main product development, soft-
ware maintenance, software testing, and so forth). When observing undesired behavior
with SPI-LEAM in specific dimensions a drill-down analysis should be possible to un-
derstand the problem in more detail. Therefore, lean approaches for the main product
development flow of requirements and for software maintenance have been proposed.

To build a bridge between the agile and lean software development a chapter on the
difference between these two development approaches has been included.

The evaluation of the agile practices has been done through a series of three indus-
trial case studies. All case studies have been conducted at Ericsson AB. The outcome
of the case studies showed that the migration from plan-driven development to agile
development is beneficial as improvements in several areas (primarily requirements
engineering, and verification) could be achieved. Furthermore, open issues and chal-
lenges have been identified that have to be addressed in order to fully leverage on the
benefits that agile practices can provide.

The evaluation of the lean practices showed that they were generally perceived
as useful by the practitioners. In addition, the lean practices aided the practitioners
in identifying improvements, and they also identified concrete decisions in which the
lean practices provide valuable support. The feedback by the practitioners was based
on their experience when using the approaches.

With regard to future work further studies are needed on agile software develop-
ment in general, and with a focus on large-scale software development in particular.

31

REFERENCES

Furthermore, more mature agile implementations need to be studied to understand the
long-term effects in terms of benefits and challenges that come with their introduction.
With regard to lean future work is needed to evaluate the lean practices and solutions
proposed in this thesis in different contexts. As with agile the long-term effect of using
lean practices needs to be investigated. Only a sub-set of lean tools has been proposed
in this thesis, but there are others as well (e.g. value-stream maps). Hence, a compar-
ison of different lean tools would be beneficial to support in the selection of the most
suitable approaches.

1.9 References
[1] Ahmed Al-Emran, Puneet Kapur, Dietmar Pfahl, and Günther Ruhe. Simulating

worst case scenarios and analyzing their combined effect in operational release
planning. In Proceedings of the International Conference on Software Process
(ICSP 2008), pages 269–281, 2008.

[2] Sebastian Barney, Aybüke Aurum, and Claes Wohlin. Software product quality:
ensuring a common goals. In Proceedings of the International Conference on
Software Process (ICSP 2009), pages 256-267, 2009.

[3] Kent Beck. Extreme Programming explained: embrace change. Addison-Wesley,
Reading, Mass., 2000.

[4] Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, Paul Grünbacher.
Value-based software engineering. Springer, Heidelberg, 2005.

[5] Christian D. Buckley, Darran W. Pusipher, and Kandell Scott. Implementing IBM
rational clearQuest: an end-to-end deployment guide. IBM Press, 2000.

[6] Alan M. Davis, Óscar Dieste Tubı́o, Ann M. Hickey, Natalia Juristo Juzgado,
and Ana Marı́a Moreno. Effectiveness of requirements elicitation techniques:
empirical results derived from a systematic review. In Proceedings of the 14th
IEEE International Conference on Requirements Engineering (RE 2006), pages
176–185, 2006.

[7] Paolo Donzelli and Giuseppe Iazeolla. A hybrid software process simulation
model. Software Process: Improvement and Practice, 6(2):97–109, 2001.

[8] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software develop-
ment: A systematic review. Information & Software Technology, 50(9-10):833–
859, 2008.

32

[9] Floyd J. Jr. Fowler. Improving survey questions: design and evaluation. Sage
Publications, Thousand Oaks, California, 1995.

[10] Tony Gorschek, Ewan Tempero, and Lefteris Angelis. A large-scale empirical
study of practitioners’ use of object-oriented concepts. In Proceedings of the
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering (ICSE 2010), 2010.

[11] Tony Gorschek and Claes Wohlin. Requirements abstraction model. Requir. Eng.,
11(1):79–101, 2006.

[12] Michael Hirsch. Moving from a plan driven culture to agile development. In
Proceedings of the 27th International Conference on Software Engineering (ICSE
2005), page 38, 2005.

[13] Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, and Chris-
tian Nyberg. Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation. Journal of Systems and Software,
59(3):323–332, 2001.

[14] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements engineering.
Springer, London, 2005.

[15] George Stalk Jr. Time - the next source of competitive advantage. Harvard
Business Review, 66(4), 1988.

[16] Philippe Kruchten. The rational unified process: an introduction. Addison-
Wesley, Boston, 2004.

[17] Craig Larman. Agile and iterative Development: a manager’s guide. Pearson
Education, 2003.

[18] Ronald C. Martella, Ronald Nelson, and Nancy E. Marchand-Martella. Research
methods : learning to become a critical research consumer. Allyn & Bacon,
Boston, 1999.

[19] Peter Middleton. Lean software development: two case studies. Software Quality
Journal, 9(4):241–252, 2001.

[20] Peter Middleton, Amy Flaxel, and Ammon Cookson. Lean software management
case study: Timberline inc. In Proceedings of the 6th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP 2005),
pages 1–9, 2005.

33

REFERENCES

[21] James M. Morgan and Jeffrey K. Liker. The Toyota product development system:
integrating people, process, and technology. Productivity Press, New York, 2006.

[22] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), pages 401–404, 2009.

[23] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley, Boston, 2003.

[24] Mary Poppendieck and Tom Poppendieck. Implementing lean software develop-
ment: from concept to cash. Addison-Wesley, 2007.

[25] Mary Poppendieck and Tom Poppendieck. Leading lean software development:
results are not the point. Addison-Wesley, Upper Saddle River, NJ, 2010.

[26] Colin Robson. Real world research: a resource for social scientists and
practitioner-researchers. Blackwell, Oxford, 2002.

[27] Jorge L. Romeu. A simulation approach for the analysis and forecast of software
productivity. Computers and Industrial Engineering, 9(2):165–174, 1985.

[28] Walter Royce. Managing the development of large software systems: Concepts
and techniques. In Proc. IEEE WESCOM. IEEE Computer Society Press, 1970.

[29] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–
164, 2009.

[30] Viktor Schuppan and Winfried Rußwurm. A CMM-based evaluation of the V-
model 97. In Proceedings of the 7th European Workshop on Software Process
Technology (EWSPT 2000), pages 69–83, 2000.

[31] Ken Schwaber. Agile project management with Scrum. Microsoft Press, Red-
mond, Wash., 2004.

[32] Forrest Shull, Janice. Singer, and Dag I. K. Sjøberg. Guide to advanced empirical
software engineering. Springer-Verlag London Limited, London, 2008.

[33] Bridget Somekh. Action research: a methodology for change and development.
Open University Press, Maidenhead, 2006.

34

[34] Glen L. Urban, Theresa Carter, Steven Gaskin, and Zofia Mucha. Market share
rewards to pioneering brands: an empirical analysis and strategic implications.
Management Science, 32(6):645–659, 1986.

[35] Brian White. Software configuration management strategies and Rational
ClearCase: a practical introduction. Addison-Wesley, Harlow, 2000.

[36] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslen. Experimentation in software engineering: an introduction
(international series in software engineering). Springer, 2000.

[37] James P. Womack, Daniel T. Jones, and Daniel Roos. The machine that changed
the world: how lean production revolutionized the global car wars. Simon &
Schuster, London, 2007.

[38] Robert K. Yin. Case study research: design and methods. Sage Publications, 3
ed. edition, 2003.

35

REFERENCES

36

Chapter 2

Is Lean Agile and Agile Lean?
A Comparison between Two
Software Development
Paradigms

Kai Petersen
To appear in Book Modern Software Engineering Concepts and
Practices: Advanced Approaches, IGI Global

2.1 Introduction
The nature of software development has changed in recent years. Today, software is
included in a vast amount of products, such as cars, mobile phones, entertainment and
so forth. The markets for these products are characterized as highly dynamic and with
frequent changes in the needs of the customers. As a consequence, companies have to
respond rapidly to changes in needs requiring them to be very flexible.

Due to this development, agile methods have emerged. In essence agile methods are
light-weight in nature, work with short feedback and development cycles, and involve
the customer tightly in the software development process. The main principles that

37

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

guided the development of different agile practices such as eXtreme programming [3]
and SCRUM [28] are summarized in the agile manifesto [9]. As shown in a systematic
review by Dyb and Dingsyr [8] agile has received much attention from the research
community.

While agile became more and more popular lean software development has emerged
with the publication of the book [24], which proposes ways of how practices from lean
manufacturing could be applied in the software engineering context. Lean has a very
strong focus on removing waste from the development process, i.e. everything that
does not contribute to the customer value. Furthermore, according to lean the devel-
opment process should only be looked at from an end-to-end perspective to avoid sub-
optimization. The aim is to have similar success with lean in software development as
was the case in manufacturing. That is, delivering what the customer really needs in a
very short time.

Both development paradigms (agile and lean) seem similar in their goal of focusing
on the customers and responding to their needs in a rapid manner. Though, it is not well
understood what distinguishes both paradigms from each other. In order to make the
best use of both paradigms it is important to understand differences and similarities for
two main reasons:

• Research results from principles, practices, and processes shared by both paradigms
are beneficial to understand the usefulness of both paradigms. This aids in gener-
alizing and aggregating research results to determine the benefits and limitations
of lean as well as agile at the same time.

• The understanding of the differences shows opportunities of how both paradigms
can complement each other. For instance, if one principle of lean is not applied
in agile it might be a valuable addition.

The comparison is based on the general descriptions of the paradigms. In particular,
this chapter makes the following contributions:

• Aggregation of lean and agile principles and an explicit mapping of principles to
practices.

• A comparison showing the overlap and differences between principles regarding
different aspects of the paradigms.

• A linkage of the practices to the principles of each paradigm, as well as an inves-
tigation whether the practices are considered part of either lean or agile, or both
of the paradigms.

38

The remainder of the chapter is structured as follows: Section 2 presents back-
ground on lean and agile software development. Section 3 compares the paradigms
with respect to goals, principles, practices, and processes. Section 4 discusses the find-
ings focusing on the implications on industry and academia. Section 5 concludes the
chapter.

2.2 Background
Plan-driven software development is focused on heavy documentation and the sequen-
tial execution of software development activities. The best known plan-driven develop-
ment model is the waterfall model introduced by Royce in the 1970s [27]. His intention
was to provide some structure for software development activities. As markets became
more dynamic companies needed to be able to react to changes quickly. However, the
waterfall model was built upon the assumption that requirements are relatively stable.
For example, the long lead-times in waterfall projects lead to a high amount of require-
ments being discarded as the requirements became obsolete due to changes in the needs
of the customers. Another problem is the reduction of test coverage due to big-bang
integration and late testing. Testing often has to be compromised as delays in earlier
phases (e.g. implementation and design) lead to less time for testing in the end of the
project.

In response to the issues related to plan-driven approaches agile software devel-
opment emerged in the late 1990s and early 2000s. Agile software development is
different from plan-driven development in many ways. For example, a plan-driven
project contains detailed planning of the time-line with clearly defined products and
documentation to be delivered while agile focuses on a high-level plan for the over-
all product development life-cycle with detailed plans only for the current iterations.
Another difference is the way requirements are specified. That is, in plan-driven devel-
opment there is a clearly defined specification phase where the complete requirements
specification is created, the specification representing the contract. Hence, a change
in requirements is a formal and work intensive process. On the other hand, agile wel-
comes changing requirements leading to continuous evolution. Consequently, change
requests are handled through a more relaxed change request process. With regard to
other activities (such as programming and testing) waterfall development concentrated
these activities on one specific phase of development, while in agile development the
activities are conducted throughout the overall development life-cycle [11]. The most
prominent descriptions of agile software development process are eXtreme Program-
ming (XP) [3] and SCRUM [28]. Each of these processes contains a high-level descrip-
tion of the work-flow and a set of agile software development practices. A mapping of

39

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

the practices and a description of the work-flows of different agile processes (including
eXtreme Programming and SCRUM) can be found in [15] and [16].

Lean software development is inspired by ideas that have been used in the context
of manufacturing and product development. Lean manufacturing led to tremendous
performance improvement in the context of manufacturing cars at Toyota, the approach
being referred to as the Toyota Production System. The lean manufacturing approach
allowed delivering high quality products with fewer resources and in shorter time. The
improvements were achieved by continuously improving processes through a system-
atic analysis focusing on waste identification; waste being everything that does not
contribute to customer value. The ideas of lean manufacturing were put forward in the
book The Machine that Changed the World (cf. [31]). In lean manufacturing the main
focus was on optimizing the shop floor. Car manufacturers today have implemented
the lean principles in their shop floors, i.e. the use of lean manufacturing does not lead
to a competitive advantage anymore. Hence, to achieve further improvements the ideas
behind lean have been extended to the overall product development life-cycle and the
whole research & development organization. This includes the disciplines purchasing,
sales and marketing, product planning, people management, and so forth. This view is
more relevant for software development than the pure manufacturing view as in soft-
ware engineering the overall development cycle should be in focus when improving
software processes. The extensions to incorporate the whole of product development
are known as the Toyota Product Development System (cf. [19]). The Poppendiecks
translated the lean principles and practices known from manufacturing and product de-
velopment to software engineering. Mary Poppendick stated that they were motivated
to translate the practices when she heard about the waterfall model of software develop-
ment, believing that software development would largely benefit from lean principles
and practices, which helped product development in creating a flexible organization.
The references from Mary and Tom Poppendieck (cf. [24, 25, 26]) are the main sources
of how to interpret lean practices in the context of developing software. Hence, their
books are used as the main sources for the identification of goals, principles, practices,
and processes of lean software development. In comparison to agile, there are very
few studies with an explicit focus on lean software development. The lack of empirical
evidence for lean software development means that the comparison is focused on the
generic descriptions provided in books.

2.3 Comparison
In this section the goals, principles, practices, and processes of the development paradigms
are described and compared. The comparison focuses on different facets of the paradigms,

40

namely goals, principles, practices, and processes.

• Goals state what should be achieved by the paradigm. Hence, they present the
rationale for why the principles, practices, and processes should be applied. In
other words, goals represent the “why” (Subsection 2.1).

• Principles are rules that should be followed while using the paradigms. A rule
of agile, for example, says that one should achieve technical excellence. Rules
represent the “What” (Subsection 2.2).

• Practices are the implementation of the principles. For example, in order to
implement technical excellence eXtreme programming uses pair programming
to reduce the number of faults introduced into the code due to the continuous
peer review process. Practices represent the “How” (Subsection 2.3).

• Processes describe the workflow and artifacts produced. That means the process
is a representation of “when” an activity is done, and in which order (Subsection
2.4).

Each of the subsections of the comparison follows a similar pattern. First, the
goals/principles/practices are introduced and thereafter the comparison is made.

2.3.1 Goals
Description of Goals

Goals describe why we should care about agile and lean; they provide a rational for
software companies to adapt the paradigms. The following goals are identified for
agile and lean:

• Goal agile: Agile (in comparison to traditional approaches such as plan-driven
development) has the goal of delivering working software continuously that can
be demonstrated to the customers to illustrate the latest status checking whether
the software fulfills the customers’ needs. Thus, the customers can provide feed-
back early and by that make sure that a product fulfills the needs of the customers.
The goal becomes clear from the statement that working software is the primary
measure of progress that should be delivered on regular bases in short cycles
[9, 3, 15, 16].

• Goal lean: The goal of lean software development focuses on creating value for
the customer rapidly and not spending time on activities that do not create value
[24]. Value in this case has to be seen through the glasses of the customer [19].

41

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

If there is an activity that is not of value for the customer then it is considered
waste.

Comparison

Both goals have the focus on the customer in common. In the case of agile the cus-
tomers are in focus as they should regularly receive working software. Lean adds the
notion of value which was not as explicitly expressed in agile as it was in lean (see
Table 2.1). Value has many different meanings and is a whole research field on its
own, referred to as value-based software engineering [29]. One example of a definition
of value in the lean context is that one should focus on everything that delights the
customer, which is not necessarily what the customer wants or asks for [24, 19]. In
the agile context, the needs of the customer are in the center, i.e. what the customer
wants and requires. This is not in conflict with value, however, the notion of value puts
more emphasis on exciting and delighting the customers and surprising them positively,
which goes beyond satisfying the customers’ needs.

Table 2.1: A Comparison of Goals for Lean and Agile
Aspect Lean Agile

Customer Create value for the customer and
thus only focus on value-adding ac-
tivities.

Have a working product that fulfills
the customers’ needs.

Development speed Rapid value creation and short cy-
cle times

Continuous delivery of working
software

Both development paradigms also share the goal of having frequent and rapid deliv-
eries to the customer (see row Development Speed in Table 2.1). They are very similar
in the sense that new and changed features should be made usable for the customer
as fast as possible. This is a lesson learned from waterfall-oriented projects where all
requirements are elicited, developed, tested, and finally delivering together based on a
well defined plan. Waterfall development leads to a number of issues which were the
reasons for the movement towards agile. The main issues are: (1) planned and vali-
dated requirements become obsolete as waterfall is inflexible in responding to changes;
(2) reduction of test coverage due to limited and late testing; (3) the amount of faults
increases with late testing; and (4) faults found late are hard and expensive to fix (see
Chapter 3). In contrast, delivering fewer requirements/features more frequently avoids
that requirements become obsolete, and allows for much earlier feedback from testing
and customers [1].

42

The goals that we identified drive the principles by which lean and agile work. The
principles of both development paradigms are analyzed in the following section.

2.3.2 Principles

Description of Principles

The principles constitute the rules that, according to the general descriptions of the
methods, should be followed to achieve the goals (see Section 2.1). The principles for
agile and lean are explicitly defined for both paradigms. The agile manifesto states
four values and twelve related principles of agile development. In the lean context
seven principles have been defined. For each principle we assigned a unique ID which
eases the mapping and comparison between lean and agile, and also to make it easier to
connect the principles to the practices implementing them. The following four values
are presented in the agile manifesto [9]:

• V1: Individuals and interactions over processes and tools.

• V2: Working software over comprehensive documentation.

• V3: Customer collaboration over contract negotiation.

• V4: Responding to change over following a plan.

The agile manifesto states that the statements on the left have a higher value than
the ones on the right. For example, agile does not say that there is no value in pro-
cesses. However, as Koch [15] points out processes can be harmful if they are misused
and hinder people in working together, drain people’s enthusiasm and excitement, and
require more investment in maintaining them than they help in working more effec-
tively and efficiently. The 12 principles are based on the values and can be related to
them. For each of the principles (AP01 to AP12) we state to which value the principle
relates (cf. [9]).

• AP01: Customer satisfaction: The satisfaction of the customer should have the
highest priority. To achieve this, software needs to be delivered early and contin-
uously (i.e. software fulfilling the customer needs as stated in the goals). (V3)

• AP02: Welcome change: Changes should be welcomed by software developers,
no matter if they come in early or late. The ability to react to late changes is seen
as a competitive advantage. (V4)

43

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

• AP03: Frequent deliveries: Working software should be delivered frequently to
the customer. Deliveries should happen within a couple of months or weeks. The
manifesto stresses that preference should be given to the shorter time-scale. (V2)

• AP04: Work together: Developers (i.e. technicians) and business people (i.e.
product managers, administration, management, etc.) are required to work to-
gether on a daily basis throughout projects. (V2)

• AP05: Motivated individuals: Motivated individuals are a prerequisite for suc-
cessful projects and hence projects should be built around them. Building projects
around them means to provide them with environments (e.g. tools and workspace)
and to support them (e.g. project managers could help in avoiding unnecessary
project disturbances). Furthermore, the project teams should be trusted to be
successful in achieving the project goals. (V1)

• AP06: Face-to-face conversation: Face-to-face communication is seen as the
most efficient way of exchanging information (e.g. in comparison to e-mail and
telephone conversation). This is true within a development team, but also be-
tween teams and other relevant stakeholders of the project. (V1)

• AP07: Working software: The progress of software development should be mea-
sured through working software. Hence, working software is more important
than detailed documentation, as was expressed in the second value of agile soft-
ware development (V2).

• AP08: Sustainable pace: Everyone involved in the project (developers, software
users, sponsors, managers, etc.) should be able to work indefinitely in a contin-
uous pace. A process supporting the achievement of sustainable pace is referred
to as sustainable development. (V1)

• AP09: Technical excellence: Agile requires discipline in focusing on technical
excellence and good design. Having a high quality product and a good design
allows for easy maintenance and change, making a project more agile. (V2)

• AP10: Simplicity: The agile manifesto defines simplicity as “the art of maximiz-
ing the amount of work not done - and is essential”. (V4)

• AP11: Self-organizing teams: Teams organizing themselves (e.g. picking their
own tasks, and taking responsibility for completing the tasks) leads to the best
requirements, architectures, and designs. (V1)

44

• AP12: Continuous reflection: Teams should reflect on their work continuously
and think about how to become more efficient. Improvements should be imple-
mented according to the discoveries made during the reflection. (V4)

Lean is based on seven principles, which are explained in more detail as they are
not as self-contained as the ones presented for the agile manifesto.

• LP01: Eliminate waste: Waste in lean is everything that does not contribute to
the value for the customer, i.e. everything that does not help to fulfill the needs of
the customer or does delight the customer. Seven types of waste were identified
in manufacturing and mapped to software development (see Table 2.2). The left
column of the table describes the wastes in manufacturing and the right column
the corresponding wastes in software engineering (cf. [24]). Each waste related
to software development has an ID which is used to reference the wastes in the
text. The wastes slow down the development flow and thus should be removed
to speed up value creation.

• LP02: Amplify learning: Software development is a knowledge-intensive pro-
cess where learning happens during the whole development lifecycle and needs
to be amplified. Learning includes getting a better understanding of the cus-
tomer needs, potential solutions for architecture, good testing strategies, and so
forth. Thus, the processes and practices employed in a company should support
learning.

• LP03: Defer commitment: A commitment should be delayed as far as possi-
ble for irreversible decisions. For example, a tough architectural decision might
require some experimentation and therefore should not be committed early. In-
stead, the option for change should be open for as long as possible. [24] point
out that not all decisions are irreversible and thus do not have to be made late as
they can be changed.

• LP04: Deliver as fast as possible: Lean has a strong focus on short cycle times,
i.e. to minimize the time from receiving a request for a feature to the delivery of
the feature. The reason for the strong focus on cycle time is that while a feature
is under development it does not create value for the customer.

• LP05: Respect people: Poppendieck and Poppendieck [24] provide three prin-
ciples that were used in the context of the Toyota Product Development System
fostering the respect for people: (1) Entrepreneurial leadership: People that are

45

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

led by managers who trust and respect them are more likely to become good lead-
ers themselves. This helps in creating a management culture facilitating commit-
ted and independent people in an organization. (2) Expert technical workforce:
Successful companies help building expertise and managers in these companies
make sure that the necessary expertise for achieving a task is within the teams.
(3) Responsibility-based planning and control: Management should trust their
teams and not tell them how to get the job done. Furthermore, it is important to
provide the teams with reasonable and realistic goals.

• LP06: Build quality in: Quality of the software product should be built in as
early as possible, and not late in development by fixing the defects that testing
discovered. In result the integrity of the software in development should be high
at any point in time during the development lifecycle. As [24] point out, a prereq-
uisite for achieving integrity is very high discipline. For example, if a defect is
discovered early in the development process the ongoing work must be stopped
and the defect fixed.

• LP07: See the whole: When improving the process of software development
the whole value-stream needs to be considered end to end (E2E). For example,
there is no point in sub-optimizing the requirements process and by that increase
the speed of the requirements flow into coding and testing if coding can only
implement the requirements in a much slower pace.

Comparison

Figure 2.1 shows a mapping of the principles related to lean and agile. The identified
principles were grouped into seven aspects (people management and leadership; quality
of the product; release of the product; flexibility; priority of the customer needs/value;
learning; and E2E flow). Each aspect contains a set of principles for lean and agile.
If principles from the lean and agile paradigms respectively are stated in the same row
then they are related and their relationship is explained further. For example, AP11
(self-organizing teams) and LP05 (respect people) are related within the aspect “people
management and leadership”. We can also see that there exists an N to N relationship
between the principles of both paradigms, e.g. AP07 (working software) can be related
to LP01 (eliminate waste) and LP06 (build quality in). Vice versa the principle LP01
(eliminate waste) relates to several agile principles (e.g. AP03 - frequent deliveries and
AP01 - customer satisfaction) . If only one column states a principle then the principle
is only explicitly referred to in one of the development paradigms, such as LP07 (see
the whole). For LP01 (eliminate waste) we also state which waste is concerned in the

46

Table 2.2: Wastes in Lean Software Engineering and their Mapping to Manufacturing
(cf. [24]

Manufacturing Software Engineering

Inventory: Intermediate work-products
and work in process

W1: Partially Done Work: Work-in-
process that does not have value until it
is completed (e.g. code written, but not
tested)

Over-Production: The number of pro-
duced items is higher than the number of
demanded items (inventory in this case is
“dead capital”

W2: Extra Features: Functionality that has
been developed, but does not provide value
to the customer

Extra Processing: Extra work is created in
the production due to e.g. poor set-up of
machines

W3: Extra processes: Process steps (e.g.
creation of documentation that is not really
needed) that can be removed

Transportation: Transport of intermediate
work-products (e.g. due to a poor layout of
the production line)

W4: Handovers: Many handovers (e.g.
documentation) create overhead

Motion: People and machines are moved
around instead of being used to create
value

W5: Motion/Task Switching: People have
to move to identify knowledge (e.g. team
members that work together are not co-
located) or have many disturbances in their
work

Waiting: A machine with free capacity is
waiting for input

W6: Delays: There are delays in devel-
opment that, for example, cause waiting
times within a development team (team
idles)

Defects: Fixing of problems in the prod-
ucts

W7: Defects: Fixing of problems in the
products

comparison. In the following paragraphs we explain why and how the principles in
Figure 2.1 are related to each other. The IDs in Figure 2.1 (AP01 to AP12 and LP01 to
LP07) refer to the detailed descriptions of the principles provided earlier.

People management and leadership: This aspect contains all principles that are
related to leading and managing people in a project. As can be seen in Figure 2.1 for
each of the principles of agile a corresponding principle of lean development can be
identified.

• Relation of AP05 (motivated individuals), AP08 (sustainable pace), and AP11
(self-organizing teams) to LP05 (respect people): Respecting people (LP05) is
facilitated by trusting the team to find a solution for a given task (Responsibility-

47

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

• Relation of AP04 (work together) to LP01 (eliminate waste “motion/task switching”):

Agile raises the importance of different groups of people (e.g. technical developers and

business/marketing) to work closely together (AP04). Close cooperation between people

of different competence areas (LP01 - eliminate waste) helps in making their competence

more easily accessible which reduces the time to find the information. Consider the

example of a developer who should decide which requirement to implement next based

on its importance to the market. Without cooperation the developer would have to spend

time searching for documentation and/or the right person to ask. Having cooperation

between marketing and development in the first place would allow for easy and quick

access to the information by just asking the marketing-representative in the team.

Comparison: Every principle in lean has a corresponding principle in agile for the aspect “People

Management and Leadership”. In conclusion both paradigms very much share the same rules

when it comes to managing people.

AP11: Self-organizing teams

AP08: Sustainable pace

AP05: Motivated Individuals

AP06: Face-to-face conversation

AP04: Work together

AP09: Technical Excellence

AP07: Working Software

AP03: Frequent Deliveries

AP01: Customer Satisfaction

AP10: Simplicity

LP05: Respect people

LP02: Amplify Learning

LP03: Defer commitment

LP06: Build Quality In

LP01: Eliminate Waste (W5)

People Management and Leadership

LP01: Eliminate Waste (W7)

Quality of the Product (Technical)

LP01: Eliminate Waste (W1)

LP02: Amplify Learning

LP04: Deliver as Fast as Possible

Release of the Product

AP02: Welcome Change

Priority of Customer Needs/Value

Flexibility

LP01: Eliminate Waste (W1 to W7)

LP02: Amplify Learning

LP03: Defer commitment

LP04: Deliver as Fast as Possible

LP05: Respect people

LP06: Build Quality In

LP07: See the Whole

LP01: Eliminate Waste (W1 to W7)

LP07: See the Whole

E2E Flow

Agile Principles Lean Principles

LP02: Amplify learningAP12: Continuous reflection

Learning

Figure 1 - Mapping of Agile and Lean Principles

Technical quality of the product: This aspect contains the principles that are related to achieve a

working product with high quality from a technical perspective. Figure 1 shows that lean and

agile both apply principles related to technical product quality.

Figure 2.1: Mapping of Agile and Lean Principles

Based Plan and Control). This is the same as self-organizing teams (AP11) who
take on the responsibility for solving a task in agile development. Respecting
people (LP05) is also connected to sustainable pace (AP08) as self-organized
teams that are trusted and empowered are more motivated over a long period of
time (AP05 - motivated individuals) and thus it can be expected that they are
working productively in a continuous manner.

• Relation of AP06 (face-to-face conversation) to LP02 (amplify learning): Face-
to-face conversation (AP06) allows for direct and instant communication to re-
solve misunderstandings and thus amplifies learning (LP02). For example, in-
formal communication taking place in coffee corners is considered an important

48

part of information exchange allowing people to share knowledge [7].

• Relation of AP04 (work together) to LP01 (eliminate waste “motion/task switch-
ing”): Agile raises the importance of different groups of people (e.g. technical
developers and business/marketing) to work closely together (AP04). Close co-
operation between people of different competence areas (LP01 - eliminate waste)
helps in making their competence more easily accessible which reduces the time
to find the information. Consider the example of a developer who should de-
cide which requirement to implement next based on its importance to the market.
Without cooperation the developer would have to spend time searching for docu-
mentation and/or the right person to ask. Having cooperation between marketing
and development in the first place would allow for easy and quick access to the
information by just asking the marketing-representative in the team.

Comparison: Every principle in lean has a corresponding principle in agile for the as-
pect “People Management and Leadership”. In conclusion both paradigms very much
share the same rules when it comes to managing people.

Technical quality of the product: This aspect contains the principles that are related
to achieve a working product with high quality from a technical perspective. Figure 2.1
shows that lean and agile both apply principles related to technical product quality.

• Relation of AP09 (technical excellence) to LP06 (build quality in): Agile stresses
that technical excellence should receive continuous attention (AP09). In lean this
is achieved by building in quality early in the development process, and not by
testing for and fixing defects later (LP06). Thus, LP06 fulfills the principle of
having a continuous focus on building technically excellent products.

• Relation of AP07 (working software) to LP01 (eliminate waste) and LP06 (build
quality in): The rule of having working software (AP07) throughout develop-
ment enforces that the quality of the software has to be ensured throughout the
whole development lifecycle. For example, having mechanisms in place to in-
crease the quality of code while it is written (LP01 - eliminate waste) helps to
achieve the goal of working product with few defects (LP06, W7).

Comparison: Both paradigms stress the continuous attention to quality and technical
excellence. A consequence of this attention is a working software product throughout
the development lifecycle. Thus, both paradigms strongly agree on the rules applied
to the quality of the software product. A small distinction is made in principle AP09
(technical excellence) where agile emphasizes that good design enhances agility. For
example, an easy extension of the architecture enables a rapid and agile response to
changing customer needs.

49

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

Release of the product: The release aspect refers to the delivery of software to the
customer. The release aspect is also covered in both development paradigms.

• Relation of AP03 (frequent deliveries) to LP01 (eliminate waste), LP02 (am-
plify learning), and LP04 (deliver as fast as possible): Frequent deliveries to the
customer (AP03) have a positive effect on the elimination of waste concerning
partially done work (LP01). That is, enforcing frequent deliveries avoids that
completed work (e.g. adding a new feature) stays within the development orga-
nization without being made available to the customer. Frequent deliveries also
amplify learning (LP02) as they allow the customer to provide regular feedback
on the latest status of the product. Thereby, the development organization can
learn about the needs of the customers and what features excite them. In addition
AP03 influences the speed of delivery (LP04) positively. In waterfall develop-
ment the delivery of the overall scope is done in the end which means that all
features together have a very long lead-time. Frequent deliveries, however, im-
ply that less software is delivered at once, but much more frequently and with
shorter lead-time (see Chapter 5).

Comparison: There is a clear relation between the principles of the release aspect
between lean and agile, i.e. both paradigms are in strong agreement on this.

Flexibility: Flexibility is the ability to react on changes that impact the development
of the software product. The most common is the change in the needs of the customer
reflected in changing requirements. Other changes are time line changes (e.g. dead-
lines), changes of rules and regulations (law) that affect development, or innovations
in technology.

• Relation of AP02 (welcome change) to LP03 (defer commitment): Agile stresses
that software organizations should welcome change instead of fighting it (AP02)
as being able to deliver what the market needs today determines the success of
products. The principle refers to the attitude that one should have when devel-
oping software. Lean adds to that by providing a rule that supports the attitude
of welcoming change, i.e. to defer commitment (LP03). Deferring commitment
means to decide as late as possible. For example, a company should not decide
of an overall release scope early on in development (early decision), but instead
decide whether a feature should be included into the scope as late as possible
(deferred commitment).

Comparison: Both paradigms address flexibility, but describe it in a different way. In
lean one should defer commitment, i.e. decide as late as possible. However, software
organizations that are generally driven by plans, scopes, and deadlines have to change

50

their attitude towards harnessing change as this is a prerequisite to implement late deci-
sions. Hence, the principles of the two development paradigms complement each other
very well as accepting and harnessing change in the process is a pre-requisite to defer
commitment.

Priority of customer needs/value: This aspect contains principles that stress the
priority of the customer in software development over other focuses (such as the focus
on documentation).

• Relation of AP01 (customer satisfaction) to LP01 (eliminate waste, all wastes in
Table 2.2): The priority of the customer (AP01) is reflected in all the principles
that are stated for lean (LP01-LP07). This is very clear for the wastes (LP01) as
the waste is identified from the point of view of the customer. Amplify learning
(LP02) puts high priority on customers’ needs as it is about learning the needs
of customers and what delights them. The same holds for deferred commitment
(LP03) as this enables a flexible reaction to customer change requests that are
due to a change in needs. Delivering fast (LP04) implies that the needs of the
customer are realized quickly as soon as they are articulated. The respect for
people (LP05) can also be related to the customer focus as happy employees
are an important factor for project success [7]. Furthermore, technical quality
(LP06) is a prerequisite to deliver valuable software (e.g. if the software is not
stable then the customer cannot make sufficient use of its functionality). Finally,
see the whole (LP07) implies that one should not put too much effort in sub-
optimization of the process as this is does not lead to significant improvements
for the customer. Thus, the improvement effort would be wasted.

• Relation of AP10 (simplicity) to LP01 (eliminate waste, all wastes in Table 2.2):
Simplicity is about maximizing the amount of work not done (AP10). In that
sense it is very strongly related to wastes (LP01) as the elimination of waste
leads to a reduction of work. This includes unnecessary work that can be easily
avoided (e.g. documentation never used) or reduction of rework (e.g. defects).

Comparison: The comparison indicates that customer priority in agile is related to
all principles in lean. As we have shown the principles in lean are also linked to the
principles in agile other than AP10 we conclude that AP10 is the very central principle
of both development paradigms.

Learning: This aspect is about gaining new knowledge (e.g. about customer needs,
ways of working, etc.) and is addressed in both paradigms.

• Relation of AP12 (continuous reflection) to LP02 (amplify learning): Continu-
ous reflection allows time for the team to reflect on how to improve the ways

51

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

of working to become more efficient (AP12). Thus, the learning focus is on
identifying improvement potential for efficiency. In lean the learning focus has a
broader perspective by emphasizing learning in general, not with a specific focus
on efficiency. Learning in general includes, for example, gaining new knowledge
about customer needs and market trends.

Comparison: Both paradigms focus on learning, while lean takes a more general per-
spective.

E2E flow: The E2E flow includes principles that emphasize the focus on the over-
all flow of value (i.e. from the very beginning when a need for a feature enters the
organization till it is delivered). The principle related to the E2E flow is “see the
whole” (LP07). When comparing the principles within the aspect “priority of customer
needs/value” LP07 is related to the prioritization of the customer needs (AP01 - cus-
tomer satisfaction). However, the E2E flow aspect is not considered in the principles
of agile and thus is what sets lean and agile apart when looking at the principles.

Overall, the comparison shows which principles are the same, complement each
other, or are new to either one of the two paradigms.

• Same: For the aspects people management and leadership, technical quality of
the product, and release of the product both paradigms strongly agree on the
principles. That is, they mean the same, but only express it in different words.

• Complementary: The paradigms complement each other with regard to the as-
pects flexibility, priority of customer needs/value, and learning. For flexibility
lean emphasizes deferred commitment, while agile stresses the attitude a com-
pany must have to be willing to defer commitments. For priority of customer
needs/value lean complements agile by concretizing what does not contribute
positively to the value for the customer in the form of the seven wastes of soft-
ware development (see Table 2.2).

• New: The need to look at the development and value flow from an end to end
perspective is unique for lean and therefore is what clearly distinguishes both
paradigms from each other.

Regarding the question whether lean development is agile and agile development is
lean we can provide the following answer for the principles: Lean is agile as it includes
all the principles of agile. However, agile is not lean as it does not emphasize the E2E
focus on flow in its principles.

In the next section we analyze the practices which implement the principles of lean
and agile development. A proposition based on the similarities is that both paradigms
also propose similar practices. However, this proposition has to be investigated as:

52

• Agile and lean might propose different practices (“How”) in order to fulfill the
practices they agree on (“What”).

• Lean is unique in its E2E focus and hence we can expect to identify practices
that are not already proposed in the agile context.

Furthermore, it is interesting to investigate which principles are covered by which prac-
tices, as this investigation shows the coverage of practices through principles.

2.3.3 Practices
Practices describe how the principles are implemented by the development paradigms.
Therefore, we first present the practices for lean and agile and link each of the different
practices to the principles. After that we make a comparison between the paradigms.

In total we identified 26 principles by looking at the literature describing lean
[24, 25, 26] and agile software development [3, 28, 16, 15], as well as lean product de-
velopment [19]. The principles are described and for each principle it is stated whether
literature connects it to lean, agile, or both paradigms. The principles are grouped as
being related to requirements engineering, design and implementation, quality assur-
ance, software releases, project planning, team management, and E2E flow. First, a
comparison of practices in each group is made, and thereafter we provide an overall
comparison.

Requirements Engineering

P01: On-site customer: Representatives of the customer are located at the development
site to allow for immediate feedback on the product (AP02 - welcome change). At the
same time the customer always knows about the progress of the development (AP01 -
customer satisfaction). The co-location also allows the developers to interact with the
customer to ask questions and clarify requirements, which avoids implementation of
features not needed by the customer (LP01 - eliminate waste “extra features”). Fur-
thermore, a regular face-to-face communication between the team and the customer is
ensured (AP05 - face-to-face conversation).

P02: Metaphors and user stories: A metaphor is a very high level requirement
outlining the purpose of the system and characterizes what the system should be like.
The purpose on the high level should be stable. The metaphor is broken down into
more detailed requirements to be used in the development project. These are feature
descriptions (FDD) or user stories (XP and SCRUM). The features/user stories should
be used to track the progress and apply the pull concept (see P26 - Kanban pull-system).
Having the metaphor defined also avoids the inclusion of irrelevant user stories (LP01

53

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

- eliminate waste “extra features”) and describes what should be developed to provide
value to the customer (AP01 - customer satisfaction). That is, if a user story cannot be
linked to the metaphor then it should not be included in the product.

Comparison: Table 2.3 shows the principles related to the requirements practices,
and whether the principles are considered in lean and agile development. Metaphors
and user stories have been recognized in agile as well as lean software development.
However, the on-site customer is not part of the lean practices, but is a key practice in
agile software development. Both practices support lean and agile principles.

Table 2.3: Comparison for Requirements Practices

– eliminate waste “extra features”). Furthermore, a regular face-to-face communication between

the team and the customer is ensured (AP05 - face-to-face conversation).

P02: Metaphors and user stories: A metaphor is a very high level requirement outlining the

purpose of the system and characterizes what the system should be like. The purpose on the high

level should be stable. The metaphor is broken down into more detailed requirements to be used

in the development project. These are feature descriptions (FDD) or user stories (XP and

SCRUM). The features/user stories should be used to track the progress and apply the pull

concept (see P26 – Kanban pull-system). Having the metaphor defined also avoids the inclusion

of irrelevant user stories (LP01 – eliminate waste “extra features”) and describes what should be

developed to provide value to the customer (AP01 – customer satisfaction). That is, if a user story

cannot be linked to the metaphor then it should not be included in the product.

Comparison: Table 3 shows the principles related to the requirements practices, and whether the

principles are considered in lean and agile development. Metaphors and user stories have been

recognized in agile as well as lean software development. However, the on-site customer is not

part of the lean practices, but is a key practice in agile software development. Both practices

support lean and agile principles.

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical ex

cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P01: On-site customer √ √ √ √ √

P02: Metaphors/Stories √ √ √ √

2.3.2 Design and Implementation

P03: Refactoring: Refactoring is the continuous improvement of already working code with

respect to maintainability, readability, and simplification of code (AP10 - simplicity) which has a

positive effect on understanding the code (LP02 - amplify learning). When code is being worked

on over a long period of time the assumptions that were made in the past while writing the code

might not be true in the end. For example, a class that was written in the beginning of a project

might have to be restructured in order to fit the latest version of the overall product in a better

way, e.g. removing duplicated code, changing code to improve readability, or changing the

structure of the class to fit a certain design pattern (cf. [Andersen and Fagerhaug 2000]). It is

important to mention that changing the external structure (e.g. interfaces and their parameters)

should be avoided as this might be harmful for the integrity of the overall system. The simple

Design and Implementation

P03: Refactoring: Refactoring is the continuous improvement of already working code
with respect to maintainability, readability, and simplification of code (AP10 - simplic-
ity) which has a positive effect on understanding the code (LP02 - amplify learning).
When code is being worked on over a long period of time the assumptions that were
made in the past while writing the code might not be true in the end. For example,
a class that was written in the beginning of a project might have to be restructured in
order to fit the latest version of the overall product in a better way, e.g. removing du-
plicated code, changing code to improve readability, or changing the structure of the
class to fit a certain design pattern (cf. [1]). It is important to mention that changing
the external structure (e.g. interfaces and their parameters) should be avoided as this
might be harmful for the integrity of the overall system. The simple and clear structure
of the code helps new developers to become more productive in delivering value (AP01
- customer satisfaction).

P04: Coding standards: Coding standards make sure that developers structure and
write code in the same way. This is important to assure that everyone can understand

54

the code (AP01 - customer satisfaction, LP02 - amplify learning). Furthermore, a com-
mon understanding on how to code avoids unnecessary discussions in pair program-
ming. Examples for coding standards for Java are [18]:

• File organization (e.g. package statements before import statements)

• Interface declarations (public before protected before private variable declara-
tions)

• Wrapping lines

• Rules for formatting if-else, try-catch, loop-statements, etc.

• Naming conventions (packages, classes, interfaces, methods, etc.)

Understandability and maintainability can be improved further by applying good pro-
gramming practices in addition to the rules for formatting and naming. For the Java
Code Convention different rules apply for programming practices (e.g. one should
avoid to use an assignment operator in a place where it can be confused with an equal-
ity operator; one should not assign a value to several variables at once; always use
parentheses with mixed operators; only use return once in a method; etc.).

P05: Team code-ownership: The code written by an individual is not owned by
that individual. Instead, everyone in the team owns the code and is allowed to make
changes. Team code ownership is also related to the concept of egoless programming
[30] where the success as a team is more important than promoting the status of the
team member with the strongest ego. The team factor is a driver for motivation (AP01-
customer satisfaction, AP05 - motivated individuals) and gives credit to each member
of the team for the achieved result (LP05 - respect people).

P06: Low dependency architecture: This type of architectures clearly encapsulates
functionality into components that can be developed independently, i.e. the delivery of
one component does not depend on the delivery of another component [26]. That way
the functionality provided by the components can be delivered to the customer as soon
as they are ready (AP01 - customer satisfaction, AP03 - frequent deliveries) and by
that reduce the amount of partially done work (LP01 - eliminate waste). Furthermore,
the architecture becomes easier to change (AP03 - frequent deliveries) as the change
impact is more isolated with few dependencies.

Comparison: Table 2.4 shows the principles linked to the design and implementa-
tion practices, and whether the principles are considered in lean and agile development.
Refactoring has been considered in lean as well as agile (cf. [24]). Coding standards
and team-code ownership are unique to agile software development [15], while low
dependency architecture is a principle unique to lean [26]. All practices identified for
design and implementation are linked to lean as well as agile principles.

55

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

Table 2.4: Comparison for Design and Implementation Practices

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
e
th

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 le
arn

in
g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P03: Refactoring √ √ √ √ √

P04: Coding standards √ √ √

P05: Team-Code Own. √ √ √ √

P06: Low Dep. Arch. √ √ √ √ √ √ √

2.3.3 Quality Assurance

P07: Test-driven development and test automation: In test-driven development (TDD) [Beck

2003] the test cases for unit tests are written before the implementation takes place. The test cases

are to be implemented (e.g. JUnit [Beck 2004] is a test framework supporting the implementation

in Java) so that they can verify the implementation as soon as it is finished (AP07 - working

software, AP09 - technical excellence, L06). Thereby, defects are caught early (LP01 – eliminate

waste “delays”), which results in higher quality software for the customer (AP01 – customer

satisfaction). Whenever the implementation is changed the test cases can be re-run as they are

already implemented. This aids in automation of regression tests. After the test is completed the

code is refactored (see P03 - refactoring).

P08: Pair-programming: In pair programming two developers share one workstation. One of the

developers is actively developing the test cases and writing the code. The second developer

should reflect on what the first developer is doing and act as a reviewer thinking about the impact

(e.g. how does the implementation affect other parts of the system) and the quality (e.g. is the

code defective, or are any important unit test cases missing). The review allows to detect defects

in the code immediately after their introduction (AP09 - technical excellence, LP01 – eliminate

waste “defects”, LP06 - build quality in) improving the quality for the customer early on (AP01 –

customer satisfaction). The second developer can improve the work by asking questions and

providing feedback on the work done. Agile recommends to continuously changing pairs

throughout a project to improve knowledge transfer (LP02 - amplify learning).

P09: Continuous integration: Features that are developed as increments for a product should be

integrated into the overall product as soon as possible after they are finalized, making every

extension to the product deliverable (AP01 – customer satisfaction, AP03 - frequent deliveries,

LP01 – eliminate waste “partially done work”). That way, problems in integration are discovered

early and can be fixed close to their discovery (AP07 - working software, AP09 - technical

excellence, LP01 – eliminate waste “partially done work”, and LP06 - build quality in).

Furthermore, integrating a large scope at once often leads to unpredictable results in terms of

quality and schedule [Petersen et al. 2009b].

Quality Assurance

P07: Test-driven development and test automation: In test-driven development (TDD)
[4] the test cases for unit tests are written before the implementation takes place. The
test cases are to be implemented (e.g. JUnit [5] is a test framework supporting the
implementation in Java) so that they can verify the implementation as soon as it is fin-
ished (AP07 - working software, AP09 - technical excellence, L06). Thereby, defects
are caught early (LP01 - eliminate waste “delays”), which results in higher quality soft-
ware for the customer (AP01 - customer satisfaction). Whenever the implementation
is changed the test cases can be re-run as they are already implemented. This aids in
automation of regression tests. After the test is completed the code is refactored (see
P03 - refactoring).

P08: Pair-programming: In pair programming two developers share one worksta-
tion. One of the developers is actively developing the test cases and writing the code.
The second developer should reflect on what the first developer is doing and act as
a reviewer thinking about the impact (e.g. how does the implementation affect other
parts of the system) and the quality (e.g. is the code defective, or are any important
unit test cases missing). The review allows to detect defects in the code immediately
after their introduction (AP09 - technical excellence, LP01 - eliminate waste “defects”,
LP06 - build quality in) improving the quality for the customer early on in the coding
process (AP01 - customer satisfaction). The second developer can improve the work
by asking questions and providing feedback on the work done. Agile recommends to
continuously changing pairs throughout a project to improve knowledge transfer (LP02
- amplify learning).

56

P09: Continuous integration: Features that are developed as increments for a prod-
uct should be integrated into the overall product as soon as possible after they are final-
ized, making every extension to the product deliverable (AP01 - customer satisfaction,
AP03 - frequent deliveries, LP01 - eliminate waste “partially done work”). That way,
problems in integration are discovered early and can be fixed close to their discovery
(AP07 - working software, AP09 - technical excellence, LP01 - eliminate waste “par-
tially done work”, and LP06 - build quality in). Furthermore, integrating a large scope
at once often leads to unpredictable results in terms of quality and schedule [23].

P10: Reviews and inspections: Inspections are a visual examination of any soft-
ware artifact (requirements, code, test cases, etc.) allowing the detection of defects
early in the process (AP01 - customer satisfaction, AP07 - working software, AP09 -
technical excellence, LP01 - eliminate waste “defects”, and LP06 - build quality in).
Fagan introduced a very formal inspection process in 1976 [10]. However, the for-
mality requirements are not given in the agile context, i.e. different agile methods use
reviews and inspections in a different way. The inspection in Feature Driven Devel-
opment (FDD) [15] is a relatively rigorous peer review. Furthermore, post-mortems
are used in FDD where completed development activities are reviewed to identify im-
provement potential for upcoming iterations. SCRUM also uses reviews after each 30
day sprint where the work product of the sprint is reviewed by all relevant stakeholders
during a meeting [28].

P11: Configuration management: The goal of configuration management is to
achieve consistency between versions of software artifacts and thus to achieve sys-
tem integrity [17]. Different software artifacts linked to a configuration item should
be consistent in the sense that requirements, code, and test cases match and represent
the same version of the system. For example, an inconsistent situation would be if
test cases are derived from a specific requirements specification, but are linked to an
older version of the requirements specification within the configuration. The negative
consequence is that the wrong things would be tested. In order to achieve and maintain
consistency configuration management has mechanism for version control and change
processes. Configuration management is not explicitly acknowledged in most of agile
process models, only FDD has configuration management as one of its practices [15].
The benefits of configuration management are: (1) create transparency in terms of
status and progress of configuration items to be reported to the customer (AP01 - cus-
tomer satisfaction); (2) the knowledge about status avoids making the wrong decisions
causing waiting (LP01 - eliminate waste “delays”), quality problems (AP07 - working
software, AP09 - technical excellence, LP01 - eliminate waste “defects”, and LP06 -
build quality in); and (3) the information of configuration items aids in communication
and reflection (AP12 - continuous reflection).

Comparison: Table 2.5 shows the principles linked to the quality assurance prac-

57

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

tices, and whether the principles are considered in lean and agile development. All
principles have been considered in lean as well as agile (cf. [15, 16, 24]). Furthermore,
all quality assurance practices are linked to lean as well as agile principles.

Table 2.5: Comparison for Quality Assurance Practices

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

e
l.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P07: TDD √ √ √ √ √ √ √

P08: Pair-programming √ √ √ √ √ √ √

P09: Continuous Int. √ √ √ √ √ √ √ √

P10: Reviews/Insp. √ √ √ √ √ √ √

P11: CM √ √ √ √ √ √ √

2.3.4 Software Releases

P12: Incremental deliveries to the customer: New functionality is delivered continuously as an

increment of the previous software version to the customer. The increments go through a

development lifecycle consisting of the activities requirements elicitation, design and integration,

implementation, testing, and release. The flow of activities (e.g. order of activities, branching,

merging, and loop-backs) depends on the process model used. Frequent deliveries help to achieve

customer satisfaction as the customer receives value continuously (AP01 – customer satisfaction,

LP01 – eliminate waste “partially done work”) and speed up deliveries of value (AP03 - frequent

deliveries, LP04 - deliver as fast as possible). Furthermore, incremental deliveries assure that a

working system is build continuously with each new increment (AP07 - working software, LP06 -

build quality in). Learning is amplified as increments allow the customer to provide feedback on

the integration of each new feature (LP02 - amplify learning). As features are developed rapidly

after requesting them the risk of features not needed is reduced (LP01 – eliminate waste “extra

features”).

P13: Separation between internal and external releases: Internal releases are baselines of the

software product that have the quality to be released to the market, but are not. One reason to not

releasing them could be that the market window is not right from a marketing strategy. The

internal release makes sure that there is a continuous attention to quality as baselines should be

releasable (AP01 – customer satisfaction, AP09 - technical excellence, LP01 – eliminate waste

“defects”, and LP06 - build quality in). An example of the implementation of internal and

external releases in a market-driven context can be found in [Petersen and Wohlin 2009a].

Comparison: Table 3 shows the comparison of software release practices. The principles can be

found in both paradigms (cf. [Poppendieck and Poppendieck 2003][Larman 2004][Koch 2005])).

Furthermore, the practices fulfill principles of lean and agile.

Software Releases

P12: Incremental deliveries to the customer: New functionality is delivered continu-
ously as an increment of the previous software version to the customer. The increments
go through a development lifecycle consisting of the activities requirements elicitation,
design and integration, implementation, testing, and release. The flow of activities (e.g.
order of activities, branching, merging, and loop-backs) depends on the process model
used. Frequent deliveries help to achieve customer satisfaction as the customer re-
ceives value continuously (AP01 - customer satisfaction, LP01 - eliminate waste “par-
tially done work”) and speed up deliveries of value (AP03 - frequent deliveries, LP04 -
deliver as fast as possible). Furthermore, incremental deliveries assure that a working
system is build continuously with each new increment (AP07 - working software, LP06
- build quality in). Learning is amplified as increments allow the customer to provide
feedback on the integration of each new feature (LP02 - amplify learning). As features
are developed rapidly after requesting them the risk of features not needed is reduced
(LP01 - eliminate waste “extra features”).

P13: Separation between internal and external releases: Internal releases are base-
lines of the software product that have the quality to be released to the market, but are
not. One reason to not releasing them could be that the market window is not right from

58

a marketing strategy. The internal release makes sure that there is a continuous atten-
tion to quality as baselines should be releasable (AP01 - customer satisfaction, AP09
- technical excellence, LP01 - eliminate waste “defects”, and LP06 - build quality in).
An example of the implementation of internal and external releases in a market-driven
context can be found in [21].

Comparison: Table 2.6 shows the comparison of software release practices. The
principles can be found in both paradigms (cf. [15, 24, 16]). Furthermore, the practices
fulfill principles of lean and agile.

Table 2.6: Comparison for Software Release Practices

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

e
l.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P12: Inc. Del. √ √ √ √ √ √ √ √ √

P13: Int./Ext. Rel. √ √ √ √ √ √

2.3.5 Project Planning

P14: Short iterations: Within an iteration the product is further improved and enhanced based on

regular feedback and planning of the iteration (see e.g. sprints in SCRUM [Schwaber 2004]). For

example, a feature is delivered to the customer to receive feedback, the feedback being that the

feature needs to be improved. Based on the feedback from the customer the feature goes into

another iteration to incorporate the feedback (AP02 - welcome change). When the customer is

satisfied (AP01 – customer satisfaction, AP07 - working software) no further iteration is required.

The iteration cycles should be short (no more than a month with a preference for a shorter scale)

to allow continuous feedback (AP02 – welcome change) to improve the product (AP09 -

technical excellence, LP06 - build quality in, LP01 – eliminate waste “defects”). The feedback

allows the team to learn about the needs of the customer (LP02 - amplify learning). The shortage

of the iteration assures that work is completed and made available to the customer in a rapid

manner (LP01 – eliminate waste “partially done work”).

P15: Adaptive planning with highest priority user stories / requirements: A list of requirements is

maintained which shows the priority of the requirements, the requirements that are more

important for the customer being higher ranked in the list (AP01 - customer satisfaction). The

priority of the requirements is important to indicate which requirement should be implemented

next. The list is the backlog of work. Adaptive planning means that the priority of requirements

can be changed in the backlog and there is flexibility in choosing work-tasks for the next iteration

(AP02 - welcome change, LP03 - defer commitment). Furthermore, adoption avoids delivering

features the customer does not need (LP01 – eliminate waste “extra features”) while learning

more about the customers’ needs (LP02 - amplify learning).

P16: Time-boxing: Fixed start and end dates are set for iterations and projects. SCRUM, for

example, proposes to have 30 day sprints in which the next increment has to be completed

[Schwaber 2004]. In consequence the scope of development (i.e. how much to implement in a

project) has to be decided based on the maximum duration of the project. In consequence time-

boxing forces new functionality to be delivered within one cycle speeding up value creation

(AP01 - customer satisfaction) and the rate in which new functions can be delivered (AP03 -

frequent deliveries,LP01 – eliminate waste “partially done work”).

Project Planning

P14: Short iterations: Within an iteration the product is further improved and en-
hanced based on regular feedback and planning of the iteration (see e.g. sprints in
SCRUM [28]). For example, a feature is delivered to the customer to receive feedback,
the feedback being that the feature needs to be improved. Based on the feedback from
the customer the feature goes into another iteration to incorporate the feedback (AP02 -
welcome change). When the customer is satisfied (AP01 - customer satisfaction, AP07
- working software) no further iteration is required. The iteration cycles should be short
(no more than a month with a preference for a shorter scale) to allow continuous feed-
back (AP02 - welcome change) to improve the product (AP09 - technical excellence,
LP06 - build quality in, LP01 - eliminate waste “defects”). The feedback allows the
team to learn about the needs of the customer (LP02 - amplify learning). The shortage
of the iteration assures that work is completed and made available to the customer in a
rapid manner (LP01 - eliminate waste “partially done work”).

P15: Adaptive planning with highest priority user stories / requirements: A list of
requirements is maintained which shows the priority of the requirements, the require-

59

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

ments that are more important for the customer being higher ranked in the list (AP01 -
customer satisfaction). The priority of the requirements is important to indicate which
requirement should be implemented next. The list is the backlog of work. Adap-
tive planning means that the priority of requirements can be changed in the backlog
and there is flexibility in choosing work-tasks for the next iteration (AP02 - welcome
change, LP03 - defer commitment). Furthermore, adoption avoids delivering features
the customer does not need (LP01 - eliminate waste “extra features”) while learning
more about the customers’ needs (LP02 - amplify learning).

P16: Time-boxing: Fixed start and end dates are set for iterations and projects.
SCRUM, for example, proposes to have 30 day sprints in which the next increment
has to be completed [28]. In consequence the scope of development (i.e. how much
to implement in a project) has to be decided based on the maximum duration of the
project. Hence, time-boxing forces new functionality to be delivered within one cycle
speeding up value creation (AP01 - customer satisfaction) and the rate in which new
functions can be delivered (AP03 - frequent deliveries,LP01 - eliminate waste “partially
done work”).

P17: The planning game: In the planning game the next iteration of the project is
planned. Different stakeholders have to be involved in the planning game, namely the
customer, developers, and managers. The game is usually organized in a workshop set-
ting and allows the participants, that are not on-site during the whole development time,
to meet all important stakeholders (AP05 - face-to-face conversation, LP01 - eliminate
waste “extra processes”) [15]. Furthermore, the meeting is used to resolve conflicts
and assures that the right feature is developed in the next iteration (LP01 - eliminate
waste “extra features”). It can also be used to reflect on the previous iteration as the
baseline for the next one (AP12 - continuous reflection) and by that supports learning
(LP02 - amplify learning). A regular planning game meeting allows the customer to
suggest changes to the plan (AP02 - welcome change).

Comparison: Table 2.7 shows the comparison of project planning practices. The
practices short iterations, adaptive planning, and time-boxing can be found in both
paradigms (cf. [15, 16, 24]). The planning game is unique to agile, the practice being
used in SCRUM [28]. Furthermore, the practices fulfill principles of lean and agile.

Team Management

P18: Co-located development: People from different disciplines should be located to-
gether to ease communication. Direct communication can replace documentation that
otherwise would have to written and handed over between disciplines, which reduces
the number of handovers and extra processes to create the documentation (LP01 - elim-
inate wastes “extra processes” and “handovers”) (see Chapter 5). An additional benefit

60

Table 2.7: Comparison for Project Planning Practices

P17: The planning game: In the planning game the next iteration of the project is planned.

Different stakeholders have to be involved in the planning game, namely the customer,

developers, and managers. The game is usually organized in a workshop setting and allows the

participants, that are not on-site during the whole development time, to meet all important

stakeholders (AP05 - face-to-face conversation, LP01 - eliminate waste “extra processes”) [Koch

2005]. Furthermore, the meeting is used to resolve conflicts and assures that the right feature is

developed in the next iteration (LP01 – eliminate waste “extra features”). It can also be used to

reflect on the previous iteration as the baseline for the next one (AP12 - continuous reflection)

and by that supports learning (LP02 - amplify learning). A regular planning game meeting allows

the customer to suggest changes to the plan (AP02 - welcome change).

Comparison: Fehler! Verweisquelle konnte nicht gefunden werden. shows the comparison of

project planning practices. The practices short iterations, adaptive planning, and time-boxing can

be found in both paradigms (cf. [Poppendieck and Poppendieck 2003][Larman 2004][Koch

2005])). The planning game is unique to agile, the practice being used in Scrum [Schwaber 2004].

Furthermore, the practices fulfill principles of lean and agile.

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P14: Short iterations √ √ √ √ √ √ √ √ √ √

P15: Adaptive Planning √ √ √ √ √ √ √

P16: Time-boxing √ √ √ √ √

P17: Planning game √ √ √ √ √ √ √

2.3.6 Team Management

P18: Co-located development: People from different disciplines should be located together to

ease communication. Direct communication can replace documentation that otherwise would

have to written and handed over between disciplines, which reduces the number of handovers and

extra processes to create the documentation (LP01 – eliminate wastes “extra processes” and

“handovers”) [Petersen and Wohlin 2009a]. An additional benefit is that people do not have to

move around or wait to discuss (motion/task-switching), which eases learning from each other

(LP02 - amplify learning). With the removal of this waste one can concentrate on value-adding

activities instead (AP01 - customer satisfaction). The continuous discussions between team

members also aid in the continuous reflection with regard to the ways of working (AP12 -

continuous reflection).

P19: Cross-functional teams: Teams need to be cross-functional so that they gather the

competence needed to develop a feature. Two situations are shown in Figure 2. In the first

is that people do not have to move around or wait to discuss (motion/task-switching),
which eases learning from each other (LP02 - amplify learning). With the removal
of this waste one can concentrate on value-adding activities instead (AP01 - customer
satisfaction). The continuous discussions between team members also aid in the con-
tinuous reflection with regard to the ways of working (AP12 - continuous reflection).

P19: Cross-functional teams: Teams need to be cross-functional so that they gather
the competence needed to develop a feature. Two situations are shown in Figure 2.2. In
the first situation (top of the figure) a development-centric organization is shown where
other disciplines, such as requirements and testing, exchange information with the de-
velopment team. There is also information exchange between each of the disciplines,
which is not included in the figure for simplification. The separation of the develop-
ment team (coding) from other disciplines hinders the exchange of information (e.g.
in the form of barriers and lack of understanding for each other) (cf. [8, 21]). Con-
sequently, it is beneficial to create cross-functional teams where each discipline has at
least one representative in the team (see bottom of the figure) [19, 13]. The represen-
tation of different disciplines helps them in learning from each other (LP02 - amplify
learning), and assures that business and technical people work together and develop
an understanding for each other’s work (AP04 - work together). Furthermore, people
do not have to search long to find the right competence (LP01 - eliminate waste “mo-
tion/task switching”) and do not have to rely on handovers and documentation (LP01
- eliminate wastes “extra processes” and “handovers”). Overall, the avoidance of han-
dovers and extensive documentation frees resources for value-adding activities (AP01
- customer satisfaction).

P20: 40-hour week: Overtime should be avoided as rested people produce better

61

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

situation (top of the figure) a development-centric organization is shown where other disciplines,

such as requirements and testing, exchange information with the development team. There is also

information exchange between each of the disciplines, which is not included in the figure for

simplification. The separation of the development team (coding) from other disciplines hinders

the exchange of information (e.g. in the form of barriers and lack of understanding for each other)

(cf. [Petersen and Wohlin 2009a][Dybå and Dingsøyr 2008]). Consequently, it is beneficial to

create cross-functional teams where each discipline has at least one representative in the team

(see bottom of the figure) [Morgan and Liker 2006][Karlsson and Ahlström 2009]. This helps

them in learning from each other (LP02 - amplify learning), and assures that business and

technical people work together and develop an understanding for each other’s work (AP04 - work

together). Furthermore, people do not have to search long to find the right competence (LP01 –

eliminate waste “motion/task switching”) and do not have to rely on handovers and

documentation (LP01 – eliminate wastes “extra processes” and “handovers”). Overall, this frees

resources for value-adding activities (AP01 - customer satisfaction).

Disciplines

Requirements Coding TestingMarket Units

Information flow

Information flow

Information flow

Team

Development Centric Organization

with Information Flow to the Team

Disciplines

Requirements Coding TestingMarket Units

Team

Cross-Functional Organization with

Representatives from Disciplines

within the Team

Figure 2 - Cross-functional teams

P20: 40-hour week: Overtime should be avoided as rested people produce better work and are

more concentrated, reducing the number of mistakes made (AP09 - technical excellence, LP01 –

eliminate waste “defects”, LP06 - build quality in),. Thus, the working time in the projects should

be limited to approximately 40 hours. If developers do overtime in one week they are not allowed

to do overtime in the week after that. Koch [Koch 2005] distinguishes between forced and

voluntary overtime and states that voluntary overtime should be tolerated. Rested developers can

produce quality over a long period of time, while overworked developers might end up in a

burnout situation. The avoidance of burnouts aids in achieving a sustainable pace (AP08).

Furthermore, ongoing deliveries to the customer are assured (AP01 - customer satisfaction).

Figure 2.2: Cross-Functional Teams

work and are more concentrated, reducing the number of mistakes made (AP09 - tech-
nical excellence, LP01 - eliminate waste “defects”, LP06 - build quality in),. Thus, the
working time in the projects should be limited to approximately 40 hours. If devel-
opers do overtime in one week they are not allowed to do overtime in the week after
that. Koch [15] distinguishes between forced and voluntary overtime and states that
voluntary overtime should be tolerated. Rested developers can produce quality over a
long period of time, while overworked developers might end up in a burnout situation.
The avoidance of burnouts aids in achieving a sustainable pace (AP08). Furthermore,
ongoing deliveries to the customer are assured (AP01 - customer satisfaction).

P21: Standup-meeting: This meeting takes place daily and is a place for the whole
team to communicate and reflect on the completed and ongoing work (AP12 - continu-
ous reflection). The discussions in the meeting should aid in becoming more efficient.
The meeting should not last longer than 15 minutes. Participants are standing during
the meeting to ensure that the meeting is kept short. Every team member has to answer
three questions:

• What has been achieved since the previous meeting?

• What will be achieved before the next meeting?

62

• What were hinders in achieving your goals?

The last question should help the manager in supporting the team member. For exam-
ple, one hinder could be the disturbance of a project by additional tasks. The manager
then has to make sure that the project is not further disturbed. Furthermore, wastes like
waiting times could be raised. Hence, stand-up meetings aid in the discovery of the
different wastes not generating value (AP01 - customer satisfaction, LP01 - eliminate
waste).

P22: Team chooses own tasks: Teams should be able to choose their own tasks,
which increases the commitment to the task (AP05 - motivated individuals, LP05 -
respect people). For example, from a number of features to be developed a team can
choose which feature to implement, given some restrictions regarding the priority of
the features. The choice is also influenced by the competencies in the team so that the
task is implemented in the most efficient way for the customer (AP01 - customer satis-
faction). The team takes the responsibility to complete the task (A11 - self-organizing
teams).

Comparison: Table 2.8 shows the comparison of project planning practices. Three
practices are shared between lean and agile, namely co-located development, cross-
functional teams, and team chooses own tasks (cf. [15, 16, 24]). The 40-hour week [3]
and stand-up meetings [28] are unique to agile. The practices fulfill principles of lean
and agile.

Table 2.8: Comparison for Team Management Practices

P21: Standup-meeting: This meeting takes place daily and is a place for the whole team to

communicate and reflect on the completed and ongoing work (AP12 - continuous reflection). The

discussions in the meeting should aid in becoming more efficient. The meeting should not last

longer than 15 minutes. Participants are standing during the meeting to ensure that the meeting is

kept short. Every team member has to answer three questions:

• What has been achieved since the previous meeting?

• What will be achieved before the next meeting?

• What were hinders in achieving your goals?

The last question should help the manager in supporting the team member. For example, one

hinder could be the disturbance of a project by additional tasks. The manager then has to make

sure that the project is not further disturbed. Furthermore, wastes like waiting times could be

raised. Hence, stand-up meetings aid in the discovery of the different wastes not generating value

(AP01 - customer satisfaction, LP01 – eliminate waste).

P22: Team chooses own tasks: Teams should be able to choose their own tasks, which increases

the commitment to the task (AP05 - motivated individuals, LP05 - respect people). For example,

from a number of features to be developed a team can choose which feature to implement, given

some restrictions regarding the priority of the features. The choice is also influenced by the

competencies in the team so that the task is implemented in the most efficient way for the

customer (AP01 - customer satisfaction). The team takes the responsibility to complete the task

(A11 - self-organizing teams).

Comparison: Fehler! Verweisquelle konnte nicht gefunden werden. shows the comparison of

project planning practices. Three practices are shared between lean and agile, namely co-located

development, cross-functional teams, and team chooses own tasks (cf. [Poppendieck and

Poppendieck 2003][Larman 2004][Koch 2005])). The 40-hour week [Beck 2000] and stand-up

meetings [Schwaber 2004] are unique to agile. The practices fulfill principles of lean and agile.

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical ex

cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P18: Co-loc. develop. √ √ √ √ √ √ √

P19: Cross-func. teams √ √ √ √ √ √

P20: 40-hour week √ √ √ √ √ √

P21: Stand-up meeting √ √ √ √

P22: Team chooses T. √ √ √ √ √ √ √

2.3.7 E2E Flow

63

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

E2E Flow

P23: Value-stream mapping: A value-stream map visualizes the end-to-end flow of the
overall development lifecycle [19], i.e. the emphasis is on seeing the whole (LP07).
The map shows the activities and lead-times. The lead-times are separated into pro-
cessing time and waiting time. Processing time means that work is done during that
time (e.g. a requirement is implemented). Waiting time means that nobody works
on the requirement (e.g. the requirement has been implemented and is waiting to be
tested). The processing time value is added to the product while waiting time is non-
value adding. The overall lead time is the sum of all waiting and processing times. The
map should help in identifying everything that does not contribute to the value of the
customer (AP01 - customer satisfaction). A value-stream map analysis is conducted in
four steps:

• Create current-state value-stream map: First, the value-stream map is created by
following the steps a single work product (e.g. requirements, test cases, change
requests, etc.). The data is collected through interviews across the lifecycle of
the work product. If lead time measurements are available then these should be
considered as well.

• Analyze current-state value-stream map: The map is analyzed by looking at
critical wastes as those have the largest improvement potential. The criticality of
lead times from an end to end perspective can be determined by calculating the
ratio of non-value adding time and overall lead time.

• Identify reasons for waiting times and propose improvements: The reasons for
waiting times and long processing times are identified in workshops and discus-
sions with practitioners, e.g. in form of a root cause analysis [1]. During the root
cause analysis all types of waste can be discovered by having a dialogue about
the map. For example, by asking an engineer why a certain activity takes so long
the engineer can pinpoint many types of waste (LP01 - eliminate wastes W1 to
W7). Depending on the nature of the problems for long processing and waiting
times the value stream map can potentially pinpoint to reasons that, when being
addressed, fulfill any of the principles of agile and lean development (AP01 to
AP12 and LP01 to LP07)

• Create future-state map: Solutions are proposed for the identified problems and
the potential of the solution candidates in reducing the waiting and processing
times is evaluated. Based on the assessment of the improvement suggestions a
new map (future-state map) can be constructed. The future-state map provides

64

an indication of the overall improvement potential in terms of lead-time when
implementing the solutions.

An example of an analysis of a software process for product customizations with value-
stream maps and the notation to illustrate them can be found in [20].

P24: Inventory management with queuing theory and theory of constraints: Inven-
tory is the work in process that is not completed and thus does not provide value to cus-
tomers. High inventory levels have a negative impact on the performance of software
development for multiple reasons: (1) Inventory hides defects (hinders fulfilling AP07
- working software, AP09 - technical excellence, LP01 - eliminate waste “defects”,
and LP06 - build quality in); (2) Time and effort has been spent on the artifacts in the
inventory and when not making them available to the market they might become ob-
solete (hinders fulfilling AP03 - frequent deliveries, LP01 - eliminate waste “partially
done work”, and LP04 - deliver as fast as possible) [23]; (3) Inventory creates waiting
and slows down the development flow (hinders fulfilling AP03 - frequent deliveries,
LP01 - eliminate waste “delays”, and LP04 - deliver as fast as possible). Point (3) can
be related to queuing theory where one can calculate the work-in-process and the time
work stays in process based on arrival distributions and processing times (distribution
of time needed for the server, e.g. a development team, to complete a task), and by
that identify overload situations. An example of identifying overload situations with
queuing theory based on real world data for a requirements process is shown in [12].
In order to achieve a continuous flow of development the workload should be below
the capacity of the development organization (see Chapter 7). Being below the capac-
ity also allows for emergency situations (e.g. customer faults, emerging high priority
requirements).

The theory of constraints (TOC) also helps to reduce inventory levels. TOC con-
sists of five steps: (1) Identify the system constraint; (2) Decide candidate solutions
of how to remove the constraint; (3) Select candidate solution that is focused on con-
straint; (4) Remove constraint with selected solution; (5) go to step (1) to see whether
a new system constraint has become visible [2]. The constraint can be identified by
looking at processing times of different steps in the development flow. For example,
how many requirements are processed per time unit (e.g. weeks) in different phases
(e.g. requirements specification, design, implementation, testing, and release)? If the
processing time for test produces the least amount of requirements per time unit then
this is the constraint. As the constraint produces at a slower rate than the other activities
inventories that are inputs to the constraint will grow. A method for integrated analysis
of multiple inventories is presented in Chapter 7. As in value-stream maps the focus
has to be on the end-to-end flow to avoid sub-optimization (LP07) and to achieve a
continuous flow of customer value (AP01 - customer satisfaction).

65

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

P25: Chief engineer: The chief engineer is one person that is accountable for the
success and failure of the development teams. The chief engineer has a wide range of
responsibilities (voice of the customer, product concepts and requirements, product ar-
chitecture and performance, product planning) and requires special abilities (feeling for
the needs of customers, exceptional engineering skills, intuition, hard driving teacher
and motivator, patient listener, exceptional communicator, etc.) [19]. At the same time
the chief engineer does not have formal authorities over the teams. Overall, the chief
engineer is an important driving force in optimizing value creation which makes him
an initiator to any potential improvement towards agile (AP01 to AP12) or lean (LP01
to LP07).

P26: Kanban pull-system: In a push system requirements are pushed from the
requirements activity into the development organization, e.g. by defining a require-
ments road map and assigning time slots for each requirement. The push approach
is likely to result in an overload situation. The Kanban approach, on the other hand,
is a pull approach that avoids planning too far ahead (AP02 - welcome change, LP03
- defer commitment). When a work team (or machine in the manufacturing context)
has free capacity a signal is given that the next work task can be taken. For software
engineering this means that the development systems would pull requirements from
a prioritized requirements list when they have enough free capacity. However, teams
should not pull new work if there is not enough capacity as this would result in an
overload situation creating inventory (LP01 - eliminate waste “partially done work”).
Furthermore, if possible they should pull work that has highest priority to the customer
(AP01 - customer satisfaction). This strategy might not always be possible due to com-
plex dependencies between features. The management of Kanban is supported by a
so-called Kanban board (see Figure 2.3). The Kanban board also shows the progress
of development, which fulfills the call of FDD for a progress measure visualizing what
has been achieved.

Comparison: Table 2.9 shows the comparison of E2E flow practices. All practices
presented in the table are unique to lean as the “see the whole” principle is the driver
for their usage. For the value-stream map and the chief engineer all principles of lean
and agile are ticked. That does not mean that the approaches guarantee the fulfillment
of all principles. However, the value-stream map is a tool that can potentially drive
the implementation of practices that fulfill the principles. For example, if the value-
stream map helps to discover that long waiting times are due to overload situation then
the improvement could be to apply the techniques related to inventory management,
as well as to implement a Kanban pull approach. Another discovery through value-
streams might be long processing times due to a lack of motivation, which could lead
to the practice of teams choosing their own tasks. The chief engineer has all principles
ticked as he/she is a potential driver for the improvements by having an overall picture

66

Kanban board also shows the progress of development, which fulfills the call of FDD for a

progress measure visualizing what has been achieved.

Figure 3 - Kanban Board

Requirements

Spec

Impl./Unit Test Integration

Ready for

Release

Release

Priority

Feature Pull

Ongoing Done Ongoing Done Ongoing Done Ongoing Done

Comparison: Table 3 shows the comparison of E2E flow practices. All practices presented in the

table are unique to lean as the “see the whole” principle is the driver for their usage. For the

value-stream map and the chief engineer all principles of lean and agile are ticked. That does not

mean that the approaches guarantee the fulfillment of all principles. However, the value-stream

map is a tool that can potentially drive the implementation of practices that fulfill the principles.

For example, if the value-stream map helps to discover that long waiting times are due to

overload situation then the improvement could be to apply the techniques related to inventory

management, as well as to implement a Kanban pull approach. Another discovery through value-

streams might be long processing times due to a lack of motivation, which could lead to the

practice of teams choosing their own tasks. The chief engineer has all principles ticked as he/she

is a potential driver for the improvements by having an overall picture of product development

due to the wide range of responsibilities, such as having a customer, architecture, technology, and

quality focus.

Table 3 - Comparison for E2E Flow Practices

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P23: Value-Stream M. √

P24: Inventory Mgt. √ √ √ √ √ √ √ √ √

P25: Chief Engineer √

P26: Pull-Systems √ √ √ √ √

2.3.8 Overall Comparison

Figure 2.3: Kanban Board

of product development due to the wide range of responsibilities, such as having a
customer, architecture, technology, and quality focus.

Table 2.9: Comparison for E2E Flow Practices

Kanban board also shows the progress of development, which fulfills the call of FDD for a

progress measure visualizing what has been achieved.

Figure 3 - Kanban Board

Requirements

Spec

Impl./Unit Test Integration

Ready for

Release

Release

Priority

Feature Pull

Ongoing Done Ongoing Done Ongoing Done Ongoing Done

Comparison: Fehler! Verweisquelle konnte nicht gefunden werden. shows the comparison of

E2E flow practices. All practices presented in the table are unique to lean as the “see the whole”

principle is the driver for their usage. For the value-stream map and the chief engineer all

principles of lean and agile are ticked. That does not mean that the approaches guarantee the

fulfillment of all principles. However, the value-stream map is a tool that can potentially drive the

implementation of practices that fulfill the principles. For example, if the value-stream map helps

to discover that long waiting times are due to overload situation then the improvement could be to

apply the techniques related to inventory management, as well as to implement a Kanban pull

approach. Another discovery through value-streams might be long processing times due to a lack

of motivation, which could lead to the practice of teams choosing their own tasks. The chief

engineer has all principles ticked as he/she is a potential driver for the improvements by having

an overall picture of product development due to the wide range of responsibilities, such as

having a customer, architecture, technology, and quality focus.

A
P

0
1
: C

u
sto

m
er p

rio

A
P

0
2
: W

elco
m

e c
h
an

g
e

A
P

0
3
: F

re
q
u
e
n
t d

el.

A
P

0
4
: W

o
rk

 to
g
eth

er

A
P

0
5
: M

o
tiv

ated
 in

d
iv

id
.

A
P

0
6
: F

ace-to
-face co

n
v
.

A
P

0
7
: W

o
rk

in
g
 so

ftw
are

A
P

0
8
: S

u
sta

in
a
b
le p

ace

A
P

0
9
: T

ech
n
ical e

x
cel.

A
P

1
0
: S

im
p
licity

A
P

1
1
: S

elf-o
rg

. team
s

A
P

1
2
: C

o
n
tin

u
o

u
s refl.

L
P

0
1
: E

lim
in

a
te w

aste

L
P

0
2
: A

m
p
lify

 learn
in

g

L
P

0
3
: D

efer co
m

m
it.

L
P

0
4
: D

eliv
er fast

L
P

0
5
: R

e
sp

ect p
e
o
p
le

L
P

0
6
: B

u
ild

 q
u
ality

 in

L
P

0
7
: S

ee th
e w

h
o
le

U
sed

 in
 lea

n
 S

E

U
sed

 in
 ag

ile S
E

P23: Value-Stream M. √

P24: Inventory Mgt. √ √ √ √ √ √ √ √ √

P25: Chief Engineer √

P26: Pull-Systems √ √ √ √ √

2.3.8 Overall Comparison

Overall Comparison

Based on the previous comparisons we can identify which principles are the same for
both paradigms, and which are unique for one of them.

• Same: Quality assurance practices and software release practices are the same

67

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

for both paradigms. Hence, for these practices lean is agile and agile is lean. All
other groups contain practices that are either unique to agile or lean. In total 15
practices are shared between lean and agile.

• Unique to agile: The following practices have been identified as unique to ag-
ile: on-site customer, coding standards, team-code ownership, planning game,
40 hour week, and stand-up meetings. In consequence for the practices the con-
clusion is that lean is not agile. However, all practices identified for agile support
lean principles and hence are potentially valuable to lean software development.

• Unique to lean: One principle in the group “design and implementation” is
unique to lean, namely low dependency architecture. Furthermore, all princi-
ples connected to the E2E perspective can only be found in the lean context.
This is due to the principle “see the whole” that distinguishes lean from agile
regarding the principles.

Overall, the analysis shows that lean as well as agile have unique practices (lean has
five, and agile has six). Hence, when it comes to practices the statement lean is not ag-
ile, and agile is not lean is partially true. The majority of practices are shared between
both paradigms. The explanation for the differences can be found in the propositions
stated earlier, namely that both paradigms see different ways of implementing their
practices, and that lean has a specific focus on E2E which results in unique lean prac-
tices.

2.3.4 Processes

The agile development paradigm consists of a number of instantiations in the form of
agile processes. The most famous representatives are eXtreme programming (XP) and
SCRUM. Both paradigms consist of a set of principles, but also describe a workflow
and artifacts that are produced in the process. Detailed descriptions of the processes can
be found in [28] for SCRUM and in [3] for XP. However, lean software development
does not propose a workflow or the production of specific artifacts. Rather lean states
principles and provides analysis tools for processes to guide engineers in improving
their processes to achieve a good flow of value. An advantage of not providing a
process is that the approaches of lean become more generally applicable, while an
agile process often needs tailoring to a specific context. That is, the general agile
process models are often not applied exactly as they are described in the books, but are
tailored to the specific needs of the context in which they are used (see Chapter 5).

68

2.4 Discussion

2.4.1 Practical Implications

Potential benefit of E2E perspective in agile: The lean practices (value-stream map-
ping, inventory management, chief engineer, and pull-systems) are potentially strong
tools to support the E2E flow of agile software development. When not having the E2E
focus in mind there is, for example, a risk that agile is only implemented in implemen-
tation projects and not in the overall development lifecycle. Though, the benefits of
agile cannot be leveraged when not focusing on the overall development lifecycle and
balancing the flow of work across the complete development lifecycle. Hence, when
moving towards agile it is not enough to make the projects agile, as this is likely to
result in a sub-optimization of the actual implementation and testing part of develop-
ment. An additional risk is that the overall flow of requirements is not continuous due
to coordination problems when developing large systems with many teams (see Chap-
ter 5). How well the flow actually works can be evaluated with value stream maps and
inventory management as shown in [20, 22]. Vice versa, lean could also benefit from
the principles unique to agile.

Looking for evidence: Companies are interested in research results that show which
practices are most successful in specific contexts. A company wanting to know about
the benefits of lean practices should turn to the agile literature due to the large overlap
between lean and agile principles. We also have shown that agile principles positively
influence the principles of lean as well. Only very little is known about the principles
and practices that are related to “see the whole”, thus companies looking for infor-
mation related to principles with an E2E focus will not find much information in the
software engineering literature. The high overlap between lean and agile also means
that companies having adopted agile practices are not too far away from having a lean
software process, given that they add the flow and E2E perspective on-top of their
current practices.

2.4.2 Research Implications

Combination of practices: The agile community often states that an agile process only
works if all its principles are implemented. However, there is little empirical evidence
for this statement. In particular, there is little evidence for which combinations of prac-
tices work well in which context (e.g. large-scale vs. small-scale, telecommunication
vs. information systems, and so forth). Hence, future research should focus on figur-
ing out which combinations of practices are most beneficial, depending on the context.
For example, different practices contribute to the quality related principles. Hence, it

69

Chapter 2. Is Lean Agile and Agile Lean? A Comparison between Two Software
Development Paradigms

is interesting to know which combination of quality assurance practices is most cost
efficient, which calls for further empirical evidence.

Investigate practices related to E2E flow: Several books describe lean practices
related to the end to end flow of software development. Though, no research (industrial
case studies, experiments, or simulations) document the benefits and challenges related
to their usage. For example, further case studies are needed that apply value-stream
maps in practice. In addition, little work is done on inventory management and Kanban
implementations in software development. We believe that the evaluations will aid
in driving the technology transfer of value-stream maps, inventory management, and
Kanban.

Overall, lean software development is a research area with great promise and little
work done, making it an attractive field for software engineering research.

2.5 Conclusion

This chapter compares two development paradigms (lean and agile development) which
are of high relevance for industry due to that they focus on making companies agile
in responding to changing market needs. The ability to respond quickly is essential
in today’s rapidly changing market. The result of the comparison is: (1) Agile and
lean agree on the goals they want to achieve; (2) Lean is agile in the sense that the
principles of lean reflect the principles of agile, while lean is unique in stressing the
end-to-end perspective more; (3) Lean has adopted many practices known in the agile
context, while stressing the importance of using practices that are related to the end-to-
end flow. These practices are value-stream maps, inventory management, Kanban pull
systems, and the use of a chief engineer. In addition, agile uses practices that are not
found in lean. The practical implications are that: (1) Industry can potentially benefit
from adopting lean practices related to flow, which helped to revolutionize manufac-
turing and product development; (2) Companies looking for evidence on lean will find
important information in the agile literature as there is a high overlap between lean
and agile. However, few papers are available that focus on the flow aspect in the soft-
ware engineering context. The research implications are: (1) Research should focus
on investigating which combination of practices should be recommended to industry
depending on the industrial context, and (2) practices related to the E2E flow should be
investigated to provide evidence for their benefit in the software engineering context.

70

2.6 References
[1] Bjørn Andersen and Tom Fagerhaug. Root cause analysis: simplified tools and

techniques. ASQ Quality, Milwaukee, Wis., 2000.

[2] David Anderson. Agile management for software engineering: applying the the-
ory of constraints for business results. Prentice Hall, 2003.

[3] Kent Beck. Extreme Programming explained: embrace change. Addison-Wesley,
Reading, Mass., 2000.

[4] Kent Beck. Test-driven development: by example. Addison-Wesley, Boston, MA,
2003.

[5] Kent Beck. JUnit pocket guide. O’Reilly, Sebastopol, Calif., 2004.

[6] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp.
Motivation in software engineering: A systematic literature review. Information
& Software Technology, 50(9-10):860–878, 2008.

[7] Tom DeMarco and Timothy Lister. Peopleware: productive projects and teams.
Dorset House Pub, New York, 2. ed. edition, 1999.

[8] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software develop-
ment: A systematic review. Information & Software Technology, 50(9-10):833–
859, 2008.

[9] Kent Beck et al. Manifesto for agile software development. Web:
http://agilemanifesto.org, 2010.

[10] Michael E. Fagan. Design and code inspections to reduce errors in program de-
velopment. IBM Systems Journal, 15(3):182–211, 1976.

[11] Michael Hirsch. Moving from a plan driven culture to agile development. In
Proceedings of the 27th International Conference on Software Engineering (ICSE
2005), page 38, 2005.

[12] Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, and Chris-
tian Nyberg. Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation. Journal of Systems and Software,
59(3):323–332, 2001.

[13] Christer Karlsson and Par Ahlströhm. The difficult path to lean product develop-
ment. Journal of Product Innovation Management, 13(4):283–295, 2009.

71

REFERENCES

[14] Joshua Kerievsky. Refactoring to patterns. Addison-Wesley, Boston, 2005.

[15] Alan S. Koch. Agile software development: evaluating the methods for your
organization. Artech House, Boston, 2005.

[16] Craig Larman. Agile and iterative development: a manager’s guide. Addison-
Wesley, Boston, 2004.

[17] Alexis Leon. Software configuration management handbook. Artech House,
Boston, Mass., 2. ed. edition, 2005.

[18] Sun Microsystems. Java code conventions. http://java.sun.com/docs/codeconv.

[19] James M Morgan and Jeffrey K. Liker. The Toyota product development system:
integrating people, process, and technology. Productivity Press, New York, 2006.

[20] Shahid Mujtaba, Robert Feldt, and Kai Petersen. Waste and lead time reduc-
tion in a software product customization process with value stream maps. In
To appear in: Proceedings of the Australian Software Engineering Conference
(ASWEC 2010), 2010.

[21] Kai Petersen and Claes Wohlin. A comparison of issues and advantages in ag-
ile and incremental development between state of the art and an industrial case.
Journal of Systems and Software, 82(9):1479–1490, 2009.

[22] Kai Petersen and Claes Wohlin. Software process improvement through the lean
measurement (spi-leam) method. Journal of Systems and Software, in print, pages
1479–1490, 2010.

[23] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-
scale development. In Proceedings of the International Conference on Product-
Focused Software Process Improvement(PROFES 2009), pages 386–400, 2009.

[24] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley, Boston, 2003.

[25] Mary Poppendieck and Tom Poppendieck. Implementing lean software develop-
ment: from concept to cash. Addison-Wesley, 2007.

[26] Mary Poppendieck and Tom Poppendieck. Leading lean software development:
results are not the point. Addison-Wesley, Upper Saddle River, NJ, 2010.

[27] Walter Royce. Managing the development of large software systems: Concepts
and techniques. In Proc. IEEE WESCOM. IEEE Computer Society Press, 1970.

72

[28] Ken Schwaber. Agile project management with Scrum. Microsoft Press, Red-
mond, Wash., 2004.

[29] Barry Boehm Stefan Biffl, Aybueke Aurum. Value-based software engineering.
Springer, New York, NY, 1st ed. edition, 2005.

[30] Gerald M. Weinberg. Egoless programming (excerpt from the psychology of
computer programming, silver anniversary edition). IEEE Software, 16(1), 1999.

[31] James P. Womack. The machine that changed the world. Simon & Schuster,
London, 2010.

73

REFERENCES

74

Chapter 3

The Waterfall Model in
Large-Scale Development

Kai Petersen, Claes Wohlin, and Dejan Baca
Published in Proceedings of the International Conference on Prod-
uct Focused Software Process Improvement (PROFES 2009)

3.1 Introduction
The first publication on the waterfall model is credited to Walter Royce’s article in
1970 (cf. [11]). In literature there seems to be an agreement on problems connected to
the use of the waterfall model. Problems are (among others) that the model does not
cope well with change, generates a lot of rework, and leads to unpredictable software
quality due to late testing [13]. Despite the problems identified, the model is still
widely used in software industry, some researchers are even convinced that it will be
around for a much longer period of time (see [10]). The following trends can be seen
in research. First, the model seems to be of very little interest for researchers to focus
on as it seems to be old-fashioned. Instead, recent studies have much more focus on
agile and incremental development. Secondly, there is very little empirical research
backing up what we believe to know about the waterfall model. In order to identify
the evidence provided by empirical research on the waterfall model we conducted the
following search on Inspec & Compendex:

75

Chapter 3. The Waterfall Model in Large-Scale Development

• (“waterfall model” OR “waterfall development”) AND (“empirical” OR “case
study” OR “industrial”)

Inspec & Compendex was selected as it integrates many full-text databases in com-
puting and thus is considered a good starting point. The search resulted in 33 publi-
cations where none of the publications had an explicit focus on studying the waterfall
model in an industrial setting. Thus, most of the problems reported on the water-
fall model are mainly based on researchers’ beliefs and experience reports. Conse-
quently, in order to provide substantial evidence on the usefulness of the waterfall
model in industry empirical studies are needed. Evaluating the usefulness empirically
aids decision making of whether to use the model in specific context (here large-scale-
development).

To address this research gap we conducted a case study focusing on identifying
issues in waterfall development and compare them to what has been said in literature.
Furthermore, the issues identified are ranked based on their criticality. The case being
studied is a development site of Ericsson AB, Sweden. The waterfall model was used
at the company for several years. The case study has been conducted according to the
guidelines provided by Yin (see [15]). The case study makes the following contribu-
tions to research on waterfall development: 1) Illustration of the waterfall implementa-
tion in practice within large-scale industrial software development, 2) Identification of
issues related to the waterfall model and their prioritization showing the most critical
issues, and 3) Comparison of case study results with state of the art (SotA).

The remainder of this chapter is structured as follows: Section 3.2 provides an
overview of related work. Thereafter, Section 3.3 illustrates the waterfall model used
at the company. Section 3.4 presents the case study design. The analysis of the col-
lected data is provided in Section 3.5 (qualitative analysis) and Section 3.6 (quantitative
analysis). Section 3.7 presents a comparison of the case study findings and state of the
art. Section 3.8 concludes the chapter.

3.2 Related Work
Literature identifies a number of problems related to the waterfall model. An overview
of the problems identified in literature is shown in Table 3.1. In addition to the identi-
fied articles we considered books discussing advantages and disadvantages of the wa-
terfall model.

The waterfall model is connected to high costs and efforts [13][8]. That is, it re-
quires approval of many documents, changes are costly to implement, iterations take
a lot of effort and rework, and problems are usually pushed to later phases [13]. Few

76

Table 3.1: Issues in Waterfall Development (State of the Art)

ID Issue Reference

L01 High effort and costs for writing and approving documents
for each development phase.

[13][8]

L02 Extremely hard to respond to changes. [13][8][9]
L03 When iterating a phase the iteration takes considerable effort

for rework.
[13]

L04 When the system is put to use the customer discovers prob-
lems of early phases very late and system does not reflect
current requirements.

[11] [13] [4]

L05 Problems of finished phases are left for later phases to solve. [13]
L06 Management of a large scope of requirements that have to be

baselined to continue with development.
[14] [4] [5]

L07 Big-bang integration and test of the whole system in the end
of the project can lead to unexpected quality problems, high
costs, and schedule overrun.

[6][11][12]

L08 Lack of opportunity for customer to provide feedback on the
system.

[6]

L09 The waterfall model increases lead-time due to that large
chunks of software artifacts have to be approved at each gate.

[1]

studies are explicitly focused on the waterfall model and some reasons for the failures
of the waterfall approach have been identified. One reason mentioned by several stud-
ies is the management of a large scope, i.e. requirements cannot be managed well and
has been identified as the main reason for failure (cf. [4] [5] [14]). Consequences have
been that the customers’ current needs are not addressed by the end of the project [4],
resulting in that many of the features implemented are not used [5].

Additionally, there is a problem in integrating the overall system in the end and
testing it [6]. A survey of 400 waterfall projects has shown that the software being
developed is either not deployed or if deployed, it is not used. The reasons for this are
the change of needs and the lack of opportunity to clarify misunderstandings. This is
caused by the lack of opportunity for the customer to provide feedback on the system
[3]. Specifically, the waterfall model fails in the context of large-complex projects or
exploratory projects [10].

On the other hand, waterfall development comes with advantages as well. The wa-
terfall model is predictable and pays attention to planning the architecture and structure

77

Chapter 3. The Waterfall Model in Large-Scale Development

of the software system in detail which is especially important when dealing with large
systems. Without having focus on architecture planning there is a risk that design de-
cisions are based on tacit knowledge and not explicitly documented and reviewed [2].
Thus, the probability of overlooking architectural problems is high.

3.3 The Waterfall Model at the Company
The waterfall model used at the company runs through the phases requirements en-
gineering, design & implementation, testing, release, and maintenance. Between all
phases the documents have to pass a quality check, this approach is referred to as a
stage-gate model (see for example [7]). An overview of the process is shown in Figure
3.1.

Main Product Line

Requirements

Engineering
MaintenanceReleaseTesting

Design &

Implementation

Quality Door

(Checklist)

Main Development Project

Quality Door

(Checklist)

Quality Door

(Checklist)

Quality Door

(Checklist)

Figure 3.1: Waterfall Development at the Company

We explain the different phases and provide a selection of checklist-items to show
what type of quality checks are made in order to decide whether the software artifact
developed in a specific development phase can be passed on to the adjacent phase.

Requirements Engineering: In this phase, the needs of the customers are identified
and documented on a high abstraction level. Thereafter, the requirements are refined
so that they can be used as input to the design and implementation phase. The require-
ments (on high as well as low abstraction level) are stored in a requirements repository.
From this repository, the requirements to be implemented are selected from the repos-
itory. The number of requirements selected depends on the available resources for the
project. As new products are not built from the scratch, parts from the old product
(see main product line in Figure 3.1) are used as input to the requirements phase as
well. At the quality gate (among others) it is checked whether all requirements are

78

understood, agreed upon, and documented. Furthermore, it is checked whether the rel-
evant stakeholders are identified and whether the solution would support the business
strategy.

Design and Implementation: In the design phase the architecture of the system
is created and documented. Thereafter, the actual development of the system takes
place. The developers also conduct basic unit testing before handing the developed
code over to the test phase. The quality gate checklist (among others) verifies whether
the architecture has been evaluated, whether there are deviations from the requirements
compared to the previous quality gate decision, and whether there is a deviation from
planned time-line, effort, or product scope.

Testing: In this phase the system integration is tested regarding quality and func-
tional aspects. In order to make a decision whether the the system can be deployed,
measures of performance (e.g, throughput) are collected in the test laboratory. As the
company provides complete solutions (including hardware and software) the tests have
to be conducted on a variety of hardware and software configurations as those differ
between customers. The outcome of the phase is reviewed according to a checklist to
see whether the system has been verified and whether there are deviations from previ-
ous quality gate decisions in terms of quality and time, whether plans for hand-over of
the product to the customer are defined according to company guidelines, and whether
the outcome of the project meets the customers’ requirements.

Release: In the release phase the product is brought into a shippable state. That
is, release documentation is finalized (e.g. installation instructions of the system for
customers and user-guides). Furthermore, build-instructions for the system have to
be programmed. Build-instructions can be used to enable and disable features of the
main product line to tailor the system to specific customer needs. At the quality gate
(among others) it is checked whether the outcome meets the customers’ requirements,
whether the customer has accepted the outcome, and whether the final outcome was
presented in time and fulfilled its quality requirements. A post-mortem analysis has to
be performed as well.

Maintenance: After the product has been released to the customer it has to be
maintained. That is, if customers discover problems in the product they report them to
the company and get support in solving them. If the problems are due to faults in the
product, packages for updating the system are delivered to the customers.

3.4 Case Study Design
The context in which the study is executed is Ericsson AB, a leading and global com-
pany offering solutions in the area of telecommunication and multimedia. Such solu-

79

Chapter 3. The Waterfall Model in Large-Scale Development

tions include charging systems for mobile phones, multimedia solutions and network
solutions. The company is ISO 2001:2000 certified. The market in which the company
operates can be characterized as highly dynamic with high innovation in products and
solutions. The development model is market-driven, meaning that the requirements are
collected from a large base of potential end-customers without knowing exactly who
the customers will be.

3.4.1 Research Questions
The following main research questions should be answered in the case study:

• RQ1: What are the most critical problems in waterfall development in large-
scale industrial development?

• RQ2: What are the differences and similarities between state of the art and the
case study results?

The relevance of the research questions can be underlined as follows: The related
work has shown a number of problems related to waterfall development. However,
there is too little empirical evidence on the topic and thus more data points are needed.
Furthermore, the criticality of problems is not addressed in any way so far, making it
hard to decide in which way it is most beneficial to improve the model, or whether
the introduction of a new way of working will help in improving the key challenges
experienced in the waterfall model.

3.4.2 Case Selection and Units of Analysis
The case being studied is one development site of Ericsson AB. In order to under-
stand the problems that occurred when the waterfall model was used at the company,
three subsystems (S1, S2, and S3) are analyzed that have been built according to the
model. The systems under investigation in this case study have an overall size of ap-
prox. 1,000,000 LOC (as shown in Table 3.2). The LOC measure only includes code
produced at the company (excluding third-party libraries). Furthermore, the number of
persons involved in building the system are stated. A comparison of the system consid-
ered for this study and the size of the Apache web server shows that the system being
studied is considerably larger and thus can be considered as large-scale.

3.4.3 Data Collection Procedures
The data is collected through interviews and from process documentation.

80

Table 3.2: Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
S1 C++ 300,000 43
S2 C++ 850,000 53
S3 Java 24,000 17
Apache C++ 220,000 90

Selection of Interviewees

The interviewees were selected so that the overall development life cycle is covered,
from requirements to testing and release. Furthermore, each role in the development
process should be represented by at least two persons if possible. The selection of
interviewees was done as follows:

1. A complete list of people available for the system being studied. Overall 153
people are on this list as shown in Table 3.2.

2. For the selection of persons we used cluster sampling. At least two persons from
each role (the roles being the clusters) have been randomly selected from the list.
The more persons are available for one role the more persons have been selected.

3. The selected interviewees received an e-mail explaining why they have been se-
lected for the study. Furthermore, the mail contained information of the purpose
of the study and an invitation for the interview. Overall, 44 persons have been
contacted of which 33 accepted the invitation.

The distribution of people between different roles is shown in Table 3.3. The roles
are divided into “What”, “When”, “How”, “Quality Assurance”, and “Life Cycle Man-
agement”.

• What: This group of people is concerned with the decision of what to develop
and includes people from strategic product management, technical managers and
system managers.

• When: People in this group plan the time-line of software development from a
technical and project management perspective.

• How: Here, the architecture is defined and the actual implementation of the
system takes place. In addition, developers test their own code (unit tests).

81

Chapter 3. The Waterfall Model in Large-Scale Development

• Quality Assurance: Quality assurance is responsible for testing the software and
reviewing documentation.

• Life Cycle Management: This includes all activities supporting the overall devel-
opment process, like configuration management, maintenance and support, and
packaging and shipment of the product.

Table 3.3: Distribution of Interviewees Between Roles and Units of Analysis

S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

Interview Design

The interview consists of five parts, the duration of the interviews was set to approxi-
mately one hour each. In the first part of the interviews the interviewees were provided
with an introduction to the purpose of the study and explanation why they have been
selected. The second part comprised questions regarding the interviewees background,
experience, and current activities. Thereafter, the issues were collected through a semi-
structured interview. To collect as many issues as possible the questions have been
asked from three perspectives: bottlenecks, rework, and unnecessary work. The inter-
viewees should always state what kind of bottleneck, rework, or unnecessary work they
experienced, what caused it, and where it was located in the process.

Process Documentation

Process documentation has been studied to gain an in-depth understanding of the pro-
cesses. Documentation for example includes process specifications, training material
for processes, and presentations given to employees during unit meetings.

82

3.4.4 Data Analysis Approach
The problems related to the waterfall model at the company have been identified con-
ducting the four steps outlined below. The steps are based on more than 30 hours of
interview transcriptions and have been executed by the first author over a three month
period.

1. Clustering: The raw data from the transcriptions is clustered, grouping state-
ments belonging together. For example, all statements related to requirements
engineering are grouped together. Thereafter, statements addressing similar ar-
eas within one group (e.g,. all areas that would relate to requirements engineer-
ing lead-times) are grouped.

2. Derivation of Issue Statements: The raw data contains detailed explanations and
therefore is abstracted by deriving problem statements from the raw data, ex-
plaining them shortly in one or two sentences. The result was a number of prob-
lem statements where statements varied in their abstraction level and could be
further clustered.

3. Mind-Mapping of Issue Statements: The issue statements were grouped based
on their relation to each other and their abstraction level. For example, problems
related to requirements lead-times are grouped within one branch called ”long
requirements lead-times”. This was documented in form of a mind-map. Issues
with higher abstraction level are closer to the center of the mind map than issues
with lower abstraction level.

4. Validation of Issues: In studies of qualitative nature there is always a risk that the
data is biased by the interpretation of the researcher. Therefore, the issues have
been validated in two workshops with three representatives from the company.
The representatives have an in-depth knowledge of the processes. Together, the
steps of analysis described here have been reproduced together with the authors
and company representatives. For this a subset of randomly selected issue state-
ments have been selected. No major disagreement has been discovered between
the workshop participants on the outcome of the analysis. Thus, the validity of
the issue statements can be considered as high.

After having identified the problems they are prioritized into A-problems (critical),
B-problems (very important), C-problems (important), D-problems (less important),
and E-problems (local). The actual limits on the classes is based on the results. The
main objective of the classification is to systematize and structure the data and not to
claim that these classes are optimal or suitable for another study.

83

Chapter 3. The Waterfall Model in Large-Scale Development

A. The problem is mentioned by more than one role and more than one subsystem.
Moreover, the problem has been referred to by more than 1/3 of the respondents.

B. The problem is mentioned by more than one role and more than one subsystem.
Moreover, the problem has been referred to by more than 1/5 of the respondents.

C. The problem is mentioned by more than one role and more than one subsystem.
Moreover, the problem has been referred to by more than 1/10 of the respondents.

D. The problem is mentioned by more than one role and more than one subsystem.
Moreover, it has been referred to by 1/10 of the respondents or less.

E. The problem is only referred to by one role or one subsystem and thus considered
a local or individual problem.

3.4.5 Threats to Validity

Threats to the validity of the outcome of the study are important to consider during
the design of the study allowing to take actions mitigating them. Threats to validity in
case study research are reported in [15]. The threats relevant to the study are: construct
validity, external validity and reliability.

Construct Validity: Construct validity is concerned with obtaining the right mea-
sures for the concept being studies. One threat is the selection of people to obtain the
appropriate sample for answering the research questions. Therefore, experienced peo-
ple from the company selected a pool of interviewees as they know the persons and
organization best. From this pool the random sample was taken. The selection by the
representatives of the company was done having the following aspects in mind: pro-
cess knowledge, roles, distribution across subsystems, and having a sufficient number
of people involved (although balancing against costs). Furthermore, it is a threat that
the presence of the researcher influences the outcome of the study. The threat is re-
duced as there has been a long cooperation between the company and university and
the author collecting the data is also employed by the company and not viewed as being
external. Construct validity is also threatened if interview questions are misunderstood
or misinterpreted. To mitigate the threat pre-tests of the interview have been conducted.

External Validity: External validity is the ability to generalize the findings to a
specific context as well as to general process models. One threat to validity is that only
one case has been studied. Thus, the context and case have been described in detail
which supports the generalization of the problems identified. Furthermore, the process
model studied follows the main principles of waterfall development (see Section 3.3)

84

and thus can be well generalized to that model. In addition, the outcome is compared
to state of the art.

Reliability: This threat is concerned with repetition or replication, and in particular
that the same result would be found if re-doing the study in the same setting. There
is always a risk that the outcome of the study is affected by the interpretation of the
researcher. To mitigate this threat, the study has been designed so that data is collected
from different sources, i.e. to conduct triangulation to ensure the correctness of the
findings. The interviews have been recorded and the correct interpretation of the data
has been validated through workshops with representatives of the company.

3.5 Qualitative Data Analysis

In total 38 issues have been identified in the case study. The majority of issues is
categorized in class E, i.e, they are only referred to by individuals or are not mentioned
across subsystems (see Table 3.4). Furthermore, the distribution of issues between
the phases requirements engineering (RE), design and development (DI), verification
and validation (VV), release (R), maintenance (M), and project management (PM) is
shown. The distribution of issues is further discussed in Section 3.7.

Table 3.4: Number of Issues in Classification
Classification RE DI VV R M PM No. of Issues

A 1 - 1 - - - 2
B - - 2 - - - 2
C 1 2 - - 1 1 5
D 1 1 2 - - - 4
E 1 1 2 3 8 10 25

Sum 4 4 7 3 9 11 38

In the analysis of the issues we focus on classes A to D as those are the most
relevant ones as they are recognized across roles and systems. Thus, they have a visible
impact on the overall development process. However, this does not imply that local
issues are completely irrelevant, they just have little impact on the overall development
process and thus are not recognized by other roles. Table 3.5 shows an overview of the
identified issues in classes A to D and their mapping to literature summarized in Table
3.1.

85

Chapter 3. The Waterfall Model in Large-Scale Development

Table 3.5: Issues in Waterfall Development
ID Class Process Area Description SotA

P01 A Requirements Requirements work is wasted as documented
and validated requirements have to be dis-
carded or reworked.

L02,
L03,
L08

P02 A Verification Reduction of test coverage due to limited test-
ing time in the end.

L07

P03 B Verification Amount of faults found increases with late
testing.

L05

P04 B Verification Faults found later in the process are hard and
expensive to fix.

L07

P05 C Requirements Too much documentation is produced in re-
quirements engineering that is not used in later
stages of the process.

L01

P06 C Design Design has free capacity due to long require-
ments engineering lead-times.

L09

P07 C Design Confusion on who implements which version
of the requirements.

-

P08 C Maintenance High effort for maintenance (corrections re-
leased to the customer).

L04

P09 C Project Mgt. Specialized competence focus of team mem-
bers and lack of confidence.

-

P10 D Requirements The impact of requirements on other parts of
the system are not foreseen.

L06

P11 D Design Design is overloaded with requirements. -
P12 D Verification High amount of testing documentation has to

be produced.
L01

P13 D Verification Problems in fault localization due to barriers
in communication.

-

3.5.1 A Issues
P01: The long lead-times of the requirements engineering phase led to the need to
change requirements or discard already implemented and reviewed requirements as the
domain investigated (telecommunication) is very dynamic. Furthermore, the distance
to the customer caused misunderstandings which resulted in changed requirements or
discarded requirements. Due to the complexity of the scope to be defined the num-

86

ber of requirements was too high for the given resources which resulted in discarding
requirements (and sometimes this was done late in the development process). Further-
more, the interviewees emphasized that the decision what is in the scope and what is
not takes a lot of time as a high amount of people that have to be involved.

P02: Test coverage in waterfall development was reduced due to multiple reasons.
Testing is done late in the project and thus if there have been delays in development,
testing has to be compromised as it is one of the last steps in development. Further-
more, too much has to be tested at once after the overall system has been implemented.
Additional factors are that testing related to quality is often given low priority in com-
parison to functional testing, trivial things are tested too intensively, and test resources
are used to test the same things twice due to coordination problems.

3.5.2 B Issues
P03: The later the testing, the higher the amount of faults found. The number of faults
and quality issues is influenced negatively when using waterfall development. The
main cause for this is late testing after everything has been implemented. This provides
far too late feedback from test on the software product. Furthermore, basic testing is
neglected as there has been low interaction between design and testing, resulting in lack
of understanding of each other in terms of consequences of neglecting basic testing.
Also due to communication issues, testing started verifying unfinished code which led
to a high number of false positives (not real faults).

P04: Having late testing results in faults that are hard to fix, which is especially true
for issues related to quality attributes of the system (e.g. performance). These kinds of
issues are often rooted in the architecture of the system which is hard to change late in
the project.

3.5.3 C Issues
P05: The interviewees emphasized that quite a lot of documentation is produced in the
requirements phase. One of the reasons mentioned is limited reuse of documentation
(i.e., the same information is reported several times). Furthermore, the concept of
quality gates requires producing a lot of documentation and checklists which have to
be fulfilled before passing on the requirements to the next phase. Though, in waterfall
development the quality gates are required as they assure that the hand-over item is of
good enough quality to be used as input for all further development activities.

P06: Design and implementation have free capacity, the reasons being that require-
ments have to be specified in too much detail, decision making takes a long time, or
requirements resources are tied up due to the too large requirements scope. This has a

87

Chapter 3. The Waterfall Model in Large-Scale Development

negative impact on design, as the designers have to wait for input from requirements
engineering before they can start working. As one interviewee pointed out ”For such
large projects with so many people involved half the workforce ends up working for the
rest”. In consequence, the lead-time of the overall project is prolonged.

P07: From a design perspective, it is not always clear which version of the require-
ments should be implemented and by whom. The cause of this problem is that work
often starts on unfinished or unapproved requirements which have not been properly
baselined.

P08: Support is required to release a high number of corrections on already re-
leased software. This is due to the overall length of the waterfall projects resulting in
very long release cycles. In consequence, the customers cannot wait for the corrections
to be fixed for the next release, making corrections a time-pressing issue. Further-
more, the development model requires to handle parallel product branches for customer
adaptations of the main product line. In this domain, products have a high degree of
variability and thus several product branches have to be supported (see Figure 3.1).

P09: The competence focus of people in waterfall development is narrowed, but
specialized. This is due to that people are clearly separated in their phases and disci-
plines, and that knowledge is not well spread among them. As one interviewee pointed
out, there are communication barriers between phases. Furthermore, a lack of confi-
dence has been reported. That is, people are capable but do not recognize their partic-
ular strength to a degree they should.

3.5.4 D Issues
P10: New requirements do not have an isolated impact, instead they might affect mul-
tiple subsystems. However, due to the large requirements scope, requirements depen-
dencies are often overlooked.

P11: The scope of the requirements was too big for the implementation resources.
In consequence, designers and architects were overloaded with requirements which
could not be realized with the given resources. Furthermore, after the project has been
started more requirements were forced into the project by the customer. In conse-
quence, emergent requirements cannot be implemented by architects and designers as
they already face an overload situation.

P12: Test documentation has been done too extensively as the documents became
obsolete. The reason for the high amount of documentation was mainly that the process
has been very documentation centric.

P13: When dealing with different subsystems, the fault localization is problematic
as a problem might only show in one subsystems, but due to communication barriers
not all subsystem developers are aware of the problem. In consequence, due to the lack

88

of communication (see P09) the localization of faults reported by the customer is time
consuming.

3.6 Quantitative Data Analysis
Table 3.6 shows the distribution of time (duration) in the development process. The
requirements engineering phase takes very long time in comparison to the other phases.
The actual implementation of the system seems to be the least time-intensive activity.

Table 3.6: Distribution of Time (Duration) over Phases (in %)
Req. Impl.&Design Verification Release Total

41 17 19 23 100

Furthermore, we measured the number of change requests per implemented re-
quirement, the discarded requirement, and the percentage of faults found in system test
that should have been found in earlier tests (function test and component test). The fig-
ures quantify the issues identified earlier. In particular, the high number of discarded
requirements and the cause of change requests are related to issue P01. The long lead-
times of requirements engineering increase the time-window for change requests and
approximately 26 % of all requirements become obsolete. From a quality perspective
the fault slip of 31 % is a symptom of P03 (increase of number of faults with late test-
ing) and P04 (the types of faults found in system tests could have been found earlier
and thus would have been easier to fix).

Table 3.7: Performance Measures
Measure Value

CRs per implemented requirement 0.076
Discarded requirements 26 %
Fault slip to system test 31 %

3.7 Comparative Analysis of Case Study and SotA
Table 3.5 relates the issues identified in the case study to the issues mentioned in litera-
ture. If an issue from the case study is identified in literature the column SotA provides

89

Chapter 3. The Waterfall Model in Large-Scale Development

the ID of the issue identified in literature (listed in Table 3.1). Through this compari-
son it becomes apparent that four issues not mentioned in the identified literature have
been discovered in the case study, namely P07, P09, P11, and P13. Vice versa all issues
acknowledged in literature have been identified in the case study. Table 3.5 also shows
that the highest prioritized issues (A and B) have all been mentioned in literature de-
scribing the waterfall model. In conclusion researchers and practitioners are aware of
the most pressing issues related to waterfall development, while lower prioritized (but
still important) issues have not been linked to the waterfall model to the same degree.

The issues in the case study are formulated differently from those identified in lit-
erature as the formulation is an outcome of the qualitative data analysis. Therefore,
we explain how and why the issues of high priority from the case study and SotA are
related to each other. The most critical issues are related to the phases of requirements
engineering, and verification and validation (both identified in literature). We found
that requirements often have to be reworked and or discarded (P01). The qualitative
analysis based on the interviews explained the issue with long lead-times for require-
ments and large scope making responding to changes hard (related to L02), distance to
the customer (related to L08), and change in large scope leads to high effort due to that
many people are involved (related to L03). The quantitative analysis shows that 41 %
of the lead-time is consumed for requirements engineering. Having to define a large
requirements scope extends lead-time and thus reduces requirements stability. In con-
sequence the waterfall model is not suitable in large-scale development in the context
of a dynamic market. Regarding verification issue L07 identified in literature states that
testing the whole system in the end of the project leads to unexpected quality problems
and project overruns. This issue relates to the case study in the following ways: First,
testing has to be compromised and thus test coverage is reduced when having fixed
deadlines which do not allow for project overruns (P02). Secondly, the faults found
late in the process are hard to fix, especially if they are rooted in the architecture of the
system (P07).

The issues categorized as C are quite mixed, i.e. they include issues related to
requirements, design, maintenance and project management. The issues categorized
as D show a similar pattern as the most critical ones (A and B), i.e. they are related
to requirements, and verification and validation. Furthermore, one issue is related to
design. As mentioned earlier, less than half of the issues classified as C and D have
been identified in literature before. An explanation of the issues not yet identified has
been provided in the qualitative analysis (see Section 3.5).

It is also interesting to observe that a majority of local issues is related to project
management and maintenance (see Table 3.4). Thus, it seems that there is a high num-
ber of issues which do not have such an impact on the process that knowledge about
them spreads in the organization.

90

3.8 Conclusion
This case study investigates issues related to the waterfall model applied in the context
of large-scale software development and compares the findings with literature. The
results are that the most critical issues in waterfall development are related to require-
ments and verification. In consequence, the waterfall model is not suitable to be used
in large-scale development. Therefore, the company moved to an incremental and agile
development model in 2005. The comparison of the case study findings with literature
shows that all issues found in literature are found in the case study. Though, the case
study findings provide more detailed explanations of the issues and identified four new
issues, namely 1) confusion of who implements which version of the requirements, 2)
high effort for maintenance, 3) specialized competence focus and lack of confidence of
people, and 4) problems in fault localization due to communication barriers.

3.9 References
[1] David J. Anderson. Agile Management for Software Engineering: Applying the

Theory of Constraints for Business Results (The Coad Series). Prentice Hall PTR,
2003.

[2] Barry Boehm. Get ready for agile methods, with care. Computer, 35(1):64–69,
2002.

[3] David Cohen, Gary Larson, and Bill Ware. Improving software investments
through requirements validation. In Proceedings of the 26th Annual NASA God-
dard Software Engineering Workshop (SEW 2001), page 106, Washington, DC,
USA, 2001. IEEE Computer Society.

[4] Joe Jarzombek. The 5th annual jaws s3 proceedings, 1999.

[5] Jim Johnson. Keynote speech: Build only the features you need. In Proceedings
of the 4th International Conference on Extreme Programming and Agile Pro-
cesses in Software Engineering (XP 2002), 2002.

[6] Caspers Jones. Patterns of Software Systems: Failure and Success. International
Thomson Computer Press, 1995.

[7] Daniel Karlström and Per Runeson. Combining agile methods with stage-gate
project management. IEEE Software, 22(3):43–49, 2005.

91

REFERENCES

[8] Pete McBreen. Software craftsmanship : the new imperative. Addison-Wesley,
Boston, 2002.

[9] Shari Lawrence Pfleeger and Joanne M. Atlee. Software engineering : theory and
practice. Prentice Hall, Upper Saddle River, N.J., 3. ed. edition, 2006.

[10] Lbs Raccoon. Fifty years of progress in software engineering. SIGSOFT Softw.
Eng. Notes, 22(1):88–104, 1997.

[11] Walter Royce. Managing the development of large software systems: Concepts
and techniques. In Proc. IEEE WESCOM. IEEE Computer Society Press, 1970.

[12] Johannes Sametinger. Software engineering with reusable components : with 26
tables. Springer, Berlin, 1997.

[13] Ian Sommerville. Software Engineering (7th Edition). Pearson Eductation Ltd.,
2004.

[14] Michael Thomas. It projects sink or swim. British Computer Society Review
2001, 2001.

[15] Robert K. Yin. Case Study Research: Design and Methods, 3rd Edition, Applied
Social Research Methods Series, Vol. 5. Prentice Hall, 2002.

92

Chapter 4

The Effect of Moving from a
Plan-Driven to an Incremental
and Agile Software
Development Approach: An
Industrial Case Study

Kai Petersen and Claes Wohlin
Submitted to a Journal

4.1 Introduction
As software has become a major success factor in software products the competition
has increased. In consequence, the software industry aims at shorter lead times to
gain a first-move advantage and to fulfill the current needs of the customer. However,
the needs of the customers in terms of functions and quality constantly evolve leading
to high requirements volatility which requires the software companies to be highly
flexible. Therefore, more and more software companies started to adopt incremental
and agile methods and the number of recent empirical studies on agile methods have

93

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

increased (for example [39], [22], and [5]).
Due to the increased importance and interest in agility of software development a

systematic review [13] summarized the results of empirical studies on agile methods.
According to the systematic review there is a clear need for exploratory qualitative
studies. In particular, we need to better understand the impact of the change from
traditional (plan-driven) development models (like waterfall, Rational Unified Process
(RUP) or V-model) to more agile methods. Furthermore, the review identified research
methodological quality problems that frequently occurred in the studies. For example,
methods were not well described, the data was biased, and reliability and validity of
the results were not always addressed. The review also shows that the main focus of
studies was on XP, and that the settings studied are quite small in terms of the num-
ber of team members. Overall, this suggests a clear need to further investigate agile
and incremental methods using sound empirical methods. Specifically, to understand
the impact of migrating to incremental and agile methods requires the comparison of
agile with other approaches in different contexts. For example, how does plan-driven
development perform in comparison to agile and incremental development in different
domains (telecommunication, embedded systems and information systems) and differ-
ent system complexities (small scale, medium scale, and large scale)?

In order to address this research gap, we conducted a case study investigating the
effect of moving from plan-driven development to incremental/agile development. The
effect was captured in terms of advantages and issues for the situation before and after
the migration. The case being studied was a development site of Ericsson AB, Swe-
den. The plan-driven approach was used at the company for several years. Due to
industry benchmarks and thereby identified performance issues (e.g. related to lead-
times) the company first adopted incremental practices starting in the middle of 2005.
Agile practices were added in late 2006 and early 2007. Overall, we will show that
the company’s model shares many practices with incremental development, Extreme
Programming (XP), and Scrum.

The case study was conducted in the last quarter of 2007 where incremental prac-
tices were adopted to a large part and about 50 % of the Scrum and XP practices have
been implemented. We conducted 33 interviews with representatives of different roles
in the company to capture the advantages and issues with the two development ap-
proaches. That is, we identified issues/advantages in plan-driven development, and
how the issues/advantages have changed after migrating to incremental/agile practices.
Document analysis was used to complement the interviews. Furthermore, quantita-
tive data collected by the company was used to identify confirmative and contradicting
information to the qualitative data. The quantitative data (performance measures) in-
cluded requirements waste in terms of share of implemented requirements and software
quality. The case study research design was strongly inspired by the guidelines pro-

94

vided in [45]. Furthermore, we used the guidelines provided specifically in a software
engineering context by [35].

The contributions of the paper and case study are:

• Illustrate an incremental and agile process model used in industry and compari-
son of the model with models discussed in literature (e.g., XP, Scrum, and incre-
mental development) to be able to generalize the results.

• Identify and gain an in-depth understanding of the most important issues in re-
lation to process performance in plan-driven development and the incremen-
tal/agile process used at the company. The outcomes of the situation before
(plan-driven approach) and after the migration (incremental/agile approach) were
compared and discussed. This information was captured through interviews, and
thus illustrates the perception of the effect of the migration.

• Provide process performance measurements on the development approaches as
an additional source of evidence to support or contradict the primary evidence in
the form of qualitative findings from the interviews.

The remainder of the paper is structured as follows. Section 4.2 presents related
work. Thereafter, Section 4.3 illustrates the development processes used at the com-
pany and compares them to known models from literature. Section 4.4 describes the
research design. The analysis of the data is divided into one qualitative (Section 4.5)
and one quantitative (Section 4.6) part. Based on the analysis, the results are discussed
in Section 4.7. Section 4.8 concludes the paper.

4.2 Related Work
Studies have investigated the advantages and disadvantages of plan-driven and agile
processes. However, few studies present a comparison of the models in general, and
the effect of moving from one model to the other. This section summarizes the results
of existing empirical studies on both process models, presenting a list of advantages
and disadvantages for each of them. The description of studies related to plan-driven
development is not split into advantages and disadvantages as few advantages have
been reported in literature.

4.2.1 Plan-Driven Development
Plan-driven development includes development approaches such as the waterfall model,
the Rational Unified Process (RUP), and the V-model. All plan-driven approaches

95

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

share the following characteristics (cf. [17]): the desired functions / properties of the
software need to be specified beforehand; a detailed plan is constructed from the start
till the end of the project; requirements are specified in high detail and a rigor change
request process is implemented afterwards; the architecture and design specification
has to be complete before implementation begins; programming work is only con-
centrated in the programming phase; testing is done in the end of the project; quality
assurance is handled in a formal way.

Waterfall: Challenges with waterfall development (as a representative for plan-
driven approaches) have been studied and factors for the failures of the waterfall ap-
proach have been identified in empirical research. The main factor identified is the
management of a large scope, i.e. requirements cannot be managed well and has been
identified as the main reason for failure (cf. [41] [19] [20]). Consequences have been
that the customers’ current needs are not addressed by the end of the project [19], re-
sulting in that many of the features implemented are not used [20]. Additionally, there
is a problem in integrating the overall system in the end and testing it [21]. A study
of 400 waterfall projects has shown that only a small portion of the developed code
has actually been deployed or used. The reasons for this are the change of needs and
the lack of opportunity to clarify misunderstandings. This is caused by the lack of
opportunity for the customer to provide feedback on the system [8].

RUP: The RUP process was investigated in a case study mainly based on interviews
[15]. The study was conducted in the context of small software companies. The study
identified positive as well as negative factors related to the use of RUP. Advantages
of the process are: the clear definition of roles; the importance of having a supportive
process; good checklists provided by templates and role definitions. Disadvantages of
the process are: the process is too extensive for small projects (very high agreement
between interviewees); the process is missing a common standard of use; RUP is hard
to learn and requires high level of knowledge; a too strong emphasis is put on the
programming phase. [16] investigated the effort distribution of different projects using
RUP. They found that poor quality in one phase has significant impact on the efforts
related to rework in later phases. Thus, balancing effort in a way to avoid poor quality
(e.g. more resources in the design phase to avoid quality problems later) is important.

V-model: We were not able to identify industrial case studies focusing on the V-
model, though it was part of an experiment comparing different process models (see
Section 4.2.3).

Plan-driven approaches are still widely used in practice as recognized in many re-
search articles (c.f. [34] [4] [24] [10]). The case company of this study used the ap-
proach till 2005, and there are still new research publications on plan-driven approaches
(e.g. [15] [16] [32]).

96

4.2.2 Incremental and Agile Development

[13] conducted an exhaustive systematic review on agile practices and identified a set
of relevant literature describing the limitations and benefits of using agile methods.
According to the systematic review a majority of the relevant related work focuses on
XP (76 % of 36 relevant articles). The following positive and negative factors have
been identified in the review.

Positive factors: Agile methods help to facilitate better communication and feed-
back due to small iterations and customer interaction (cf. [39] [22] [2]). Furthermore,
the benefit of communication helps to transfer knowledge [2]. Agile methods further
propose to have the customer on-site. This is perceived as valuable by developers as
they can get frequent feedback [40] [39] [22], and the customers appreciate being on-
site as this provides them with control over processes and projects [18]. An additional
benefit is the regular feedback on development progress provided to customers [18].
From a work-environment perspective agile projects are perceived as comfortable as
they can be characterized as respectful, trustful, and help preserving quality of work-
ing life [26].

Negative factors: Well known problems are that architecture does not have enough
focus in agile development (cf. [28] [38]) and that agile development does not scale
well [7]. An important concept is continuous testing and integration. Though, realiz-
ing continuous testing requires much effort as creating an integrated test environment
is hard for different platforms and system dependencies [39]. Furthermore, testing is a
bottleneck in agile projects for safety critical systems, the reason being that testing had
to be done very often and at the same time exhaustively due to that a safety critical sys-
tem was developed [43]. On the team level team members have to be highly qualified
[29]. With regard to on-site customers a few advantages have been mentioned. The
downside for on-site customers is that they have to commit for the whole development
process which requires their commitment over a long time period and puts them under
stress [27].

Petersen and Wohlin (cf. [30]) compared issues and advantages identified in liter-
ature with an industrial case (see Chapter 5). The source of the information was the
interviews conducted in this study, but the paper focused on a detailed analysis of the
agile situation, and its comparison with the literature. The main finding was that agile
practices lead to advantages in one part of the development process, and at the same
time raises new challenges and issues in another part. Furthermore, the need for a
research framework for agile methods has been identified to describe the context and
characteristics of the processes studied.

97

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

4.2.3 Empirical Studies on Comparison of Models

In waterfall development the requirements are specified upfront, even the requirements
that are not implemented later (due to change). The introduction of an incremental
approach reduces the impact of change requests on a project. Furthermore, the incre-
ments can be delivered to the customer more frequently demonstrating what has been
achieved. This also makes the value of the product visible to the customer early in
development [9]. Furthermore, several studies indicate that agile companies are more
customer centric and generally have better relationships to their customers. This has a
positive impact on customer satisfaction [6] [37]. However, a drawback of agile devel-
opment is that team members are not as easily interchangeable as in waterfall-oriented
development [3].

Given the results of the related work it becomes apparent that benefits reported
were not identified starting from a baseline, i.e. the situation before the introduction
of agile was not clear. Hence, little is known about the effect of moving from a plan-
driven to an incremental and agile approach. Furthermore, the focus of studies has been
on eXtreme programming (XP) and the rigor of the studies was considered as very
low [13]. Hence, the related work strengthens the need for further empirical studies
investigating incremental and agile software development. Furthermore, evaluating
the baseline situation is important to judge the improvements achieved through the
migration. In response to the research gap this study investigates the baseline situation
to judge the effect of the migration towards the incremental and agile approach.

4.3 The Plan-Driven and Agile Models at the Company
Before presenting the actual case study the process models that are compared with each
other have to be introduced and understood first.

4.3.1 Plan-Driven Approach

The plan-driven model that was used at the company implemented the main charac-
teristics of plan-driven approaches as summarized by [17]. The main process steps
were requirements engineering, design and implementation, testing, release, and main-
tenance. At each step a state-gate model was used to assure the quality of the software
artifacts passed on to the next phase, i.e. software artifacts produced have to pass
through a quality door. The gathered customers’ needs collected from the market by
so-called market units were on a high abstraction level and therefore needed to be
specified in detail to be used as input to design and development. Requirements were

98

stored in a requirements repository. From the repository, requirements were selected
that should be implemented in a main project. Such a project lasted from one up to two
years and ended with the completion of one major release. Quality checks related to
the requirements phase were whether the requirements have been understood, agreed
on, and documented. In addition it was determined whether the product scope adhered
to the business strategy, and whether the relevant stakeholders for the requirements
were identified. The architecture design and the implementation of the source code
was subjected to a quality check with regard to architecture evaluation and adherence
to specification, and whether the time-line and effort deviated from the targets. In the
testing phase the quality door determined whether the functional and quality require-
ments have been fulfilled in the test (e.g. performance, load balancing, installation and
stability). It was also checked whether the hand-over of the product to the customer
was defined according to company guidelines. In the release phase the product was
packaged, which included programming of build instructions. They were used to en-
able and disable features to be able to tailor the system to specific customer needs. The
documentation also contains whether the customer accepted the outcome, and whether
the final result was delivered meeting the time and effort restrictions.

When changes occured in form of a change request (CR), requirements had to be
changed and thus became obsolete. Therefore, all downstream work products related
to these requirements, like design or already implemented code, had to be changed
as well. Late in the process, this led to a considerable amount of rework [42] and
prolonged lead-times. Furthermore, software development has not only to cope with
changes in needs that are valid for the whole customer base, but also with customer
specific needs. If the customer specific needs were considered as of high priority, a
customer adaptation project was initiated which took the last available version of the
product as input. In response to these challenges the company recognized the need for
a more agile and flexible process leading to the stepwise introduction of incremental
and agile practices, as described in the following subsections.

Further details on the plan-driven approach employed at the company (i.e. the
baseline situation) can be found in Chapter 3.

4.3.2 Agile and Incremental Model
The agile and incremental process model used at the company is shown in Figure 4.1.
The process relied on a set of company specific practices that have been introduced.
The numbers (1 to 5) in Figure 4.1 map to the enumeration of the following practices:

1. Product Backlog: The packaging of requirements for projects was driven by re-
quirement priorities. Requirements with the highest priorities were selected and

99

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

packaged to be implemented. Another criterion for the selection of requirements
was that they fit well together and thus could be implemented in one coherent
project.

2. Anatomy Plan: Furthermore, an anatomy plan was created, based on the depen-
dencies between the parts of the system being implemented in each project. The
dependencies were a result of system architecture, technical issues and require-
ments dependencies. The anatomy plan resulted in a number of baselines called
latest system versions (LSV) that needed to be developed. It also determined
the content of each LSV and the point in time when a LSV was supposed to
be completed. The anatomy plan captured dependencies between features (e.g.
one feature had to be ready before another one was implemented) and techni-
cal dependencies. Technical dependencies are critical in the telecommunication
domain as platforms and communication protocols change. For example, if a
version of the software ran on one protocol version it could not be integrated
with the new protocol version. Therefore, besides the prioritization in the prod-
uct backlog the anatomy plan provided important input on the order in which
projects were run, and when increments could be integrated and tested.

3. Small Teams and Time-line: The requirements packages were implemented by
small teams in short projects lasting approximately three month. The duration
of the project determined the number of requirements selected for a require-
ment package. Each project included all phases of development, from pre-study
to testing. As emphasized in the figure, when planning the order in which the
projects were executed the prioritization as well as technical dependencies on
the architecture level had to be taken into consideration. Furthermore, the figure
shows that an interaction between requirements and architecture took place.

4. Use of Latest System Version: If a project was integrated with the last baseline
of the system, a new baseline was created (referred to as LSV). Therefore, only
one baseline existed at one point in time, helping to reduce the effort for product
maintenance. The LSV can also be considered as a container where the results
of the projects (including software and documentation) are put together. When
the results of the projects had been integrated a system test took place in the
LSV, referred to as LSV test. When in time a test should be conducted was
defined by testing cycles and for each testing cycle it was defined which projects
should drop within the next cycle. Comparing the work done on team level with
the work done in the LSV one can say that on the project level the goal was to
focus on the development of the requirements packages while the LSV focused

100

on the overall system where the results of the projects were integrated. With the
completion of the LSV the system was ready for release.

5. Decoupling Development from Customer Release: If every release would have
been pushed on the market, there would be too many releases in use by customers
needing support. In order to avoid this, not every LSV was to be released, but it
had to be of sufficient quality to be possible to release to customers. LSVs not
released to the customer were referred to as potential releases (see practice 5 in
Figure 4.1). The release project in itself was responsible for making the product
commercially available and to package it in the way that the system could be
released.

R1

R2

R3

R4

R5

➋ Anatomy Plan

➊ Prioritized
Requirement Stack

Time

SP1

SP2
SP3

SP4

➌ Small Project Time­Line

➍ LSV
LSV Test LSV Test LSV Test

➎ Potential Release

Figure 4.1: Development Process

The transition from the plan-driven to the incremental and agile approach was done
step-wise. The implementation of the incremental process formed the basis for ag-
ile software development. Therefore, it was essential to establish the practices small
teams, LSV, and product backlog together in the first step. This enabled the teams to

101

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

deliver continuously from a product backlog towards a baseline for testing (LSV). With
this basic process in place the second step could be implemented, i.e. the teams mov-
ing towards an agile way of working through continuous reflection and improvement,
and frequent face to face interactions through stand-up meetings. Furthermore, the in-
troduction of the last system version optional releases were enabled. In the future the
company plans to further extend the agile way of working by introducing additional
practices, such as test driven development, requirements formulated as user stories,
refactoring, low dependency architecture,

4.3.3 Comparison with General Process Models
The company’s process model was created based on practices applied in general in-
cremental and agile process models. To be able to generalize the results of this study,
the characteristics of the incremental and agile model used at the company (C) were
mapped to the existing models of incremental and iterative development (ID), Extreme
programming (XP), and Scrum (SC). That is, if the application of a specific practice
leads to problems in the model investigated in this case study, it might also cause prob-
lems in models applying the same principle. Table 4.1 (created based on the informa-
tion provided in [25]) shows that 4 out of 5 incremental principles are fulfilled which
means that lessons learned in this study are generalizable to ID. Furthermore, the model
used at Ericsson shares 5 out of 12 principles with XP and 6 out of 10 principles with
Scrum.

The company’s model realizes the principles shared with ID, XP and Scrum as
follows:

• Iterations and Increments: Each new LSV was an increment of the product.
Projects were conducted in an iterative manner where a set of the projects’ in-
crements was dropped to the LSV.

• Internal and External Releases: Software products delivered and tested in the
LSV could be potentially delivered to the market. Instead of delivering to the
market, they could also be used as an input to the next internally or externally
used increment.

• Time Boxing: Time boxing means that projects have a pre-defined duration with
a fixed deadline. In the company’s model the time box was set to approximately
three month. Furthermore, the LSV cycles determined when a project had to
finish and drop its components to the LSV.

• No Change to Started Projects: If a feature was selected and the implementation
realizing the feature has been started then it was completed.

102

Table 4.1: Comparison with General Process Models
Principle ID XP SC C

Iterations and Increments
√ √ √ √

Internal and External Releases
√ √

Time Boxing
√ √ √ √

No Change of Started Projects
√ √ √

Incremental Deliveries
√ √

On-site Customer
√ √

Frequent Face-to-Face Interaction
√ √ √

Self-organizing Teams
√ √

Empirical Process
√ √

Sustainable Discipline
√

Flexible Product Backlog
√ √ √

Fast decision making
√

Frequent Integration
√ √ √

Simplicity of design
√

Refactoring
√

Team Code Ownership
√

• Frequent Face-to-Face Interaction: Projects were realized in small teams sit-
ting together, the teams consisting of six or seven persons including the team
leader. Each team consisted of people fulfilling different roles. Furthermore, fre-
quent team meetings were conducted in the form of stand-up meetings as used
in Scrum.

• Product Backlog: A prioritized requirements list where the highest prioritized
requirements were taken from the top and implemented first was one of the core
principles of company’s model of development. The product backlog could be
continuously re-prioritized based on market-changes allowing for flexibility.

• Frequent Integration: Within each LSV cycle the results from different projects
were integrated and tested. As the cycles have fixed time frames frequent inte-
gration was assured.

Overall it was visible that the model shares nearly all principles with ID and real-
izes a large portion of XP and Scrum principles. Agile software development literature
points to why the principles used at Ericsson should increase the agility, i.e. the ability

103

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

of the company to respond to changing requirements. The main source of agility was
the prioritized requirements list, which was very similar to the flexible product backlog
in Scrum [36]. Hence, the development was flexible when the needs of the customers
change as the backlog was continuously re-prioritized. Furthermore, new features were
selected from the backlog continuously and are integrated frequently, which means that
one can deliver less functionality more frequently, which provides flexibility and the
opportunity for adaptive planning [36, 25, 23]. This is very much in line with agile
saying that the primary measure of progress is working software and that the software
should be useful [25]. In contrast, waterfall development would define the whole re-
quirements list upfront and integrate the implementation in the end and hence working
software would not be produced continuously [32]. Consequently requirements be-
come obsolete as they are only delivered together creating very long lead-times. The
need for change in the backlog was communicated through market units as the pro-
cess was market-driven without a specific customer, but a large number of potential
customers. Requirements engineers and system experts then discuss the change that is
needed. The primary method for prioritizing the requirements was to have a ranked list.
We acknowledge that not all agile practices of a specific model were fulfilled. How-
ever, due to the specific nature of the development at Ericsson (market-driven with
unknown customers and large-scale products) the practitioners made the decision to
select practices they considered to be most beneficial in their specific context.

4.4 Case Study Design

4.4.1 Study Context

It is of importance to describe the context in order to aid in the generalizability of the
study results (cf. [31]). Ericsson is one of the major telecommunication companies in
the world offering products and services in this domain including charging solutions
for mobile phones, multimedia solutions and network solutions. The company is ISO
9001:2000 certified. The development of the company is market-driven and character-
ized by a frequently changing market. Furthermore, the market demands highly cus-
tomized solutions (for example customizations for specific countries). Further details
regarding the context of the study are shown in Table 4.2.

4.4.2 Research Questions and Propositions

In this study, we aimed at answering the following research questions:

104

• RQ1 What issues in terms of bottlenecks, unnecessary work, and rework were
perceived before and after the migration from plan-driven to incremental and
agile development? The first research question is the basis for further improve-
ment of the process models.

• RQ2: How commonly perceived are the issues (bottlenecks, unnecessary work,
and rework) for the each of the development approaches and in comparison to
each other? The second research questions aims at capturing the effect of the
change from plan-driven to incremental/agile development by determining the
change in how commonly perceived the issues were in each of the approaches.

• RQ3: Does the quantitative performance data (requirements waste and data on
software quality) support or contradict the qualitative findings in RQ1 or RQ2?
Collecting these measures provides quantitative measures on the actual change
in process performance at the company, thus being able to serve as an additional
source of evidence as support for the qualitative analysis.

Based on the research questions, research propositions are formulated. Study
propositions point the researcher into a direction where to look for evidence in or-
der to answer the research questions of the case study [45]. A proposition is similar
to a hypotheses, stating what the expecting outcome of the study is. The following
propositions are made for this case study:

• Proposition 1 (related to RQ1): Different issues are mentioned by the intervie-
wees for the process models. Literature reports problems specific for plan-driven
and agile development (see Section 4.2). Thus, we assume to also find different
problems before and after the migration.

• Proposition 2 (related to RQ2 and RQ3): The qualitative and quantitative data
shows improvements when using agile and incremental practices. The agile and
incremental model used at the company was specifically designed to avoid prob-
lems that the organization was facing when using a plan-driven approach. For
example, too long durations in the requirements phase leading to a vast amount
of requirements changes prior to development. Therefore, we hypothesize that
1) the issues raised for the incremental/agile way of working are less commonly
perceived than those raised for the plan-driven approach, and 2) there is an im-
provement regarding performance measures with the new incremental and agile
approach.

In order to answer the research questions and evaluate the propositions, one of
Ericsson’s development sites was selected as a case. The case and units of analysis are
described in more detail in the following section.

105

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

Table 4.2: Context Elements
Context Ele-
ment

Description

Maturity All systems older than 5 years
Size Large-scale system with more than 5,000,000 LOC overall
Domain Telecommunication and multimedia solution
Market Highly dynamic and customized market
Process On the principle level incremental process with agile practices in de-

velopment teams
Certification ISO 9001:2000
Requirements
engineering

Market-driven process, i.e. requirements were collected by market
units from large customer base. Actual customers that will buy the
product are to a large extent unknown while developing. Require-
ments handed over to development unit and were available to devel-
opment and implementation in form of a prioritized backlog.

Requirements
documentation

Requirements written in natural language on two abstractions, high
level requirements referred to as quick studies and detailed require-
ments for development teams.

Requirements
tracking

Requirements proprietary tool for managing requirements on product
level (i.e. across projects). Requirements database can be searched
and requirements have been tagged with multiple attributes (e.g.
source, target release)

Practices Iterations and increments, internal and external releases, time box-
ing, no change of started projects, frequent face to face interaction,
product backlog, frequent integration (see Table 4.1)

Agile maturity Stepwise implementation of agile started in 2005.
Testing prac-
tices and tools

Unit and component test (Tools: Purify, JUnit), Application and inte-
gration test verifying if components work together (JUnit, TTCN3),
LSV test verifying load and stability, load balancing, stability and
upgradability, compatibility, and security (TTCN3). Unit tests were
conducted by the persons writing the code to be unit tested, while the
LSV test is done by testing experts.

Defect tracking Company-proprietary tool capturing where defects were found and
should have been found, status in defect analysis process, etc.

Team-size Six to seven team members.
Size of devel-
opment unit

Approx. 500 people in research and development.

Distribution Systems investigated were developed locally.

4.4.3 Case Selection and Units of Analysis
The case selection allows to gain insights into issues related to process performance
in the situation where a large scale system is developed within a frequently changing

106

environment. This can be used as input to identify issues that need to be addressed in
large scale development to develop a flexible process, as flexibility and short time to
market are essential requirements posed on the process in our study context.

As the process models presented earlier were used company-wide, the processes
investigated can be considered as representative for the whole development site as well
as company-wide. Within the studied system, three different subsystem components
were studied which represent the units of analysis (subsystem 1 to 3). A subsystem was
a large system component of the overall system. Table 4.3 provides information of the
system complexity in lines of code (LOC) and number of persons involved. The LOC
measure only included code produced at the company (i.e., third-party frameworks and
libraries are excluded). Furthermore, as a comparison to the Ericsson systems, the size
measure in LOC for the open source product Apache web server (largest web server
available) is shown as well, the LOC being counted in the same way.

Table 4.3: Units of Analysis
Language Size (LOC) No. Persons

Overall System >5,000,000 -
Subsystem 1 C++ 300,000 43
Subsystem 2 C++ 850,000 53
Subsystem 3 Java 24,000 17
Apache C++ 220,000 90

The figures show that the systems were quite large, all together more than 20 times
larger than the Apache web server. To study the processes of the subsystems, a number
of people were interviewed and the measures for each subsystem were collected. The
distribution of interviewees and the data collection procedures are explained in the
following.

4.4.4 Data Collection Procedures

The data was collected from different sources, following the approach of triangulation.
The first source driving the qualitative analysis was a set of interviews. The second
source was process documentation and presentations on the progress of introducing
incremental and agile practices. The third source were performance measures collected
by the company. This section explains the data collection procedures for each source
in detail.

107

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

Selection of Interviewees

The interviewees were selected so that the overall development life cycle were cov-
ered, from requirements to testing and product packaging. Furthermore, each role in
the development process should be represented by at least two persons if possible.
That is, these persons fill out the role as their primary responsibility. Only intervie-
wees with process experience were selected. Prior to the main part of the interview the
interviewees were asked regarding their experience. We asked for the duration the in-
terviewees have been working at the company, and the experience with the old process
model (plan-driven) and the new process model (incremental and agile). The experi-
ence was captured by asking for activities that support good knowledge with regard to
the process model, such as study of documentation, discussion with colleagues, semi-
nar and workshops, and the actual use in one or more projects. The average duration of
the interviewees working at the studied company was 9.4 years. Only two persons in-
terviewed worked less than two years at the company. Ten persons had at least 10 years
of experience working at the company. This indicates that the interviewees had very
good knowledge of the domain and the company’s processes. They were very familiar
with the old process model with regard to all learning activities mentioned before. With
regard to the new process model trainings have been given to the all interviewees. In
addition, the new process model was widely discussed in the corridors which supported
the spread of knowledge about it. Eighteen of the interviewees already completed at
least one project with the new development approach, for the remaining interviewees
projects using the new approach were currently ongoing, i.e. they were in a transition
phase. Overall, the result of the experience questionnaire showed good knowledge and
awareness of the processes, which was also visible in their answers.

The selection process of interviewees was done using the following steps:

1. A complete list of people available for each subsystem was provided by manage-
ment, not including newly employed personal not familiar with the processes.

2. At least two persons from each role were randomly selected from the list. The
more persons were available for one role the more persons were selected.

3. The selected interviewees received an e-mail explaining why they had been se-
lected for the study. Furthermore, the mail contained information of the purpose
of the study and an invitation for the interview. Overall, 44 persons had been
contacted of which 33 accepted the invitation.

The distribution of people between different primary responsibilities and the three
subsystems (S1-S3) is shown in Table 4.4. The roles are divided into What, When,
How, Quality Assurance, and Life Cycle Management.

108

Table 4.4: Distribution of Interviewees Between Roles and Units of Analysis
S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

• What: This group is concerned with the decision of what to develop and includes
people from strategic product management, technical managers and system man-
agers. Their responsibility is to document high-level requirements and detailing
them for design and development. Roles involved in this group are product man-
agers and system managers specifying detailed requirements.

• When: People in this group plan the time-line of software development from both
technical and project management perspectives. This includes system managers
being aware of the anatomy plan, as well as line and project managers who have
to commit resources.

• How: Here, the architecture is defined and the actual implementation of the
system takes place. Developers writing code also unit test their code.

• Quality Assurance: Quality assurance is responsible for testing the software and
reviewing documentation. This group primarily contains expert testers having
responsibility for the LSV.

• Life Cycle Management: This includes all activities supporting the overall devel-
opment process, like configuration management, maintenance and support, and
packaging and making the product available on the market.

Interview Design

The design of the interview consisted of five parts, the duration of the interviews was
one hour. In the first part of the interview, an introduction of the study’s goals was
provided. Furthermore, the interviewees were informed why they had been selected
for the interview. It was also made clear that they were selected randomly from a list

109

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

of people, and that everything they say would be treated confidentially. In the second
part, the interviewees were asked for their experience and background regarding work
at the company in general, and experience with the plan-driven and incremental/agile
development approaches in particular. Therefore, the interviewees filled in a ques-
tionnaire rating their experience with the two process models. Thereafter, the actual
issues were collected through a semi-structured interview, asking for issues that could
be characterized as bottlenecks, avoidable rework and unnecessary work (for descrip-
tions see Table 4.5). Asking for those areas stimulated the discussion by helping the
interviewee to look at issues from different perspectives and thus allowing to collect
many relevant issues. We asked for issues regarding the plan-driven approach and the
incremental/agile approach.

Table 4.5: Questions for Issue Elicitation
Area Description

Bottlenecks Bottlenecks are single components hindering
the performance of the overall development
process. A cause for a bottleneck is the low
capacity offered by the component [1].

Unnecessary
Work

We understand unnecessary work as activi-
ties that do not contribute to the creation of
customer value. In lean development, this is
referred to as producing waste ([1] [33]).

Avoidable
Rework

Rework can be avoided when doing things
completely, consistently and correctly [14].
For example, having the right test strategy
to discover faults as early as possible ([12]
[11]).

The interviewees should always state the cause of the issue and where the symp-
toms of the issue became visible in the process. During the course of the interview,
follow-up questions were asked when interesting issues surfaces during the course of
the interview. All interviews were recorded and transcribed. The interview protocol
can be found in Appendix A.

110

Process Documentation

The company provided process documentation to their employees, as well as presen-
tations on the process for training purposes. This documentation was used to facilitate
a good understanding of the process in the organization (see Section 4.3). Further-
more, presentations given at meetings were collected which showed the progress and
first results of the introduction of incremental and agile practices from the management
perspective. In addition to that, the documentation provided information of problems
with plan-driven development, which led the company to the decision of making the
transition to incremental and agile development. Overall the documentation served
two main purposes: (1) Help the interviewer to gain an initial understanding of how
the processes work prior to the interview. In addition, the interviewer needed to become
familiar with the terminology used at the company, which was also well supported by
documentation; (2) To extract context information relevant for this study.

Performance Measures

The company collected a number of performance measures on their development pro-
cesses and projects. The performance measures were identified at the company to
provide an indication of performance changes after moving to incremental and agile
development. The measurements were selected based on availability and usefulness
for this study.

• Requirements waste and change requests: Requirements waste means that re-
quirements are elicited, documented and verified, but they are not implemented.
The analysis focused on the ratio of implemented requirements in comparison
to wasted requirements. Furthermore, the change requests per requirement were
analyzed. Requirements waste and change requests indicate whether the com-
pany increases its ability to develop requirements in a timely manner after the
customer need was raised. If there are fewer change requests and less discarded
requirements then this is an indicator for that the current market needs are ful-
filled in a better way. The information for waste and change requests was at-
tributed to the plan-driven and incremental development model through releases,
i.e. it was known which releases used the purely plan-driven process, and which
releases used the new incremental process with additional agile practices.

• Quality Data: The change in software quality was analyzed through fault-slip
through and maintenance effort. Fault-slip-through [12] shows how many faults
were identified in the LSV which should have been found earlier. In order to be
able to measure the fault-slip-through a testing strategy has to be developed. The

111

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

strategy needs to document which type of fault should be detected in a specific
phase (e.g. performance related issues should be detected in system test, buffer
overflows should be detected in unit testing and static code analysis, etc.) and
when they were actually detected. That way one can determine how many faults
should have been detected before a specific quality assurance phase. In this case
study the quality of basic test and function test conducted before integration and
system test was measured. For example, a fault-slip of x% in the system testing
phase means that x% of all faults discovered in this phase should have been
found in earlier phases (e.g. function testing). The data source for the fault-slip
through measurements was the defect tracking system employed at the company,
which was introduced in Table 4.2. The maintenance effort was a an indicator
of the overall quality of the product released on the market. Quality data was
considered as quality is an important aspect of the market Ericsson operates in.
For telecommunication operators performance and availability are particularly
important quality characteristics.

4.4.5 Data Analysis
The data analysis was done in six different steps, as shown in Figure 4.2. The first
four activities led to a set of issues related to process performance in both development
approaches. The first author transcribed all interviews resulting in more than 30 hours
of interview data. Thereafter, the author conducted the first four steps over a three
month period based on the transcriptions.

1. Clustering of Raw Data: The statements from each interviewee were mapped
to process phases, the role of the interviewee, and the process model they refer
to (i.e. either plan-driven or incremental/agile development). The information
was maintained using a matrix. For each statement the identity-number of the
interviewee was documented as well to assure traceability.

2. Derivation of Issues from Raw Data: As the raw data contained detailed ex-
planations using company specific terminology the data was summarized and
reformulated by deriving issues from the clustered data. Each issue was shortly
described in one or two sentences. The result was a quite high number of issues
in each group, as the issues were on different abstraction levels.

3. Mapping of Issues: The issues were grouped based on their relation to each
other, and their abstraction level. For example, issues that negatively affect the
coverage of the system by test cases were grouped within one branch called “low
test coverage”. The grouping was documented in the form of a mind map. Issues

112

with higher abstraction level were closer to the center of the mind map than
issues with lower abstraction level.

4. Issue Summary and Comparison: The issues on the highest abstraction level
were summarized in the form of short statements and used for further analysis
(as presented in the Sections 4.5 and 4.6).

An example of the analysis steps is illustrated in Appendix B.

Clustering of
Raw Data

Derivation of
Factors from

Raw Data

Mapping of
Factors

(Mindmap
Factors)

Factor
Summary

and
Comparison

Steps to
Identify
Factors

Review of
Factors in

Workshops

Factor
Validation

Identify
Support for

Factors

Determine
Factor

Importance

Figure 4.2: Data Analysis Process for Qualitative Data

Furthermore, the last two activities were concerned with validating the list of issues
and determining the importance of the issues within the organization.

5. Validation of Issues: The fifth step was the validation of the derived issues. The
authors and three representatives from the company participated in a workshop to
review the issues. All representatives from the company had an in-depth knowl-
edge of both process models. The validation was done by randomly selecting
issues and each of the representatives of the company reviewed the steps of issue
derivation outlined before. There was no disagreement on the interpretation of
the raw data and the issues derived. Furthermore, all participants of the workshop
reviewed the final list of issues, only having small improvement suggestions on
how to formulate the issues. That is, the list of issues could be considered of
high quality.

113

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

6. Weight of Issues: The sixth step aimed at identifying the most commonly per-
ceived issues with regard to the approaches (plan-driven and incremental/ agile).
As we asked the interviewees to state three bottlenecks/ unnecessary works/ re-
works for each of the models we were able to determine which issues mentioned
were most commonly perceived. For example, if an interviewee an issue as crit-
ical for plan-driven, but not for incremental and agile, this is an indication for an
improvement of the issue. We explicitly asked the interviewees for the situation
before and after the migration, and used follow-up questions whenever it was
unclear whether an issue was only considered important for one of the process
models. In order to determine which issues were the most common, the data was
first divided into global and local issues. The division in global and local issues
was defined as follows:

• Global Issues: Global issues were stated by interviewees representing more
than one role and representing more than one subsystem component (i.e.,
they were spread across the units of analysis).

• Local Issues: Local issues were stated by one or several interviewees rep-
resenting one role or one subsystem component.

To systematize the global issues, four different subgroups were defined. The
main objective of the grouping was to structure the responses based on the num-
ber of interviewees mentioning each issue. It was hence a way of assigning some
weight to each issue based on the responses. The following four subgroups were
defined:

• General Issues: More than 1/3 of the interviewees mentioned the issue.

• Very Common Issues: More than 1/5 of the interviewees mentioned the
issue.

• Common Issues: More than 1/10 of the interviewees mentioned the issue.

• Other Issues: Less than 1/10 of the interviewees mentioned the issue, but
it was still mentioned by more than one person representing different roles
or different subsystem components.

In addition to that, the interviewees explicitly talked about inferences with regard
to improvements that they have recognized after moving to incremental and ag-
ile development. The improvements were grouped into commonly perceived and
observation. One should observe that the threshold for commonly perceived im-
provements was much lower compared to the above thresholds, and fewer groups

114

were formulated. This was due to that we did not explicitly ask for the improve-
ments as the interviews focused on issues determining how the commonality of
issues changed after migration. However, in several cases the interviewee also
talked about the actual differences between the situation before and after the mi-
gration and hence the improvements perceived when moving from a plan-driven
approach to incremental and agile development. Thus, the improvements per-
ceived were only divided into two groups:

• Commonly perceived: More than 1/10 of the interviewees representing
more than one subsystem component mentioned the issue.

• Observation: Less than 1/10 of the interviewees mentioned the issue.

It should be observed that local issues also could be of high importance. However,
they may be perceived as local since the issue is not visible outside a certain phase,
although major problems inside a phase were communicated to others. Thus, it is
believed that the main issues influencing process performance are captured in the global
issues.

4.4.6 Threats to Validity
Research based on empirical studies does have threats, and hence so does the case study
in this paper. However, the success of an empirical study is to a large extent based on
early identification of threats and hence allowing for actions to be taken to mitigate
or at least minimize the threats to the findings. Threats to case studies can be found
in for example [45], and threats in a software engineering context is discussed in for
example [44]. The threats to validity can be divided into four types: construct valid-
ity, internal validity, external validity and reliability (or conclusion validity). Construct
validity is concerned with obtaining the right measures for the concept being studies.
Internal validity is primarily for explanatory and causal studies, where the objective is
to establish a causal relationship. External validity is about generalizability to deter-
mine to which context the findings in a study can be generalized. Finally, reliability is
concerned with repetition or replication, and in particular that the same result would be
found if re-doing the study in the same setting.

Construct Validity

The following threats were identified and the corresponding actions were taken:

• Selection of people: The results are highly dependent on the people being inter-
viewed. To obtain the best possible sample, the selection of people was done by

115

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

people having worked at Ericsson for a long time and hence knowing people in
the organization very well.

• Reactive bias: There is a risk that the presence of a researcher influences the
outcome. This is not perceived as a large risk given a long term collaboration
between the company and the university. Furthermore, the main author is also
employed at Ericsson and not viewed as an external researcher. However, as the
new model was strongly supported by management the interviews are likely to
be biased towards the new model to reflect the political drift. In order to reduce
this threat, the interviewees were informed that they had been randomly selected.
Furthermore, anonymity of the individuals’ responses was guaranteed.

• Correct data interview: The questions of the interviewer may be misunderstood
or the data may be misinterpreted. To avoid this threat, several actions have
been taken. First of all, pre-tests were conducted regarding the interviews to
ensure a correct interpretation of the questions. Furthermore, all interviews were
taped allowing the researcher to listen to the interview again if some parts were
misunderstood or unclear.

• Correct data measurements: The data sources for requirements waste, faults,
and maintenance effort were summarized by the company and the process of
data collection and the data sources were not made available to the researchers.
In consequence, there is a validity threat regarding potential problems of the rigor
of the data collection. In addition, the interpretation of the data is limited due
to the high abstraction of the measurements. Hence, the data can only be used
as an additional data source for triangulation purposes in order to support the
(main) qualitative findings, but not to make inferences such as to which quan-
tified improvement is possible due to the introduction of incremental and agile
practices.

Internal Validity

• Confounding factors influencing measurements: There is a risk that changes in
the performance measurements reported are not solely due to the employment of
incremental and agile practices, but also due to confounding factors. As the stud-
ied company is a complex organization we were not able to rule out confounding
factors as an influence on the measurement outcome. In addition one person
involved in reporting the measurements were asked about possible confound-
ing factors, such as major difference in the products, or a change in personnel.
The response was that the products compared had similar complexity and that

116

the products were developed by the same work-force. The person believed that
changes in the measurements can, at least partly, be attributed to the migration.
However, it is important to point out that the main outcome of the study is the
qualitative data from the interviews and that the quantitative data was consulted
as an additional data-source to identify whether the quantitative data contradicts
the qualitative data, which was not the case.

• Ability to make inferences about improvements (qualitative data): Another threat
to internal validity is that the instrument and analysis did not capture the change
due to the migration to incremental and agile development. However, this threat
was reduced by explicitly asking for the situation before and after the migration.
In addition, the interviewer asked follow-up questions whenever it was unclear
whether an issue was only considered important for one of the process models by
the interviewee, or whether the issue was equally relevant to both development
approaches. Hence, this threat to validity is considered being under control.

External Validity

• Process models: It is impossible to collect data for a general process, i.e., as
described in the literature. Both the plan-driven and the incremental and agile
model were adaptations of general processes presented in the literature. This is
obvious when it comes to the incremental and agile process, but it is the same
for the plan-driven model. It is after all a specific instantiation of the generally
described plan-driven model. The incremental and agile model is a little more
complicated in the mapping to the general process models since it was inspired
by two different approaches: incremental development and agile development.
To ensure that the findings are not only relevant for these instantiations, care has
been taken to carefully describe the context of the study. Furthermore, Table 4.1
illustrates which practices from the general process models have been employed
at the company. As the instantiated model and the general process models share
practices lessens learned in this study are of relevance for the general process
models as well.

• A specific company: A potential threat is of course that the actual case study
has been conducted within one company. It has been impossible to conduct a
similar study at another company. This type of in-depth study requires a lot of
effort and that the research is embedded into the organization, which has made
it impossible to approach more than one company. To minimize the influence of
the study being conducted at one company, the objective is to map the findings
from the company specific processes and issues to general processes and higher

117

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

level issues. This allows others to learn from the findings and to understand how
the results map to another specific context.

Reliability

• Interpretation of data: There is always a risk that the outcome of the study is
affected by the interpretation of the researcher. To mitigate this threat, the study
has been designed so that data is collected from different sources, i.e., to con-
duct triangulation to ensure the correctness of the findings. Another risk is that
the interpretation of the data is not traceable and very much depended on the re-
searcher conducting the analysis. To reduce the risk a workshop was conducted
with both authors of the paper and three company representatives being present
(see fifth step in the analysis process presented in Section 4.4.5). In the work-
shop the steps of the researcher were repeated on a number of issues in order to
identify potential problems in the analysis steps and interpretations. The practi-
tioners as well as the authors of the paper agreed on the interpretation of the raw
data. Hence, the threat to the interpretation of data is considered under control.

Summary

In summary, the case study has been designed according to guidelines and tactics pro-
vided in [45]. Measures have been taken whenever possible to mitigate the risks identi-
fied in the design. The objective has been to always work in two dimensions: situation
specific and general models. The former will in particular be used when continuing
the improvement work at the company, where the findings will drive the further im-
provement work. This is very much the industry view. The latter represents more of an
academic view where the intention has been to understand the issues inhibiting process
performance in different process models.

4.5 Qualitative Data Analysis
Section 4.4 explains the classification of issues into general and local. In total 64 issues
were identified of which 24 were of general nature and the remaining 40 were local
problems relating to experiences of individuals or specific subsystems. We focused the
detailed qualitative analysis on issues that received high weights in terms of number of
responses for each issue. That gave 13 issues for the detailed analysis of which 2 were
considered general, 3 were considered very common and 8 were considered common.
An overview of the issues is provided in Table 4.6.

118

Commonly perceived improvements are shown in Table 4.7. The table shows the
ID, commonality, process model (either plan-driven=PD or incremental/agile=IA), and
a description of the issue. The improvements explain why specific issues were not that
important in agile and incremental development anymore. The general issue F01, for
example, was mitigated by improvements in requirements engineering (e.g., I02 and
I03). A number of improvements on verification were also identified (I04 and I05),
which reduced the effect of issue F03 and F04. That is, incremental and agile develop-
ment enabled early testing and regular feedback to developers. Furthermore, improve-
ment I06 positively influenced the number of documentation which was raised as an
important issue (F06). Overall, the tables indicate that the mentioned improvements
were in-line with the classification of issues related to process performance. In the
following subsections a detailed description of issues and improvements is provided.

4.5.1 General Issues
The most general issues were related to plan-driven development, one being related to
the requirements phase and one to the testing phase.

F01: Requirements change and rework: All requirements had to be ready before
the next phase starts. That means, when developing a highly complex system the re-
quirements gathering, specification and validation took a very long time. Furthermore,
it was hard to estimate the resources needed for a complex system resulting in a too
big scope. As interviewees pointed out “the problem is that the capacity of the project
is only that and that means that we need to get all the requirements, discuss them, take
them down, look at them and then fit the people and the time frame that we will usually
be given. And this negotiation time that was the part that took so long time. It was
always and often frustrating.” Another interviewee added that “there is always a lot
of meetings and discussions and goes back and forth and nobody is putting the foot
down.” The long lead times of requirements engineering have negative consequences.
The market tended to change significantly in the considered domain. In consequence,
a high amount of requirements gathered became obsolete or changed drastically which
led to wasted effort as the discarded requirements had been negotiated and validated
before or requirements had to be reworked. Requirements changes were caused by
a lack of customer communication (i.e., the customer was far away from the point of
view of the developers or system managers). In addition, misunderstandings were more
likely to happen, which result in changed requirements. Regarding the reasons for in-
flexibility one interviewee added that “in the old model because its very strict to these
tollgates (quality doors) and so on and the requirement handling can be very complex
because the process almost requires to have all the requirements clearly defined in the
beginning and you should not change them during the way, its not very flexible.”

119

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

Table 4.6: Classification of Identified Issues
ID Classification ModelProcess

Area
Description

F01 General PD Requirements Requirements work was wasted as docu-
mented and validated requirements had to
be discarded or reworked.

F02 General PD Verification Reduction of test coverage due to limited
testing time in the end.

F03 Very Com-
mon

PD Verification Amount of faults found increased with late
testing.

F04 Very Com-
mon

PD Verification Faults found late in the process were hard
and expensive to fix.

F05 Very Com-
mon

IA Verification LSV cycle times may extend lead-time for
package deliveries as if a package was not
ready or rejected by testing it had to wait
for the next cycle.

F06 Common PD Requirements Too much documentation was produced in
requirements engineering that was not used
in later stages of the process.

F07 Common PD Design Design had free capacity due to long re-
quirements engineering lead times.

F08 Common PD Design Confusion on who implemented which
version of the requirements.

F09 Common PD Maintenance High number of corrections for faults re-
ported by customers were released.

F10 Common PD Project
Mgt.

Specialized competence focus and lack of
confidence.

F11 Common IA Verification Low test coverage.
F12 Common IA Release Release was involved too late in the devel-

opment process.
F13 Common IA Project

Mgt.
Management overhead due to a high num-
ber of teams requiring much coordination
and communication.

F02: Reduction of test coverage due to limited testing time in the end: Test cover-
age in the plan-driven approach was low for multiple reasons. Testing was done late
in the project and thus if there were delays before in development testing had to be

120

compromised as it was one of the last steps in development. As one interviewee put
it testing “takes a long time to get the requirements specification, all the pre-phases,
analysis and so on takes a lot of time, design starts too late and also takes a lot of time,
and then there is no time for testing in the end”. Furthermore, too much had to be
tested at once after the overall system had been implemented. Due to the complexity of
the overall system to verify in the end, testers focused on the same parts of the system
twice due to coordination problems instead of covering different parts of the system.

Table 4.7: Commonly Perceived Improvements
ID Process Area Description

I01 Requirements More stable requirements led to less rework.
I02 Requirements Everything that was started was implemented.
I03 Requirements Estimations were more precise.
I04 Verification Early fault detection and feedback from test.
I05 Verification The lead-time for testing was reduced.
I06 Project Mgt. Moving people together reduced the amount of documen-

tation that was not reused due to direct communication.

4.5.2 Very Common Issues
Two important issues were identified in the plan-driven development (F03, F04):

F03: Amount of faults found increases with late testing: With late testing one does
not know the quality of the system until shortly before release. As testing was not
done continuously faults made in the beginning of the implementation were still in
the software product. Another issue that increased the number of faults was limited
communication between implementation and test. That is, testing started verifying
unfinished components of the system which led to a high number of false positives as
they did not know the status of the components.

F04: Faults found late in the process were hard and expensive to fix: Late testing
resulted in faults hard to fix, which was especially true for faults rooted in the archi-
tecture of the system. Changes to the architecture had a major impact on the overall
system and required considerable effort. One interviewee reported from experience
that “the risk when you start late is that you find serious problems late in the project
phases, and that have occurred a couple of times always causing a lot of problems.
Usually the problems I find are not the problems you fix in an afternoon, because they
can be deep architectural problems, overall capacity problems and stuff like that which

121

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

is sometimes very hard to fix. So I have always lobbied for having time for a pre-test
even if not all the functionality is there.”

Issue F05 is related to testing in incremental and agile development:
F05: LSV cycle times may extend lead-time for package deliveries as if a package is

not ready or rejected by testing it had to wait for the next cycle. The lead-time of testing
was not optimized yet which extended the overall lead time of the development process.
An LSV was separated in cycles. Within one cycle (time-window with a fixed end-date)
the projects needed to drop their completed component to the LSV. The LSV cycles (4
weeks) did not match with the target dates of the availability of the product on the
market. That is, coordination between selling the product and developing the product
was complicated. The LSV concept also required a component to wait for another
complete LSV cycle if not delivered within the cycle it was supposed to be delivered.
Furthermore, if a package was rejected from the LSV due to quality problems and
could not be fixed and retested in time, it also had to wait for the next cycle.

4.5.3 Common Issues

The following important issues are related to plan-driven development:
F06: Documentation produced was not used: The interviewees emphasized that

quite a high number of documentation was produced in the requirements phase, one
interviewee added that “it (documentation) takes much effort because it is not only
that documents should be written, it should be reviewed, then there should be a review
protocol and a second round around the table.” One of the reasons mentioned was
bad reuse of documentation, which was pointed out by another interviewee saying that
“even though documentation might be good for the quality it might not be good overall
because much of the documentation will not be reused or used at all.” Hence, the
review of requirements documents required a too high amount of documentation and
complex checklists.

F07: Design had free capacity due to long requirements engineering lead times:
The requirements lead-time in plan-driven development were quite long. The reasons
being that requirements had to be specified in too much detail, decision making took a
long time, or requirements resources were tied up because of a too big scope. This had
a negative impact on the utilization of personnel. One interviewee nicely summarized
the issue saying that “the whole waterfall principle is not suited for such large projects
with so many people involved because half the workforce ends up working for the rest,
and I guess thats why the projects were so long. Because you start off with months of
requirements handling and during that time you have a number of developers more or
less doing nothing.”

122

F08: Confusion on who implements which version of the requirements: From a
design perspective, it was not always clear which version of the requirements should
be implemented and by whom. The cause of this problem was that work often started
on unfinished or unapproved requirements which had not been properly base-lined.

F09: High number of corrections for faults reported by customers were released:
Support was required to release a high number of corrections on already released soft-
ware. This was due to the overall length of the plan-driven projects resulting in very
long release cycles. In consequence, the customers could not wait for the corrections
to be fixed for the next release, making corrections a time-pressing issue.

F10: Specialized competence focus and lack of confidence: The competence focus
of people in plan-driven development was narrowed, but specialized. This was due to
that people were clearly separated in their phases and disciplines, and that knowledge
was not well spread among them. Interesting was that not only the specific competence
focus was recognized as an issue, but also the focus on confidence. One interviewee
described the relevance of confidence by saying “It is not only competence, it is also
confidence. Because you can be very competent, but you are not confident you will not
put your finger down and say this is the way we are going to do it, you might say it
could be done in this way, or in this way, or also in these two ways. This will not create
a productive way of working. Competence is one thing, confidence is the other one
required.”

Important issues in incremental and agile development are:
F11: Low test coverage: The reasons for low test coverage changed in incremen-

tal/agile development and were mainly related to the LSV concept. Quality testing
takes too much time on the LSV level, the reason being that there was a lack of pow-
erful hardware available to developers to do quality testing earlier. In consequence,
there was a higher risk of finding faults late. Furthermore, the interviewees had wor-
ries on the length of the projects as it would be hard to squeeze everything into a three
month project (including developing configurations and business logic, testing etc.). In
addition to that test coverage was influenced negatively by a lack of independent ver-
ification and validation. That is, developers and testers in one team were influencing
each other what to test. In consequence, the testing scope was reduced.

F12: Release personnel was involved too late in the development process: This
means that release personnel got the information required for packaging the product af-
ter requirements, implementation and testing were finished. In consequence, the scope
of the product was not known to release and came as a surprise. With regard to this
observation one interviewee stated that “In release we are supposed to combine every-
thing and send it to the market, we were never involved in the beginning. We can have
problems with delivering everything that we could have foreseen if we were involved
early.” Furthermore, the requirements were not written from a sales perspective, but

123

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

mainly from a technical perspective. This made it harder for release to create a product
that is appealing to the customer. During the interviews it was explicitly mentioned
that this situation has not changed with the introduction of an incremental and agile
development approach.

F13: Management overhead due to a high number of teams requiring much coor-
dination and communication: Many small projects working toward the same goal re-
quired much coordination and management effort. This included planning of the tech-
nical structure and matching it against a time-line for project planning. Thus, project
managers had much more responsibility in incremental and agile development. Fur-
thermore, there was one more level of management (more team leaders) required for
the coordination of the small teams. The interviewees also had worries that the added
level of management had problems to agree on overall product behavior (hardware,
application, performance, overall capacity) which delayed decision making. Thus, de-
cisions were not taken when they were needed.

4.5.4 Comparison of Issues
Table 4.6 clearly shows that a majority of general problems was related to plan-driven
development. Furthermore, only one issue raised for the incremental and agile model
was considered very common (none was general), while four issues for the plan-driven
approach were considered general or very common. It is hence clear that the change to
an incremental and more agile development model was perceived as having addressed
some of the main issues raised for the plan-driven approach. Having said this, it does
not mean that the new development approach is unproblematic. However, the problems
are at least not perceived as commonly as for plan-driven development. Furthermore,
the problem related to test coverage was still perceived as present, but the severity and
nature of the issue has changed for the better. Additional detail on improvements and
open issues based on the comparison is provided in Section 4.7.

4.5.5 Commonly Perceived Improvements
The following improvements due to the introduction of incremental and agile develop-
ment practices were mentioned by the interviewees:

I01: More stable requirements led to less rework and changes: Requirements were
more stable as requirements coming into the project could be designed fast due to that
they were implemented in small coherent packages and projects. That is, the time win-
dow was much smaller and the requirements were thus not subjected to change to the
same degree. Furthermore, the flexibility was higher in terms of how to specify the
requirements. For example, requirements with very low priorities did not need to be

124

specified in detail. If requirements are just seen as the whole scope of the system, this
distinction is not made (as is the case in plan-driven development). Also, the communi-
cation and interaction between design and requirements improved, allowing clarifying
things and thus implementing them correctly. This communication was improved, but
not to the degree as the communication between design and implementation had been
improved (see issues for test/ design). One interviewee summarized the increased flexi-
bility by saying that “within the new ways of working its easier to steer around changes
and problems if you notice something is wrong, its much easier to change the scope and
if you have change requests on a requirement, I think its more easy.”

I02: Everything that is started is implemented: If a requirement was prioritized
it was implemented, the time of implementation depending on the position of the re-
quirement in the priority list. As one interviewee (requirements engineer) reported,
before a large part of all requirements engineering work was waste, while now only
approximately 10 % of the work is wasted. In partuclar, the new situation allows to
complete tasks continuously with not being so dependend on others to be ready, which
was explained by one interviewee saying that “when you talk about the waterfall you
always end up in a situation where everybody had to be ready before you continue with
next task, but with the new method what we see is that one activity is done, they can
pick the next to do, they are not supposed to do anything else.”

I03: Estimations are more precise: The effort can be estimated in a better way as
there were less requirements coming into the project, and the requirements were more
specific. Furthermore, the incremental and agile model contributed to more realistic
estimations. With the plan-driven approach the deadlines and effort estimates were
unrealistic when being compared to the requirements scope. When only estimating
a part of the prioritized list (highest priority requirements first), then the estimations
became much more realistic.

I04: Early fault detection and feedback from test: Problems could be traced and
identified much easier as one component was rejected back to the project if a problem
occurs. The ability to reject an increment back to a development team has advantages as
pointed out by an interviewee stating the following: “I know that it will be tougher for
the design units to deliver the software to testing in incremental and agile development
than it was in waterfall because if they (design and implementation) don’t have the
proper quality it (the increment) will be rejected back to the design organization. This is
good as it will put more pressure on the design organization. It will be more visible, you
can always say it does not work, we can not take that. It will be more visible to people
outside (management).” Besides that, there was better focus on parts of the system
and feedback was provided much earlier. Furthermore, the understanding of testing
priorities was improved due to the explicit prioritization of features in requirements
engineering. These benefits were summarized by an interviewee who pointed out that

125

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

“testing is done on smaller areas, providing better focus. Everything will improve
because of the improved focus on feature level and the improved focus of being able to
come through an LSV cycle. We will catch the need for rework earlier. The feedback
loop will be shorter.” With that the interviewee already points to the improvement in
lead-time (I05).

I05: The lead-time for testing is reduced: Time of testers was used more efficiently
as in small teams, it was easier to oversee who does what. That is, different people
in a team did not do the same things twice anymore. Furthermore, parallelization was
possible as designers were located close to testers who could do instant testing when
some part of the subsystem had been finished.

I06: Moving people together reduced the amount of documentation: People worked
in cross-functional and small teams. As the teams were cross-functional less documen-
tation was required as it was replaced with direct communication. That is, no handover
items were required anymore as input from previous phases because people were more
involved in several phases now. The perceived improvement with regard to communi-
cation was pointed out by one interviewee saying that “now we are working in small
teams with 6 people, something like that. It is pretty much easier to communicate, we
have these daily meetings. Each one knows what the other one days just this day. The
next day we have a follow up meeting, this was done yesterday and I will proceed it
today. Might take a while to have those meetings because you have it each day, but it
is 15 minutes that is still very useful.”. Another interviewee talked about walls being
broken down between the design/implementation and testing organization saying ”We
have a better way of working between test and design and they are working side by
side so to say. We could do it even better and we work side by side and take small
steps. We look at what we test, we look at what part we could start function test on
and then we implement it. This wall is totally broken now between our test and design
organization.”

4.6 Quantitative Data Analysis
An overview of the quantitative data is used to confirm or contradict the findings of the
qualitative analysis. This section just presents the data, its implications together with
the qualitative results are discussed in Section 4.7.

4.6.1 Requirements Waste
Requirements are considered waste if they have been elicited, documented and re-
viewed, but are not implemented. The absolute number and ratio of the number of

126

requirements that were implemented and discarded are shown in Figure 4.3. The data
includes two products as well as two generations of an additional product developed at
the studied development site.

WF (Waste %) Streamline (Waste %)

26 5

25 3 Waterfall Streamline

33 3 Spec Impl Spec Impl

CHARGING 2205 1632 1530 1461

MULTIM 300 224 157 153

Waterfall Incremental / Agile

Waste 28 3,666666667 SUM 2505 1856 1687 1614

Implemented 72 96,33333333 WASTE 649 73

100 100

Implemented 1856 Implemented 1614

Waste 649 Waste 73

1856; 74%

649; 26%

1614; 96%

73; 4%

Implemented

Waste

Figure 4.3: Requirements Waste - Plan-Driven (left) vs. Incremental and Agile (right)

Furthermore, the number of change requests per requirement decreased for the
same products. Change requests require adjustments and extensions to the require-
ments. After introducing incremental and agile practices, the number of change re-
quests per requirement decreased from 0.076 to 0.043. Thus, the requirements became
more stable.

4.6.2 Software Quality

Table 4.8 shows the fault-slip-through before and after the introduction of agile and
incremental development. The system testing phase of plan-driven development is
comparable to the test on the LSV level in the new development approach. As men-
tioned earlier, the fault-slip shows how many faults have been discovered in a specific
phase that should have been found earlier. In this case, in total 30 faults should have
been found before system test, and 20 faults should have been found in before LSV
testing. Comparing this with the overall amount of faults considered, then 31 % of
faults slipped through earlier testing phases in plan-driven development, and only 19
% in the new development model.

Table 4.8: Fault Slip Before System Test / LSV
Test Number of Faults Slippage

System Test (Plan-Driven) 30 31 %
LSV (Incremental and Agile) 20 19 %

127

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

Therefore, the data is an indication that the testing efficiency of functional testing
of the packages before delivered to the LSV and basic unit testing by programmers has
been improved.

Figure 4.4 shows the maintenance effort for products on the market. The mainte-
nance effort includes costs related to fixing faults that have been found and reported by
the customers. Thus, those faults should have been found earlier in testing. The figure
shows that the maintenance costs were constantly increasing when new products were
released on the market. Projecting the increase of costs in previous years into the future
(dashed line showing the maintenance cost baseline) the costs would be 40 % higher
than in the year 2005.

C
o

s
t

(i
n

 %
)

Z

Z+20%

Z+40%

Z+60%

Begin of migration

2002 2003 2004 2005 2006 2007 2008

YearMaintenace Cost (Baseline)

Maintenance Cost Actual

Figure 4.4: Maintenance Effort

After introducing incremental and agile practices the actual cost (bold line) still in-
creased, but the slope of the curve was much smaller. In 2006, after the introduction of
incremental and agile practices has been further progressed a slight decrease in main-
tenance cost is visible. Thus, this is an indication of improved quality assurance which
was visible in the fault-slip-through, but is also an indication for improvements in the
actual system testing.

128

4.7 Discussion
The discussion draws together the results from the qualitative and quantitative analysis.
It is divided in two parts, namely improvement areas and open issues. Open issues are
problems that still have to be addressed after moving from plan-driven to incremental
and agile development.

4.7.1 Improvement Areas
Release frequency: The qualitative data showed that a higher release frequency is possi-
ble due to building the product in increments using the LSV concept. However, there is
no conclusive evidence that the overall productivity of the development has increased.
That is, the same workforce does not produce the same amount of software artifacts
in shorter time than before. Instead, the company is able to deliver functionality more
frequently which benefits the organization. Frequent releases lead to earlier return on
investments. In plan-driven development, a large up-front investment is required which
starts paying off when the overall development has been completed.

Reduction in waste: A clear improvement can be seen in the reduction of waste,
shown in the qualitative analysis which is supported by the quantitative analysis. Fur-
thermore, the number of change requests have been reduced which is an indicator for
that the requirements are a better reflection of the customers’ needs than with the plan-
driven model. The benefits of this are also explicitly mentioned in the qualitative data
(see I01 in Section 4.5). Overall, improvements related to waste in requirements can
be considered essential as this type of waste has been identified as one of the most
crucial problems in plan-driven development (see F01 in Section 4.5). A good reflec-
tion of the needs of the users in the requirements is also essential to make sense of the
improvement that everything that is started is implemented (see I03 in Section 4.5).
If the requirements would not be reflected in the current needs, this implementation
could be considered waste, even though it has been identified as an improvement. Fi-
nally, the reduced scope in the incremental and agile model helps to have more accurate
estimations (I06), meaning that the requirements scope is set appropriately for each in-
crement. Thus, it is less likely that requirements have to be discarded due to inaccurate
planning.

Software Quality Improvements: The quantitative data shows improvement in early
testing done before system testing (LSV), reflected in a reduced fault-slip-through in
comparison to the plan-driven approach. Furthermore, the constantly rising mainte-
nance effort decreased after introducing incremental and agile practices, even though
there have not been any major tendencies for it to go below the level of 2005 (see Figure
4.4). In the qualitative data, we identified one improvement raised in the interviews.

129

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

That is, testing has improved due to early fault detection and feedback from test (see
I03 in Section 4.5). Furthermore, if an increment is dropped to the LSV for test one
can trace which increments are of high or low quality and who is responsible for them.
Consequently, this creates incentives for teams to deliver high quality as their work
result is visibly linked to them. By testing early many verification issues identified in
plan-driven development can be addressed. These are reduction of test coverage due
to complex testing in the end (F02), increase of the number of faults discovered with
late testing (F03), and that problems are harder to fix when discovered late (F02). The
study shows that even though there has been improvements in testing, very important
and important issues relate to verification in incremental and agile developed, further
discussed in the context of open issues.

Improved Communication: The qualitative data suggests an improvement in com-
munication when moving people together (I06). This positively affects several issues
that have been identified for plan-driven development. Firstly, the amount of documen-
tation can be reduced because much of the documentation was related to hand-overs
between phases (F06). As a project team focuses on several phases now, direct com-
munication can replace parts of the documentation. Furthermore, in plan-driven devel-
opment the knowledge of people is very specialized and they is a lack of confidence.
This can be hindering in the beginning when moving from plan-driven to incremental
and agile practices as having small teams requires very broad knowledge of the team
members (see for example [29]). However, at the same time face-to-face interaction
helps team members to learn from each other and gain insight and understanding of the
overall development process [39].

The perceived improvements are further strengthened by the fact that incremental
and agile practices have not been employed for a long time at the studied companies.
The positive results already achieved are also important as a motivator and buy-in to
further progress with the agile implementation by adding further agile practices such
as test driven development or pair programming.

4.7.2 Open Issues
Based on the classification, the most important issues that remain when moving to
incremental and agile development are related to verification, project management, and
release planning.

Verification: For verification, the improvement of reduced lead-times for testing
have been identified (I06). However, the issue relates to that the LSV cycle times are
not optimized and that there is room of improvement to shorten the lead-time of testing,
the issue being the only issue related to incremental and agile development classified as
very important. Thus, although the lead time is perceived to have improved, it is still an

130

area needing attention. Furthermore, the test coverage is considered a problem in both
development models (see F02 for plan-driven development and F11 in incremental and
agile development), even though the classification shows that it is less common for the
latter development model. The descriptions of the issues related to test coverage show
that test coverage is a problem due to different reasons in both development models.
In plan-driven development, the test coverage is reduced because too much has to be
tested at once, and the testing time is always compromised in the end of the plan-driven
project. In incremental and agile development though the problems are more specific:
quality testing in the LSV takes too much time; the project cycles are too short to
squeeze everything into the project; and there is a lack of independent verification for
basic and component testing. This still being a problem, it is less common in incremen-
tal and agile than in plan-driven development. However, due to the explicitly identified
problems in testing it is clear that there is room for improvement to achieve more sig-
nificant improvements, e.g., by implementing test-driven development or increase the
degree of automated testing to speed up the testing process.

Management Overhead: Due to the high number of teams, the work on the team
level gets more clear and simplistic with an incremental and agile model. However,
many projects working toward the same goal have to be coordinated. As discussed ear-
lier (see F13 in Section 4.5) this requires much communication and planning involving
many different people. Therefore, this issue is specifically related to the scalability
of incremental and agile methods. To address the issue, the first step taken was the
anatomy plan which helps to structure the system and dependencies. This is used as
input for deciding on the order of projects to build the increments.

Release Project: The release project is responsible for bringing the product into a
shippable state. The release project is very specific for the company as it is related to
building customizable solutions. That is, in the release project a tool has to be created
that allows the selection of features so that the product is customizable. As raised
in the earlier discussion (F12) people of the release project are involved too late in the
development process and thus the product is not viewed from a commercial perspective.
Consequently, an action for improvement would be to integrate people from the release
project already in the requirements engineering phase.

4.7.3 Implications
The results of the case study indicate that it is beneficial for large-scale organization
to move from plan-driven to incremental and agile development. In fact, the study
came to the surprising result that plan-driven development is not suitable for a large-
scale organization as it produces too much waste in development (specifically in the
requirements phase). The most pressing issues identified in the organization were in-

131

Chapter 4. The Effect of Moving from a Plan-Driven to an Incremental and Agile
Software Development Approach: An Industrial Case Study

fact related to the plan-driven approach. On the other hand, important improvements
can be achieved by moving from plan-driven to incremental and agile development.
We have shown that specific areas of improvements are reduction of waste and better
responsiveness to market changes. Furthermore, there are opportunities for faster return
of investment. However, the case study also shows that even though benefits can be
gained on the one hand, challenges are raised on the other hand. Areas that specifically
show room for improvements are testing and support for coordinating a large number
of development teams. The challenges are important to recognize and address when
further progressing with the agile implementation.

4.8 Conclusions and Future Work
This paper investigates the effect of migrating from a plan-driven to an incremental
and agile development approach. The study shows that the most commonly perceived
problems in the development models can be found in plan-driven development, and
moving from plan-driven to agile and incremental development allows to improve on
these most common issues. Returning to the research questions and propositions, we
can conclude:

Issues: Several issues were identified for both the plan-driven and the incremen-
tal and agile approach. However, more commonly perceived issues across roles and
systems were identified for the plan-driven approach.

General issues: The two most commonly perceived issues overall were identified
for the plan-driven approach: 1) requirements change and rework; and 2) reduction of
test coverage due to limited test time at the end. Several other issues were identified
both for the plan-driven and the incremental and agile approach.

Performance measures: It was only possible to collect two comparable perfor-
mance measures: waste in terms of investment in requirements never delivered and
fault-slip-through. Both these measures were in favor of the incremental and agile
model.

Proposition 1 is partially true, i.e. both different and in some cases similar issues
were identified for the two models. Proposition 2 holds. Improvements in the quantita-
tive data have been observed and thereby supporting the primary evidence reported for
the qualitative data.

Thus, in summary the main improvements identified are 1) ability to increase re-
lease frequency and shorten requirements lead-times; 2) significant reduction of waste
and better reflection of the current customers’ needs measured as reduced number of
change requests; 3) improvements in software quality for basic testing (unit and compo-
nent testing) and overall system quality, and 4) improved communication which facili-

132

tates better understanding and allows to reduce documentation. However, incremental
and agile methods raise a number of challenges at the same time, which are: 1) needs
for coordinating testing and increase test coverage; 2) support for coordinating a high
number of teams and making decisions related to planning time-lines for concurrent
projects; and 3) integration of release projects in the overall development process. In
future work, more qualitative as well as quantitative studies are needed to compare
development models for large-scale development.

4.9 References
[1] David J. Anderson. Agile Management for Software Engineering: Applying the

Theory of Constraints for Business Results (The Coad Series). Prentice Hall PTR,
2003.

[2] Bouchaib Bahli and El-Sayed Abou-Zeid. The role of knowledge creation in
adopting xp programming model: An empirical study. In ITI 3rd International
Conference on Information and Communications Technology: Enabling Tech-
nologies for the New Knowledge Society, 2005.

[3] Richard Baskerville, Balasubramaniam Ramesh, Linda Levine, Jan Pries-Heje,
and Sandra Slaughter. Is internet-speed software development different? IEEE
Software, 20(6):70–77, 2003.

[4] Kent Beck. Embracing change with extreme programming. IEEE Computer,
32(10):70–77, 1999.

[5] Oddur Benediktsson, Deee Dalcher, and Haaa thorbergsson. Comparison of soft-
ware development life cycles: a multiproject experiment. IEE Proceedings Soft-
ware, 153(3):323–332, 2006.

[6] Martina Ceschi, Alberto Sillitti, Giancarlo Succi, and Stefano De Panfilis. Project
management in plan-based and agile companies. IEEE Software, 22(3):21–27,
2005.

[7] David Cohen, Mikael Lindvall, and Patricia Costa. Advances in Computers, Ad-
vances in Software Engineering, chapter An Introduction to Agile Methods. El-
sevier, Amsterdam, 2004.

[8] David Cohen, Gary Larson, and Bill Ware. Improving software investments
through requirements validation. In Proceedings of the 26th Annual NASA God-

133

REFERENCES

dard Software Engineering Workshop (SEW 2001), page 106, Washington, DC,
USA, 2001. IEEE Computer Society.

[9] Aldo Dagnino, Karen Smiley, Hema Srikanth, Annie I. Antón, and Laurie A.
Williams. Experiences in applying agile software development practices in new
product development. In Proceedings of the IASTED Conference on Software
Engineering and Applications (IASTED-SEA 2004, pages 501–506, 2004.

[10] Liangtie Dai and Wanwu Guo. Concurrent subsystem-component development
model (cscdm) for developing adaptive e-commerce systems. In Proceedings
of the International Conference on Computational Science and its Applications
(ICCSA 2007), pages 81–91, 2007.

[11] Lars-Ola Damm and Lars Lundberg. Company-wide implementation of metrics
for early software fault detection. In Proceedings of the 9th International Con-
ference on Software Engineering (ICSE 2007), pages 560–570, 2007.

[12] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-through - a con-
cept for measuring the efficiency of the test process. Software Process: Improve-
ment and Practice, 11(1):47–59, 2006.

[13] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software develop-
ment: A systematic review. Information & Software Technology, 50(9-10):833–
859, 2008.

[14] Richard E. Fairley and Mary Jane Willshire. Iterative rework: The good, the bad,
and the ugly. IEEE Computer, 38(9):34–41, 2005.

[15] Geir Kjetil Hanssen, Hans Westerheim, and Finn Olav Bjørnson. Using rational
unified process in an sme - a case study. In Proceedings of the 12th European
Conference on Software Process Improvement (EuroSPI 2005), pages 142–150,
2005.

[16] Werner Heijstek and Michel R. V. Chaudron. Evaluating rup software develop-
ment processes through visualization of effort distribution. In Proceedings of
the 34th Conference on Software Engineering and Advanced Applications (SEAA
2008), pages 266–273, 2008.

[17] Michael Hirsch. Moving from a plan driven culture to agile development. In
Proceedings of the 27th International Conference on Software Engineering (ICSE
2005), page 38, 2005.

134

[18] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an agile method-
ology implementation. In Proceedings of the 30th EUROMICRO Conference
(EUROMICRO 2004), pages 326–333, 2004.

[19] J Jarzombek. The 5th annual jaws s3 proceedings, 1999.

[20] Jim Johnson. Keynote speech: Build only the features you need. In Proceedings
of the 4th International Conference on Extreme Programming and Agile Pro-
cesses in Software Engineering (XP 2002), 2002.

[21] Caspers Jones. Patterns of Software Systems: Failure and Success. International
Thomson Computer Press, 1995.

[22] Daniel Karlström and Per Runeson. Combining agile methods with stage-gate
project management. IEEE Software, 22(3):43–49, 2005.

[23] Alan S. Koch. Agile software development: evaluating the methods for your
organization. Artech House, Boston, 2005.

[24] Phillip A. Laplante and Colin J. Neill. Opinion: The demise of the waterfall
model is imminent. ACM Queue, 1(10):10–15, 2004.

[25] Craig Larman. Agile and Iterative Development: A Manager’s Guide. Pearson
Education, 2003.

[26] Katiuscia Mannaro, Marco Melis, and Michele Marchesi. Empirical analysis on
the satisfaction of it employees comparing xp practices with other software de-
velopment methodologies. In Proceedings of the 5th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP 2005),
pages 166–174, 2004.

[27] Angela Martin, Robert Biddle, and James Noble. The xp customer role in prac-
tice: Three studies. In Agile Development Conference, pages 42–54, 2004.

[28] Pete McBreen. Questioning Extreme Programming. Pearson Education, Boston,
MA, USA, 2003.

[29] H. Merisalo-Rantanen, Tuure Tuunanen, and Matti Rossi. Is extreme program-
ming just old wine in new bottles: A comparison of two cases. J. Database
Manag., 16(4):41–61, 2005.

[30] Kai Petersen and Claes Wohlin. A comparison of issues and advantages in ag-
ile and incremental development between state of the art and an industrial case.
Journal of Systems and Software, in print, 82(9):1479–1490, 2009.

135

REFERENCES

[31] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), pages 401–404, 2009.

[32] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale
development. In Proceedings of the 10th International Conference on Product
Focused Software Development and Process Improvement (PROFES 2009), pages
386–400, 2009.

[33] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile
Toolkit (The Agile Software Development Series). Addison-Wesley Professional,
2003.

[34] Lbs Raccoon. Fifty years of progress in software engineering. SIGSOFT Softw.
Eng. Notes, 22(1):88–104, 1997.

[35] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–
164, 2009.

[36] Ken Schwaber. Agile project management with Scrum. Microsoft Press, Red-
mond, Wash., 2004.

[37] Alberto Sillitti, Martina Ceschi, Barbara Russo, and Giancarlo Succi. Managing
uncertainty in requirements: A survey in documentation-driven and agile com-
panies. In Proceedings of the 11th IEEE International Symposium on Software
Metrics (METRICS 2005), page 17, 2005.

[38] Matt Stephens and Doug Rosenberg. Extreme Programming Refactored: The
Case Against XP. Apress, Berkeley, CA, 2003.

[39] Harald Svensson and Martin Höst. Introducing an agile process in a software
maintenance and evolution organization. In Proceedings of the 9th European
Conference on Software Maintenance and Reengineering (CSMR 2005), pages
256–264, 2005.

[40] Bjørnar Tessem. Experiences in learning xp practices: A qualitative study. In
Proceedings of the 4th International Conference on Extreme Programming and
Agile Processes in Software Engineering (XP 2004), pages 131–137, 2003.

[41] Michael Thomas. It projects sink or swim. British Computer Society Review
2001, 2001.

136

[42] Piotr Tomaszewski. Software development productivity - evaluation and improve-
ment for large industrial projects. PhD thesis, Detp. of Systems and Software
Engineering, Blekinge Institute of Technology, 2006.

[43] Andrew Wils, Stefan Van Baelen, Tom Holvoet, and Karel De Vlaminck. Agility
in the avionics software world. In XP, pages 123–132, 2006.

[44] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering: An Introduction
(International Series in Software Engineering). Springer, 2000.

[45] Robert K. Yin. Case Study Research: Design and Methods, 3rd Edition, Applied
Social Research Methods Series, Vol. 5. Prentice Hall, 2002.

137

REFERENCES

138

Chapter 5

A Comparison of Issues and
Advantages in Agile and
Incremental Development
between State of the Art and an
Industrial Case

Kai Petersen and Claes Wohlin
Published in Journal of Systems and Software

5.1 Introduction
The nature of software development has changed in recent years. Software is now
included in a vast amount of products (cars, entertainment, mobile phones) and is a
major factor determining whether a product succeeds. In consequence it becomes more
and more important to be flexible in handling changing requirements to meet current
customer needs and to be able to deliver quickly to the market. As a solution, agile
methods have started to be adopted by industry and recent studies have been focusing
on evaluating agile and incremental development models.

139

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

A systematic review [4] identified and analyzed studies on agile software develop-
ment. Thirty three relevant studies were identified of which 25 investigated Extreme
Programming (XP). Furthermore, only three papers investigated projects with more
than 50 people involved in total. Thus, the results so far are hard to generalize due
to the focus on one specific method and small projects. In order to address this re-
search gap a large-scale implementation of a set of agile and incremental practices is
investigated through an industrial case study at Ericsson AB. In particular, issues and
advantages of using agile and incremental methods are extracted from existing studies
and are compared with the results of the case study. Three subsystems have been in-
vestigated at Ericsson through 33 interviews, covering persons from each subsystems
and different roles.

The incremental and agile model used at the company is a selection of agile and
incremental practices, so it cannot be mapped one to one to the models presented in
literature. However, the company’s agile and incremental model uses practices from
SCRUM (SC), XP, and incremental and iterative development (IID). Some of the key
practices used at the company are, for example, the devision of internal and external
releases, small and motivated teams developing software in three month projects (time-
boxing), frequent integration of software, and always developing the highest prioritized
features first.

The main contribution of the study is to help in the decision of adopting agile
methods and showing the problems that have to be addressed as well as the merits that
can be gained by agile methods. Based on this, the following objectives are formulated
for the study:

• Illustrate one way of implementing incremental and agile practices in a large-
scale organization.

• Provide an in-depth understanding of the merits and issues related to agile devel-
opment.

• Increase the generalizability of existing findings by investigating a different
study context (large scale and telecommunication domain) and comparing it to
state of the art.

The structure of the chapter is shown in Figure 5.1: Section 5.2 presents the state
of the art, summarizing issues and advantages identified in literature. Thereafter, the
investigated process model is described in Section 5.3, and the practices applied in the
company’s model are mapped to the practices associated with incremental and agile de-
velopment, XP and SCRUM for the purpose of generalizability. Section 5.4 illustrates
the research method, which constitutes the context in which the study is conducted, the

140

data collection procedures, and a description of the data analysis methods. The results
of collected data (Section 5.5) show issues and advantages identified in the case study,
as well as a mapping between the findings of the case study and the state of the art
described in Section 5.2 (see 5.1). Sections 5.6 and 5.7 present the implications of the
results. The implications of the comparison of state of the art and case are discussed,
and the mapping (5.3) can be used to discuss generalizability and comparability of
results.

State of the Art (SotA)
(Section 2)

 Incremental
 and AgileProcess Model

(Section 3)

Research Method
(Section 4)

Results
(Section 5)

Discussion
(Section 6)

Conclusion
(Section 7)

SotA (Issue, Advantages)

Model, Mapping

Context, Data Collection, Analysis

Mapping of Issues and Advantages
Between SotA and Case Study

Case Study (Issues, Advantages)

Implications

Outcome

Figure 5.1: Structure of the Chapter

5.2 State of the Art
The studies presenting advantages and issues of agile and incremental methods have
been identified in a recent systematic review of empirical studies in agile software de-
velopment [4]. The issues and advantages presented here are from the review as well
as looking at the original articles included in the review. Furthermore, one further ar-
ticle not included in the systematic review has been identified ([15]). The issues and
advantages are presented as tables receiving an ID (A01-A11, I01-I10) which is used
as a reference when comparing the issues and advantages identified in this case study
with the findings in state of the art. The tables also contain information of which devel-
opment models are related to a specific issue and how large the project was (measured
in number of team members).

Table 5.1 provides an overview of advantages of agile and incremental development
that have been empirically shown in the studies identified in [4]. The advantages that

141

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

have been shown for agile methods are clearly dominated by studies that investigated
XP or a modified version of XP ([6]). Two advantages (A01, A02) have been shown
for SCRUM as well. The size of the projects is quite small (up to 23) and for many
projects the size has not been reported. The main advantages are related to benefits
of communication leading to better learning and knowledge transfer (A01, A03, A07).
Furthermore, it is emphasized that people feel comfortable using agile methods (A08,
A10). Also, customers appreciate agile methods as they provide them with the oppor-
tunity of influencing the software process and getting feedback (A09). The same is true
vice versa, meaning developers also appreciate the presence of customers (A02). De-
velopers value the technical focus of agile methods increasing their motivation (A05).
There is also a perception of increased quality in software products (A11) and higher
productivity (A10) when using pair programming.

Besides the advantages, agile and incremental models face a number of issues that
are summarized in Table 5.2. Studies identifying issues reveal the same pattern as
studies identifying advantages, that is small projects have been studied and the main
focus has been on XP. The positive effects that have been shown for pair programming
(A03, A10, A11), like higher quality and productivity and facilitated learning, need to
be seen alongside a number of issues. That is, pair programming is perceived as ex-
hausting (I04) and requires partners with equal qualifications (I10). Agile can also be
considered an exhausting activity from customers’ point of view as the customer has
to commit and be present throughout the whole development process. Team related
issues are that members of teams have to be highly qualified and inter-team communi-
cation suffers (I05, I10). From a management point of view two issues are identified,
namely that they feel threatened by the empowerment of engineers (I07) and that tech-
nical issues are raised too early (I08). Furthermore, agile projects do not scale well
(I03) and have too little focus on architecture development (I01). Agile also faces im-
plementation problems when realizing continuous testing as this requires much effort
(I01).

The advantages and issues of the state of the art shown in Tables 5.1 and 5.2 are
used as an input for the comparison with the results from the case study in Section 5.5.

5.3 Incremental and Agile Process Model

The process model used at the company is described and thereafter its principles are
mapped to incremental and iterative development, SCRUM, and XP. The model is pri-
marily described to set the context for the case study, but the description also illustrates
how a company has implemented an incremental and agile way of working.

142

Table 5.1: Advantages in Incremental Agile Development (State of the Art)
ID Advantages Model Size Study

A01 Better knowledge transfer due to better
communication and frequent feedback
from each iteration.

XP/XP/XP/SC&XP 9/-/-/7 [1, 6, 18, 15]

A02 Customers are perceived by program-
mers as very valuable allowing devel-
opers to have discussions and get early
feedback.

XP/SC/XP/XP -/6/-/6 [6, 9, 18, 19]

A03 Pair programming facilitates learning
if partners are exchanged regularly.

XP 6 [19]

A04 Process control, transparency, and
quality are increased through continu-
ous integration and small manageable
tasks.

XP - [6]

A05 XP is very much technical-driven em-
powering engineers and thus increases
their motivation.

XP - [6]

A07 Small teams and frequent face-to-face
meetings (like planning game) im-
proves cooperation and helps getting
better insights in the development pro-
cess.

XP(modification) - [18]

A08 The social job environment is per-
ceived as peaceful, trustful, responsi-
ble, and preserving quality of working
life.

XP 23 [16]

A09 Customers appreciate active participa-
tion in projects as it allows them to
control the project and development
process and they are kept up to date.

XP 4 [5]

A10 Developers perceive the job environ-
ment as comfortable and they feel like
working more productive using pair
programming.

XP - [10]

A11 Student programmers perceive the
quality of code higher using pair pro-
gramming

XP - [10]

143

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

Table 5.2: Issues in Incremental and Agile Development (State of the Art)
ID Issues Model Size Study

I01 Realizing continuous testing requires
much effort as creating an integrated test
environment is hard for different platforms
and system dependencies.

XP(modification) - [18]

I02 Architectural design does not have enough
focus in agile development leading to bad
design decisions.

gen./gen. -/- [12, 17]

I03 Agile development does not scale well. gen. - [3]
I04 Pair programming is perceived as exhaus-

tive and inefficient.
XP/XP/XP 4/12/6 [5, 8, 19]

I05 Team members need to be highly qualified
to succeed using agile.

XP 6 [14]

I06 Teams are highly coherent which means
that the communication within the team
works well, but inter-team communication
suffers.

XP/SC&XP -/7 [6, 15]

I07 The empowerment of engineers makes
managers afraid initially, and thus requires
sufficient training of managers.

XP - [6]

I08 Implementation starts very early, thus tech-
nical issues are raised too early from a
management point of view.

XP - [6]

I09 On-site customers have to commit for the
whole development process which puts
them under stress.

XP 16 [11]

I10 From the perspective of students, pair pro-
gramming is not applicable if one partner
is much more experienced than the other.

XP - [13]

5.3.1 Model Description
Due to the introduction of incremental and agile development at the company the fol-
lowing company specific practices have been introduced:

• Small Teams: The first principle is to have small teams conducting short projects
lasting three months. The duration of the project determines the number of re-
quirements selected for a requirement package. Each project includes all phases
of development, from pre-study to testing. The result of one development project

144

is an increment of the system and projects can be run in parallel.

• Implementing highest Priority Requirements: The packaging of requirements for
projects is driven by requirement priorities. Requirements with the highest pri-
orities are selected and packaged to be implemented. Another criterion for the
selection of requirements is that they fit well together and thus can be imple-
mented in one coherent project.

• Use of Latest System Version: If a project is integrated with the previous baseline
of the system, a new baseline is created. This is referred to as the latest system
version (LSV). Therefore, only one product exists at one point in time, helping
to reduce the effort for product maintenance. The LSV can also be considered
as a container where the increments developed by the projects (including soft-
ware and documentation) are put together. On the project level, the goal is to
focus on the development of the requirements while the LSV sees the overall
system where the results of the projects are integrated. When the LSV phase is
completed, the system is ready to be shipped.

• Anatomy Plan: The anatomy plan determines the content of each LSV and the
point in time when a LSV is supposed to be completed. It is based on the de-
pendencies between parts of the system developed which are developed in small
projects, thus influencing the time-line in which projects have to be executed.

• Decoupling Development from Customer Release: If every release is pushed
onto the market, there are too many releases used by customers that need to be
supported. In order to avoid this, not every LSV has to be released, but it has to
be of sufficient quality to be possible to release to customers. LSVs not released
to the customers are referred to as potential releases. The release project in itself
is responsible for making the product commercially available and to package it
in the way that the system should be released.

In Figure 5.2 an overview of development process is provided. At the top of Figure
5.2 the requirements packages are created from high priority requirements stored in
the repository. These requirements packages are implemented in projects (for example
Project A-N) resulting in a new increment of the product. Such a project has a duration
of approximately three months (time-boxed). When a project is finished developing the
increment, the increment is integrated with the latest version of the system, referred to
as last system version (LSV). The LSV has a pre-defined cycle (for example, projects
have to drop their components within a specific time frame to the LSV). At the bottom
of the Figure, the different releases of the system are shown. These are either potential
releases or customer releases.

145

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

The development on project level is run as increments, i.e. each project delivers one
increment to the LSV. Within each project, the development is done using iterations and
some of the practices from agile development. The process flow works as follows: A
set of requirements comes into a new project having a duration of three months. This
set of requirements should lead to a new increment. The project is run as a number of
iterations. An iteration takes approximately two weeks. Each iteration is a continuous
flow with the following steps:

1. Requirements are designed and implemented.

2. The implementation is deployed within the test environment (including test
cases).

3. The results from the executed test are monitored.

Requirements
Repository

 Requirements
Packages

Needs Specific
Needs

Change
Request

Change
Request

Market

Prio 1 Prio 2 Prio 3 Prio 4 Prio 5

Customer
Specific

Project A-N

Project B-N

Project C-N

Project A-N

Project A-N

LSV
Baselines LSV LSV LSV LSV LSV

Release
N

Potential
Release

Release
N+1

Customer
Adoption

Potential
Release

Potential
Release

Projects

Figure 5.2: Development Process

146

5.3.2 Mapping
The principles used in the process model at the company (C) are mapped to the ones in
incremental and iterative development (IID), extreme programming (XP), and SCRUM
(SC). In Table 5.3 we show which principles used in incremental and iterative devel-
opment (IID), extreme programming (XP), and SCRUM (SC) are used in the process
model at the company (C). The Table (created based on the information provided in
[7]) shows that 4 out of 5 incremental principles are fulfilled. Furthermore, the model
used at the company shares 7 out of 13 principles with XP and 6 out of 11 principles
with SCRUM. If many practices are fulfilled in the case study (which is the case for
IID and the agile models) we argue that lessens learned provide valuable knowledge of
what happens when the process models are transferred to industry in a given context.

Table 5.3: Mapping

Principle IID XP SC C

Iterations and Increments
√ √ √ √

Internal and External Releases
√ √

Time Boxing
√ √ √ √

No Change of Started Projects
√ √ √

Incremental Deliveries
√ √

On-site Customer
√ √

Frequent Face-to-Face Interaction
√ √ √

Self-organizing Teams
√ √

Empirical Process
√ √

Sustainable Discipline
√

Adaptive Planning
√ √

Requirements Prioritization
√ √ √

Fast Decision Making
√

Frequent Integration
√ √ √

Simplicity of Design
√

Refactoring
√

Team Code Ownership
√

The company’s model realizes the principles shared with IID, XP, and SCRUM as
follows:

Iterations and Increments: Each projects develops an increment and delivers it to
the LSV, the LSV being the new version of the product after integrating the increment.
The projects developing the increments are run in an iterative manner.

147

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

Internal and External Releases: Software products delivered and tested in the LSV
can be potentially delivered to the market. Instead of delivering to the market they can
be used as an input to the next internally or externally used increment.

Time Boxing: Time boxing means that projects have a pre-defined duration with
a fixed deadline. In the company model the time box is set to approximately three
month. Furthermore, the LSV cycles determine when a project has to finish and drop
its components to the LSV.

No Change to Started Projects: If a feature is selected and the implementation
realizing the feature has been started then it is finished.

Frequent Face-to-Face Interaction: Projects are realized in small teams sitting to-
gether. Each team consists of people fulfilling different roles. Furthermore, frequent
team meetings are conducted in the form of stand-up meetings as used in SCRUM.

Requirements Prioritization: A prioritized requirements list where the highest pri-
oritized requirements are taken from the top and implemented first is one of the core
principles of the company’s model.

Frequent Integration: Within each LSV cycle the results from different projects
are integrated and tested. As the cycles have fixed time frames frequent integration is
assured.

Overall it is visible that the model shares nearly all principles with IID and realizes
a majority of XP and SCRUM principles. However, we would like to point out that
when comparing the results with models investigated in empirical research it is not
always made explicit to what degree different practices are fulfilled in those studies. In
other words, it is unknown to what extent a so-called XP-study actually implements all
XP practices. This issue and its implications are further discussed in Section 5.6.

5.4 Research Method
The research method used is case study. The design of the study follows the guidelines
provided for case study research in [20].

5.4.1 Case Study Context
As a complement to the process model description, the context of the study is as fol-
lows. Ericsson AB is a leading and global company offering solutions in the area
of telecommunication and multimedia. Such solutions include charging systems for
mobile phones, multimedia solutions and network solutions. The company is ISO
9001:2000 certified. The market in which the company operates can be characterized
as highly dynamic with high innovation in products and solutions. The development

148

model is market-driven, meaning that the requirements are collected from a large base
of potential end-customers without knowing exactly who the customer will be. Further-
more, the market demands highly customized solutions, specifically due to differences
in services between countries.

5.4.2 Research Questions and Propositions
This study aims at answering the following research questions:

• RQ1: What are the advantages and issues in industrial large-scale software de-
velopment informed by agile and incremental practices? So far, very little is
known about advantages and issues of using agile and incremental practices in
large-scale industrial software development. Thus, the answer to this research
question makes an important step toward filling this research gap.

• RQ2: What are the differences and similarities between state of the art and the
case study results? By answering this research question new insights in compar-
ison to what has been studied before become explicit. Furthermore, contradic-
tions and confirmations of previous results are made explicit and facilitate the
generalizability of results.

Furthermore, propositions are stated which are similar to hypotheses, stating what
the expected outcome of a study is. Propositions also help in identifying proper cases
and units of analysis. The proposition is stated for the outcome of RQ2: As the case
differs from those presented in state of the art new issues and benefits are discovered
that have not been empirically identified before.

5.4.3 Case Selection and Units of Analysis
Three subsystems that are part of a large-scale product are studied at the company. The
large-scale product is the case being studied while the three subsystems are distinct
units of analysis embedded in the case. Table 5.4 summarizes some characteristics of
the case and units of analysis. The LOC measure only includes code produced at the
company (excluding third-party libraries). Furthermore, the approximate number of
persons involved in each subsystem are stated. A comparison between the case and
the Apache web server shows that the case and its units of analysis can be considered
large-scale, the overall system being 20 times larger than Apache.

5.4.4 Data Collection Procedures
The data is collected through interviews and from process documentation.

149

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

Table 5.4: Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
Subsystem 1 C++ 300,000 43
Subsystem 2 C++ 850,000 53
Subsystem 3 Java 24,000 17
Apache C++ 220,000 90

Selection of Interviewees

The interviewees were selected so that the overall development life cycle is covered,
from requirements to testing and product packaging. Furthermore, each role in the
development process should be represented by at least two persons if possible. The
selection of interviewees was done as follows:

1. A complete list of people available for each subsystem was provided by manage-
ment.

2. At least two persons from each role have been randomly selected from the list.
The more persons are available for one role the more persons have been selected.
The reason for doing so is to not disturb the projects, that is if only one person is
available in a key role it disturbs the project more to occupy that person compared
to when several people share the same role.

3. The selected interviewees received an e-mail explaining why they have been se-
lected for the study. Furthermore, the mail contained information of the purpose
of the study and an invitation for the interview. Overall, 44 persons have been
contacted of which 33 accepted the invitation.

The distribution of people between different roles and the three subsystems (S1-S3)
is shown in Table 5.5. The roles are divided into “What”, “When”, “How”, “Quality
Assurance”, and “Life Cycle Management”.

What: This group is concerned with the decision of what to develop and includes
people from strategic product management, technical managers and system managers.
Their responsibility is to document high-level requirements and breaking them down
for design and development.

When: People in this group plan the time-line of software development from a
technical and project management perspective.

150

How: Here, the architecture is defined and the actual implementation of the system
takes place. In addition, developers do testing of their own code (unit tests).

Quality Assurance: Quality assurance is responsible for testing the software and
reviewing documentation.

Life Cycle Management: This includes all activities supporting the overall develop-
ment process, like configuration management, maintenance and support, and packaging
and shipment of the product.

Table 5.5: Distribution of Interviewees Between Roles and Units of Analysis

S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

Interview Design

The interview consists of five parts, the duration of the interviews was set to approxi-
mately one hour. In the first part of the interview the interviewees were provided with
an introduction to the purpose of the study and explanation why they have been se-
lected. The second part comprised questions regarding the interviewees background,
experience, and current activities. Thereafter, the actual issues and advantages were
collected through a semi-structured interview. The interview was designed to collect
issues and advantages from the interviewees. The interview was initially designed to
only capture issues, however, during the course of the interview advantages were men-
tioned by the interviewees and follow-up questions were asked. In order to collect as
many issues as possible, the questions have been asked from three perspectives: bot-
tlenecks, rework, and unnecessary work. The interviewees should always state what
kind of bottleneck, rework, or unnecessary work they experienced, what caused it, and
where it was located in the process. The interview guide is provided in Appendix A.

151

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

Process Documentation

The company provides process documentation to their employees, as well as presen-
tations on the process for training purposes. We study this documentation to facilitate
a good understanding of the process in the organization. Furthermore, presentations
given at meetings are investigated, which show the progress and first results of intro-
ducing agile and incremental practices from a management perspective. However, the
main source of information is the interviews, with the process documentation mainly
used to get a better understanding of the process and to triangulate what has been said
in the interviews. The documentation and talking to people in the organization resulted
in the description of the process model in Section 5.3.

5.4.5 Data Analysis Approach
As mentioned earlier, the conclusions of the case study are based on the mapping of
the company’s model to general process models, the state of the art, and the case study
investigating issues and advantages.

State of the Art: In order to identify from literature which issues and advantages
exist, the systematic review on agile methods [4] is used as an input. As a starting
point the advantages and disadvantages have been extracted from the review (SotA). To
identify more advantages and issues, the results and discussion sections of the identified
papers in the review have been read, focusing on qualitative results as those are best
comparable to the outcome of this study.

Process Mapping: The mapping was done based in the information gathered in the
interviews, documentation of the development process, and validation with a process
expert at the company. The process expert is a driver for agile implementation at the
company and has profound knowledge of general agile models as well as the company’s
model.

Advantages/issues Mapping: The derivation of advantages and issues is done in a
similar way and advantages/issues is here referred to as factors. As part of the case
study analysis, the first author of the chapter transcribed more than 30 hours of audio
recordings from the interviews which are used for the data analysis. The data was
analyzed in a four-step process, the first four steps being conducted by the first author
over a three-month period.

1. Clustering: The raw data from the transcriptions is clustered, grouping state-
ments belonging together. For example, statements related to requirements en-
gineering are grouped together. Thereafter, statements addressing similar areas
are grouped. To provide an example, three statements related to requirements
prioritization are shown in the text-box below.

152

Statement 1: The prioritization is very very hard. I do not envy the SPMs
but that is the single most critical thing to get the incremental and agile
process working.
Statement 2: The priority change and to inform the project that this has
changed has been difficult. To solve this we have invited the release pro-
gram manager who is responsible for the project to sit in and the main
technical coordinator so they are part of the decision to change it. Prior to
that we did not have it and we had more difficult, we just did that a couple
of weeks ago, this improved the situation but still we have difficulties to
have a formalized way of doing these because changes happen.
Statement 3: Theoretically, the priority list is nice. The problem is that
there is a lot of changes in the situation where we are now, there are a lot
of changes in the priority list here which means that we have been wasting
some work done here, a little bit more than some.

2. Derivation of Factors: The raw data contains detailed explanations and therefore
is abstracted by deriving factors from the raw data. Each factor is shortly ex-
plained in one or two sentences. The result was a high number of factors, where
factors varied in their abstraction level and could be further clustered. Based on
the original statements regarding the requirements prioritization the following
factors (in this case issues) have been derived:

Prioritization Issue 1: The prioritization is success critical in incremental
and agile development and at the same time hard to create and maintain
(based on statement 1).
Prioritization Issue 2: Informing the project that the priorities of require-
ments change has been difficult and requires a more formal process (based
on statement 2).
Prioritization Issue 3: The priority list changes due to that there is a lot of
changes in the situation (adoption) leading to rework (based on statement
3).

3. Mapping of Factors: The factors were grouped based on their relation to each
other and their abstraction level in a mind map. Factors with higher abstraction
level are closer to the center of the mind map than factors with lower abstraction
level. In the example, the issues related to requirements prioritization are in one
branch (see Figure 5.3). This branch resulted in issue CI02 in Table 5.7.

4. Validation of Factors: In studies of qualitative nature there is always a risk that
the data is biased by the interpretation of the researcher. Thus, the factors have

153

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

been validated in two workshops with three representatives from the company.
The representatives have an in-depth knowledge of the processes. Together, the
first three steps of analysis described here were reproduced with the authors and
company representatives. As input for the reproduction of factors, a subset of
randomly selected issues and advantages have been selected. The outcome of the
workshop was positive as there was no disagreement on the interpretation of the
factors. To further improve the data the workshop participants reviewed the final
list of issues and advantages and only provided small improvement suggestions
on how to formulate them. Thus, the list of factors can be considered being of
high quality.

Figure 5.3: Cutout from Mind Map

Finally, the SotA and case study results are compared to identify whether new is-
sues have been identified in this case study, and to explain why other advantages found
in SotA cannot be seen in the case study. It is important to mention that not all issues
and advantages found in the case study are considered in the comparison. Only gen-
eral issues and advantages should be taken into consideration. Thus, we only included
issues that have been mentioned by two or more persons.

5.4.6 Threats to Validity
Threats to the validity of the outcome of the study are important to consider during the
design of the study, allowing actions to be taken mitigating them. Threats to validity
in case study research are reported in [20]. The threats to validity can be divided into
four types: construct validity, internal validity, external validity and reliability.

Construct Validity: Construct validity is concerned with obtaining the right mea-
sures for the concept being studies. One threat is the selection of people to obtain
the appropriate sample for answering the research questions. Therefore, experienced
people from the company selected a pool of interviewees as they know the persons

154

and organization best. From this pool the random sample was taken. The selection
by the representatives of the company was done having the following aspects in mind:
process knowledge, roles, distribution across subsystem components, and having a suf-
ficient number of people involved (although balancing against costs). Furthermore, it
is a threat that the presence of the researcher influences the outcome of the study. The
threat is reduced as there has been a long cooperation between the company and uni-
versity and the author collecting the data is also employed by the company and not
viewed as being external. Construct validity is also threatened if interview questions
are misunderstood or misinterpreted. To mitigate the threat pre-tests of the interview
have been conducted.

Internal Validity: Internal validity is primarily for explanatory and causal studies,
where the objective is to establish a causal relationship. As this study is of exploratory
nature internal validity is not considered.

External Validity: External validity is the ability to generalize the findings to a spe-
cific context. It is impossible to collect data for a general process, i.e. exactly as it is
described in literature. The process studied is an adoption of practices from different
general process models (see Section 5.3). Care has been taken to draw conclusions
and map results to these general models to draw general conclusions and not solely
discussing issues that are present due to the specific instantiation of the process at the
studied setting. However, if one maps the general findings in this chapter to other de-
velopment processes their context must be taken into account. Furthermore, a potential
threat is that the actual case study is conducted within one company. To minimize the
influence of the study being conducted at one company, the objective is to map the
findings from the company specific processes and issues to general processes. The
characteristics of the context and practices used in the process are made explicit to ease
the mapping (see Table 5.3).

Reliability: This threat is concerned with repetition or replication, and in particular
that the same result would be found if re-doing the study in the same setting. There
is always a risk that the outcome of the study is affected by the interpretation of the
researcher. To mitigate this threat, the study has been designed so that data is collected
from different sources, i.e. to conduct triangulation to ensure the correctness of the
findings. The interviews have been recorded and the correct interpretation of the data
has been validated through workshops with representatives of the company.

5.5 Results
First, the advantages identified in the case study are compared with SotA, and the same
is done for the issues.

155

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

5.5.1 Advantages

Table 5.6 shows the advantages identified in the case study, furthermore the ID of the
advantages of SotA clearly related to the ones in the case study are stated in column
SotA (ID). It is shown that six out of eight advantages can be clearly linked to those
identified in literature.

Transparency and Control: Better control and transparency is achieved by hav-
ing small and manageable tasks (A04). The case study led to the same result. The
prioritized list of requirements consists of requirements packages that have to be im-
plemented and the requirements packages have a small scope (for example compared
to waterfall models where the complete scope is defined upfront). Due to clear separa-
tion of packages which are delivered as an increment, responsibilities for an increment
can be clearly defined increasing transparency (CA03). In particular problems and suc-
cesses are more transparent. That is, if an increment is dropped to the LSV for test one
can trace which increments are of high or low quality and who is responsible for them.
Consequently, this creates incentives for teams to deliver high quality as their work
result is visibly linked to them (CA08).

Learning, Understanding, and other Benefits of Face-to-Face Communication: In
agile development team members communicate intensively face-to-face as they have
frequent meetings and are physically located together (A07). Thus, learning and un-
derstanding from each other is intensified. In the case study, the interviewees provided
a concrete example for this. Before using agile, testers and designers were separated.
Consequently designers were not able to put themselves in the shoes of the testers veri-
fying their software or understand what information or documentation would help test-
ing. Now designers and testers sit together and thus they can learn from each other. The
designers understand how the quality of the implementation impacts the testers. Fur-
thermore, testers can point designers to parts of the system that from their perspective
are critical and thus require more intensive testing (CA04). The direct communication
also enables instant testing due to short lines of communication (CA07). An addi-
tional benefit is the increased informal communication where important information is
continuously shared, ultimately resulting in less rework and higher quality (CA06).

Frequent Feedback for each Iteration: Knowledge is transfered through frequent
feedback whenever completing and delivering an iteration (A01). In the case study a
similar result was obtained. Whenever increments are dropped to the LSV there is a
clear visibility of who delivered what and with what level of quality. The frequency
of integration is enforced by pre-defined LSV cycles that require integration every few
weeks. This of course also facilitates frequent feedback (CA04).

Further advantages that have not been explicitly identified in literature surfaced
during the case study.

156

Low Requirements Volatility: Small requirements packages are prioritized and can
go quickly into the development due to their limited scope. When implemented they are
dropped to the LSV and can potentially be released to the market. As the market in this
case is highly dynamic this is an important advantage. That is, if hot requirements can
be implemented quickly and thus can be released before the customers’ needs change
(CA01).

Work Started is always Completed: Packages that have started implementation are
always completed. Therefore, there is very little waste in development as work done
is not discarded, but ends up as a running part of the software. However, it should
be emphasized that it is essential to implement the right things, making requirements
prioritization an essential issue for this advantage to pay off (CA02).

Table 5.6: Advantages Identified in Case Study
ID Advantages SotA (ID)

CA01 Small projects allow to implement and release requirements
packages fast which leads to reduction of requirements volatility
in projects.

CA02 The waste of not used work (requirements documented, compo-
nents implemented etc.) is reduced as small packages started are
always implemented.

CA03 Requirements in requirements packages are precise and due to
the small scope estimates for the package are accurate.

A04

CA04 Small teams with people having different roles only require
small amounts of documentation as it is replaced with direct
communication facilitating learning and understanding for each
other.

A07

CA05 Frequent integration and deliveries to subsystem test (LSV) al-
lows design to receive early and frequent feedback on their work.

A01

CA06 Rework caused by faults is reduced as testing priorities are made
more clear due to prioritized features, and that testers as well as
designers work closely together.

A07

CA07 Time of testers is used more efficiently as in small teams as test-
ing and design can be easily parallelized due to short ways of
communication between designers and testers (instant testing).

A07

CA08 Testing in the LSV makes problems and successes transparent
(testing and integration per package) and thus generates high in-
centives for designers to deliver high quality.

A04

157

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

5.5.2 Issues

The issues identified in this case study as well as the references to similar issues of
SotA are shown in Table 5.7. The following issues are shared between SotA and the
findings of this study.

Testing Lead Times and Maintenance: The realization of continuous testing with
a variety of platforms and test environments is challenging and requires much effort
(I01). This SotA issue relates to two issues identified in this case study. First, testing
lead times are extended as packages that should be delivered to the LSV might not be
dropped due quality issues or that the project is late. If this happens shortly before an
LSV cycle ends and the next increment is built, the package has to wait for the whole
next cycle to be integrated (CI07). Secondly, if increments are released more frequently
maintenance effort increases. That is, customers report faults for many different ver-
sions of the software making it harder to reproduce the fault on the right software
version as well as in the right testing environment including released hardware (CI07).

Management Overhead and Coordination: Agile methods do not scale well (I03).
In fact, we found that it is challenging to make agile methods scalable. On the one hand,
small projects can be better controlled and results are better traceable (as discussed for
CA08). On the other hand, many small projects working toward the same goal require
much coordination and management effort. This includes planning of the technical
structure and matching it against a time-line for project planning (CI11).

Little Focus on Architecture: The architecture receives little focus in agile devel-
opment leading to bad design decisions (I02). The company’s development model re-
quires a high level architecture plan (anatomy plan) enabling them to plan the time-line
of the projects. However, dependencies between parts of the system rooted in technical
details are not covered in the plan. As one project implementing a specific package has
no control over other packages the discovery of those dependencies early has not been
possible (CI12).

Further issues that have not been explicitly identified in literature surfaced during
the case study.

Requirements Prioritization and Handover: In the development of large scale prod-
ucts the strategy of the product and the release plans have to be carefully planned and
involve a high number of people. Due to the complexity and the number of people
that have to be involved in each decision the continuity of the requirements flow is
thwarted (CI01). Consequently teams have to wait for requirements and a backlog
is created in development (CI03). The decision is further complicated by prioritiza-
tion, prioritization being perceived as an essential success factor by the interviewees,
which also plays an important role in other agile methods. For example, SCRUM uses

158

a product backlog which is an ordered list of features, the feature of highest priority
always being at the top of the list. Getting the priority list right is challenging as the
requirements list in itself has to be agile reflecting changing customer needs (dynamic
re-prioritization)(C2).

Test Coverage Reduction of Basic Test: Teams have to conduct unit testing and
test their overall package before delivering to the LSV. However, the concept of small
projects and the lack of independent verification make it necessary that the LSV com-
pensates the missing test coverage. The perception of interviewees was that it is hard
to squeeze the scope into three month projects. One further factor is the get-together of
designers and testers resulting in dependent verification and validation. For example,
designers can influence testers to only focus on parts of the system, saying that other
parts do not have to be tested because they did not touch them.

Increased Configuration Management Effort: Configuration management has to
coordinate a high number of internal releases. Each LSV is a baseline that could be
potentially released to the market. Thus, the number of baselines in agile development
is very high.

Issues CI05, CI09, and CI10 are more related to the context than the other issues
described earlier, even though from the company’s perspective they play an important
role and thus have been mentioned by several people. Because of the limited general-
izability of those issues to other models they are only discussed briefly.

Due to the previous way of working at the company a high amount of documen-
tation remained (CI05). The ambition is to reduce the number of documents as many
documents are unnecessary because they are quickly outdated while other documents
can be replaced by direct communication (CA04). However, this issue could be gener-
alized to other companies in transition to a more agile way of working. Issues (CI09)
and (CI08) are related to product packaging which mainly focuses on programming the
configuration environment of the system. The environment allows to select features for
specific customers to tailor the products to their specific needs (product customization).
The findings are that this requires long lead times (CI09) and that product packaging
gets information too late, even though they could start earlier (CI10).

5.6 Discussion

This section discusses the comparison of state of the art and the case study results. We
describe the observations made based on the results, and the implications for practice
and research. This includes suggestions for future work.

159

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

Table 5.7: Issues Identified in Case Study
ID Issue SotA (ID)

CI01 Handover from requirements to design takes time due to com-
plex decision processes.

CI02 The priority list is essential in the company’s model to work and
is hard to create and maintain.

CI03 Design has free capacity due to the long lead times as in require-
ments engineering complex decision making (e.g, due to CI02)
takes long time.

CI04 Test coverage reduction within projects due to lack of indepen-
dent testing and shortage of projects, requiring LSV to compen-
sate coverage.

CI05 The company’s process requires to produce too much testing
documentation.

CI06 LSV cycle times may extend lead-time for package deliveries as
if a package is not ready or rejected by testing it has to wait for
the next cycle.

I01

CI07 Making use of the ability of releasing many releases to the mar-
ket increases maintenance effort as many different versions have
to be supported and test environments for different versions have
to be recreated.

I01

CI08 Configuration management requires high effort to coordinate the
high number of internal releases.

CI09 The development of the configuration environment to select fea-
tures for customizing solutions takes a long time due to late start
of product packaging work and use of sequential programming
libraries.

CI10 Product packaging effort is increased as it is still viewed from a
technical point of view, but not from a commercial point of view.

CI11 Management overhead due to a high number of teams requiring
much coordination and communication between.

I03

CI12 Dependencies rooted in implementation details are hard to iden-
tify and not covered in the anatomy plan.

I02

5.6.1 Practices Lead to Advantages and Issues

Observation: Using certain practices bring benefit and at the same time raise different
issues. In related work this was visible for outcomes related to pair programming.

160

On one hand it facilitates learning, but on the other hand it is also exhaustive and
leads to problems if the programmers are on different levels. Similar results have been
identified in this case study as well:

• Small projects increase control over the project, increase transparency, and ef-
fort can be estimated in a better way (CA08). At the same time the small projects
have to be coordinated which raises new challenges from a management perspec-
tive with large scale in terms of size of product and people involved (CI11).

• Frequent integration and deliveries to the LSV in given cycles provide regular
feedback to the developers creating packages (A01). Though related issues are
that if a package is rejected it has to wait for the whole new LSV cycle (CI06)
and configuration management has increased work effort related to baselining
(CI08).

• Direct communication facilitates learning and understanding for each other (CA04).
However, the close relation between testers and designers affects independent
testing negatively (CI04).

Implications for Practice: For practice this result implies that companies have to
choose practices carefully, not only focusing on the advantages that come with the tech-
niques. At the same time it is important to be aware of drawbacks using incremental
and agile practices which seem to be overlooked all too often.

Implications for Research and Future Work: Research has to support practice in
raising the awareness of problems related to incremental and agile development. None
of the studies in the systematic review by Dybå et al. [4] had the identification of
issues and problems as the main study focus. To address this research gap we propose
to conduct further qualitative studies focusing on issues which often seem to come
together with the advantages. It is also important to find solutions solving the issues
in order to exploit the benefits that come with agile to an even greater degree. This
requires new methods to fully utilize the benefits of agile, to name a few general areas
that should be focused on:

• Agile requirements prioritization techniques to support and deal with frequent
changes in priority lists which have been identified as success critical (see CI02).

• Research on tailoring of configuration management for agile due to high number
of baselines and changes that need to be maintained (see CI08).

• Research on decision making processes and decision support in agile processes
(see CI01).

161

Chapter 5. A Comparison of Issues and Advantages in Agile and Incremental
Development between State of the Art and an Industrial Case

5.6.2 Similarities and Differences between SotA and Industrial Case
Study

Observation: The initial proposition was that there is a difference in issues between
what is said in SotA and the findings of the case study. The opposite is true for the
advantages, we found that there is quite a high overlap between advantages identified
in SotA and this case study. Six out of eight advantages have also been identified
in SotA as discussed in Section 5.5. This is an indication that agile leads to similar
benefits in large scale development and small scale development. On the other hand,
the overlap regarding the issues is smaller. Many issues identified in SotA are not found
in this case study, mainly because a few of them are related to pair programming which
is not a principle that is applied yet at the company. On the other hand, only a few
issues (three out of twelve) identified in this case study have been empirically shown in
other studies. Several explanations are possible for this result. Firstly, the studies did
not have issue identification as a main focus. Another explanation is that even though
agile leads to benefits in large-scale development it is also harder to implement due to
increased complexity in terms of product size, people and number of projects (reflected
in issues like CI01, CI02, CI03, CI08, CI11), which of course results in more issues
raised.

Implications for Practice: Many of the new problems found in the case study occur
due to complexity in decision making, coordination, and communication. We believe
that when studying a company developing small products then the same benefits would
be found, but the number of issues identified would be much lower. Thus, companies in
large-scale development which intend to adopt incremental and agile methods need to
be aware of methods supporting in handling the complexity. For example, Cataldo et al.
[2] propose a method that helps coordinate work based on the automatic identification
of technical dependencies, i.e. this makes more clear which teams have to communicate
with each other.

Implications for Research: This observation leads to the same conclusion as the
previous one (practices lead to advantages and issues): further knowledge is needed
about what are the main issues in large scale agile development and how they can be
addressed to get the most out of the benefits.

5.6.3 A Research Framework for Empirical Studies on Agile De-
velopment

The need for a research framework is an important implication for research. That is, in
order to learn more about issues and make different studies comparable we believe that
there is a great need for a framework of empirical studies on agile development. For

162

example, when agile is studied it is often not clear how a certain model is implemented
and to what degree the practices are fulfilled. Instead, it is simply said that XP or
SCRUM is studied. However, from our experience in industry we know that methods
presented in books are often tailored to specific needs and that practices are enriched
or left out as they do not fit into the context of the company. This makes it hard
to determine which practices or combinations of practices in a given context lead to
advantages or issues. Such a framework could include information about:

• Attributes that should be provided in order to describe the context. For example,
studies do not report the domain they are investigating or how many people are
involved in the development of the system (see for example Table 5.2). Further-
more, product complexity should be described and it needs to be clear whether a
team or product has been studied.

• Practices should be made explicit and it should be explained how and to what
degree they are implemented allowing the reader to generalize the outcome of
the studies. For example, the framework should describe when a practice is
considered as fully, partly, or not at all fulfilled.

5.7 Conclusions and Future Work
This chapter compares the state of the art investigating issues and advantages when
using agile and incremental development models with an industrial case study where
agile as well as incremental practices are applied. The articles considered in the state of
the art are based on empirical studies. The case being studied can be characterized as
large-scale in terms of product size and number of persons involved in the development
process. Regarding the research questions and contributions we can conclude:

Issues and Advantages: We found that implementing agile and incremental prac-
tices in large-scale software development leads to benefits in one part of the process,
while raising issues in another part of the process. For example, using small and coher-
ent teams increases control over the project, but leads to new issues on the management
level where the coordination of the projects has to take place. Further examples for this
have been identified in the study.

Comparison of State of the Art and Case Study - Advantages: Previous empirical
studies and the case study results have a high overlap for the advantages. In sum-
mary, the main advantages agreed on by literature this case study are 1) requirements
are more precise due to reduced scope and thus easier to estimate, 2) direct commu-
nication in teams reduces need for documentation, 3) early feedback due to frequent
deliveries, 4) rework reduction, 5) testing resources are used more efficiently, and 6)

163

REFERENCES

higher transparency of who is responsible for what creates incentives to deliver higher
quality. New advantages identified in this case study are 1) low requirements volatil-
ity in projects, and 2) reduction of waste (discarded requirements) in the requirements
engineering process.

Comparison of State of the Art and Case Study - Issues: Only few issues identi-
fied in the case study are mentioned in literature. Issues agreed on are 1) challenges
in regard to realize continuous testing, 2) increased maintenance effort with increase
of the number of releases, 3) management overhead due to the need of coordination
between teams, and 4) detailed dependencies are not discovered on detailed level due
to lack of focus on design. In total eight new issues have been identified in this case
study, five are of general nature while three are strongly related to the study context.
The general issues are 1) Long requirements engineering duration due to complex de-
cision processes in requirements engineering, 2) requirements priority lists are hard
to create and maintain, 3) Waiting times in the process, specifically in design waiting
for requirements, 4) reduction of test coverage due to shortage of projects and lack of
independent testing, 5) increased configuration management effort. The three context
related issues are 6) high amount of testing documentation, 7) long durations for devel-
oping the configuration environment realizing product customizations, and 8) increase
in product-packaging effort.

The proposition of the study is partly true, i.e. the study did not identify many new
advantages that have not been found in previous empirical studies. However, the study
identified new issues that have not been reported in empirical studies before. Those
issues are mainly related to increased complexity when scaling agile.

Furthermore, we identified the need for an empirical research framework for agile
methods which should help to make studies comparable. In future work more qualita-
tive studies with an explicit focus on issue identification have to be conducted.

5.8 References
[1] Bouchaib Bahli and El-Sayed Abou-Zeid. The role of knowledge creation in

adopting XP programming model: an empirical study. In ITI 3rd International
Conference on Information and Communications Technology: Enabling Tech-
nologies for the New Knowledge Society, 2005.

[2] Marcelo Cataldo and Patrick Wagstrom and James D. Herbsleb and Kathleen M.
Carley. Identification of coordination requirements: implications for the design
of collaboration and awareness tools. In Proc. of the Conference on Computer
Supported Cooperative Work (CSCW 2006), pages 353–362, 2006.

164

[3] David Cohen, Mikael Lindvall, and atricia Costa. Advances in Computers, Ad-
vances in Software Engineering, chapter An Introduction to Agile Methods. El-
sevier, Amsterdam, 2004.

[4] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software develop-
ment: a systematic review. Information & Software Technology, 50(9-10):833–
859, 2008.

[5] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an agile methodol-
ogy implementation. In Proc. of the 30th EUROMICRO Conference (EUROMI-
CRO 2004), pages 326–333, 2004.

[6] Daniel Karlström and Per Runeson. Combining agile methods with stage-gate
project management. IEEE Software, 22(3):43–49, 2005.

[7] Craig Larman. Agile and iterative development: a manager’s guide. Pearson
Education, 2003.

[8] Adrian MacKenzie and Simon R. Monk. From cards to code: how extreme pro-
gramming re-embodies programming as a collective practice. Computer Sup-
ported Cooperative Work, 13(1):91–117, 2004.

[9] Chris Mann and Frank Maurer. A case study on the impact of Scrum on overtime
and customer satisfaction. In Proc. of the AGILE Conference (AGILE 2005),
pages 70–79, 2005.

[10] Katiuscia Mannaro, Marco Melis, and Michele Marchesi. Empirical analysis
on the satisfaction of it employees comparing XP practices with other software
development methodologies. In Proc. of the 5th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP 2005),
pages 166–174, 2004.

[11] Angela Martin, Robert Biddle, and James Noble. The XP customer role in prac-
tice: Three studies. In Agile Development Conference, pages 42–54, 2004.

[12] Pete McBreen. Questioning extreme programming. Pearson Education, Boston,
MA, USA, 2003.

[13] Grigori Melnik and Frank Maurer. Perceptions of agile practices: a student sur-
vey. In Second XP Universe and First Agile Universe Conference on Extreme Pro-
gramming and Agile Methods (XP/Agile Universe 2002, pages 241–250, 2002.

165

REFERENCES

[14] H. Merisalo-Rantanen, Tuure Tuunanen, and Matti Rossi. Is extreme program-
ming just old wine in new bottles: a comparison of two cases. J. Database
Manag., 16(4):41–61, 2005.

[15] Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson, and Jari Still.
The impact of agile practices on communication in software development. Em-
pirical Softw. Engg., 13(3):303–337, 2008.

[16] Hugh Robinson and Helen Sharp. The characteristics of XP teams. In Proc. of
the 5th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP 2004), pages 139–147, 2004.

[17] Matt Stephens and Doug Rosenberg. Extreme programming refactored: the case
against XP. Apress, Berkeley, CA, 2003.

[18] Harald Svensson and Martin Höst. Introducing an agile process in a software
maintenance and evolution organization. In Proc. of the 9th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2005), pages 256–264,
2005.

[19] Bjørnar Tessem. Experiences in learning XP practices: A qualitative study. In
Proc. of the 4th International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), pages 131–137, 2003.

[20] Robert K. Yin. Case study research: design and methods, 3rd Edition, Applied
Social Research Methods Series, Vol. 5. Prentice Hall, 2002.

166

Chapter 6

An Empirical Study of
Lead-Times in Incremental and
Agile Software Development

Kai Petersen
To Appear in Proceedings of the International Conference on Soft-
ware Process (ICSP 2010)

6.1 Introduction

Lead-time (also referred to as cycle-times) is the time it takes to process an order from
the request till the delivery [6]. An analysis and improvement of lead-time is highly
relevant. Not being able to deliver in short lead-times leads to a number of disadvan-
tages on the market, identified in the study of Bratthall et al. [4]: (1) The risk of market
lock-out is reduced [12]. Bratthall et al. [4] provided a concrete example for that where
one of the interviewees reported that they had to stall the introduction of a new prod-
uct because the competitor was introducing a similar product one week earlier; (2) An
early enrollment of a new product increase probability of market dominance [14]. One
of the participants in the study of Bratthall et al. [4] reported that due to introducing a
product three months after a competitor the company is holding 30 % less of the world

167

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

market in comparison to the market leader; (3) Another benefit of being early on the
market is that the product conforms more to the expectations of the market [13]. This
is due to the market dynamics. Petersen et al. [10] found that a large portion (26 %)
of gathered requirements are already discarded during development. Furthermore, the
long lead-time provides a time-window for change requests and rework.

The review of literature revealed that, to the best of our knowledge, an empirical
analysis of lead-times in incremental and agile development has not been conducted
so far. However, as there is an increasing number of companies employing incremen-
tal and agile practices it is important to understand lead-time behavior. The studied
company intended to determine target levels for lead-times. The open question at the
company was whether requirements should have different target levels depending on
the following factors:

1. The distribution of lead-times between different phases.

2. The impact a requirement has on the systems. The impact is measured in terms of
number of affected systems. Here we distinguish between single-system require-
ments (a requirement only affects one system) and multi-system requirements (a
requirement affects at least two systems).

3. The size of the requirements.

This study investigated the effect of the three factors on lead-time. It is important
to stress that existing work indicates what outcomes can be expected for the different
factors, the expected results being presented in the related work. However, the out-
come to be expected was not clear to the practitioners in the studied company. Hence,
this study sets out with formulating a set of hypotheses related to the factors without
assuming a specific outcome of the hypotheses prior to analyzing them.

The research method used was an industrial case study of a company develop-
ing large-scale systems in the telecommunication domain. The quantitative data was
collected from a company proprietary system keeping track of the requirements flow
throughout the software development lifecycle.

The remainder of the paper is structured as follows. Section 6.2 presents related
work. The research method is explained in Section 6.3. The results of the study are
shown in Section 6.4. Section 6.5 discusses the results. Section 6.6 concludes the
paper.

168

6.2 Related Work

Chapter 3 presents lead-times for waterfall development, showing that the majority of
the time (41 %) is spent on requirements engineering activities. The remaining time
was distributed as follows: 17 % in design and implementation, 19 % on verification,
and 23 % on the release project. As in agile software development the main activitis
should be coding and testing [3] the literature would suggest that those are the most
time consuming activities.

Petersen and Wohlin [8] investigated issues hindering the performance of incre-
mental and agile development. When scaling agile the main issues are (1) complex
decision making in the requirements phase; (2) dependencies of complex systems are
not discovered early on; and (3) agile does not scale well as complex architecture re-
quires up-front planning (see also Chapter 5). Given this qualitative result the literature
indicates that with increase of requirements impact the lead-time should increase. For
example, if a requirement can only be deliverable when parts of it are implemented
across several systems a delay in one system would lead to prolonged lead-times for
this requirement.

Harter et al. [7] identified that lines of code (size) is a predictor for cycle time. This
was confirmed by [1] who found that size was the only predictor for lead-time. Hence,
from the related work point of view an increase of size should lead to an increase of
lead-time.

Collier [2] summarizes a number of issues in cycle time reduction and states: (1)
size prolongs lead-time, and (2) dependencies influence lead-time.

Carmel [5] investigated key success factors for achieving short lead-times. The
finding shows that team factors (small team size, cross-functional teams, motivation)
are critical. Furthermore, an awareness of lead-times is important to choose actions
specifically targeted towards lead-time reduction. However, it is important to take qual-
ity into consideration when taking actions towards lead-time reduction.

None of the lead-time studies focuses on agile development, and hence raising
the need for empirical studies on lead-time in an incremental and agile development
context.

6.3 Research Method

The research method used was a quantitative case study, the case being the telecommu-
nication company Ericsson AB. The systems studied were developed in Sweden and
India.

169

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

6.3.1 Research Context
The research context is important to describe in order to know to what degree the results
of the study can be generalized [9]. Table 6.1 shows the context elements for this
study. The analysis focused on in total 12 systems of which 3 systems are independent.
The remaining nine systems belong to a very large communication system and are
highly dependent on each other. Thus, all requirements belonging to the independent
systems are treated as single-system requirements. The same applies to requirements
only affecting one of the nine dependent systems.

Table 6.1: Context Elements
Element Description

Maturity All systems older than 5 years
Size Large-scale system with more than 5,000,000 LOC
Number of systems 9 dependent systems (indexed as A to I) and 3 indepen-

dent (indexed as J to K)
Domain Telecommunication
Market Highly dynamic and customized market
Process On the principle level incremental process with agile

practices in development teams
Certification ISO 9001:2000
Practices Continuous integration; Internal and external releases;

Time-boxing with sprints; Face-to-face interaction
(stand-up meetings, co-located teams); Requirements pri-
oritization with metaphors and Detailed requirements
(Digital Product Backlog); Refactoring and system im-
provements

The process of the company is shown in Figure 6.1. Requirements from the market
are prioritized and described as high level requirements (HLR) in form of metaphors.
These are further detailed by cross-functional work teams (people knowing the mar-
ket and people knowing the technology) to detailed requirements specifications (DRS).
The anatomy of the system is used to identify the impact of the HLR on the system. The
impact determines how many systems are affected by the requirement. A requirement
affecting one system is referred to as single-system requirement, while a requirement
affecting multiple system is referred to as a multi-system requirement. Within system
development agile teams (ATs) implement and unit test the requirements within four
week sprints. The teams deliver the requirements to the system level test to continu-

170

ously verify the integration on system level every four weeks. Furthermore, the system
development delivers their increments to the compound system test, which is also in-
tegrating in four week cycles. Requirements having passed the test are handed over to
the release projects to be packaged for the market.

Compound System Development

Anatomy

High Level

Specification

(Prio)

Compound System Test (4 week cycles)

System

Dev.

HLR

HLR

HLR

HLR

Market

DRS

DRS

DRS

DRS
System

Dev

System Level Test (4 week cycles)

System Level Test (4 week cycles)

AT Sprint

AT Sprint AT Sprint

AT Sprint

AT Sprint AT Sprint

AT Sprint

AT Sprint

AT Sprint

Cross-functional

workteams

Figure 6.1: Development Process

6.3.2 Hypotheses
The hypotheses are related to differences between multi- and single-system require-
ments, the distribution of the lead-time between phases, and the difference between
sizes of requirements. As mentioned earlier the goal is not to reject the null hypothe-
ses, but to determine whether the different factors lead to differences in lead-time. In
the case of not rejecting the null-hypotheses the factors do not affect the lead-time,
while the rejection of the null-hypotheses implies that the factors effect lead-time. The
following hypotheses were made:

• Phases: There is no difference in lead-time between phases (H0,phaswe) opposed
to there is a is a difference (Ha,phase).

• Multi vs. Single: There is no difference between multi- and single-system re-
quirements (H0,mult) opposed to there is a difference (Ha,mult).

• Size: There is no difference between sizes (H0,size) opposed to there is a differ-
ence (Ha,size).

171

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

6.3.3 Data Collection
The lead-time is determined by keeping track of the duration the high level require-
ments reside in different states. When a certain activity related to the high-level re-
quirement is executed (e.g. specification of the requirement) then the requirement is
put into that state. For the tracking of lead-times a time-stamp was captured whenever
a requirement enters a state, and leaves a state.

The lead-time data was collected from an electronic Kanban solution where the
requirements can be moved between phases to change their state. The system can be
edited over the web, showing the lists of the requirements and in which phase they
are. Whenever a person is moving a requirement from one phase to another, a date is
entered for this movement. The requirements go through the following states:

• State Detailed Requirements Specification: The state starts with the decision to
hand over requirement to the cross-functional work-team for specification, and
ends with the hand-over to the development organization.

• State Implementation and Unit Test: The state starts with the hand-over of the
requirement to the development organization and ends with the delivery to the
system test.

• State Node/System Test: The state starts with the hand-over of the requirement to
the system/node test and ends with the successful completion of the compound
system test. The time includes maintenance for fixing discovered defects.

• State Ready for Release: The state starts when the requirement has successfully
completed the compound system test and thus is ready for release to the cus-
tomer.

From the duration the requirements stay in the states the following lead-times were
calculated:

• LTa: Lead-time of a specific activity a based on the duration a requirement
resided in the state related to the activity.

• LTn−a: Lead-time starting with an activity a and ending with an activity n. In
order to calculate this lead-time, the sum of the durations of all activities to work
on a specific high-level requirement were calculated.

Waiting times are included in the lead-times. The accuracy of the measures is high
as the data was under regular review due to that the electronic Kanban solution was
used in daily work, and the data was subject to a monthly analysis and review.

172

6.3.4 Data Analysis

The descriptive statistics used were box-plots illustrating the spread of the data. The
hypotheses were analyzed by identifying whether there is a relationship between the
variable lead-time and the variables phases (H0,phase) and system impact (H0,mult). For
the relationship between lead-time and system impact the Pearson correlation was used
to determine whether there is a linear relationship, and the Spearman correlation to
test whether there is a non-linear relationship. For the relationship between lead-time
and phase (H0,phase) no correlation was used as phase is a categorical variable. In
order to capture whether phase leads to variance in lead-time we test whether specific
phases lead to variance in lead-time, this is done by using stepwise regression analysis.
Thereby, for each category a dummy variable is introduced.

If there is a relationship between the variables (e.g. between system impact and
lead-time) this would mean that the system impact would be a variable explaining some
of the variance in the lead-time. The hypotheses for size (H0,size) was only evaluated
using descriptive statistics due to the limited number of data points.

6.3.5 Threats to Validity

Four types of threats to validity are distinguished, namely conclusion validity (ability
to draw conclusions about relationships based on statistical inference), internal validity
(ability to isolate and identify factors affecting the studied variables without the re-
searchers knowledge), construct validity (ability to measure the object being studied),
and external validity (ability to generalize the results) [15].

Conclusion Validity: The statistical inferences that could be made from this study
to a population are limited as this study investigates one particular case. In conse-
quence, no inference statistics for comparing sample means and medians with regard
to statistical significance are used. Instead correlation analysis was used, correlation
analysis being much more common for observational studies such as case studies. For
the test of hypotheses H0,phase we used stepwise regression analysis, regression analy-
sis being a tool of statistical inference. Hence, the interpretation of regression analysis
in observational studies has to be done with great care as for a single case study no
random sampling with regard to a population has been conducted. The main purpose
of the regression was to investigate whether the category leads to variance in lead-time
at the specific company. That is, companies with similar contexts might make similar
observations, but an inference to the population of companies using incremental and
agile methods based on the regression would be misleading.

Internal Validity: One threat to internal validity is the objectivity of measurements,
affected by the interpretation of the researcher. To reduce the risk the researcher pre-

173

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

sented the lead-time data during one meeting and discussed it with peers at the com-
pany.

Construct Validity: Reactive bias is a threat where the presence of the researcher
influences the outcome of the study. The risk is low due that the researcher is employed
at the company, and has been working with the company for a couple of years. Correct
data is another threat to validity (in this case whether the lead-time data is accurately
entered and up-to-date). As the system and the data entered support the practitioners
in their daily work the data is continuously updated. Furthermore, the system provides
an overview of missing values, aiding in keeping the data complete which reduces the
risk.

External Validity: One risk to external validity is the focus on one company and
thus the limitation in generalizing the result. To reduce the risk multiple systems were
studied. Furthermore, the context of the case was described as this makes explicit to
what degree the results are generalizable. In this case the results apply to large-scale
software development with parallel system development and incremental deliveries to
system testing. Agile practices were applied on team-level.

6.4 Results

6.4.1 Time Distribution Phases
Figure 6.2 shows the box-plots for lead-times between phases P1 (requirements speci-
fication), P2 (implementation and unit test), P3 (node and system test), and P4 (release
projects). The box-plots do not provide a clear indication of the differences of lead-time
distribution between phases as the box-plots show high overlaps between the phases.

Table 6.2 provides an overview of the statistical results of the correlations between
phase and lead-time across systems. The stepwise regression shows that Dummy 4 was
highly significant in the regression. Though, the overall explanatory power (which was
slightly increased by the introduction of the Dummy 1) is still very low and accounts
for 1.14 % of the variance in lead-time (R2). Hence, H0,phase cannot be rejected with
respect to this particular case.

6.4.2 Multi-System vs. Single-System Requirements
Figure 6.3 shows single system requirements (labeled as 0) in comparison to multi-
system requirements (labeled as 1) for all phases and for the total lead-time. The box-
plots indicate that there is no difference between single and multi-system requirements.
In fact, it is clearly visible that the boxes and the median values are on the same level.

174

System

Phase

Sy
sA
-LLKJIHGFEDCBA

P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1P4P3P2P1

L
e
a
d
t
im
e

Figure 6.2: Comparison of Lead-Times between Phases

Table 6.2: Results for Distribution of Lead-Time Phases, N=823
Step One Two
Constant 49.91 52.03
Dummy 4 (P4) -8.9 -11.0
t-value -2.5 -2.94
p-value 0.013 0.003
Dummy 1 (P1) - -6.4
t-value - -1.79
p-value - 0.074
Expl. power R2 0.0075 0.0114

As there is no observable difference between system impacts we investigated whether
the number of systems a requirement is dependent on has an influence on lead-time.
As shown in the box-plots in Figure 6.4 the lead-time does not increase with a higher
number of affected systems. On the single system side even more outliers to the top of
the box-plot can be found for all phases.

The correlation analysis between system impact and lead-time across systems is
shown in Table 6.3. The table shows that the correlations are neither close to +/− 1,

175

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

Phase

Multi

TotalP4: Release Proj.P3: Node/SystestP2: Impl./UtestP1: ReqSpec

1010101010

L
e
a
d
t
im
e

Figure 6.3: Single-System (label=0) vs. Multi-System Requirements (label=1)

and are not significant. Hence, this indicates that the two variables do not seem to be
related in the case of this company, leading to a rejection of H0,multi.

Table 6.3: Test Results for H0,multi, N=823
Statistic Value p
Pearson (ϕ) -0.029 0.41
Spearman (ρ) 0.074 0.57
Expl. power (R2) 0.001

6.4.3 Difference Between Small / Medium / Large
Figure 6.5 shows the difference of lead-time between phases grouped by size, the size
being an expert estimate by requirements and system analysts. The sizes are defined
as intervals in person days, where Small(S) := [0;300], Medium(M) := [301;699], and
Large(L) := [700;∞]. No correlation analysis was used for analyzing this data as three
groups only have two values, namely P2-Large, P3-Medium, and P3-Large. The reason
for the limitation was that only recently the requirements were attributed with the size.

176

Phase

System Impact

To
ta
l

P4
: R
el
ea
se
 P
ro
j.

P3
: N
od
e/
Sy
st
es
t

P2
: I
m
pl
./
Ut
es
t

P1
:
Re
qS
pe
c

8765432187654321876543218765432187654321

L
e
a
d
t
im
e

Figure 6.4: Difference for System Impact (Number of systems a requirement is affect-
ing, ranging from 1-8)

Phase

Size

P3-Node/SystestP2-Impl./UtestP1-ReqSpec.

SMLSMLSML

L
e
a
d
t
im
e

Figure 6.5: Difference for Small, Medium, and Large Requirements

177

Chapter 6. An Empirical Study of Lead-Times in Incremental and Agile Software
Development

However, the data already shows that the difference for size seems to be small in
the phases requirements specification and node as well as compound system testing.
However, the size of requirements in the design phase shows a trend of increased lead-
time with increased size.

6.5 Discussion

This section presents the practical and research implications. Furthermore, the reasons
for the results seen in the hypotheses tests are provided. The explanations have been
discussed within an analysis team at the studied companies and the team agreed on the
explanations given.

6.5.1 Practical Implications

No Difference in Lead-Times Between Phases: One explanation for the similarities of
lead-times between phases is that large-scale system requires more specification and
testing, and that system integration is more challenging when having systems of very
large scale. Thus, systems documentation and management activities should only be re-
moved with care in this context as otherwise there is a risk of breaking the consistency
of the large system. Furthermore, there is no single phase that requires a specific focus
on shortening the lead-time due to that there is no particularly time-consuming activity.
Hence, in the studied context the result contradicts what would be expected from the
assumptions made in literature. A consequence for practice is that one should investi-
gate which are the value-adding activities in the development life-cycle, and reduce the
non-value adding activities. An approach for that is lean software development [11].

No difference in Multi vs. Single System Requirements: The number of dependen-
cies a requirement has does not increase the lead-time. An explanation is that with
requirements affected by multiple systems the systems drive each other to be fast as
they can only deliver value together. The same driving force is not found on single
system requirements. However, we can hypothesize that single system lead-time can
be shortened more easily, the reason being that waiting due to dependencies in a com-
pound system requires the resolution of these dependencies to reduce the lead-time.
On the other hand, no technical dependencies have to be resolved to remove lead-time
in single systems.

Difference in Size: No major difference can be observed between small, medium
and large requirements, except for large requirements in implementation and unit test.
That is, at a specific size the lead-time for implementation and test increases drastically.

178

In consequence, there seems to be a limit that the size should have to avoid longer lead-
times. This result is well in line with the findings presented in literature (cf [7, 1]).

6.5.2 Research Implications
The study investigated a very large system, hence research should focus on investi-
gating time consumption for different contexts (e.g. small systems). This helps to
understand the scalability of agile in relation to lead-times and with that the ability
to respond quickly to market needs. Furthermore, the impact of size on lead-time is
interesting to understand in order to right-size requirements.

In this study we have shown the absence of explanatory power for the variance in
lead-time for phases and system impact. As time is such an important outcome variable
research should focus on investigating the impact of other variables (e.g. experience,
schedule pressure, team and organizational size, distribution, etc.) in a broader scale.
Broader scale means that a sample of projects should be selected, e.g. by using publicly
available repository with project data.

6.6 Conclusion
This paper evaluates software development lead-time in the context of a large-scale
organization using incremental and agile practices. The following observations were
made regarding lead-time:

• Phases do not explain much of the variance in lead-time. From literature one
would expect that implementation and testing are the most time-consuming ac-
tivities in agile development. However, due to the context (large-scale) other
phases are equally time-consuming.

• There is no difference in lead-time for singe-system and multi-system require-
ments. This finding also contradicts literature. An explanation is that if a re-
quirement has impact on multiple systems these systems drive each other in im-
plementing the requirements quickly.

• With increasing size the lead-time within the implementation phase increases.
This finding is in agreement with the related work.

In future work lead-times should be investigated in different contexts to provide
further understanding of the behavior of lead-times in incremental and agile develop-
ment.

179

REFERENCES

6.7 References
[1] Manish Agrawal and Kaushal Chari. Software effort, quality, and cycle time: A

study of cmm level 5 projects. IEEE Trans. Software Eng., 33(3):145–156, 2007.

[2] Mikio Aoyama. Issues in software cycle time reduction. In Proceedings of the
1995 IEEE Fourteenth Annual International Phoenix Conference on Computers
and Communications, pages 302–309, 1995.

[3] Kent Beck. Embracing change with extreme programming. IEEE Computer,
32(10):70–77, 1999.

[4] Lars Bratthall, Per Runeson, K. Adelswärd, and W. Eriksson. A survey of lead-
time challenges in the development and evolution of distributed real-time systems.
Information & Software Technology, 42(13):947–958, 2000.

[5] Erran Carmel. Cycle time in packaged software firms. Journal of Product Inno-
vation Management, 12(2):110–123, 1995.

[6] Bill Carreira. Lean manufacturing that works: powerful tools for dramatically
reducing waste and maximizing profits. American Management Association, New
York, 2005.

[7] Donald E. Harter, Mayuram S. Krishnan, and Sandra A. Slaughter. Effects of pro-
cess maturity on quality, cycle time, and effort in software product development.
Management Science, 46(4), 2000.

[8] Kai Petersen and Claes Wohlin. A comparison of issues and advantages in ag-
ile and incremental development between state of the art and an industrial case.
Journal of Systems and Software, 82(9), 2009.

[9] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 401–404, 2010.

[10] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale
development. In Proceedings of the 10th International Conference on Product-
Focused Software Process Improvement (PROFES 2009), pages 386–400, 2009.

[11] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley, Boston, 2003.

180

[12] Melissa A. Schilling. Technological lockout: an integrative model of the eco-
nomic and strategic factors driving technology success and failure. Academy of
Management Review, 23(2):267–284, 1998.

[13] George Stalk. Time - the next source of competitive advantage. Harvard Business
Review, 66(4), 1988.

[14] Glen L. Urban, Theresa Carter, Steven Gaskin, and Zofia Mucha. Market share
rewards to pioneering brands: an empirical analysis and strategic implications.
Management Science, 32(6):645–659, 1986.

[15] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering: An Introduction
(International Series in Software Engineering). Springer, 2000.

181

REFERENCES

182

Chapter 7

Software Process Improvement
through the Lean Measurement
(SPI-LEAM) Method

Kai Petersen and Claes Wohlin
Accepted for Publication in Journal of Systems and Software

7.1 Introduction
Software process improvement aims at making the software process more efficient
and increasing product quality by continuous assessment and adjustment of the pro-
cess. For this several process improvement frameworks have been proposed, including
the Capability Maturity Model Integration (CMMI) [8] and the Quality Improvement
Paradigm (QIP) [2, 4]. These are high level frameworks providing guidance what to
do, but not how the actual implementation should look like. The Software Process
Improvement through the Lean Measurement (SPI-LEAM) method integrates the soft-
ware quality improvement paradigm with lean software development principles. That
is, it describes a novel way of how to implement lean principles through measurement
in order to initiate software process improvements.

The overall goal of lean development is to achieve a continuous and smooth flow of
production with maximum flexibility and minimum waste in the process. All activities
and work products that do not contribute to the customer value are considered waste.

183

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Identifying and removing waste helps to focus more on the value creating activities
[9, 34]. The idea of focusing on waste was initially implemented in the automotive
domain at Toyota [33] identifying seven types of waste. The types of waste have been
translated to software engineering into extra processes, extra features, partially done
work (inventory), task switching, waiting, motion, and defects [31]. Partially done
work (or inventory) is specifically critical [22]. The reason for inventory being a prob-
lem is not that software artifacts take a lot of space in stock, but:

• Inventory hides defects that are thus discovered late in the process [22].

• Time has been spent on artifacts in the inventory (e.g., reviewing of require-
ments) and due to change in the context the requirements become obsolete and
thus the work done on them useless (see Chapter 3).

• Inventory impacts other wastes. For example, a high level of inventory causes
waiting times. Formally this is the case in waterfall development as designers
have to wait until the whole requirements document has been approved [30].
Long waiting times bare the risk of completed work to become obsolete. Fur-
thermore, high inventory in requirements engineering can be due to that a high
number of extra features have been defined.

• Inventory slows down the whole development process. Consider the example of
a highway, if the highway is overloaded with cars then the traffic moves slowly.

• High inventory causes stress in the organization [25].

Lean manufacturing has drastically increased the efficiency of product develop-
ment and the quality of products in manufacturing (see for example [9]). When imple-
mented in software development lean led to similar effects (cf. [25, 23]). Even though
lean principles are very promising for software development, the introduction of lean
development is very hard to achieve as it requires a large shift in thinking about soft-
ware processes. Therefore, an attempt to change the whole organization at once often
leads to failure. This has been encountered when using lean in manufacturing [28] and
software development [22].

To avoid the risk of failure when introducing lean our method helps the organization
to arrive at a lean software process incrementally through continuous improvements.
The method relies on the measurement of different inventories as well as the combined
analysis of inventory measurements. The focus on inventory measurement is motivated
by the problems caused by inventories discussed earlier. Furthermore, inventories also
show the absence of lean practices and thus can be used as support when arguing for
the introduction of the principles. In the analysis of the inventories a system thinking

184

method is proposed as lean thinking requires a holistic view to find the real cause of
problems. That is, not only single parts of the development process are considered, but
the impact of problems (or improvement initiatives) on the overall process have to be
taken into consideration.

Initial feedback on SPI-LEAM was given from two software process improvement
representatives at Ericsson AB (see [15]). The objective was to solicit early feedback
on the main assumptions and steps of SPI-LEAM from the company, which needs
triggered the development of the method.

The remainder of the paper is structured as follows: Section 7.2 presents the re-
lated work on lean software development in general and measurement for lean soft-
ware development in particular. Section 7.3 presents the Software Process Improve-
ment through the Lean Measurement (SPI-LEAM) Framework. Section 7.4 presents a
preliminary evaluation of the method. Section 7.5 discusses the proposed method with
focus on comparison to related work, practical implications, and research implications.
Section 7.6 concludes the paper.

7.2 Related Work

7.2.1 Lean in Software Engineering

Middleton [22] conducted two industrial case studies on lean implementation in soft-
ware engineering, and the research method used was action research. The company
allocated resources of developers working in two different teams, one with experienced
developers (case A) and one with less experienced developers (case B). The responses
from the participants was that initially the work is frustrating as errors become visible
almost immediately and are returned in the beginning. In the long run though the num-
ber of errors dropped dramatically. After the use of the lean method the teams were not
able to sustain the lean method due to organizational hierarchy, traditional promotion
patterns, and the fear of forcing errors into the open.

Another case study by Middleton et al. [23] studied a company practicing lean
in their daily work for two years. They found that the company had many steps in
the process not being value-adding activities. A survey among people in the company
showed that the majority supports lean ideas and thinks they can be applied to software
engineering. Only a minority (10 %) is not convinced of the benefits of lean software
development. Statistics collected at the company show a 25 % gain in productivity,
schedule slippage was reduced to 4 weeks from previously months or years, and time
for defect fixing was reduced by 65 % - 80 %. The customer response on the product
released using lean development was overwhelmingly positive.

185

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Perera and Fernando [29] compared an agile process with a hybrid process of agile
and lean in an experiment involving ten student projects. One half of the projects was
used as a control group applying agile processes. A detailed description of how the
processes differ and which practices are actually used was not been provided. The
outcome is that the hybrid approach produces more lines of code and thus is more
productive. Regarding quality, early in development more defects are discovered with
the hybrid process, but the opposite trend can be found in later phases, which confirms
the findings in [22].

Parnell-Klabo [27] followed the introduction of lean and documented lessons learned
from the introduction. The major obstacles in moving from agile are to obtain open of-
fice space to locate teams together, gain executive support, and training and informing
people to reduce resistance of change. After successfully changing with the help of
training workshops and use of pilot projects positive results have been obtained. The
lead-time for delivery has been decreased by 40 % - 50 %. Besides having training
workshops and pilots sitting together in open office-landscapes and having good mea-
sures to quantify the benefits of improvements are key.

7.2.2 Lean Manufacturing and Lean Product Development
Lean principles initially focused on the manufacturing and production process and the
elimination of waste within these processes that does not contribute to the creation of
customer value. Morgan and Liker [24] point out that today competitive advantage
cannot be achieved by lean manufacturing alone. In fact most automotive compa-
nies have implemented the lean manufacturing principles and the gap in performance
between them is closing. In consequence lean needs to be extended to lean product
development, not only focusing on the manufacturing/production process. This trend
is referred to as lean product development which requires the integration of design,
manufacturing, finance, human resource management, and purchasing for an overall
product [24]. Results of lean product development are more interesting for software
engineering than the pure manufacturing part as the success of software development
highly depends on an integrative view as well (requirements, design and architecture,
motivated teams, etc.), and at the same time has a strong product focus.

Morgan and Liker [24] identified that inventory is influenced by the following
causes: batching (large hand-overs of, for example, requirements), process and arrival
variation, and unsynchronized concurrent tasks. The causes also have a negative effect
on other wastes: batching leads to overproduction; process and arrival variation leads
to overproduction and waiting; and unsynchronized tasks lead to waiting. Thus, quan-
tifying inventory aids in detecting the absence of lean principles and can be mapped to
root causes. As Morgan and Liker [24] point out their list of causes is not complete.

186

Hence, it is important to identify the causes for waste after detecting it (e.g. in form of
inventories piling up).

Karlsson and Ahlströhm [18] identified hinders and supporting factors when intro-
ducing lean production in a company in an industrial study. The major hinders are:
(1) It is not easy to create a cross-functional focus as people feel loyal to their func-
tion; (2) Simultaneous engineering is challenging when coming from sequential work-
processes; (3) There are difficulties in coordinating projects as people have problems
understanding other work-disciplines; (4) It is challenging to manage the organization
based on visions as people were used to detailed specifications and instructions; (5)
The relationship to customers is challenging as cost estimations are expected, even
in a highly flexible product development process. Factors helping the introduction of
lean product development are: (1) Lean buffers in schedules; (2) Close cooperation
with customers in product development to receive feedback; (3) For moving towards a
new way of working successfully high competence engineers have to be involved; (4)
Commitment and support from top management is required; (5) regular face-to-face
meetings of managers from different disciplines.

Oppenheim [26] presents an extension of the value-stream mapping process to pro-
vide a comprehensive framework for the analysis of the development flow in lean
product development. The framework is split into different steps. In the first step a
takt-period is selected. A takt is a time-box in which different tasks are fulfilled and
integrated. The second step is the creation of a current-state-map of the current pro-
cess. The current-state map enables the identification of wastes and is the basis for the
identification of improvements (e.g. the relations between waiting times and processing
times become visible). Thereafter, the future-state-map is created which is an improved
version of the map. Oppenheim stresses that all participants of the value-stream map-
ping process must agree to the future-state-map. After having agreed to the map the
tasks of the map are parsed into the takt times defined in the first step. The last step is
the assignment of teams (team architecture) to the different tasks in the value stream
map. A number of success measures have been defined for the proposed approach:
Amount of throughput time cut in comparison to competitors or similar completed
programs; Amount of waste removed in the value-stream map (time-units or monetary
value); Deviation of the planned value stream and the real value stream; Morale of the
teams in form of a survey. Furthermore, the article points out that the goal of lean is to
become better, cheaper, and faster. Though the reality often was that cheaper and faster
was achieved on the expense of better (i.e. quality). One possible reason could be that
no combined analysis of different measures was emphasized. Instead, measures were
proposed as separate analysis tools (see Maskell and Baggaley [21] for analysis tools in
the manufacturing context), but there is no holistic measurement approach combining
individual measures to achieve a comprehensive analysis.

187

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

7.3 SPI-LEAM
The framework is based on the QIP [3] and consists of the steps shown in Figure 7.1.
The steps according to Basili [3] are 1) Characterize the Current Project, 2) Set Quan-
tifiable Goals and Measurements, 3) Choose Process Models and Methods, 4) Execute
Processes and Collect and Validate Collected Data, 5) Analyze Collected Data and
Recommend Improvements, and 6) Package and Store Experiences Made. The main
contribution of this paper is to present a solution to step 2) for lean software develop-
ment. The steps marked gray apply our method to achieve continuous improvement
towards a lean software process.

Characterize the Current
Project

Set Quantifiable Goals
and Measurements

Choose Process Models
and Measurements

Execute Processes and
Collect / Validate Data

Analyze Data and
Recommend Improvements

Describe project characteristics and the
environment

Achieve continues improvements towards
lean processes with lean measurements

Select process models that fit the environment
or select adjustments to existing processes /
tools / methods

Record the measurements defined in 2) while
executing the processes defined in 3)

Analyze the data and identify causes for
problems to take corrective actions
towards a lean software process

(1)

(5)

(4)

(3)

(2)

Package and
Store Experiences Made(6)

Data on experience made is stored so that the
experience can be used in future
improvements

QIP Steps Instantiation of Steps
for Lean Measurement

Figure 7.1: SPI-LEAM: Integration of QIP and Lean Principles

The steps are executed in an iterative manner so that one can always go back to
previous steps and repeat them when needed. The non-expended steps are described
on a high level and more details are provided for the steps expanded in relation to lean.
The expansion of the second step (Set Quantifiable Goals and Measures) is explained
in Section 7.3.2, and the expansion of the fifth step (Analyze Collected Data and Rec-
ommend Improvements) in Section 7.3.3.

1. Characterize the Current Project: In the first step, the project characteristics and
the environment are characterized. This includes characteristics such as appli-
cation domain, process experience, process expertise, and problem constraints
[3].

188

2. Set Quantifiable Goals and Measurements: It is recommended to use the goal-
question-metric approach [2] to arrive at the goals and associated measurement.
The goal to be achieved with our method is to enable continuous software process
improvement leading to a lean software process. The emphasis is on achieving
continuous improvement towards lean software processes in order to avoid the
problems when introducing an overall development paradigm and getting accep-
tance for the change, as seen in [22, 28]. The goals of achieving a lean process
are set by the researchers to make the purpose of the method clear. When ap-
plying the method in industry it is important that the goals of the method are
communicated to industry. In order to achieve the goals two key questions are
to be answered, namely 1) what is the performance of the development process
in terms of inventories, and 2) what is the cause of performance problems? The
answer to the first question should capture poor performance in terms of differ-
ent inventories. Identifying high inventory levels will help to initiate improve-
ments with the aim of reducing the inventories and by that avoiding the problems
caused by them (see Section 7.1). The second question aims at identifying why
the inventory levels are high. This is important to initiate the right improvement.
To identify the inventories in the development process one should walk through
the development process used in the company (e.g,. using value stream mapping
aiming at identifying waste from the customers’ perspective [31]). This is an
important step as not all companies have the same inventories. For example, the
company studied requires an inventory for product customizations. For a very
generic process, as shown in Figure 7.2, we can find the following inventories:
requirements, test cases, change requests, and faults. The inventories for faults
and fault-slip-through represent the quality dimension. A detailed account and
discussion of the inventories is provided in Section 7.3.2. The collection mech-
anism is highly dependent on the company in which the method is applied. For
example, the collection of requirements inventory depends on the requirements
tool used at the specific company.

3. Choose Process Models and Methods: This step decides which process model
(e.g., waterfall approach, Extreme Programming (XP), SCRUM) to use based
on the characteristics of projects and environment (Step 1). If, for example,
the environment is characterized as highly dynamic an agile model should be
chosen. We would like to point out that the process model is not always chosen
from scratch, but that there are established models in companies that need further
improvement. Thus, the choice can also be a modification to the process models
or methods and tools used to support the processes. For example, in order to
establish a more lean process one approach could be to break down work in

189

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Requirements
Engineering

System Design
and

Implementation
Software Test Release

Requirements Test Cases

Change Requests Faults (Test / Customer)

Quality (Fault Slip Through)

Extra Work

Normal Work

Quality

Figure 7.2: Inventories in the Software Process

smaller chunks to get things faster through the development process.

4. Execute Processes and Collect and Validate Collected Data: When the process
is executed measurements are recorded. In the case of SPI-LEAM the inventory
levels have to be continuously monitored. Thereafter, the collected data has to
be validated to make sure that it is complete and accurate.

5. Analyze Collected Data and Recommend Improvements: In order to improve
performance in terms of inventory levels the causes for high inventories have to
be identified. For understanding a specific situation and to evaluate improvement
actions system thinking methods have been proven to be successful in different
domains. Having found the cause for high inventory levels, a change to the
process or the methods used has to be made.

6. Package and Store Experiences Made: In the last step the experience made has
to be packaged, and the data collected needs to be stored so the experiences made
are not lost and can be used for future improvements.

The following section provides an overview of how SPI-LEAM aids in contin-
uously improving software processes to become more lean. This includes detailed

190

descriptions of the expansions in steps two and five of the QIP.

7.3.1 Lean Measurement Method at a Glance
The first part of the method is concerned with setting quantifiable goals and measure-
ments (Second step in the QIP). This includes the measurement of individual invento-
ries. Thereafter, the measures of individual inventories are combined with each other,
and with quality measurements (see Figure 7.3). How to measure individual invento-
ries and combine their measurements with quality are explained in Section 7.3.2. For
analysis purposes it is recommended not to use more than five inventories to make the
analysis manageable. It is also important that at least one inventory focuses on the
quality dimension (faults, fault-slip-through). Each measure should be classified in
two different states, namely high inventory levels and low inventory levels. With that
restriction in mind the company can be in 25 = 32 different states (2 corresponding
to high and low inventory levels, and 5 corresponding to the number of measurements
taken). However, as the technique allows to measure on different abstraction levels, one
individual inventory level (e.g. requirements) is derived from several sub-inventories
(e.g. high level requirements, detailed requirements). Thus, we believe that companies
should easily manage with a maximum of five inventories without neglecting essential
inventories. Table 7.1 summarizes the goals, questions, and metrics according to the
Goal-Question-Metric approach [2]. The inventories in the table are based on activities
identified in the software engineering process (see e.g. [17]). As mentioned earlier
each company should select the inventories relevant to their software processes.

Individual Inventories

Quality

+

Determine State Based on High
/ Low Inventory Levels

Analysis and Flow Between States

Good

Bad

Corresponds to Step 2 in the QIP (Set
Quantifiable Goals and Measurements)

Corresponds to Step 5 in the QIP (Analyze
Collected Data and Recommend Improvements)

Figure 7.3: Method at a Glance

The second part of the method is concerned with the analysis of the situation, i.e.

191

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Table 7.1: Goal Question Metric for SPI-LEAM
Dimension Specification

Goals

• Enable continuous software process improvement leading to a lean software pro-
cess.

• Avoid problems related to resistance of change by improving in a continuous man-
ner.

Questions
• Q1: What is the performance of the development process in terms of inventories?

• Q2: What is the cause of performance problems?

Metrics

• Requirements (Individual Inv.)

– High level Req. (Sub.-Inv.)

– Detailed Req.

– Req. in Design and Impl.

– Req. in Test

• Test Cases (Individual Inv.)

– Unit Test (Sub.-Inv.)

– Function Test

– Integration Test

– System Test

– Acceptance Test

• Change Requests (Individual Inv.)

– CR under Review

– Approved CRs

– CRs ready for Impact Analysis

– CRs in Test

• Faults and Failures (Individual Inv.)

– Internal Faults and Failures (Test)

– External Faults and Failures (Customer)

• Fault Slip Through (Quality)

– Req. Review Slippage

– Unit Test Slippage

– Function Test Slippage

– etc.

192

the aim is to determine the causes for high inventory level and quality problems. In
other words, we want to know why we are in a certain state. Based on the analysis
it is determined to which state one should move next. For example, which inventory
level should be reduced first, considering the knowledge gained through the analysis.
To make the right decisions the end-to-end process and the interaction of its parts are
taken into consideration. As system theory in general and simulation as a sub-set of
system theory methods allows to consider the interactions between individual parts of
the process (as well as the process context) we elaborate on which methods are most
suitable to use in Section 7.3.3.

7.3.2 Measure and Analyze Inventory Levels
The measurement and analysis takes place in the second step of the QIP as shown in
the previous section. The measurement and analysis of inventory requires two actions:

• Action 1: Measure the individual inventories, i.e. change requests, faults, re-
quirements, and test cases (see Figure 7.2). Each individual inventory (e.g.,
requirements) can have sub-inventory (e.g. high level requirements, detailed
requirements, requirements in implementation, requirements in test) and thus
these inventories are combined to a single inventory ”requirements”. The mea-
surement of the inventories is done continuously to be able to understand the
change of inventories over time. Inventories can also be split into work in pro-
cess and buffer. The advantage is that this allows to determine waiting times, but
it also requires to keep track of more data points.

• Action 2: Determine the overall state of the software process for a specific prod-
uct combining the individual inventory levels. The combination of individual in-
ventories is important as this avoids unintended optimization of measurements.
That is, looking on one single inventory like requirements can lead to optimiza-
tions such as skipping requirements reviews in order to push the requirements
into the next phase quicker. However, when combining inventory measures
with each other and considering inventories representing the quality dimension
will prevent this behavior. As a quality dimension we propose to use fault-slip
through measurement [10] and the fault inventory.

Step 1: Measure Individual Inventories

Measurement Scale: In this step each of the inventories is measured individually con-
sidering the effort required for each item in the inventory. In manufacturing inventory is
counted. In software development just counting the inventory is insufficient as artifacts

193

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

in software development are too different. For example, requirements are of different
types (functional requirement, quality requirement) and of different complexities and
abstraction levels (see for example [15]). Furthermore, requirements might never leave
the inventory as they are always valid (e.g. requirements on system response times).
Similar issues can be found for testing, like test cases that are automated for regres-
sion testing are different from manual test cases. As a consequence we propose to take
into account the effort required to implement a requirement, or to run a test case. To
make the importance of considering effort more explicit, take the example of a high-
way again. It is a difference if we put a number of trucks on a crowded highway, or
a number of cars. In terms of requirements this means that a high effort requirement
takes much more space in the development flow than small requirements. For each of
the inventories there are methods available to estimate the effort:

• Requirements: Function points have been widely used to measure the size of
systems in terms of requirements. This can be used as an input to determine the
effort for requirements [7]. Another alternative is to estimate in intervals by clas-
sifying requirements as small, medium, or large. For each class of requirements
an interval has to be set (e.g. in person days).

• Test Cases: Jones [17] proposed a model to estimate the effort of testing based
on function point analysis. Another approach combines the number of test cases,
test execution complexity, and knowledge of tester to estimate the effort of test
execution [35].

• Change Requests: The effort of a change is highly influenced by the impact the
change has on the system. Therefore, impact analysis can be used to provide an
indication of how much effort the change requires [19].

• Faults: A method for corrective maintenance (e.g. fixing faults) has been evalu-
ated by De Lucia et al. [20] considering the number of tasks needed for mainte-
nance and the complexity of the system.

Describe Individual Inventory Levels: Individual inventories are broken down fur-
ther into sub-inventories when needed. For example, requirements can be broken down
into high level requirements, detailed requirements, requirements in design phase, and
requirements in release. Similar, test cases can be broken down into unit test cases, inte-
gration test cases, system test cases, etc. The measurement of effort in inventory is done
on the lowest level (i.e. high level requirements inventory, detailed requirements inven-
tory, and so forth) and later combined to one single measure for requirements inventory.
In Figure 7.4 the example for requirements (fictional data) and related sub-inventories

194

is illustrated using a radar chart. We use this way of illustrating inventories throughout
the whole analysis as it allows to see the distribution of effort between inventories in
one single view very well. Based on this view it is to be determined whether the inven-
tory level is high or low for the specific company. As mentioned earlier this depends on
the capacity available to the company. Therefore, for each dimension one has to com-
pare the capacity with the inventory levels. The situation in Figure 7.4 would suggest
that there are clear overload situations for high level requirements and requirements in
implementation. The inventory of requirements to be specified in detail is operating at
its maximum capacity while there is free capacity for requirements in test.

Figure 7.4: Measuring Requirements Inventory

Simulating Overload Situations: One should aim for a situation where the process
is not overloaded, but the process should be stressed as much as possible. Figure 7.5
illustrates the situation of overload. If the load (inventory) is higher than the capacity
then there is a high overload situation (in analogy to the highway there are more cars on
the road than the road was designed for) and thus the flow in the process is jammed. A
critical overload situation means close to complete standstill. If the capacity is almost
completely utilized (the highway is quite full) then the flow moves slower, but still has
a steady flow. Below that level (good capacity utilization) the resources are just used
right, while when reducing the load too much an underload situation is created. To

195

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

High

Low

Capacity
Inventory /

Queue

Critical Overload Situation

High Overload Situation

High Capacity Utilization
Good Capacity Utilization
Underload

Figure 7.5: Good and Bad Inventory Levels

determine which are the thresholds for critical, high, and overload situations, queuing
theory can be used. The inventory (e.g. requirements) represents the queue and the
activity (e.g. system design and implementation) represents the server. An example of
such a simulation for only requirements can be found in Höst et al. [16].

Set Inventory Level to High or Low: With the knowledge of when the organization
is in an overload situation one can measure whether the inventory level is high or low.
As we only allow two values in the further analysis (i.e. high and low) for reducing the
complexity of the analysis we propose to classify inventories within the areas ”good
capacity utilization” and ”underload” as low, and the ones above that as high. In order
to combine the different sub-inventories for requirements into one inventory different
approaches are possible, like:

• After having simulated the queues and knowing the zones the overall inventory
level is high if the majority of sub-inventories is rated high.

• Sub-inventories are not independent (e.g. the queue for detailed requirements is
influenced by the queue of high level requirements and the capacity of the server
processing the high level requirements). Thus, more complex queuing networks
might be used to determine the critical values for high and low.

• We calculate the individual inventory level II as the sum of the difference be-
tween capacity of the server for inventory i (Ci) and the actual measure for in-
ventory i (Ai), divided by the number of sub-inventories n.

II = ∑
n
i (Ci−Ai)

n
(7.1)

If the value is negative then on average the company operates above their capac-
ity. Thus, one should strive for a positive value which should not be too high as

196

this would mean that the company operates with underload.

Determine the State of the Process Combining Inventories and Quality Measure-
ment

As mentioned earlier it is good to restrict the number of states (e.g. to 25 = 32) as this
eases the analysis and it is possible to walk through and analyze the possible states in
more depth. If this restriction is not feasible the number of states grows quite quickly,
and with that the complexity of analysis. In order to illustrate the combined inven-
tory level we propose to draw a spider web again with the average efforts for sub-
inventories, the average capacity for each individual inventory and the rating as high or
low. Even though we know the state for each inventory level the reason for drawing the
diagram is that it allows to see critical deviations between inventories and capacity, as
well as effort distributions between inventories. Besides the inventories it is important
to consider the quality dimension. The reason is that this avoids an unintended opti-
mization of measures. We propose to use the fault slip through (FST) and the number
of faults to represent the quality dimension. The number of faults is a quality indicator
for the product while the FST measures the efficiency of testing.

The FST measure helps to make sure that the right faults are found in the right
phase. Therefore, a company sets up a test strategy determining which type of fault can
(and should) be found in which test phase (e.g. function test). If the fault is found later
(e.g. system test instead of function test) then the fault is considered a slip-through.
Experience has shown that the measure in Equation 7.2 is one of the most useful [11]:

PIQ =
SF
PF

(7.2)

The measure in Equation 7.2 shows the Phase Input Quality to a specific phase
(phase X). SF measures the number of faults that are found in phase X, but should
have been found earlier. PF measures the total number of faults found in phase X.
When conducting this measurement it is also important to consider whether overall
a high or low number of faults are found in phase X. In order to determine whether
the testing strategy is in a good or bad state consider Figure 7.6. The figure shows
four states based on 1) whether the overall number of faults found in phase X can be
considered as high or low, and 2) whether the PIQ is high or low. Combining these
dimensions leads to a high or low FST-figure. Whether the number of faults in phase
X is high is context dependent and can, for example, be determined by comparing the
number of faults found across different test phases.

The four dimensions in Figure 7.6 can be characterized as follows:

197

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Low quality
of previous
test phases

High

H
igh

Test
Strategy
not Strict
Enough

???

PIQ

No. of Faults

Adherence
to Test

Strategy
Low

Phase X
Tested
Wrong
Things
High

Low

HighLow

Figure 7.6: FST-Level

• (No. Faults High, PIQ High): The fault-slip of faults to phase X is quite high, as
well as the overall number of faults is high. This is an indicator for quality issues
and low testing efficiency. We assign the value high to the FST measure.

• (No. Faults High, PIQ Low): In this situation the test strategy is not strict enough
and should probably require that more faults should be found in earlier phases.
As the data is based on a flawed test strategy the results should not be used as an
indicator for process performance.

• (No. Faults Low, PIQ High): Phase X probably tested the wrong things as one
can assume that more faults are discovered considering a high fault-slip in earlier
phases. We assign the value high to the FST measure.

• (No. Faults Low, PIQ Low): The process adheres to the testing strategy and few
faults are discovered which is an indicator of good quality. We assign the value
low to the FST measure.

As effort is used throughout the method it is important to mention that FST can be
transfered into effort as well. With the knowledge of average effort for fixing a fault
found in a certain phase the improvement opportunity can be calculated.

In summary, the result of the phase are:

• A radar chart showing the average efforts and capacities related to each individ-
ual inventory, and the result of the improvement opportunity in terms of effort
for faults found late in the process (FST).

198

• A description of the values of the inventory levels rated as either low or high with
at least one inventory representing the quality dimension.

7.3.3 Analysis and Flow Between States
The analysis focuses on understanding the reasons for the current situation and finding
the best improvement alternatives to arrive at an improved state. As a simple example
consider a situation with one inventory (test cases) and the FST measure (see Fig-
ure 7.7). Analyzing the situation with just two measures shows that 1) no inventory
measures should be taken without quality, and 2) combining measures allows a more
sophisticated analysis than looking at different measures in isolation. Consider the sit-
uation in Figure 7.7 with one inventory (Test Cases) and the FST measure, both being
labeled as either high or low based on the analysis presented before. Four different
states are possible:

1. (TC high, FST high): In this situation the company is probably in a critical situ-
ation as they put high effort in testing and at the same time testing is inefficient.
Thus, this situation means that one has to explore the best actions for improve-
ments. That is, one has to consider why the testing process and testing techniques
lead to insufficient results. Possible sources might be found in the context of the
process (e.g. requirements which form the basis for testing) or problems within
the process (e.g. competence of testers).

2. (TC high, FST low): This state implies that the company delivers good quality
and puts much effort to do so in terms of test cases. Therefore, one does not want
to move away from the low FST status, but wants to improve testing efficiency
in order to arrive at the same result for FST without loosing quality. An option
for improvement could be to switch to more automated testing so the effort per
test case is reduced.

3. (TC low, FST high): The test effort in terms of test cases is good, but there is
low efficiency in testing. Either too little effort is spent on testing or the testing
process and test methods need to be improved.

4. (TC low, FST low): The state is good as testing is done in an efficient way with a
low value for FST.

The analysis of the situation makes clear that it is important to include inventories
representing the quality of the software product. Situations 1 and 2 are the same in
terms of test case level, but lead to different implications when combined with the FST
measure.

199

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

We test a
lot, but

have good
quality

Not so Good

H
igh

Few Test
Cases with

Good
Quality

Good

FST

We test a
lot with

bad quality
/ testing

Not so Good

We test a
lot with little
efficiency

Critical
Test Cases

Low
HighLow

Figure 7.7: Analysis with Test Cases and FST

Analysis with n Inventories

With only two measures this seems to be obvious. Though, the outcome of the analysis
will change when adding more inventories, and at the same time the analysis becomes
more challenging. In order to characterize the situation of the company in terms of
inventory levels the state of the company has to be determined. The state is defined as
s tuple S of inventories si:

S := (s1,s2,s3, ...,sn), si ∈ {high, low} (7.3)

What we are interested in is how improvement actions lead to a better state in terms
of inventories. An ideal state would be one where all inventories have a good capacity
utilization as defined in Figure 7.5. From an analysis point of view (i.e. when inter-
preting and predicting the behavior of development based on improvement actions) we
assume that only one inventory changes at a time. When analyzing how to improve the
state of inventories alternative improvement actions need to be evaluated. That is, the
company should aim at reaching the desired state by finding the shortest path through
the graph, the reason being to reduce the time of improvement impact. Figure 7.8
shows an example of state changes to achieve a desired state illustrated as a directed
graph. The solid and dashed lines represent two different decisions regarding improve-
ment actions. In the case of the graph decision one would be preferable to decision two
as the desired state is achieved in fewer state changes, assuming the edges all have the

200

same value.
Methods that can be used to support decision makers in the organization to make

this analysis are presented in Section 7.3.3. In order to make the theoretical concepts
in the case of n inventories more tangible the following section presents an application
scenario.

Application Scenario for Analysis with n States

The following inventories are considered in the application scenario and thus represent
the state of the company S:

S := (Requirements, Change Requests, Faults, Test Cases, Fault Slip) (7.4)

In the start state testing was done on one release and correct defects were found
according to the test strategy. Furthermore, the release can be characterized as mature
and thus it is stable, resulting in a low number of change requests. Though, the number
of requirements is high as a project for the next release will be started. In addition to
that testing has identified a number of faults in the product that need to be resolved.
This leads to the following start state:

S0 := (high, low, high, low, low) (7.5)

The decision taken to achieve a more lean process in terms of inventory levels is
to put additional resources on fixing the faults found in testing and wait with the new
project until faults are resolved. Adding resources in testing leads to a reduction in the
number of faults in the system.

S1 := (high, low, low, low, low) (7.6)

Due to fault fixing regression testing becomes necessary, which increases the num-
ber of test-cases to be run, leading to state S2.

S2 := (high, low, low, high, low) (7.7)

Now that testing is handled the work starts on new requirements which leads to
a reduction in requirements inventory. Furthermore, the value for FST could change
depending on the quality of the tests conducted. This leads to a new current state:

S3 := (low, low, low, high, low) (7.8)

201

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

Start State

(h,h,h,h)

(h,l,h,h) (h,l,l,h)

(h,l,l,l)

Decision 1

Decision 2

S:=(Inv1, Inv2, Inv3, Inv4)

h:=high; l:=low
(h,l,l,h) (h,h,l,h) (h,l,l,h)

End State

Figure 7.8: Improving the State of the Inventories

Analysis Support

Reasoning with different inventories to take the right actions is supported by the lean
principle of ”see the whole”. In other words, a combined analysis of different parts of a
whole (and the interaction between the parts) have already been considered when com-
bining inventories and quality. As a solution for handling the analysis and evaluation of
improvement actions different solutions are available which need to be evaluated and
compared for their suitability in the lean context. Systems thinking as a method has
been proven successful to conduct complex analyses. Three type of system approaches
are common, namely hard systems, soft systems, and evolutionary systems.

• Hard Systems: These kind of systems are used for a quantitative analysis not
considering soft factors [13]. The systems are usually described in quantitative
models, such as simulation models. Candidates for analyzing the above prob-
lem are continuous simulations combined with queuing theory [12], or Discrete
Event Simulations with queuing theory [16]. When repeating the activity in a
continuous matter a major requirement on the model is to be simple and easily
adjustable, but accurate enough. Fulfilling this requirement is the challenge for
future research in this context.

• Soft Systems: Soft systems cannot be easily quantified and and contain inter-
actions between qualitative aspects such as motivations, social interactions etc.
Those problems are hard to capture in quantitative simulations and therefore
some problems will only be discovered using soft system methodologies [13].
Therefore, they might be used as a complement to hard systems. In order to

202

visualize and understand soft systems, one could make use of mind-maps or sce-
narios and discuss them during a workshop.

• Evolutionary Systems: This type of system applies to complex social systems
that are able to evolve over time. However, those systems are very specific for
social systems of individuals acting independently and are therefore not best
suited from a process and workflow perspective.

After having decided on an improvement alternative the action is implemented and
the improvements are stored and packaged. Thereby, it is important not just to describe
the action, but take the lessons learned from the overall analysis as this will provide
valuable data of behavior of the process in different improvement scenarios.

7.4 Evaluation

7.4.1 Static Validation and Implementation
The purpose of the static validation is to get early feedback from practitioners regarding
improvements and hinders in implementing the proposed approach. Another reason for
presenting the approach is to get a buy-in from the company to implement the approach
[14]. In this case the method has been presented and discussed with two representa-
tives from Ericsson AB in Sweden, responsible for software process improvement at
the company. The representatives have been selected as they are responsible for identi-
fying improvement potential in the company’s processes, as well as to make improve-
ment suggestions. Thus, they are the main stakeholders of such a method. The goal
was to receive early feedback on the cornerstones of the methodology (e.g. the goals
of the method; keeping work-load below capacity; combining different measurement
dimensions; easy to understand representation of data), as well on limitations of the
method. The following feedback was given:

• The practitioners agree with the observation that the work-load should be below
the capacity. Being below capacity is good as this, according to the practitioners
experience, makes the development flow more steady. Furthermore, a lower ca-
pacity situation provides flexibility to fix problems in already released software
products or in handling customization requests.

• When introducing inventory measures at the company the issue of optimization
of measures was considered early on in the approach. For example, in order to re-
duce the level of inventory in requirements one could quickly write requirements

203

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

and hand them over to the next phase to achieve measurement goals. In conse-
quence, the company decided to consider inventories representing normal work
(requirements flow) as well as quality related inventories (number of faults, and
fault-slip-through). Furthermore, the company measures the number of requests
from customers to provide individual customizations to their systems, which is
an inventory representing extra work.

• The illustration of the data (capacity vs. load) in the form of radar charts was
perceived as easy to understand by the practitioners, due to the advantages men-
tioned earlier. That is, one can gain an insight of several inventories at the same
time, and observe how significant the deviation between capacity and load is.

The following limitation was observed by the practitioners: The method relies on
knowing the capacity of the development in comparison to the work-load. The prac-
titioners were worried that the capacity and work-load are hard to determine and are
not comparable. For example, there is a high variance in developer productivity. Even
though a team has N developers working X hours a day the real capacity is not equal
to N*X hours. Furthermore, the work-load needs to be estimated as, for example, in
terms of size of requirements. An estimation error would lead to an invalid analysis.

In summary, the practitioners perceived the method as useful in achieving a more
lean software process. Based on the static validation and further discussions with the
practitioners an implementation plan for the method was created (see Figure 7.9).

The first two steps are related to requirements inventories. The rational for starting
with requirements was that implemented requirements provide value to the customer
and thus are of highest priority in the implementation of SPI-LEAM.

The first step of the implementation plan is the creation of a web-platform to capture
the requirements flow. The platform lists the requirements in each phase and allows
the practitioners to move requirements between phases. When a requirement is moved
from one phase to another the date of the movement is registered. Thus, the inventory
level at any point in time for each phase of development can be determined.

The second step is the analysis of the requirements level by measuring the number
of requirements in different phases. Complementarity to the inventory levels the data is
also the basis to conduct analysis to get further insights into how requirements evolve
during the development life-cycle. Cumulative flow diagrams were used to visualize
the flow and throughput of development. In addition, the time requirements stayed in
different phases were illustrated in the form of box-plots. The first and second steps
have been completed and preliminary data collected in these step is presented in Section
7.4.2.

In the third step the number of faults is measured in a similar manner as the re-
quirements flow. The company captures the flow of fixing the faults (e.g. number of

204

Inventory 1: Requirements (Status: Completed)
• Flow of requirements, Cumulative Flow Diagrams

Inventory 2: Faults
• Apply SPI-LEAM requirements concept on Maintenance /

internal (Project) flow of reported faults

Inventory 3 and 4: Fault Slip Through

and Test Cases
• Inventories for testing activities

• Show Relation between test input and efficiency

Inventory 5: PC Flow

• Number of PCs to be implemented

Platform for Req. Flow
• Capture Inventories and present in database

• Remove existing documentation

•Transparancy of status for each requirement

6

2

5

4

3

1

Dashboard

• Integrate Inventories (Holistic View)

Figure 7.9: Implementation Steps of SPI-LEAM

faults registered, in analysis, implementation, testing, and regression testing). With this
information one can calculate the number of requirements in different phases and con-
struct cumulative flow diagrams as well. The flow of fixing faults is separated between
internal (faults discovered by tests run by the company) and external (faults reported
by the customer).

The fourth step in the staircase is concerned with measuring the number of test
cases and the fault-slip through. An analysis for a combination of these inventories is
shown in Figure 7.7.

The fifth step measures the number customization requests by customers. The de-
velopment of customization follows an own flow which can be analyzed in-depth in a
similar fashion as the flow of requirements (Step 2) and faults (Step 3).

In the last (sixth) step a dashboard is created which integrates the analysis of the
individual inventory measurements on a high level (i.e. capacity vs. actual level of
inventory) in form of a radar chart. To conduct an in-depth analysis a drill-down is
possible. For example, if the inventory for requirements is high then one can investigate
the requirements flow in more detail.

205

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

7.4.2 Preliminary Data

The requirements inventory was measured for a large-scale telecommunication prod-
uct developed at Ericsson AB. The product was written in C++ and Java and consisted
of over five million lines of code (LOC). Figure 7.10 shows an individual and mov-
ing range (I-MR) chart for the inventory of requirements in implementation (design,
coding, and testing) over time. Due to confidentiality reasons no actual values can be
reported. The continuous line in the figure shows the mean value while the dashed lines
show the lower and upper control limits. The upper and lower control limits are +/−
two or three standard deviations away from the mean. A value that is outside the con-
trol limits indicates an instability of the process. The graph on the top of Figure 7.10
shows the individual values, while the graph on the bottom shows the moving range.
The moving range is calculated as MR = |Xi−Xi−1|, i.e. it shows the size of the change
in X between data point i and data point i−1.

The figure for the individual values shows a large area of data points outside the
upper control limit. In this time period the data indicates a very high inventory level.
When presenting the inventory data to a development unit the participants of the unit
confirmed that development was fully utilized and people felt overloaded. This also
meant that no other activity (e.g. refactoring) did take place besides the main product
development. The opposite can be observed on the right-hand side of the figure where
the data points are below the control limit. In this situation most of the requirements
passed testing and were ready for release, which meant that the development teams
idled from a main product development perspective. This time was used to solely con-
centrate on activities such as refactoring. To determine the capacity of development
(and with that acceptable inventory levels) we believe it is a good and practical ap-
proach to visualize the inventories and discuss at which times the development teams
felt overloaded or underloaded.

It is also interesting to look at the figure showing the moving range. A large differ-
ence between two data-points is an indication for batch-behavior, meaning that many
requirements are handed over at once. Large hand-overs also constitute a risk of an
overload-situation. From a lean perspective one should aim at having a continuous
and steady flow of requirements into the development, and at the same time delivering
tested requirements continuously.

Collecting inventory data in a continuous manner also enables the use of other lean
analysis tools, such as cumulative flow diagrams [32, 1]. They allow to analyze the re-
quirements flow in more detail with respect to throughput and cycle times. The graph
in Figure 7.11 shows a cumulative flow diagram which is based on the same data as
the control charts. The top line represents the total number of requirements in develop-
ment. The line below that shows the number of requirements that have been detailed

206

and handed over to implementation. The next line shows the number of requirements
handed over to node test, and so forth. The difference between two lines at a certain
point in time shows the inventory. The lines themselves represent hand-overs.

Observation

In
d
iv
id
u
a
l
V
a
lu
e

Observation

M
o
v
in
g
 R
a
n
g
e

1

1
1

1
1

1
11

1
1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

Figure 7.10: Inventory of Requirements in Implementation over Time (Observation =
Time)

Cumulative flow diagrams provides further information about the development flow
that can be used complementary to the analysis of inventory levels shown in Figure
7.10. The cumulative flow diagram shows velocity/throughput (i.e. the number of
requirements handed over per time unit). Additionally it provides information about
lead-times (e.g. the majority of the requirements is handed over to the release after
2/3 of the overall development time has passed). The batch behavior from the moving
range graph can also be found in the cumulative flow diagram (e.g. large hand-over
from node-test to system test in the middle of the time-line). A detailed account of
measures related to development flow and the use of cumulative flow diagrams in the
software engineering context can be found in Chapter 8.

207

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

All CS

Time

C
u

m
l.

 N
o

.
o

f
R

e
q

.

Req.

Des./Impl.

Node Test

Sys.-Test

Release

Delivery

Figure 7.11: Cumulative Flow Diagram

7.4.3 Improvements Towards Lean
Based on the observations from measuring the requirements flow the company sug-
gested a number of improvements to arrive at a more lean process. Two examples are
provided in the following:

• From Push to Pull: A reason for the overload situation is that the requirements
are pushed into development by allocating time-slots far ahead. Due to the analy-
ses the desire is to change to a pull-approach. This should be realized by creating
a buffer of prioritized requirements ready for implementation from which the de-
velopment teams can pull. Thereby, the teams get more control of the work-load
which is expected to help them in delivering in a more continuous manner.

• Intermediate Release Versions: Before having the final delivery of the software
system with agreed scope intermediate releases should be established that that
have the quality to be potentially released to the customer. Thereby the company
wants to achieve to 1) have high quality early in development, and 2) have a
motivator to test and integrate earlier.

It is important to emphasize that only a part of SPI-LEAM has been implemented
so far. A more holistic analysis will be possible when having the other inventory mea-
surements available as well. One interesting analysis would be to plot all inventories in
graphs such as the ones presented in Figures 7.10 and 7.11 and have a look at them to-
gether. For example, an overload in the requirements flow would explain a slow-down

208

in the maintenance activities.

7.5 Discussion

7.5.1 Comparison with Related Work
A comparison with the related work allows to make two observations which indicate
the usefulness of SPI-LEAM as an extension over existing measurements in the lean
context.

First, Morgan and Liker [24] identified a mapping between root causes and waste.
An interesting implication is that the occurrence of waste in fact points to the absence
of lean practices. In consequence SPI-LEAM is a good starting point to identify wastes
in development continuously. Based on the results provided by SPI-LEAM an unde-
sired behavior of the development becomes visible and can be further investigated with
techniques such as root cause analysis. This can be used as a motivation for manage-
ment to focus on the implementation of lean practices. The transparency of the actual
situation can also provide insights helping to overcome hindering factors, such as the
ones reported in [18].

Secondly, Oppenheim [26] pointed out that it is important to not only focus on
speeding up the development to achieve better cycle times for the expense of quality.
To reduce this risk we proposed to provide inventory measurements that can be used
to evaluate cycle times and throughput (see cumulative flow diagrams) and inventories
related to quality together (flow of fixing faults). If, for example, cycle time is short-
ened by reducing testing this will show positively in the cycle time, but negatively in
the fault-slip-through and the number of faults reported by the customers.

7.5.2 Practical Implications
The flexibility of the method makes it usable in different contexts. That is, the method
allows companies to choose inventories that are relevant for their specific needs. Though,
the only restriction is that at least one inventories should be considered that represents
the quality dimension. The risk of optimizing measures on the cost of quality is thereby
reduced. In addition, we presented different alternatives of analysis approaches (hard
systems, soft systems, evolutionary systems) that companies can use to predict the ef-
fect of improvement actions.

Criticism was raised regarding the determination of capacity/work-load by the prac-
titioners. In order to determine the right work-load, simulation can be used, in partic-
ular queuing networks and discrete event simulation (a theoretical description can be

209

Chapter 7. Software Process Improvement through the Lean Measurement
(SPI-LEAM) Method

found in [5, 6]). An example of the application of discrete event simulation with queu-
ing networks to determine bottlenecks in the software engineering context is shown
in [16]. As mentioned earlier, there are also alternative approaches that can be used
which are easier and faster to realize (see description of soft systems in Section 7.3.3).
Another approach is to plot inventory levels based on historical data and have a dialog
with development teams and managers about the workload situation over time.

The practitioners also perceived the analysis and prediction of the effect of im-
provement actions (as shown in Figure 7.8) as theoretical, making them feel that the
method might not be practical. However, this was due to the way of illustrating the
movement between states as a directed graph. In practice, one would provide a view
of the inventory levels over time illustrating them as a control chart/cumulative flow
diagram as shown in Section 7.4.2. Doing so allowed the practitioners to identify a
departure from lean practices. For example, the cumulative flow diagram derived from
the inventory data showed that the system was not built in small and continuous in-
crements. This observation helped to raise the need for a more continuous flow of
development and led the company to take actions accordingly (see Section 7.4.3). In
other words, SPI-LEAM provides facts that allow a stronger position when arguing
why specific practices should receive more attention.

Considering the feedback from industry on the method it seems a promising new
approach to continuously improve software processes to become more lean. As the
method is an instantiation of the QIP one can leverage of the benefits connected to that
paradigm (e.g. having a learning organization due to keeping track of the experiences
made, see last step in Figure 7.1).

7.5.3 Research Implications
The related work shows that lean software engineering has been evaluated as a whole,
i.e. it is not clear which tools have been applied. Furthermore, the benefit of single
tools from the lean tool-box have not been evaluated so far to learn about their benefits
in software engineering contexts. Such applications also show how the methods have to
be tailored (see, for example, capacity discussion in Section 7.5.2). In general there are
only few studies in software engineering and more studies are needed which describe
the context in detail in which lean was applied, as well as how lean was implemented
in the companies.

Concerning SPI-LEAM, there is a need to evaluate what kind of improvement deci-
sions are proposed and implemented based on the measurement results derived by the
method. This has to be followed up in the long run to see whether continuous improve-
ments will be achieved in terms of making the software process more lean. In addition,
SPI-LEAM has to be applied in different contexts to learn what kind of inventories

210

are the most relevant in specific contexts. For example, how does SPI-LEAM differ
between different agile processes (SCRUM or eXtreme Programming) and different
complexities (large products with many development teams vs. small products with
few development teams).

In conclusion, we see a high potential of lean practices improving software engi-
neering. However, there is very little work done in this area so far.

7.6 Conclusion

This paper presents a novel method called Software Process Improvement through
Lean Measurement (SPI-LEAM). The goals of the method are to 1) enable continu-
ous software process improvement leading to a lean software process; and 2) avoid
problems related to resistance of change by improving in a continuous manner. The
method combines the quality improvement paradigm with lean measurements.

The method is based on measuring inventories representing different dimensions of
software development (normal development work, extra work, and software quality).
It was exemplified how the method is used. Feedback from industry and the discussion
of the method leads to the following conclusions:

• SPI-LEAM is flexible as it allows companies to choose inventories and analysis
methods fitting their needs in the best way. Thus, the method should be applica-
ble in many different contexts.

• The practitioners who reflected on the method agreed on how we approached
the problem. They, for example, observed that the inventories should be below
the capacity level. Furthermore, they agreed on the need to conduct a combined
analysis of inventories to have a complete view of the current situation. That is,
the risk of optimizing measures is drastically reduced.

In future work the impact of the method on software process improvement activ-
ities is needed. The method focused on the overall process life-cycle. However, the
ideas could be useful for a team working on a specific development task, such as the
visualization of throughput for a single team, and a measure of cycle-time. This allows
each team to determine its own capability level. Furthermore, the analysis of related
work showed that generally more research on lean tools is needed.

211

REFERENCES

7.7 References
[1] David Anderson. Agile management for software engineering: applying the the-

ory of constraints for business results. Prentice Hall, 2003.

[2] Victor R. Basili. Quantitative evaluation of software methodology. Technical
report, University of Maryland TR-1519, 1985.

[3] Victor R. Basili. The experience factory and its relationship to other quality ap-
proaches. Advances in Computers, 41:65–82, 1995.

[4] Victor R. Basili and Scott Green. Software process evolution at the sel. IEEE
Software, 11(4):58–66, 1994.

[5] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S. Trivedi. Queu-
ing networks and Markov chains: modeling and performance evaluation with
computer science applications. Wiley, Hoboken, N.J., 2. ed. edition, 2006.

[6] Christos G. Cassandras and Stéphane Lafortune. Introduction to discrete event
systems. Kluwer Academic, Boston, 1999.

[7] Çigdem Gencel and Onur Demirörs. Functional size measurement revisited. ACM
Transactions on Software Engineering and Methodology, 17(3), 2008.

[8] CMMI-Product-Team. Capability maturity model integration for development,
version 1.2. Technical report, CMU/SEI-2006-TR-008, 2006.

[9] Dan Cumbo, Earl Kline, and Matthew S. Bumgardner. Benchmarking perfor-
mance measurement and lean manufacturing in the rough mill. Forest Products
Journal, 56(6):25 – 30, 2006.

[10] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-through - a con-
cept for measuring the efficiency of the test process. Software Process: Improve-
ment and Practice, 11(1):47–59, 2006.

[11] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. A model for software rework
reduction through a combination of anomaly metrics. Journal of Systems and
Software, 81(11):1968–1982, 2008.

[12] Paolo Donzelli and Giuseppe Iazeolla. Hybrid simulation modelling of the soft-
ware process. Journal of Systems and Software, 59(3):227–235, 2001.

[13] John P. Van Gigch. System design modeling and metamodeling. Plenum Press,
New York, 1991.

212

[14] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for technol-
ogy transfer in practice. IEEE Software, 23(6):88–95, 2006.

[15] Tony Gorschek and Claes Wohlin. Requirements abstraction model. Requir. Eng.,
11(1):79–101, 2006.

[16] Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, and Chris-
tian Nyberg. Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation. Journal of Systems and Software,
59(3):323–332, 2001.

[17] Capers Jones. Applied software measurement: assuring productivity and quality.
McGraw-Hill, New York, 1997.

[18] Christer Karlsson and Par Ahlströhm. The difficult path to lean product develop-
ment. Journal of Product Innovation Management, 13(4):283–295, 2009.

[19] Mikael Lindvall and Kristian Sandahl. Traceability aspects of impact analysis in
object-oriented systems. Journal of Software Maintenance, 10(1):37–57, 1998.

[20] Andrea De Lucia, Eugenio Pompella, and Silvio Stefanucci. Assessing effort esti-
mation models for corrective maintenance through empirical studies. Information
& Software Technology, 47(1):3–15, 2005.

[21] Brian Maskell and Bruce Baggaley. Practical lean accounting: a proven system
for measuring and managing the lean enterprise. Productivity Press, 2004.

[22] Peter Middleton. Lean software development: two case studies. Software Quality
Journal, 9(4):241–252, 2001.

[23] Peter Middleton, Amy Flaxel, and Ammon Cookson. Lean software management
case study: Timberline inc. In Proceedings of the 6th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP 2005),
pages 1–9, 2005.

[24] James M. Morgan and Jeffrey K Liker. The Toyota product development system:
integrating people, process, and technology. Productivity Press, New York, 2006.

[25] Thane Morgan. Lean manufacturing techniques applied to software development.
Master’s thesis, Master Thesis at Massachusetts Institute of Technology, April
1998.

213

REFERENCES

[26] Bohdan W. Oppenheim. Lean product development flow. Systems Engineering,
7(4):352–376, 2004.

[27] Emma Parnell-Klabo. Introducing lean principles with agile practices at a fortune
500 company. In Proceedings of the AGILE Conference (AGILE 2006), pages
232–242, 2006.

[28] Richard T. Pascale. Managing on the edge: how the smartest companies use
conflict to stay ahead. Simon and Schuster, New York, 1990.

[29] G.I.U.S. Perera and M.S.D. Fernando. Enhanced agile software development hy-
brid paradigm with lean practice. In Proceedings of the International Conference
on Industrial and Information Systems (ICIIS 2007), pages 239–244, 2007.

[30] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale
development - state of the art vs. industrial case study. In Proceedings of the 10th
International Conference on Product Focused Software Development and Process
Improvement (PROFES 2009), pages 386-400, 2009.

[31] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley Professional, 2003.

[32] Donald G Reinertsen. Managing the design factory: a product developers toolkit.
Free, New York, 1997.

[33] Shigeo Shingo. Study of Toyota production system from the industrial engineering
viewpoint. Japanese Management Association, 1981.

[34] James P. Womack and Daniel T. Jones. Lean thinking: banish waste and create
wealth in your corporation. Free Press Business, London, 2003.

[35] Xiaochun Zhu, Bo Zhou, Li Hou, Junbo Chen, and Lu Chen. An experience-
based approach for test execution effort estimation. In Proceedings of the 9th
International Conference for Young Computer Scientists (ICYCS 2008), pages
1193 – 1198, 2008.

214

Chapter 8

Measuring the Flow of Lean
Software Development

Kai Petersen and Claes Wohlin
Software: Practice and Experience, in print

8.1 Introduction

Agile software development aims at being highly focused and responsive to the needs
of the customer [16, 3]. To achieve this practices like on-site customer and frequent
releases to customers can be found in all agile practices. Agile practices can be fur-
ther enhanced by adopting practices from lean manufacturing. Lean manufacturing
focuses on (1) the removal of waste in the manufacturing process; and (2) analyzing
the flow of material through the manufacturing process (cf. [4, 36, 27]). Both aid the
responsiveness to customer needs that agile seeks to achieve. Firstly, removing waste
(everything that does not contribute to customer value) frees resources that can be fo-
cused an value-adding activities. Secondly, analyzing the flow of development aids in
evaluating progress and identifying bottlenecks.

For the removal of waste and the improvement of the flow it is important to under-
stand the current status in terms of waste and flow, which is supported by visualizing
and measuring it. Improving the flow means shorter lead-times and thus timely deliver
of value to the customer. In manufacturing cumulative flow diagrams have been pro-

215

Chapter 8. Measuring the Flow of Lean Software Development

posed to visualize the flow of material through the process [29]. Such a flow diagram
shows the cumulative number of material in each phase of the manufacturing process.
To the best of our knowledge, only one source has proposed to analyze the flow of
software development through flow-diagrams by counting customer-valued functions
[1]. However, the usefulness of cumulative flow diagrams has not yet been empirically
evaluated.

The novel contributions of this paper are: (1) The definition of measures to assess
the flow of lean software development with the goals of increasing throughput and cre-
ating the transparency of the current status of product development; (2) The evaluation
of the visualization combined with the proposed measures in an industrial context.

The case studied was Ericsson AB in Sweden. The units of analysis were nine
sub-systems developed at the case company. The structure of the case study design
was strongly inspired by the guidelines provided in Yin [37] and Runeson and Höst
[31]. The data collection started recently and therefore cannot be used to see long-term
trends in the results of the measurements. Though, the case study was already able to
illustrate how the measures could influence decision making, and how the measures
could be used to drive the improvement of the development flow.

The following measures were defined:

• A measure to detect bottlenecks.

• A measure to detect how continuous the requirements flow through the develop-
ment process.

• A cost-model separating investment, work done, and waste.

The evaluation of the model showed that practitioners found the model easy to
use. They agreed on its usefulness in influencing their management decisions (e.g.
when prioritizing requirements or assigning people to tasks). Furthermore, different
managers integrated the measures quickly in their work-practice (e.g. using the mea-
surement results in their status meetings). However, the quantification of the software
process improvements that can be achieved with the model can only be evaluated when
collecting the data over a longer period of time.

The remainder of the paper is structured as follows: Section 8.2 presents related
work. Thereafter, Section 8.3 provides a brief overview of cumulative flow diagrams
for visualizing the flow as well as the measures identifying bottlenecks, continuity
of the requirements flow, and cost distribution. Section 8.4 illustrates the research
method used, including a description of the case, a description of how the measures
were evaluated, and an analysis of validity threats. The results are presented in Section
8.5, including the application of the measures on the industrial data, and the evaluation

216

of usefulness of the measures. The practical and research implications are discussed in
Section 8.6. Section 8.7 concludes the paper.

8.2 Related Work
The related work covers three parts. First, studies evaluating lean software develop-
ment empirically are presented. Secondly, measures are presented which are used in
manufacturing to support and improve lean production. These are used to compare
the measures defined within this case study with measures used in manufacturing, dis-
cussing the difference due to the software engineering context (see Section 8.6.3). The
third part presents literature proposing lean measures in a software engineering context.

8.2.1 Lean in Software Engineering
The software engineering community became largely aware of lean principles and prac-
tices in software engineering through Poppendieck and Poppendieck [27] who illus-
trated how many of the lean principles and practices can be used in a software en-
gineering context. Lean software development shares principles with agile regarding
people management and leadership, the focus on quality and technical excellence, and
the focus on frequent and fast delivery of value to the customer. What distinguishes
lean from agile is the focus on the end to end perspective of the whole value flow
through development, i.e. from very early concepts and ideas to delivery of software
features. To support the end to end focus lean proposed a number of tools to analyze
and improve the value flow, such as value stream mapping [21], inventory management
[1], and pull systems such as Kanban [12]. Value stream mapping visualizes the devel-
opment life-cycle showing processing times and waiting times. Inventory management
aims at limiting the work in process as partially done work does not provide value.
Methods to support inventory management are theory of constraints [1] and queuing
theory [14]. Push systems allocate time for requirements far ahead and often overload
the development process with work. In contrast pull systems allow software teams to
take on new tasks whenever they have free capacity. If possible, high priority tasks
should be taken first.

Middleton [18] conducted two industrial case studies on lean implementation in
software engineering, and the research method used was action research. The company
allocated resources of developers working in two different teams, one with experienced
developers (case A) and one with less experienced developers (case B). The practition-
ers responded that initially the work was frustrating as errors became visible almost
immediately and were to be fixed right away. In the long run though the number of

217

Chapter 8. Measuring the Flow of Lean Software Development

errors dropped dramatically. However, after using the lean method the teams were not
able to sustain it due to organizational hierarchy, traditional promotion patterns, and
the fear of forcing errors into the open.

Another case study by Middleton et al. [19] studied a company practicing lean in
their daily work for two years. They found that the company had many steps in the
process not adding value. A survey among people in the company showed that the
majority supported lean ideas and thought they can be applied to software engineering.
Only a minority (10 %) was not convinced of the benefits of lean software develop-
ment. Statistics collected at the company showed a 25 % gain in productivity, schedule
slippage was reduced to 4 weeks from previously months or years, and time for defect
fixing was reduced by 65 % - 80 %. The customer response on the product released
using lean development was overwhelmingly positive.

Perera and Fernando [24] compared an agile process with a hybrid process of agile
and lean in an experiment involving ten student projects. One half of the projects
was used as a control group applying agile processes. A detailed description of how
the processes differed and which practices were actually used was not provided. The
outcome was that the hybrid approach produced more lines of code and thus was more
productive. Regarding quality, early in development more defects were discovered with
the hybrid process, but the opposite trend was found in later phases, which confirms
the findings in [18].

Parnell-Klabo [22] followed the introduction of lean and documented lessons learned
from the introduction. The major obstacles were to obtain open office space to locate
teams together, gain executive support, and training and informing people to reduce
resistance of change. After successfully changing with the help of training workshops
and the use of pilot projects positive results were obtained. The lead-time for delivery
was decreased by 40% - 50%. Besides having training workshops and pilots and sit-
ting together in open office-landscapes, having good measures to quantify the benefits
of improvements are key.

Overall, the results show that lean principles may be beneficial in a software en-
gineering context. Thus, further evaluation of lean principles is needed to understand
how they affect the performance of the software process. Though, the studies did not
provide details on which lean principles and tools were used, and how they were im-
plemented. None of the studies focused on evaluating specific methods or principles of
the lean tool-box. However, in order to understand how specific principles and meth-
ods from lean manufacturing are beneficial in software engineering, they have to be
tailored and evaluated. This case study makes a contribution by implementing cumula-
tive flow diagrams in industry, defining measures to analyze the development flow, and
evaluating the cumulative flow diagrams and defined measures.

218

8.2.2 Lean Performance Measures in Manufacturing
A number of lean process measures have been proposed for manufacturing. Maskell
and Baggaley [17] summarize performance measures for lean manufacturing. As this
paper is related to measuring the flow of development we focus the related work on
measurement of throughput:

• Day-by-the-Hour (DbtH): Manufacturing should deliver at the rate the customers
demand products. This rate is referred to as takt-time. The measure is calculated
as

DbtH =
#quantity

#hours
(8.1)

where the quantity is the number of items produced in a day, and the hours the
number of hours worked to produce the units. The rate should be equal to the
takt-rate of demand.

• Capacity utilization (CU): The work in process (WIP) is compared to the capac-
ity (C) of the process. CU is calculated as:

CU =
WIP

C
(8.2)

If CU > 1 then the work-load is too high, and if CU < 1 then the work-load is
too low. A value of 1 is ideal.

• On-time-delivery (OTD): Delivery precision is determined by looking at the
number of late deliveries in relation to the total deliveries ordered:

OT D =
#late deliveries

#deliveries ordered
(8.3)

8.2.3 Lean Performance Measures in Software Engineering
Anderson [1] presents the measures cost efficiency and value efficiency, as well as
descriptive statistics to analyze the flow in software development. From a financial
(accounting) perspective he emphasizes that a cost perspective is not sufficient as cost
accounting assumes that value is always created by investment. However, this ignores
that cost could be waste and does not contribute to the value creation for the customer.
In contrast to this throughput accounting is more sufficient to measure performance as
it explicitly considers value creation.

In cost accounting one calculates the cost efficiency (CE) as the number of units de-
livered (LOC) divided by the input person hours (PH). Though, this assumes that there

219

Chapter 8. Measuring the Flow of Lean Software Development

is a linear relationship between input and output, meaning that the input is invariable
[1]. However, developers are not machines as they are knowledge workers. Therefore,
this equation is considered insufficient for software production.

CE =
∆LOC

PH
(8.4)

Therefore, the value created over time is more interesting from a lean perspective,
referred to as value efficiency (VE). It is calculated as the difference of the value of
output Vout put and value of input Vinput within the time-window ∆t (see Equation 8.5)
[1]. The input Vinput represents the investment to be made to obtain the unit of input to
be transformed in the development process, the value Vout put represents the value of the
transformed input, i.e. final product. Furthermore, Vinput considers investment in tools
and equipment for development.

V E =
Vout put −Vinput

∆t
(8.5)

In addition to throughput accounting Anderson [1] presents descriptive statistics to
evaluate lean performance. Plotting the cumulative number of items in inventory in
different phases helps determining whether there is a continuous flow of the inventory.
How to implement and use this technique as a way to determine process performance
in incremental development is shown in the next section.

8.3 Visualization and Measures
This section presents our solution for measuring the flow of lean software development
based on cumulative flow diagrams. First, cumulative flow diagrams are introduced
and thereafter the measures quantifying the diagrams are presented.

8.3.1 Visualization with Cumulative Flow Diagrams
Cumulative flow diagrams show how many units of production travel through the man-
ufacturing process in a specific time window. In software engineering, it is of interest
to know how many requirements are processed in a specific time window for a specific
phase of development. A sketch of this is shown in Figure 8.1 with terms from the
studied organization.

The x-axis shows the time-line and the y-axis shows the cumulative number of
requirements having completed different phases of development. For example, the line
on the top represents the total number of requirements in development. The line below

220

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9

Weeks

C
u

m
l.
 N

o
.
o

f
R

e
q

.

Req. to be detailed

Req. in Design
Req. in Node Test

Req. in System Test

Req. ready for Release

Figure 8.1: Cumulative Flow Diagram for Software Engineering

that represents the total number of requirements for which detailed specification is
finished and that were handed over to the implementation phase. The area in between
those two lines is the number of incoming requirements to be detailed.

Looking at the number of requirements in different phases over time one can also
say that the lines represent the hand-overs from one phase to the other. For example,
in week six a number of incoming requirements is handed over to implementation,
increasing the number of requirements in implementation. If the implementation of the
requirement is finished, it is handed over to the node test (in this case in week 7). In
the end of the process the requirements are ready for release.

Inventory is defined as the number of requirements in a phase at a specific point in
time. Consequently, the difference of the number of requirements (R) in two phases (j
and j +1) represents the current inventory level at a specific point in time (t), as shown
by the vertical arrows in week 8 in Figure 8.1. That is, the inventory of phase j (I j) in
a specific point in time t is calculated as:

221

Chapter 8. Measuring the Flow of Lean Software Development

I j,t = R j,t −R j+1,t (8.6)

8.3.2 Measures in Flow Diagrams

The flow diagrams were analyzed with the aim of arriving at useful performance mea-
sures to increase throughput. Before presenting the actual measurement solution we
show how we constructed the measures with the aid of the GQM approach [2]. The
GQM approach follows a top-down strategy. First, goals were defined which should be
achieved. Thereafter, questions were formulated that have to be answered to achieve
the goals. In the last step, the measures were identified that need to be collected in
order to answer the question. The GQM was executed as follows:

1. The company drove the analysis by identifying the goals to improve throughput
in order to reduce lead-time and improve the responsiveness to customer needs.

2. Based on the goals the two authors of the paper individually derived questions
and measures considering the goal and having the data of the cumulative flow
graphs available. Thereafter, the authors discussed their measures and agreed on
the questions and measurements to present to the case company. Both authors
identified similar measures.

3. The measures as well as the results of their application were presented to an
analysis team responsible for implementing lean measurement at the company.
In the meeting with the analysis team the measures were discussed and feedback
was given on the measures in an open discussion (see Section 8.4.5). The recep-
tion among the practitioners regarding the cumulative flow diagrams was also
positive.

The goals identified in the first step were:
G1: increase throughput in order to reduce lead-times and improve responsiveness

to customers’ needs. Throughput is important due to dynamic markets and rapidly
changing customer requirements. This is specifically true in the case of the company
we studied. In consequence, started development work becomes obsolete if it is not
quickly delivered to the customer.

G2: show the current progress/status of software product development. Showing
the current status and progress of development in terms of flow allows management to
take corrective actions for improving the flow.

Related to these goals the following questions were used to identify the measures:

222

Q1: Which phase in the development flow is a bottleneck? A bottleneck is a sin-
gle constraint in the development process. Resolving this constraint can significantly
increase the overall throughput. Bottleneck detection allows to continuously improve
throughput by applying the following steps: (1) identify the constraint, (2) identify the
cause of the constraint, (3) remove the constraint, (4) go to step (1) [1].

Q2: How even is the workload distributed over time in specific phases? Workload
throughout the development life-cycle of the software development process should be
continuous. That means, one should avoid situations where requirements are handed
over between phases in large batches (see, for example, the hand-over in Figure 8.1
where a large batch is handed over in week seven from implementation to node test).
Large batches should be avoided for two main reasons. First, when having large batches
there has to be a time of little activity before the batch is handed over. That means,
defects introduced during that time are not detected immediately as they have to wait
for the hand-over to the next phase for detection. Defects that are discovered late after
their introduction are expensive to fix because investigating them is harder [27, 1].
Secondly, one would like to avoid situations where phases (e.g. requirements, coding,
or testing) are overloaded with work at one time, and under-loaded at another time.
As discussed in [19, 27, 25] early fault detection and a continuous work-load are an
integral part of lean as well as agile software development to assure the reduction of
waste, and quick responsiveness to customer needs.

Q3: Where can we save cost and take work-load off the development process? This
question connects directly to waste, showing in which part of the development life-
cycle waste has been produced. The focus of improvement activities should be on the
removal of the most significant type of waste.

We would like to point out that RQ1 and RQ2 are not the same thing from a the-
oretical perspective. It is possible to have a similar throughput of requirements in two
phases, but still one phase can deliver continuously while the other delivers in batches.
This is further discussed in Section 8.6.

Measures to Quantify Bottlenecks

The derivation of metrics is driven by the questions formulated before. For each ques-
tion (and by looking at the diagrams) we identified the measures.

Q1: Which phase in the development flow is a bottleneck? A bottleneck would exist
if requirements come into one phase (phase j) in a higher rate than they can be handed
over to the next phase (phase j + 1). In Figure 8.1 an example of a bottleneck can be
found. That is, the rate in which requirements are handed over from implementation to
node test seems to be higher than from node test to system test. This indicates that the
node test phase is a bottleneck. To quantify the bottleneck we propose linear regression

223

Chapter 8. Measuring the Flow of Lean Software Development

to measure the rate of requirements flow for each phase. Linear regression models
with two variables are used to predict values for two correlated variables. In our case
the variables are Weeks and Cumulative Number of Requirements. The linear function
represents the best fit to the observed data set. To determine the linear function the least
square method is commonly used [20]. Furthermore, when the linear regression model
is created, it can be observed that there is a difference between the actual observations
and the regression line, referred to as the estimation error ε. This leads to the following
formula:

y = f (x) = β0 +β1 ∗ x+ ε (8.7)

When conducting the actual prediction of the parameters, β0 and β1 are estimated
as those represent the linear regression function. For the analysis of the bottlenecks
the predicted variable β1 is important, representing the slope of the linear functions.
The measure for the bottleneck is thus defined as follows: If the slope of phase j
(slope is referred to as β j) is higher than the slope of the subsequent phases (β j+p) then
phase j is a bottleneck in the process. Though, it is important to note that the cause
of the bottleneck is not necessarily to be found in phase j. To show the results of the
measurement to management we propose to draw bar-plots of the slope which are well
suited to illustrate the severity of the difference between phases.

Example: Let’s assume a situation where the current inventory level of require-
ment in the specification phase S is 10 (IS = 10). The regression of the incoming
requirements of the last four weeks was βinc,S = 3, and for the outgoing requirements
βout,S = 1. This leads to the following functions over time (t = weeks) for incoming
and outgoing requirements: finc,S(t) = 3t + 10 and fout,S(t) = 1t + 10. If in the fol-
lowing four weeks the rates do not change then the inventory level (and with that work
in process) will almost double, as finc,S(4) = 22 and fout,S(4) = 14. This leads to a
new inventory level of IS = 18. Depending on the available capacity this might lead
to an overload situation indicating that actions have to be taken to avoid this rate of
increasing inventory.

Measures to Quantify Workload Distribution Over Time

Q2: How even is the workload distributed over time in specific phases? Examples
for an uneven work-flow can also be found in Figure 8.1. Continuous flow means
that the number of requirements handed over at different points in time varies. For
example, high numbers of requirements were handed over from incoming requirements
to implementation in weeks two to four and week five, while there is few hand-overs in
the remaining weeks. In comparison the variance of the flow of incoming requirements

224

is lower. In order to quantify how continuous the flow of development is we propose
to use the estimation error ε. The estimation error represents the variance around the
prediction line of the linear regression, i.e. the difference between the observed and
predicted values. The estimation error εi is calculated as follows:

εi = yi− ŷi (8.8)

For the analysis the mean estimation error is of interest. In the case of our mea-
surements i in the equation would be the week number. The estimation error should
also be plotted as bar-plots when shown to management as this illustrates the severity
of differences well.

Example: Let’s assume that the variance in hand-overs from the specification phase
to the development teams was very high in the last few month based on the average of
estimation errors ε. Hence, hand-overs come in batches (e.g. in one week 15 require-
ments are handed over, while in the previous weeks only 3 requirements were handed
over). High variances make the development harder to predict. In a perfectly even flow
all observed data points would be on the prediction line, which would only be the case
in a completely predictable environment.

Measures of Cost Related to Waste

Q3: Where can we save cost and take work-load off the development process? In order
to save costs the costs need to be broken down into different types. We propose to break
them down into investment (I), work done (WD), and waste (W) at a specific point in
time (i) and for a specific phase (j), which leads to the following equation:

Ci, j = Ii, j +WDi, j +Wi, j (8.9)

The components of the cost model are described as follows:

• Investment (I): Investment is ongoing work that will be delivered to the next
phase in the future (i.e. considered for upcoming increments to be released to
the market). As long as it is potentially delivered it will be treated as investment
in a specific phase j.

• Work done (WD): Work done is completed work in a phase, i.e. what has been
handed over from phase j to phase j +1.

• Waste (W): Waste is requirements that are discarded in phase j. That means work
has been done on them, but they are not further used in the future; i.e. they will
never make it into a release to customers.

225

Chapter 8. Measuring the Flow of Lean Software Development

An overview of a cost table for one specific point in time is shown in Table 8.1.
For each phase j at time i and type of cost (I, WD, and C) the number of requirements
is shown. At the bottom of the table the sums of the types of cost is calculated across
phases (j = 1, ...n).

Table 8.1: Costs
Phase (j) Investment (I) Work Done (WD) Waste (W) Cost (C)

j = 1 r1,I r1,WD r1,W r1,C
j = 2 r2,I r2,WD r2,W r2,C

...
...

...
...

...
j = n rn,I rn,WD rn,W rn,C

all ∑
n
j=1 r j,I ∑

n
j=1 r j,WD ∑

n
j=1 r jW ∑

n
j=1 r j,C

When analyzing a time-frame (e.g. month) the average waste for the time-frame
should be calculated. For example, if the points in time (i, . . . ,m) are weeks in a given
interval (i = 1 being the first week of the interval, and m being the last week) we
calculate the average across phases as:

Cavg,all =
∑

m
i=1 ∑

n
j=1 ri, j,I

m
+

∑
m
i=1 ∑

n
j=1 ri, j,WD

m
+

∑
m
i=1 ∑

n
j=1 ri, j,W

m
(8.10)

For an individual phase j we calculate:

Cavg, j =
∑

m
i=1 ri, j,I

m
+

∑
m
i=1 ri, j,WD

m
+

∑
m
i=1 ri, j,W

m
(8.11)

This summary allows to observe the average distribution of I, WD, and W within
the selected time-frame for the analysis. In order to present the data to management,
we propose to also calculate the percentages to show the distribution between types of
costs. Besides being a detector for waste, this information can be used as an indicator
for progress. If the investment is always much higher than the work-done in consecu-
tive phases that means that the investment is not transferred into a work-product for the
investigated phase(s).

Example: Let’s assume a cost distribution for the implementation phase of Cimp =
9+100+200. The distribution shows that few new requirements are available as input
for implementation phase (I = 9), and that implementation has completed most of the
work (WD = 100). Consequently there is a risk that the implementation phase does not

226

have enough input to work with in the future. Furthermore, the cost distribution shows
that the majority of the requirements was discarded (W = 200). For the requirements
and implementation phase this means that work done (requirements specification, re-
view, coding and unit testing) on the discarded requirements does not end up in the end
product. Too much of the cost is put on requirements that are never delivered and it
shows that actions have to be taken in the future to minimize these types of costs.

8.4 Research Method
Candidate research methods for our research questions were design science [13], ac-
tion research [32], and case study [9, 37]. Design science proposes that artifacts (in
this case measures) should be created and evaluated. One way to evaluate the artifacts
is case study. Hence, design science and case study complement each other. An alter-
native to case study is action research, also suitable to answer our research questions.
However, this would require the researcher to work with the teams and managers using
our proposed solution continuously which was not feasible. In consequence, the re-
search method used is an embedded case study allowing to observe and understand the
usefulness of the proposed solution. Embedded means that within the case (Ericsson)
different embedded units (the process flow for different sub-systems being developed)
were analyzed. The design of the case study is strongly inspired by the guidelines pro-
vided in Yin [37] and Runeson and Höst [31]. We used Yin’s guidelines in identifying
the case and the context, as well as the units of analysis. Yin provides an overview
of potential validity threats relevant for this case study and stresses the importance of
triangulation, i.e. to consult different data sources, such as documentation, quantitative
data and qualitative data from workshops, interviews, or observations.

8.4.1 Research Context
Ericsson AB is a leading and global company offering solutions in the area of telecom-
munication and multimedia. Such solutions include products for telecommunication
operators, multimedia solutions and network solutions. The company is ISO 9001:2000
certified. The market in which the company operates can be characterized as highly
dynamic with high innovation in products and solutions. The development model is
market-driven, meaning that the requirements are collected from a large base of poten-
tial end-customers without knowing exactly who the customer will be. Furthermore,
the market demands highly customized solutions, specifically due to differences in ser-
vices between countries. The following agile practices are used: continuous integra-
tion, internal and external releases, time-boxing with sprints, face-to-face interaction

227

Chapter 8. Measuring the Flow of Lean Software Development

(stand-up meetings, co-located teams), requirements prioritization with metaphors and
detailed requirements (digital product backlog), as well as refactoring and system im-
provements. Version control is handled with ClearCase [33] and TTCN3 [34] is used
for test automation. Documentation and faults are tracked in company proprietary
tools.

8.4.2 Case Description
The case being studied was Ericsson in Sweden and India. On a high level all systems
were developed following the same incremental process model illustrated in Figure 8.2.
The numbers in the figure are mapped to the following practices used in the process.

• Prioritized requirements stack (1) and anatomy plan (2): The company continu-
ously collects requirements from the market and prioritizes them based on their
importance (value to the customer) and requirements dependencies (anatomy
plan). Requirements highest in the priority list are selected and packaged to be
implemented by the development teams. Another criterion for packaging the
requirements is that they fit well together. The anatomy plan also results in a
number of baselines (called last system versions, LSV) and determines which
requirement packages should be included in different baselines.

• Small projects time line (3): The requirements packages are handed over to the
development projects implementing and unit testing the increments of the prod-
uct. The projects last approximately three months and the order in which they
are executed was determined in the previous two steps.

• Last system version (4): As soon as the increment is integrated into the sub-
system a new baseline is created (LSV). Only one baseline exists at one point in
time. The last version of the system is tested in predefined testing cycles and it is
defined which projects should be finished in which cycle. When the LSV phase
has verified that the sub-system works and passed the LSV test with the overall
system the sub-system is ready for release.

• Potential release (5): Not every potential release has to be shipped to the cus-
tomer. Though, the release should have sufficient quality to be possible to release
to customers.

Overall the process can be seen as a continuously running factory that collects,
implements, tests, and releases requirements as parts of increments. When a release
is delivered the factory continuous to work on the last system version by adding new

228

R1

R2

R3

R4

R5

 Anatomy Plan

 Prioritized
Requirement Stack

Time

SP1

SP2
SP3

SP4

 Small Project Time-Line

 LSV
LSV Test LSV Test LSV Test

 Potential Release

Figure 8.2: Incremental Process Model

increments to it. The sub-systems used for illustration in the paper have been around
for more than five years and have been parts of several major releases to the market.

8.4.3 Units of Analysis
In total the flow of nine sub-systems developed at the case company were analyzed
with the flow diagrams, each sub-system representing a unit of analysis. Two of the
sub-systems are presented in this paper representing different patterns. The difference
in flows helps (1) to identify patterns that are worthwhile to capture in the measures;
and (2) to derive more general measures that can be applied to a variety of flows. In
addition to the two individual sub-systems we conducted a combined analysis of all
nine sub-systems studied at the case company. The sub-systems have been part of the
system for more than five years and had six releases after 2005. The sub-systems vary
in complexity and the number of people involved in their development.

1. Unit A: The sub-system was developed in Java and C++. The size of the system

229

Chapter 8. Measuring the Flow of Lean Software Development

was approximately 400,000 LOC, not counting third party libraries.

2. Unit B: The sub-system was developed in Java and C++, the total number of
LOC without third party libraries was 300,000.

The nine sub-systems together had more than 5,000,000 LOC. The development
sites at which the sub-systems were developed count more than 500 employees di-
rectly involved in development (including requirements engineering, design, and de-
velopment) as well as administration and configuration management.

8.4.4 Research Questions

We present the research questions to be answered in this study, as well as a motivation
why each question is of relevance to the software engineering community.

• Research question 1 (RQ1): Which measures aid in (1) increasing throughput
to reduce lead-times, and (2) as a means for tracking the progress of develop-
ment? The aim is to arrive at measures that are generally applicable and suitable
to increase throughput and track the progress of development. As argued before,
throughput and lead-times are highly important as customer needs change fre-
quently, and hence have to be addressed in a timely manner. Thus, being able
to respond quickly to customer needs is a competitive advantage. In addition
knowing the progress and current status of complex software product develop-
ment should help to take corrective actions when needed, and identify the need
for improvements.

• Research question 2 (RQ2): How useful are the visualization and the derived
measures from an industrial perspective? There is a need to evaluate the vi-
sualization (cumulative flow diagrams) and the measures in industry to provide
evidence for their usefulness. For this purpose the following sub-questions are
addressed in the evaluation part of this study:

– Research question 2.1: How do the visualization/measures affect decision
making?

– Research question 2.2: What improvement actions in the development pro-
cesses do practitioners identify based on the visualization and measures?

– Research question 2.3: How should the visualization and the measures be
improved for practical use?

230

8.4.5 Data Collection
Collection of Data for Visualization and Measurements

The current status (i.e. the phase in which the requirements resides) was maintained in
a database. Whenever the decision was taken to move a requirement from one phase
to the next this was documented by a time-stamp (date). With this information the
inventory (number of requirements in a specific phase at any point in time) could be
calculated.

After the initial data entry documenting the current status of requirements the main
author and the practitioners reviewed the data for accuracy and made updates to the
data when needed. From thereon the practitioners updated the data continuously keep-
ing it up-to-date. To assure that the data was updated on a regular basis, we selected
practitioners requiring the status information of requirements in their daily work and
who were interested in the visualization results (cumulative flow diagrams) and mea-
surements. The following five inventories were measured in this study:

• Number of incoming requirements: In this phase the high level requirements
from the prioritization activity (see practice 1 in Figure 8.2) have to be detailed
to be suitable as input for the design and implementation phase.

• Number of requirements in design: Requirements in this phase need to be de-
signed and coded. Unit testing takes place as well. This inventory represents
the requirements to be worked on by the development teams, corresponding to
practice 3 in Figure 8.2. After the requirements are implemented they are handed
over to the LSV test for system testing.

• Number of requirements in LSV test (node and system): These inventories mea-
sure the number of requirements that have to be tested in the LSV. The LSV
test is done in two steps, namely node LSV (testing the isolated sub-system) and
system LSV (testing the integration of sub-systems) measured as two separate in-
ventories. When the LSV test has been passed the requirements are handed over
to the release project. This inventory corresponds to practice 4 in the process
shown in Figure 8.2.

• Number of requirements available for release: This inventory represents the
number of requirements that are ready to be released to the customer. It is impor-
tant to mention that the requirements can be potentially released to the customer,
but they do not have to (see Practice 5 in Figure 8.2). After the requirements
have been released they are no longer in the inventories that represent ongoing
work.

231

Chapter 8. Measuring the Flow of Lean Software Development

Only ongoing work was considered in the analysis. As soon as the requirements
were released they were removed from the diagrams. The reason is that otherwise the
number of requirements would grow continuously, making the diagrams more or less
unreadable and harder to compare over time.

Collection of Qualitative Data on Usefulness of Visualization and Measures

The result of the evaluation answered research question 2, including the two sub-
questions to be answered (research question 2.1 and 2.2).

Research question 2.1: In order to answer research question 2.1 a workshop was
conducted by an external facilitator (a consulting company represented by three consul-
tants running the workshop), where the researcher acted as a participant and observer
in the workshop. In addition to identifying the effect of the measures on the decision
making in the company, the workshop was also used to reflect on possible improve-
ments and measures complementary to the ones identified in this study. During the
workshop the participants first noted down the roles that are affected by the measures.
Those were clustered on a pin-board and the roles were discussed to make sure that
everyone had the same understanding of the responsibilities attached to the identified
roles. Thereafter, each participant noted down several effects that the measures have
on the decision makers. The effects were discussed openly in the workshop. The re-
searcher took notes during the workshop. In addition to that the external facilitator
provided protocols of the workshop session.

Research question 2.2 and 2.3: These research questions were answered by partic-
ipating in regular analysis meetings run by the company once or twice a month. The
purpose of these meetings was to reflect on the usefulness of the measures as well as
on the actual results obtained when measuring the flow of the company. During the
meetings it was discussed (1) how the measurement results can be interpreted and im-
proved, and (2) what improvement actions can be taken based on the measurement
results. The researcher took an active part in these discussions and documented the
discussions during the meetings.

The roles participating in the workshop and the meetings were the same. The par-
ticipants of the meeting and workshop all had management roles. An overview of the
roles, and the number of participants filling out each roles are shown in Table 8.2.
The criteria for selecting the participants of the workshop and meetings were (1) good
knowledge of the processes of the company, and (2) coverage of different departments
and thus disciplines (i.e. requirements, testing, and development).

232

Table 8.2: Roles
Role Description No. of Persons

Process Improvement Driver Initiate and Monitor SPI activities 2
Project Manager Motivate teams, control projects, reporting 3
Program/Portfolio Manager Prioritize implementation of requirements,

request staffing for program development
2

Line Manager Allocation of staff, planning of compe-
tence development

4

8.4.6 Data Analysis
The data analysis was done in three steps. In the first step the yellow notes were
clustered on a high level into groups for statements related to the effect of the measures
on decision making (RQ2.1), improvement actions identified based on the measures
(RQ2.2), and improvements to measurements (RQ2.3). The clustering in the first step
was done in the workshop. Within these groups further clusters were created. For
example, clusters in the group for RQ2.1 were requirements prioritization, resources
and capacity, and short-term as well as long-term improvements in decisions. The
clusters were also compared to the notes of the facilitator running the workshop (see
data collection approach for research question 2.1 in Section 8.4.5) to make sure that
similar clusters were identified. For the meetings (see data collection approach for
research question 2.2 and 2.3) the researcher and a colleague documented the outcome
of the meetings, which also allowed to compare notes. In the second step the notes
taken during the workshop and meetings were linked to the clusters. Based on these
links each cluster was narratively described by the researcher. In the third and final step
the analysis was reviewed by a colleague at the company who also participated in the
workshop and meetings.

8.4.7 Threats to Validity
Threats to validity are important to consider during the design of the study to increase
the validity of the findings. Threats to validity have been reported for case studies in
Yin [37] and in a software engineering context in Wohlin et al. [35]. Four types are
distinguished, namely construct validity, internal validity, external validity, and relia-
bility. Internal validity is concerned with establishing a causal relationship between
variables. External validity is concerned with to what degree the findings of a study
can be generalized (e.g. across different contexts). Reliability is concerned with the
replication of the study (i.e. if the results would be the same when repeating the study).

233

Chapter 8. Measuring the Flow of Lean Software Development

Internal validity is not relevant for this study as we are not seeking to establish the
casual relationship between variables in a statistical manner.

Construct validity: Construct validity is concerned with obtaining the right mea-
sures for the concept being studied. There is a risk that the researcher influences the
outcome of the study with his presence in industry (reactive bias) [35]. This risk was
reduced as the researcher is not perceived as being external as he is also employed by
the company. Thus, the participants of the workshops and meetings did not perceive
the researcher as an external observer and hence their behavior was not influenced by
his presence. Another threat is the risk that the practitioners misinterpret the measure-
ments and visualizations (incorrect data). In order to minimize the threat of incorrect
data a tutorial was given on how to read and interpret the visualization and measure-
ments. Furthermore, tutorial slides were provided to all users of our proposed solution.
The practitioners were also given the possibility to ask clarification questions which
aided in achieving a common understanding of the solution.

External validity/generalizability: The main threat to external validity is that the
study has been conducted in a single company. Consequently, the results were obtained
in the unique environment in which the case is embedded, namely the context [26, 30,
37]. The threat to external validity was reduced by describing the context carefully (see
Section 8.4.1) and by that make the degree of generalizability explicit [25, 26]. Hence,
the results of this study are likely to be generalizable to companies working with large-
scale development in an incremental and iterative manner, and developing software
for a dynamic mass market. In order to employ our solution in other contexts the
requirements inventories might differ depending on which other phases of development
can be found in another company. In summary, it is always very hard to generalize a
case study. However, the findings and experiences gained are expected to provide
valuable inputs to others interested in applying a similar approach, although the specific
context has always to be taken into account.

Reliability: When collecting qualitative data there is always a risk that the interpre-
tation is affected by the background of the researcher. The threat is reduced because
the notes of the researcher were compared to the notes of the external facilitator for the
workshop, and with notes from a colleague for the meetings (see Section 8.4.5). Addi-
tionally, the analysis was reviewed by a colleague at the company who also participated
in the workshop and meetings. Possible misunderstandings are further reduced due to
that the researcher has good knowledge of the processes at the company and thus un-
derstands the terminology (cf. [5]). The comparison of the notes showed that there
were no conflicting statements in the notes.

234

8.5 Results
The quantitative results (visualization and measurements) are illustrated first. There-
after, the qualitative evaluation of the usefulness of visualization and our proposed
measures is presented.

8.5.1 Application of Visualization and Measures
We applied the measures on data available from the company. The following data is
provided for this: (1) the original graphs including the regression lines to visualize
the relation between original data and metrics collected; (2) bar-plots of the slope to
illustrate the bottlenecks; (3) bar-plots of the estimation error to illustrate how even the
flow is; (4) a table summarizing costs as I, WD, and W.

Bottlenecks and Even Flow

Figure 8.3 shows the cumulative flow diagrams for all nine sub-systems combined and
the considered units of analysis, including the regression lines. As discussed before
the regression lines are a measure of the rate in which requirements are handed over
between the phases. The purpose of the figures is to show how the visualization of
the original data (cumulative flow diagrams) and the metrics collected are connected.
Drawing the regression lines in combination with the original data has advantages.

Measurement makes visualization more objective: The sole visualization of the cu-
mulative flow diagram does not always reveal the real trend as it is not easy to recognize
which of the phases that has a higher rate of incoming requirement. A high variance
around the regression line makes this judgment even harder. Therefore, it is important
to calculate the regression. An example is shown in Figure 8.3(b), where the curves for
requirements to be detailed (HO to be Detailed) and requirements to be implemented
(HO to design) have a fairly similar trend. However, the best fit of the data (regression)
makes explicit that the slope of requirements to be detailed is higher than the slope
of requirements to be implemented, which (according to our measures) would be an
indicator for a bottleneck. Thus, the measurement can be considered more objective in
comparison to the sole visualization.

Identifying bottlenecks: All figures show examples of bottlenecks, the main bottle-
neck (for the designated time-frame) was the node testing phase (i.e. slope HO to LSV
Node test > slope HO to LSV System test). The figures also show opposite trends to
bottlenecks, i.e. the rate in which requirements come into a phase was lower than the
requirements coming out of the phase (e.g. slope HO to Design < slope HO to LSV
Node Test 8.3(c)). Such a trend can be used as a signal for recognizing that there is not

235

Chapter 8. Measuring the Flow of Lean Software Development

enough investment (or buffer) in this phase to make sure that the forthcoming phase has
input to work with in the future. Thus, there is potentially free (and unused) capacity
within the process. In order to show the significance of bottlenecks to management,
we proposed to draw bar-plots. The bar plots illustrating the slope (value of β) for the
different hand-overs and systems are shown on the left side of Figure 8.4. The hight of
the bars shows the significance of the bottlenecks. For example, for all systems (Figure
8.4(a)) as well as unit A (Figure 8.4(c)) and B (Figure 8.4(c)) the rate in which require-
ments are handed over to system test was almost four times higher than the rate the
requirements are handed over to the release, which indicates that the work in process
before system test will grow further. In consequence an overload situation might occur
for system test. In comparison, the bottleneck in the LSV node test was less significant
in Figures 8.4(a) and 8.4(c). It is also important to mention that a high slope is desired,
which implies high throughput.

-10

40

90

140

190

240

1 2 3 4 5 6 7 8 9 10 11 12
Number of Weeks

C
u

m
l.

 N
o

.
o

f
R

e
q

.

HO to be Detailed
HO to Design
HO to LSV Node Test
HO to LSV System Test
HO to Ready for Release

(a) All Nine Sub-Systems

-2

8

18

28

38

48

58

1 2 3 4 5 6 7 8 9 10 11 12
Number of Weeks

C
u

m
l.

 N
o

.
o

f
R

e
q

.

HO to be Detailed

HO to Design

HO to LSV Node Test

HO to LSV System Test

HO to Ready for Release

(b) Unit A

-2

3

8

13

18

23

1 2 3 4 5 6 7 8 9 10 11 12

Number of Weeks

C
u

m
l.

 N
o

.
o

f
R

e
q

.

HO to be Detailed

HO to Design

HO to LSV Node Test

HO to LSV System Test

HO to Ready for Release

(c) Unit B

Figure 8.3: Regression Analysis

Evaluating even flow: The highest variances can be found in the HO to LSV system
test for all systems, as shown in the graphs on the right side of Figure 8.4. That is, there

236

was a high deviation between the regression line and the observed data. As discussed
before, this indicates that a higher number of requirements was delivered at once (e.g.
for all systems quite a high number was delivered between week 8 and 11, while there
was much less activity in week 1-7, see Figure 8.3). Figures 8.4(b), 8.4(d) and 8.4(f)
show the significance of the variances. It is clear that the highest variances can be found
in the implementation and testing phases, while the requirements phase is characterized
by lower variances. This is true for the situation in all three figures (8.4(b), 8.4(d) and
8.4(f))

Lower variances can be found in the phases where the requirements are defined (i.e.
HO to be detailed, and HO to Design).

Distribution of Costs

The distribution of costs for all nine sub-systems is shown in Table 8.3. The costs were
calculated for each phase (Cavg, j) and across phases (Cavg,all). The value of waste (W)
was 0 in all phases as no requirements were discarded for the analyzed data sets. The
data in the table shows that in the early phases (incoming requirements till require-
ments to be defined), there was little investment (I) in comparison to work done (WD).
That means that investments were transferred into work-done, which is an indicator of
progress. However, if there is only little investment in a phase it is important to create
new investments (e.g. increasing the number of requirements to be detailed by focusing
more on requirements elicitation). Otherwise, the company might end up in a situation
where their developers and testers are not utilized due to a lack of requirements (al-
though highly unlikely). From a progress perspective, this analysis looks positive for
the early phases. The later phases indicate that the investment was higher than the
work done. That means, from a progress perspective most investments in the phase
LSV node and LSV System still have to be transferred to work done.

In the long run we expect requirements to be discarded (e.g. due to changes in
the needs of customer, or that requirements are hold up in a specific phase). If waste
becomes a significant part of the cost distribution, then the reasons for this have to be
identified. For example, only requirements with a certain priority should be transferred
to a future phase to assure their timely implementation.

8.5.2 Industry Evaluation of Visualization and Measures

Two main aims were pursued with the evaluation. Firstly, we aimed at identifying the
relevant roles in the organization that could make use of the measures in their deci-
sion making. This first aim helps understanding whether the measures are of use, and

237

Chapter 8. Measuring the Flow of Lean Software Development

0

2

4

6

8

10

12

14

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

S
lo

p
e

(a) All Nine Sub-Systems Slope

0

2

4

6

8

10

12

14

16

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

V
a

ri
a

n
c

e

(b) All Nine Sub-Systems Variance

0,0

0,5

1,0

1,5

2,0

2,5

3,0

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

S
lo

p
e

(c) Unit A Slope

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

V
a

ri
a

n
c

e

(d) Unit A Variance

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

S
lo

p
e

(e) Unit B Slope

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

HO to be
Detailed

HO to Design HO to LSV
Node Test

HO to LSV
System Test

HO to Ready
for Release

Handovers

V
a

ri
a

n
c

e

(f) Unit B Variance

Figure 8.4: Slope and Variance

to whom they are most useful (Research Question 2.1). Secondly, we aimed at iden-
tifying process improvement actions based on the measures (Research Question 2.2).
The second aim shows that the measures trigger practitioners in identifying potential
improvement areas/actions, which is an indicator for that the measures serve as an ini-

238

Table 8.3: Costs All
Phase I I (%) WD WD (%) W

Cavg,Inc.Req. 18.00 10.15 160.00 89.85 0.00
Cavg,Design 62.92 39.30 97.17 60.70 0.00
Cavg,LSV Node 51.58 53.09 45.58 46.91 0.00
Cavg,LSV Sys 31.17 68.37 14.42 31.63 0.00
Cavg,ReadyRelease 14.42 100.00 0.00 0.00 0.00

Cavg,all 35.63 35,69 63.45 64.04 0.00

tiator for software process improvement activities.

The Effect of Measurements on Decision Making (RQ2.1)

During the workshops with the company representatives, it was discussed how the
measures can affect decision making in the company. In the following the different
types of decisions supported by the measures are discussed.

Requirements prioritization: The measure of continuous work-flow may show a
trend where too many requirements are handed over at once. Thus, the measure helps
in assuring that requirements are not handed over in big bulks, but instead in smaller
chunks and more continuously. Furthermore, if the measure signals that the develop-
ment is overloaded, no more requirements should be handed over to avoid an overload
situation. As the decisions are related to requirements prioritization the measures help
improving from a short-term perspective.

Staff allocation: In case of bottlenecks managers can use the information from
the bottleneck analysis to allocate staff when bottlenecks occur. As discussed during
the workshop, this has to be done with care, as the reason for a bottleneck might be
something else than staffing. However, if staffing is the problem the figures support
managers in arguing for the need of staff. Staffing can also be seen as an ad-hoc solution
with a short-term perspective.

Transparency for teams and project managers: The measurement system allows
seeing which requirements are coming into phases, which are currently worked on,
and which have been completed. In consequence, the current status of development for
each team is always visible. For instance, the testing team can see all requirements they
are supposed to be working on in the upcoming weeks. This helps them in planning
their future work as they are aware of future requirements. Furthermore, seeing what
has been completed has a motivating effect on the teams.

239

Chapter 8. Measuring the Flow of Lean Software Development

Software process improvement: Software process improvement needs to look at the
data from a long-term perspective (i.e. quarterly is not long enough, instead one should
use data for 6 or 12 months). If there are significant bottlenecks or uneven requirements
flows the causes for this have to be investigated. Thus, from a process improvement
perspective focusing on long-term improvement the data should be used as an indicator
of where to look for problem causes.

The result of the workshop was that the practitioners judged the measurements as
useful for different roles in the organization, which supports their practical relevance.
Furthermore, the measures can be used to take actions to improve in the short and the
long term.

Process Improvement Actions Based on Measurements (RQ2.2)

In the analysis team meetings, process improvement actions were identified from a
software process improvement perspective baed on the measures. The analysis was
done on quarterly data as the data for half a year is not available yet. However, the
analysis meetings already show that the information provided by the visualization and
measurements aids the practitioners in identifying concrete areas for improvement. The
most important improvement areas identified so far are (1) avoid to be too much driven
by deadlines and market-windows; and (2) integrate more often to improve quality.

Observation and improvement for (1): The development is done continuously, but
with a deadline (market-window) in mind. This is a way of thinking that leads to
that work is started late before the deadline (e.g. the high amount of requirements
handed over in week 8 to LSV system test in Figure 8.3(c), and the related high value
in variance seen in Figure 8.4(f)). In consequence, there were fewer deliveries of re-
quirements from one phase to the other until shortly before the deadline, where a big
bulk of requirements was delivered at once. As an improvement we found that people
should not focus on deadlines and market-windows too much when planning the flow
of development. Instead, they should focus more on the continuous production with
optional releases. In order to achieve this, an option is to follow the Kanban approach.
In Kanban, the work (e.g. maximum number of requirements with similar complexity)
that can be in process at a specific point in time is limited [12]. In consequence, big
bulk deliveries of requirements are not possible. Thus, the Kanban approach enforces
to continuously work and deliver requirements between phases, reducing the variance
in the flow.

Observation and improvement for (2): The practitioners observed that the system
was integrated too late, and not often enough. An indication for this observation can be
seen in the slope analysis of in Figures 8.4(a) and 8.4(c). Hence, the planning of testing
cycles needs to enforce short periods between integration. The main purpose of this is

240

to allow for regular feedback on the builds helping the company to further improve the
quality of the products. In order to technically enable more frequent integration the
company is pursuing a higher degree of testing automation.

Improvements to the Measures (RQ3.3)

The visualization and measures need to be further improved in order to increase their
usefulness and accuracy. Together with the practitioners providing a critical reflection
on the visualization and measures we identified the following improvements:

Treatment of quality requirements: Quality requirements do not flow through the
development process in the same fashion as functional requirements. Functional re-
quirements are part of an increment, and are completed with the delivery of the incre-
ment. Some quality requirements (e.g. performance) are always relevant for each new
release of the product and thus always stay in the inventories. That means, one has
to be aware that those requirements are not stuck in the inventory due to a bottleneck.
Therefore, we recommend to remove requirements from the analysis that are always
valid for the system.

Requirements granularity and value: If requirements vary largely in complexity
it is not a valid approach to only count the requirements. One has to take the weight
of each requirement into consideration. The weight should be based on the size of
the requirements. We propose to estimate the size of the requirements in intervals
for small, medium, and large requirements. What small, medium, and large means
differs between organizations, meaning that each organization has to determine their
own intervals. When counting the requirements, a small requirement is counted once,
a medium requirement twice, and a large requirement thrice. Another distinguishing
attribute of requirements is their value as suggested by the concept of minimum mar-
ketable requirements [7]. High value requirements should flow through the process
more quickly and with higher throughput than low value requirements. Consequently,
the solution would benefit from also weighting requirements based on their value.

Optimization of measures: Optimization of measures is always a risk when mea-
surements are used to evaluate an organization. For example, it is possible to improve
the rate of requirements hand-overs by delivering detailed requirements with lesser
quality to implementation. We believe that this will be visible in the measures as de-
sign will not be able to work with the requirements and thus a bottleneck in design
becomes visible. However, it is still beneficial to complement the evaluation of flow
with other quality related measures. Possible candidates for quality measures are fault-
slip through [6], or number of faults reported in testing and by the customer.

Visualization of critical requirements: The visualization does not show which re-
quirements are stuck in the development process. In order to requirements into account

241

Chapter 8. Measuring the Flow of Lean Software Development

that are stuck in the process one could define thresholds for how long a requirement
should stay in specific phases. Requirements that are approaching the threshold should
be alerted to the person responsible for them. In that way, one could pro-actively avoid
that requirements do not flow continuously through the development.

Time frames: The time-frame used at the company for evaluating the flow is each
quarter. As discussed with the practitioners, it is also important to have a more long-
term perspective when evaluating the data (i.e. half-yearly and yearly). The data in
the short-term (quarterly) is more useful for the teams, program/line-managers, and re-
quirements/portfolio managers, who use the data from a short-term perspective to dis-
tribute resources or prioritize requirements (see answers to RQ2.1). However, the prac-
titioners responsible for long-term improvements require measurements over a longer
period of time to reduce the effect of confounding factors. Examples for confound-
ing factors are Midsummer in Sweden, upcoming deadline of an important release, or
critical fault report from customer.

The next section discusses practical implications and research implications of the
visualization and measurements presented. Furthermore, the measures are compared to
those presented in the related work section, which leads to a discussion of the difference
in measuring lean manufacturing and lean software development.

8.6 Discussion

The application and evaluation of the visualization and the defined measures lead to
some implications for both research and practice. In addition, we discuss how the
measures relate to lean measurements used in manufacturing.

8.6.1 Practical Implications and Improvements to the Measures

The implications describe the relevance of the visualization and measures to industry
and what evidence in the results (Section 8.5) supports the relevance.

Perceived usefulness of visualization and measures: The evaluation showed that
the visualization and measures are useful from an industrial point of view. The mea-
sures were introduced in February 2009 and are mandatory to use in the evaluations
of product development of the systems considered in this case study since July 2009
for the studied system developed in Sweden and India. The reason for this is that the
measures were able to give a good overview of progress. This kind of transparency is
especially important in complex product development where many tasks go on in par-
allel (see Chapter 3). The rapid application of the solution and the commitment of the

242

company to use the solution in their daily work is strong evidence of its perceived use-
fulness. The evaluation of the measures with regard to usefulness was very much based
on the perception and feedback by the practitioners. From past experience we found
that when transferring a new practice to industry the feedback and commitment from
the practitioners is invaluable, the reason being that the practitioners can influence and
improve the approach (as has been documented in the improvement suggestions made
by the practitioners) [11, 10]. Furthermore, a buy-in by the management is important
for a long-term success, which can be achieved through feedback and building trust by
incorporating that feedback.

Visualization and measures drive practitioners towards lean and agile practices:
The proposed process improvement actions are an indication that the measures drive the
organization towards the use of lean and agile practices. The evidence for the claimed
driving force of the measures is the identification of lean and agile improvements that
the company would like to adopt (see Section 8.5.2). The first improvement proposed
is directly related to lean principles (Kanban) [12], stressing the importance to change
from a push to a pull mechanism, and by that limiting the work in process [27]. The
second improvement stresses the importance of frequent integration and early feedback
to improve quality, which is an important principle in all agile development paradigms
[3, 25]. Currently actions are in implementation at the company to support the pull
approach from the requirements phase to development, and to enable earlier testing
(e.g. changes in architecture to allow for continuous upgrades and earlier testing of
these upgrades). The actual improvements will not be visible in the visualization and
measurements immediately as a large-scale organization with more than 500 people
directly and indirectly involved in the development of the investigated systems has
been studied. Lean is a new way of thinking for many people in the organization who
have to familiarize with the concepts, requiring training and getting a commitment to
this new way of working throughout the organization. As pointed out by [23, 18] the
introduction of lean software development is a continuous process and the attempt of a
big-bang introduction often leads to failure.

Measures help in short-term and long-term decision making: The practitioners per-
ceive the visualization and measurements as beneficial in supporting them in the short
and the long term. Evidence is the identification of decisions by the practitioners that
were related to long as well as short term decisions. (see Section 8.5.2). Three deci-
sions were related to short term, i.e. requirements prioritization, staff allocation, and
project management and planning decisions. Furthermore, undesired effects seen in
the measures help in making decisions targeted on long-term process improvements.
A prerequisite to take the right long-term decisions is to identify the causes for the
undesired effects.

Understand complexity: The large system studied is highly complex with many

243

Chapter 8. Measuring the Flow of Lean Software Development

different tasks going on in parallel, which makes transparency and coordination chal-
lenging [25]. Hence, measurement and visualization focusing on the end to end flow
increases the transparency for the practitioners. In particular our solution was able to
show the behavior of the development flow of a highly complex system in terms of
bottlenecks, continuous flow, and distribution of costs.

Overall, the discussion shows that the results indicate that the measures can be
useful in supporting software process improvement decisions.

8.6.2 Research Implications

The research implications provide examples of how other researchers can benefit from
the results in this study.

Complement agile with lean tools: The characteristic that distinguishes lean and
agile development is the focus on the flow of the overall development life-cycle. Lean
provides analysis and improvement tools focusing on the overall development life-
cycle while agile focuses on solutions and prescribes sets of practices to achieve agility.
Given the results of the case study we believe that the agile research community should
focus on making lean analysis tools for the development flow an integral part of agile
practices. We believe this to be particularly important in large-scale software devel-
opment where many teams develop software in parallel, making it harder to achieve
transparency of what is going on in a dynamic and agile environment.

Use solution to evaluate process improvements: The measures provided are po-
tentially useful for researchers who would like to evaluate and test improvements in-
creasing efficiency of development. For example, simulation models often focus on
lead-time (cf. [8, 28]). Complementary to that the simulations could benefit from mak-
ing use of the measures identified in this study to provide a solution allowing to analyze
throughput with regard to bottlenecks, variance in flow, and distribution of cost.

8.6.3 Comparison with State of the Art

In the related work section, we presented measures that are applied in measuring lean
manufacturing. However, in the context of software engineering the measures have
drawbacks.

Throughput measures: Throughput measures calculate the output produced per
time-unit. Three throughput measures have been identified in the related work, namely
day-by-the-hour [17], cost efficiency [1], and value efficiency [1]. In the context of
software engineering, this measure would determine the number of requirements com-
pleted per hour. However, this measure is very simplistic and does not take into account

244

the variance in which requirements are completed. Therefore, we use regression in or-
der to calculate the rate and also calculate the variance to evaluate how continuous the
flow of development is.

Capacity utilization: In manufacturing it is predictable how many units a machine
can produce, and thus the desired value of capacity utilization is clear (i.e. CU = 1)
[17]. However, software developers are knowledge workers and their behavior is not
as predictable. There is a high variance between developers in terms of productivity
[15]. Furthermore, when thinking about concepts and creative solutions no output is
produced in this time. This makes the measure unsuitable in the software engineering
context.

On-time-delivery: On-time delivery [17] is tightly connected to deadlines in soft-
ware development. However, in the case of incremental development one should not
focus too much on a specific deadline, but on being able to continuously deliver a
product with the highest priority requirements implemented [27].

The analysis of the related work show that there were no comprehensive measures
to capture the flow of development. We addressed the research gap by proposing mea-
sures to detect bottlenecks, discontinuous flow, and distribution of costs. The measures
are connected to an easy to understand visualization of the development flow, which
aids in communicating with management.

8.7 Conclusion
In this study we applied cumulative flow diagrams to visualize the flow of requirements
through the software development life-cycle. The main contribution of this study is a
set of measures to achieve higher throughput and to track the progress of development
from a flow perspective. The measures were evaluated in an industrial case study. In
the following we present the research questions and the answers to the questions.

RQ1: Which measures aid in (1) increasing throughput to reduce lead-times, and
(2) as a means for tracking the progress of development? Three metrics were identified
in the context of this study. The first metric allows to identify bottlenecks by measuring
the rate of requirements hand-over between different phases through linear regression.
The second metric measures the variance in the hand-overs. If the variance of hand-
overs is very high then big batches of requirements are handed over at once, preceded
by a time-span of inactivity. The third metric separates requirements into the cost types
investment, work done, and waste. The purpose of the measure is to see the distribution
of requirements between the different types of cost.

RQ2: How useful are the visualization and the derived measures from an industrial
perspective? This research question was evaluated from two angles. First, we evaluated

245

REFERENCES

how the measures can affect decision making. The findings are that: (1) requirements
prioritization is supported; (2) the measures aid in allocating staff; (3) the measures
provide transparency for teams and project managers of what work is to be done in the
future and what has been completed; and (4) software process improvement drivers can
use the measures as indicators to identify problems and achieve improvements from a
long-term perspective. Secondly, we evaluated what improvement actions practitioners
identified based on the measurements. The improvement areas are: (1) an increased
focus on continuous development by limiting the allowed number of requirements in
inventories; and (2) earlier and more frequent integration and system testing of the
software system to increase quality. The solution has been successfully transfered to
industry and will be continuously used at the company in the future.

In conclusion the case study showed that the visualization and measures are per-
ceived as valuable from an industrial perspective. It should be emphasized that they are
especially valuable when developing large scale products with many teams and tasks
going on in parallel, as here transparency is particularly important.

Future work should focus on evaluating our solution in different contexts and how
it has to be adjusted to fit these contexts. For example, cumulative flow diagrams and
the suggested measures could be applied to analyze software maintenance, or software
testing processes. In addition future work should focus on the analysis of what type
of improvements support a lean software process, the measurements and visualizations
proposed in this paper can be an instrument to evaluate such improvements from a
lean software engineering perspective. Little is also known about the long-term effect
of implementing agile practices such as Kanban, which is also an interesting area for
future research.

From an analysis perspective other lean tools are available, such as value stream
maps and theory of constraints/ queuing theory. The usefulness of these tools will
allow to learn more about the benefits that could be achieved when using lean practices
in the software engineering context. As the approaches aim for similar goals (i.e. the
identification of waste) the approaches should be compared empirically to understand
which of the approaches is the most beneficial.

8.8 References
[1] David Anderson. Agile management for software engineering: applying the the-

ory of constraints for business results. Prentice Hall, 2003.

[2] Victor R. Basili. Quantitative evaluation of software methodology. Technical
report, University of Maryland TR-1519, 1985.

246

[3] Kent Beck and Cynthia Andres. Extreme Programming explained: embrace
change. Addison-Wesley, Boston, 2. ed. edition, 2005.

[4] Dan Cumbo, Earl Kline, and Matthew S. Bumgardner. Benchmarking perfor-
mance measurement and lean manufacturing in the rough mill. Forest Products
Journal, 56(6):25 – 30, 2006.

[5] Lars-Ola Damm. Early and Cost-Effective Software Fault Detection. PhD thesis,
Blekinge Institute of Technology Doctoral Dissertation Series No. 2007:09, 2006.

[6] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-through - a con-
cept for measuring the efficiency of the test process. Software Process: Improve-
ment and Practice, 11(1):47–59, 2006.

[7] Mark Denne and Jane Clelund-Huang. Software by the numbers: low-risk, high-
return development). Prentice Hall, 2004.

[8] Paolo Donzelli and Giuseppe Iazeolla. A software process simulator for software
product and process improvement. In Proceedings of the International Confer-
ence on Product Focused Software Process Improvement (PROFES 1999), pages
525–538, 1999.

[9] Kathleen M. Eisenhardt. Building theories from case study research. Academy of
Management Review, 14(4):532–550, 1989.

[10] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for technol-
ogy transfer in practice. IEEE Software, 23(6):88–95, 2006.

[11] Tony Gorschek and Claes Wohlin. Requirements abstraction model. Requir. Eng.,
11(1):79–101, 2006.

[12] John M. Gross and Kenneth R. McInnis. Kanban made simple: demystifying
and applying Toyota’s legendary manufacturing process. AMACOM, New York,
2003.

[13] Alan R Hevner, March T. Salvatore, Jinsoo Park, and Ram Sudha. Design science
in information systems research. MIS Quarterly, 28(1):75–103, 2004.

[14] Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, and Chris-
tian Nyberg. Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation. Journal of Systems and Software,
59(3):323–332, 2001.

247

REFERENCES

[15] L. Kemayel, Ali Mili, and I. Ouederni. Controllable factors for programmer pro-
ductivity: A statistical study. Journal of Systems and Software, 16(2):151–163,
1991.

[16] Craig Larman. Agile and iterative development: a manager’s guide. Addison-
Wesley, Boston, 2004.

[17] Brian Maskell and Bruce Baggaley. Practical lean accounting: a proven system
for measuring and managing the lean enterprise. Productivity Press, 2004.

[18] Peter Middleton. Lean software development: Two case studies. Software Quality
Journal, 9(4):241–252, 2001.

[19] Peter Middleton, Amy Flaxel, and Ammon Cookson. Lean software management
case study: Timberline inc. In Proceedings of the 6th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP 2005),
pages 1–9, 2005.

[20] Douglas C. Montgomery and George C. Runger. Applied Statistics and Probabil-
ity for Engineers. Wiley, 2006.

[21] Shahid Mujtaba, Robert Feldt, and Kai Petersen. Waste and lead-time reduction
in a software product customization process with value-stream maps. In Proceed-
ings of the 10th Australian Conference on Software Engineering (ASWEC 2010),
2010.

[22] Emma Parnell-Klabo. Introducing lean principles with agile practices at a fortune
500 company. In Proceedings of the AGILE Conference (AGILE 2006), pages
232–242, 2006.

[23] Richard T. Pascale. Managing on the edge: how the smartest companies use
conflict to stay ahead. Simon and Schuster, New York, 1990.

[24] G.I.U.S. Perera and M.S.D. Fernando. Enhanced agile software development hy-
brid paradigm with lean practice. In Proceedings of the International Conference
on Industrial and Information Systems (ICIIS 2007), pages 239–244, 2007.

[25] Kai Petersen and Claes Wohlin. A comparison of issues and advantages in ag-
ile and incremental development between state of the art and an industrial case.
Journal of Systems and Software, 82(9):1479–1490, 2009.

248

[26] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 401–404, 2010.

[27] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile
Toolkit (The Agile Software Development Series). Addison-Wesley Professional,
2003.

[28] David Raffo. Evaluating the impact of process improvements quantitatively using
process modeling. In Proceedings of the 1993 Conference of the Centre for Ad-
vanced Studies on Collaborative research (CASCON 1993), pages 290–313. IBM
Press, 1993.

[29] Donald G Reinertsen. Managing the design factory: a product developers toolkit.
Free, New York, 1997.

[30] Colin Robson. Real world research: a resource for social scientists and
practitioner-researchers. Blackwell, Oxford, 2. ed. edition, 2002.

[31] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–
164, 2009.

[32] Bridget Somekh. Action research: a methodology for change and development.
Open University Press, Maidenhead, 2006.

[33] Brian White. Software configuration management strategies and Rational
ClearCase: a practical introduction. Addison-Wesley, Harlow, 2000.

[34] Colin Willcock, Thomas Deiss, Stephan Tobies, Stefan Keil, Federico Engler, and
Stephan Schulz. An Introduction to TTCN-3. John Wiley & Sons Ltd., 2005.

[35] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering: An Introduction
(International Series in Software Engineering). Springer, 2000.

[36] James P. Womack and Daniel T. Jones. Lean thinking: banish waste and create
wealth in your corporation. Free Press Business, London, 2003.

[37] Robert K. Yin. Case study research: design and methods. Sage Publications, 3
ed. edition, 2003.

249

REFERENCES

250

Chapter 9

Lean Software Maintenance

Kai Petersen
Submitted to a conference

9.1 Introduction
Development activities are distinguished into initial software development where the
software product is specified, implemented and tested and thereafter delivered to the
market, and software maintenance [1]. Software maintenance distinguishes between
enhancements (i.e. adaptations to the delivered software to provide minor functionality
enhancements, optimize resources and performance, etc.) and corrections (i.e. resolv-
ing problems reported by customers, such as defects). Software maintenance is a large
part of the software development effort, with effort for maintenance being in the range
of 50-80 % of all software development effort [18]. Given these observations software
maintenance is an essential activity in software development and hence improvements
in this activity have the potential to increase the efficiency and effectiveness of an over-
all software development organization.

Lean product development has revolutionized the way products are built by iden-
tifying waste and providing analysis tools for the production process to make it more
efficient and effective [9]. To leverage on the benefits achieved in lean product de-
velopment (high quality, quick response to customer needs, just in time development
with little work in progress) lean has become popular for software development as
well [13, 14, 15]. Lean and agile software development share a number of principles

251

Chapter 9. Lean Software Maintenance

and practices, such as self-organizing teams, sustainable pace, face-to-face conversa-
tion, the focus on technical excellence, and so forth. In comparison to agile lean has
a stronger focus on providing principles and practices that should help in systemati-
cally analyzing and improving a process to become highly effective and efficient, such
as “See the whole”, “Avoidance of waste”, “Short cycle times and rapid feedback”,
and “Build in quality” (see Chapter 2). The principles are supported by lean tools, the
best known being value stream maps [10], cumulative flow diagrams [3] and Kanban
[13, 3]. The analysis of the related work showed that no solution is available to analyze
software maintenance from a lean software development perspective.

The contribution of this paper is to provide a novel analysis approach for the main-
tenance process to realize the lean principles mentioned above. “See the whole” is
supported by focusing on multiple dimensions (i.e. product quality, continuous deliv-
ery of valuable results, process cycle-times and iterations due to internal quality issues)
[1]. For the analysis of each dimension’s measures and visualizations are provided. For
the identification of the measures and visualizations the Goal Question Metric (GQM)
approach [4] was used as guidance in identifying a solution supporting the lean princi-
ples. The goal driving the analysis was to “Increase the efficiency and effectiveness of
software maintenance from a lean software development perspective”. The proposed
solution is an extension of the software process improvement through lean measure-
ment (SPI-LEAM) method (see Chapter 7) which analyzes how an overall software
development process performs considering work in process in relation to capacity. The
goal of the method is to identify signals for problems in different development disci-
plines (main requirements flow, change requests, and customizations, software testing,
and maintenance). Hence, the method provides a high level overview of the differ-
ent disciplines together. In order to identify problems on the more detailed level a
drill-down of each dimension is needed to gain a more in-depth understanding of the
underlying behavior. The approach presented in this paper is the drill-down analysis
that is specific for the maintenance process. We would like to point out that the solution
supports SPI-LEAM, but can also be implemented independently of that solution.

The solution has been evaluated in an industrial case study at Ericsson AB, located
in Sweden. For that the solution was applied on the maintenance requests (MRs) en-
tering the studied company site in the year 2009 as those reflect the performance of the
maintenance process currently applied at the company. The goal of the case study is to
demonstrate the ability of the approach to show the absence or presence of ineffective-
ness and inefficiency in the studied process.

The remainder of the paper is structured as follows: Section 9.2 presents the related
work and based on that demonstrates the need for the proposed solution. Section 9.3
provides the solution for lean software maintenance. Section 9.4 presents the research
method to evaluate the solution. Section 9.5 illustrates the results obtained. Thereafter,

252

Section 9.6 discusses the results and Section 9.7 concludes the paper.

9.2 Related Work
The related work focuses on measurements proposed in the maintenance context to as-
sess maintenance performance in different ways. To get a good idea of the literature
in the topic area the titles and abstracts of the International Conference on Software
Maintenance have been browsed manually as this is the primary forum for mainte-
nance research. Furthermore, we searched Inspec and Compendex as well as Google
Scholar, given that they cover a variety of databases, such as IEEE Xplore, Wiley In-
terscience, Elsevier, and ACM. To identify the literature we searched for: “Software
Maintenance” AND (Measurement OR Metric OR Measure OR Quantify OR Produc-
tivity OR Efficiency). The lists were browsed and the selection of articles included in
the related work were made based on the titles. Software maintenance in combination
with lean has, to the best of our knowledge, not been researched before. Hence, no
related work for that combination is included.

Alam et al. [2] observed that progress in maintenance is often captured through
manual collection of metrics or through automatically collected metrics, such as lines
of code. As an improvement to measuring progress as an important performance mea-
sure they propose to record code changes and study the time dependencies between
them. For example, if a class uses a function of another class then there is a time de-
pendency between them as the used class has to be implemented first. The progress
tracking is an analogy to construction where a building is continuously built based
on dependent changes. This allows to analyze whether new MRs are built upon new
changes done recently, or old changes, or whether they are independent. To demon-
strate the approach it was applied on two open source systems. A difference could be
identified, e.g. it shows that in one system the majority of maintenance activities were
based on new changes, while in another system the number of changes built on new
and old changes as well as independent changes was similar. One limitation of the
method is that it does not show the progress with regard to the backlog of changes to
be implemented.

Schneidewind [17] studied enhancement projects and provided a number of perfor-
mance measures. The performance measures were mean time between failure when
testing the enhancement (calculated as the ratio of test execution time and the total
number of failures), the defect density with regard to the changes in the code counted
as changed lines of code, and the overall test time needed for the testing of the en-
hancement implementation. Overall, the primary focus of the measurements was the
product.

253

Chapter 9. Lean Software Maintenance

Henry et al. [7] provide a process modeling approach for maintenance with metrics
connected to it. The model is divided into different abstraction levels (activities, tasks,
and procedures), where procedures are a refinement of tasks, and tasks are a refinement
of activities. At the different abstraction levels measures were proposed on process and
product level. On process level the following measures should be collected with regard
to the abstraction levels:

• Process (activities): Effort expanded and progress towards a predefined mile-
stones.

• Process (tasks and procedures): Completion rate of tasks and defects corrected
per week.

The measures on product level were also divided into abstraction levels for the mea-
sures (product level, module level, and code level). The following measures should be
collected according to the article:

• Product (product level): Number of upgrades to be implemented, defects discov-
ered, uncorrected defects, priority of defects, priority of defects.

• Product (module level): Impact of upgrade changes on elementary parts of the
system.

• Product (code level): Number of LOC added, changed, or deleted.

The article also raised the importance of visually presenting the data to management,
which aids communication. However, no visualization examples were provided. In
addition the authors recommend the usage of statistical analysis to understand how
individual measures are connected, e.g. by calculating correlations. As pointed out in
the study a large number of measures have to be collected.

Sneed and Brössler [19] proposed a set of measurements to evaluate software main-
tenance performance. The first measurement was related to productivity measured as
the output (size * change rate) divided by the input (maintenance effort). The produc-
tivity measure is complemented by a quality measure of defect density, calculated as
number of defects per lines of code (old code and changed code). As there is a chal-
lenge of keeping different software artifacts consistent degradation also needs to be
captured, e.g. when a document does not conform to system implementation then the
the author talks about document degradation. Another important aspect to be captured
is the user perception of the success of the maintenance task. Therefore, the author
recommends to ask users for different criteria to be rated on a Likert scale (e.g. per-
formance, time for serving the MR, etc.). User satisfaction is measured as the ratio of
points achieved divided by the total points possible to achieve.

254

Rombach and Ulery [16] used the Goal Question Metric paradigm (from hereon
referred to as GQM) to identify goals, questions and metrics for analyzing the mainte-
nance process. In GQM, the first step is to identify the goals to be achieved, which drive
the identification of questions to be answered in order to achieve the goals. In order
to answer the questions a number of metrics are identified. That is, the GQM provides
a top-down approach for the goal-driven identification of measures. The goals identi-
fied were the ability to compare maintenance activities between two programming lan-
guages, and to collect measures about the behavior of maintenance for predictive pur-
poses. The measures collected were the number of changed module per maintenance
task, effort (staff-hours) needed for isolating what to change (i.e. impact analysis), ef-
fort (staff-hours) for change implementation, and portion of reused documentation per
maintenance task. As pointed out in the article the overall implementation of the mea-
surement program took about six staff-years. However, the authors pointed out that the
long-term benefits will likely outweigh the investments made.

Stark [20] provided an experience report on the introduction of a measurement pro-
gram for software maintenance. The measures were also derived based on the GQM
paradigm. The GQM led to three categories of measures, namely measures regarding
customer satisfaction, costs of the maintenance program, and schedule. The measures
capturing customer satisfaction was the backlog of MRs to be fulfilled, the cycle time,
and reliability. The cost category included measures for cost per delivery of mainte-
nance result in dollar, and cost per maintenance activity. In addition the maintenance
effort of staff and the number of changes needed per request were captured, as well
as the effort spent on invalid change requests. The schedule category was captured by
measuring the difficulty of implementing the change (e.g. if a change is very complex
it takes longer time). Additional measures were the number of changes planned for
delivery, and the number of changes meeting the schedule.

Chan [5] raises the importance of addressing MRs quickly, i.e. with short lead-time.
To capture the lead-time he distinguishes queuing time and service time. Queuing time
is the time from arrival of a request until the actual implementation and servicing of the
request is started. In other words, queuing time is waiting time. Service time is the time
where actual work is done on the request including implementation and verification.

The following observations regarding the related work can be made: Often the lit-
erature reported measures that are relevant for lean software development, but they are
reported in isolation. For example, it is important to distinguish waiting time and ser-
vice time (cf. [5]) as waiting time is often much easier to improve than actual work
practices. In addition, the measures do not make use of visualizations considered im-
portant in a lean context to communicate and easily identify improvement potentials.
Another important aspect is that some approaches require considerable effort in imple-
mentation. The approach introduced by Henry et al. [7] required extensive modeling

255

Chapter 9. Lean Software Maintenance

and hence is a challenge to implement. Furthermore, Rombach and Ulery [16] reported
that the introduction of their maintenance measurement program required considerable
effort.

Given the benefits achieved in lean product development the novel contribution of
the approach presented in this paper is to:

• Provide an analysis approach that allows the analysis of the maintenance pro-
cess driven by lean principles, as in previous related work some lean measures
have been proposed in isolation, but were not captured in one approach. Fur-
thermore, the lean software maintenance approach captures multiple dimensions
(i.e. product and process).

• Make use of visualizations for easy communication with management, as very
few approaches provide good guidelines of how to visualize collected measures.

• Base the analysis tool on as few needed measurements as possible to allow for
an easy introduction in software organizations.

9.3 Lean Software Maintenance
As mentioned earlier, the goal driving the development of lean software maintenance
is to increase the efficiency and effectiveness of software maintenance from a lean
software development perspective. Hence, the questions asked are linked to the lean
principles mentioned in the introduction. The following GQM questions were identi-
fied:

• Q1: How is the quality over time delivered to the customer? This question is
linked to the goal as it relates to the concept of building quality in, i.e. knowing
the quality level over time provides an indication of whether an organization
succeeded in that principle. Hence, when the answer is that good quality is
delivered then the performance is good from that lean perspective.

• Q2: How continuous and with what throughput do we process MRs from cus-
tomers? This principle relates to waste, and in particular work in progress. Work
in progress is not yet delivered to the customer and hence is considered waste.
This type of waste motivated just in time which is the production without in-
ventories in between. In other words, it is important to not have half finished
work-products being stuck in the process for too long as there is a risk that they
become obsolete, wasting the already invested effort. Continuous means that
work products should be produced all the time instead of queuing them up and

256

realizing them all at once. Queuing up and building inventories often leads to
the risk of an overload situation [12]. In addition, queuing up delays feedback
and hence it becomes harder to fix problems. High throughput refers to velocity,
i.e. it is desirable to resolve many MRs per time unit. Overall, the answer to this
question relates to the goal as much waste in the process indicates inefficiencies
(cf. [13].

• Q3: How fast do we respond to the needs raised by the customer? This question
captures the ability of the organization of how fast it is able to resolve a request
from its emergence to delivery. The fast delivery of valuable software is consid-
ered as an important aspect of efficiency in lean [12] as well as agile software
development [8].

• Q4: What is the level of work-load? It is important to understand the work-load
level on the developers as an overload situation can hinder the continuous flow
and throughput, as well as increase lead-times [12]. In Chapter 7 we provided the
analogy of a highway. If the highway is almost full then the traffic goes slowly
and is close to a stand still. The best flow can be achieved with a work load
below capacity allowing the developers to think about solutions and to correct
mistakes made.

The following measures are proposed for answering the GQM questions:

• M1 for Q1: Maintenance inflow of requests per week (Section 9.3.1).

• M2 for Q2: Visualization of the flow of MRs through the maintenance process
in the form of cumulative flow diagrams (Section 9.3.2).

• M3 for Q3: Lead-time measurement considering queuing/waiting time and pro-
ductive/value adding time (Section 9.3.3).

• M4 for Q4: Statistical process control chart showing stability of work-load over
time (Section 9.3.4).

The measures mainly concern efficiency (i.e. doing things right to produce MRs
in a continuous manner with high throughput and short lead-time). To incorporate the
effectiveness (doing the right thing) we need to incorporate the importance and severity
of the MRs and based on that conduct separate analyses for each of the questions. This
allows to compare the performance of maintenance tasks on critical versus less critical
MRs. The right thing to do in this case is to have better performance for the more
critical tasks.

257

Chapter 9. Lean Software Maintenance

9.3.1 Maintenance Inflow (M1)
The maintenance inflow shows the incoming requests from customers for needed main-
tenance activities. As pointed out earlier, the MRs can be either corrective or enhance-
ments. The inflow should be measured as number of new MRs per time unit (e.g.
week). The measure can be visualized through a control chart, showing the time on the
x-axis and the number of new MRs on the y-axis (also referred to as a time-series). To
detect whether the process is under control the chart could be extended by marking the
mean value in the chart, and plotting the upper and lower control limits (usually two or
three standard deviations away from the mean).

9.3.2 Visualization Through Cumulative Flow Diagrams (M2)
A fictional example of the construction of a cumulative flow diagram is shown in Figure
9.1. The x-axis shows the time-line and the y-axis shows the cumulative number of of
MRs. The top-line (marked as inflow by the arrow) is the total number of MRs in
development. In week 9 this was around 160, while it increased to around 220 in week
20. Even though the flow is shown we propose to treat it as a separate measure (M1)
and with that analyze the stability of the process with regard to the mean value and the
deviations from the mean through upper control and lower control limits, which is not
possible within the flow diagram.

The second line from the top represents the hand-over from phase A to phase B, the
following line from phase B to phase C, and so forth. The vertical distance between
two lines shows the work in process for a phase at a specific point in time. For example,
in week 15 there are about 50 MRs in Phase B.

From the flow diagram a number of interpretations can be made with regard to the
continuous flow and the high throughput.

• Continuous flow: Observing the figure it is visible that the flow of hand-overs
from phase C to phase D is discontinuous. That is, there is a long time of inac-
tivity (week 9-13) and then suddenly a large hand-over occurs. That means, for
example, that work done in week 9 and 10 can receive feedback from the follow-
ing phase 5 weeks later. In addition, a long time of inactivity might lead to an
overload situation when the work has to be done at once, and at the same time
has potential of causing quality problems. For example, if phase D would be
an integration testing phase with long times of inactivity a big-bang integration
would become necessary.

• Throughput: The throughput is characterized by the rate in which MRs are
handed over from one phase to the other. As can be seen the hand-overs from

258

150

200

250

C
u

m
u

la
ti

v
e

 N
u

m
b

e
r

o
f

M
a

in
te

n
a

n
ce

 R
e

q
u

e
st

s Phase A

Phase B

Phase C

Inflow

0

50

100

9 10 11 12 13 14 15 16 17 18 19 20

C
u

m
u

la
ti

v
e

 N
u

m
b

e
r

o
f

M
a

in
te

n
a

n
ce

 R
e

q
u

e
st

s

Time (Weeks)

Phase D

Phase E

Phase F

=Handover

= Work in Process

Figure 9.1: Cumulative Flow Diagram

phase A to B had less throughput from week 9 to 13 than the hand-overs from
phase B to C, while the hand-overs became very similar after week 14. The
throughput allows to make two observations: If the hand-over in a phase i is
higher than in the phase i+1 this indicates a bottleneck as the work tasks come
in with a higher pace than they go out. The other way around would indicate
that the phase is running out of work, which in the case of maintenance could be
good as it means free resources for other tasks in new software development.

The analysis can be done for single phases (e.g. analysis of MRs), or to get a picture
of the overall performance of maintenance from start to finish, the incoming rate could
be compared with the rate in which MRs are finalized.

9.3.3 Lead-time measurement (M3)
In order to measure the lead-times we propose to follow MRs through the maintenance
flow by assigning states to them. A theoretical illustration of this is provided in Figure
9.2. The figure shows different activities of the maintenance flow. When a certain
activity related to the MR is executed (e.g. registration of request, analysis of request,
and so forth) then the request is put into that state. The lead-time is determined by
keeping track of the duration the requests resided in different states related to activities.

259

Chapter 9. Lean Software Maintenance

Activity 1 Activity 2 Activity 3 Activity 4

Statt State Statt State

Exploration

Phase
Planning

Phase

Iterations to

Release Phase

Productionizing

Phase

Architectural

Spike

User Story

Release

Planning

Spike

Iteration
Acceptance

Test

Small

Releases
System

Metaphor

Release

Plan

Customer

Approval

Test Scenarios

Faults

Next Iteration

Rewrite User Story

Project Velocity

Customer

Need Delivered
Release

User Story
Impementation

Write User

Story/

Requirement

Release

Planning Test

Figure 9.2: Measuring Lead-Time

In order to be able to measure the lead-time a time-stamp has to be captured whenever
the MR enters the state, and leaves the state. Depending on the maintenance flow a
request can go back to a state it already passed (e.g. due to iteration as the request
was rejected by regression testing). With this approach a number of different lead-time
measures can be conducted:

• LTa: Lead-time of a specific activity a based on the duration a request resided in
the state related to the activity.

• FC: The number of feedback-cycles allows to see how often a request entered
the same activity. This is, for example, interesting when a request is rejected
from testing indicating quality problems as a reason for prolonged lead-times.

• LTn−a: Lead-time starting with an activity a and ending with an activity n. In
order to calculate this lead-time, the sum of the durations of all activities has to
be calculated. Thus, a company can calculate the overall lead-time of the whole
maintenance life-cycle, or specific sets of activities within the life-cycle.

• WT : The measurement can also easily incorporate waiting times. Waiting times
are considered a waste in software development [13, 14, 15]. They can be cap-
tured by not only having states for identified activities assigned to MRs, but also
having states for waiting times in between activities. Thus, when an activity on a
MR is completed it needs to change into the state waiting. When the next activity
picks up the MR, then it leaves the state waiting. This information also provides
to create value stream maps which is a lean analysis tool specifically targeted
towards identifying waiting and queuing times and showing them visually [10].

When collecting the lead-time measures the mean values and variances should be
analyzed and compared with each other. For example, one should compare the lead-
time of critical and less critical MRs. To visualize the differences we propose the use
of box-plots showing the spread of the data.

260

9.3.4 Work-load (M4)

The work-load analysis is interesting with regard to the work-load in value-adding ac-
tivities over time. For that purpose the work in progress measured as the number of
MRs at a specific point in time should be plotted and analyzed using statistical process
control. The control chart then should be used to have a dialog with the developers exe-
cuting the activities to determine which work level is considered an overload situation.
In order to be able to properly analyze the workload the requests should be estimated
based on their complexity, as a complex problem is likely to be causing more work-load
than an easy to fix problem. This can be, for example, done by categorizing requests
in very complex, complex, and less complex. This can mean different things for dif-
ferent companies, and hence each company has to define its own thresholds for the
categorization.

9.3.5 Prerequisites

The analysis for M1 to M4 can be realized with relatively few measurement points.
The following information need to be captured to conduct the most basic analysis:

1. Registration of MRs with time-stamps to determine the in-flow (realizing M1).

2. A tracking system for states of the maintenance process. When the state changes
it has to be updated in the system. With the update the system keeps track of the
date and time when the update was made (realizing M2, M3, and M4).

3. A weighting of the MR with regard to value and complexity. The weighting
supports the analysis of effectiveness by comparing the performance in resolving
critical verses less critical MRs.

In the measurement it is of benefit to also have states for waiting times as well, as
has been argued for previously (see Section 9.3.3).

9.4 Research Method
The research method used is an industrial case study [22], the study allowing to under-
stand a specific situation (the use of lean software maintenance) in a given context. The
case study can be characterized based on the template proposed in Wohlin et al [21].

• Analyze Lean Software Maintenance for the purpose of evaluation,

261

Chapter 9. Lean Software Maintenance

• with respect to the ability to show the presence/absence of inefficiencies and
ineffectiveness,

• from the point of view of the researcher,

• in the context of large scale industrial software development dealing with cor-
rective maintenance.

The description of the case study illustrates the main components as described in
Yin [22], namely the case and context, the units of analysis, propositions, and the data
collection and analysis. In addition, threats to validity are discussed.

9.4.1 Case and Context
The case being studied is a development site of Ericsson AB, a Fortune 500 com-
pany working with large-scale software development producing telecommunication
and multimedia applications. It is important to describe different dimensions of the
context (e.g. product, market, process) in order to judge the outcome of a study and
to be able to generalize the results [11]. Hence, Table 9.1 shows the context elements
for this study. It is important to note that the company is dealing with business critical
applications with MRs on performance and reliability. The products are developed for
a market, meaning that it is not developed for one specific customer (bespoke develop-
ment). Instead, the product is offered to a market with many potential customers, not
knowing exactly in advance who will actually buy the product.

9.4.2 Unit of Analysis
The unit of analysis is the maintenance process used for maintaining one large system
developed at the case company. Figure 9.3 provides an overview of the maintenance
process. The process starts with a customer raising a MR, which then is registered in
the system by support. In the next step the MR is moved to the appropriate design
organization. The next step is the analysis of the MR to understand it. In addition test
cases are designed and executed to verify the MR. If the MR is understood and the
test cases are clear it goes to the design, implementation, and test phase. If the MR
is not clear, further analysis is necessary. In the analysis the design organization is
working together with support receiving the information about the problem from the
customer, and with experts knowing the system very well who serve as a consultant.
When the MR is understood it is designed and implemented. The implementation of
the MR needs to be verified, the verification being confirmed in a so-called technical
answer, confirming that the solution is complete, coding standards are met, and that

262

Table 9.1: Context Elements
Element Description

Product Size More than 850,000 Lines of code
Quality Business critical application with strict

requirements for performance and relia-
bility.

Certification ISO 9001:2000
Requirements
engineering

Market-driven process.

Testing prac-
tices and tools

Application and integration test verify-
ing if components work together (JUnit,
TTCN3), regression test for maintenance
with (TTCN3).

Defect track-
ing

Company-proprietary tool allowing to
track MRs.

Team-size 6-7 team members.
Distribution Globally operating company.

regression tests have been passed. If this is not the case the MR re-enters the analysis
and/ or design and implementation stage. If the MR has passed it goes either to a
correction package which is further tested as a whole and then released with a number
of correction, or in some cases it can go directly to the customer.

Based on the process described above the following states are tracked within the
company’s tool: (1) MRs waiting for registration in design, (2) MRs waiting for start
of analysis, (3) MRs in analysis and implementation; (4) MRs for which a solution has
been proposed; (5) MRs waiting for a technical answer confirming successful imple-
mentation; (5) MRs waiting for finalization; and (6) finished MRs. A loop is modeled
in the tool for the situation where the technical answer does not accept the solution and
thus the analysis and/ or implementation has to be redone. The number of iterations
are numbered as revisions, revision A being through in first iteration, B being through
in second iteration, and so forth.

9.4.3 Proposition
A proposition is similar to a hypotheses and states the expected outcome that is either
supported or contradicted by the findings of the study [22]. The following proposition
is stated for this study: Measures allow to capture the presence or absence of ineffi-

263

Chapter 9. Lean Software Maintenance

TC

design

SDP DM in-house work flow

Support

System Expert

Design

Maintenance

Register MR

Design

MR-Analyze

TC

design
MR-Answer

Register MR

Support
Information Input

Consultant

CP1

YesTestcase

design

Design,

impl. and

Checkpoint 1

- MR understood?

- Test cases clear?

Testcase

exec.

Ericsson Confidential Buy Design Maintenance 2009-08-272

design

Correction Package

System Test

Design

MR-Analyze
design

MR-AnswerCP1

No

design

impl. and

test MR

TTCN3

Packaging of

Corrections and their

Test

Checkpoint 2

- Solution complete?

- Coding standards?

- Reg. test base passed?

CP2

No

exec.

Yes (finalize

in correction

package)

Yes (finalize

in customer

handover)

Figure 9.3: Maintenance Process

ciencies and ineffectiveness with regard to the questions raised and allow to discover
the need for improvements.

9.4.4 Data Collection and Analysis
The data is collected through the company proprietary tool for keeping track of MRs
that were internally or externally reported. The system fulfilled the prerequisites stated
in Section 9.3.5 to a large extent. That is, the incoming MRs are registered with their
source and it is also visible which person entered them into the system. The time of
entry is kept track of. In addition, the process steps are represented as states mirroring
the process shown in Figure 9.3. This allows for the drawing of the cumulative flow di-
agrams and the measurement of the lead-times as defined by the lean software mainte-
nance solution presented in this paper. Furthermore, the MRs are classified (weighted)
based on their importance into as A, B, and C. The information about the classifica-
tion has been obtained by a person having worked in testing and with experience in
maintenance.

• A: MRs that concern performance or stability of the system are mostly classified
as A. They are important and most of the time they are not easy to fix.

• B: Problems in this category often concern the robustness of the system. In some
cases robustness problems are also classified as A.

264

• C: These problems are less severe and more easy to fix, such as fixes in single
functions. Depending on how intensively the function is used by the user, or how
hard the functional MR is to correct the MR can in cases also be classified as B.

For the analysis the MRs of the year 2009 were used as the performance measure,
reflecting the current practice in conducting maintenance activities at the company. The
analysis was done by applying the lean software maintenance solution on the data and
conduct an analysis to demonstrate whether the solution is able to show the presence
or absence of inefficiencies and ineffectiveness. The interpretation was done by the
researcher who has good knowledge a the company’s processes as he is embedded in
the company. In addition, the results have been presented to a fellow practitioner to
check whether the practitioner agrees with the observations made by the researcher.

9.4.5 Validity Threats
Validity threats are important to discuss to support the interpretation of the data by oth-
ers. In the following the validity threats and their relevance for this study are discussed.

Correctness of data: One threat to validity when working with industrial data is the
correctness and the completeness of the data. In the case of the company the tracking
system for MRs has been used for almost 15 years and hence the practitioners are
very familiar with using the system in their work, which reduces the threat of incorrect
data. When changing the state of a MR the system automatically keeps track of the
dates, which avoids that dates could be wrongly entered. Hence, the correctness and
completeness of the data is given.

Company specific maintenance process: The maintenance process of the company
is specific for the company. However, the method should be generally applicable to
other maintenance processes as well if the explained prerequisites are met in the com-
pany. Another limitation for generalization is that a corrective maintenance process has
been studied. However, the principle solution proposed in this paper stays the same,
just different phases and thus states have to be identified and need to be kept track off.

One company: When studying a company the results are true in the context of
the company. In order to aid in the generalization of the results the context has been
described. That is, the results were observed in a market-driven context working with
large-scale software development.

Interpretation by the researcher: Another threat to validity is the correct inter-
pretation of the data by the researcher. This threat was reduced as the researcher is
embedded in the company and hence has knowledge about the processes. A bias in the
analysis was reduced by presenting the results of the analysis to a practitioner work-
ing with testing and maintenance at the company. As the practitioner agreed with the

265

Chapter 9. Lean Software Maintenance

interpretation this threat is considered under control.

9.5 Results

9.5.1 Maintenance Inflow (M1)

Figure 9.4 shows the inflow of A, B, and C defects over time. It is clearly visible
that B-faults occur most often and continuously with a few peaks. A-faults appear
rather randomly and are spread around, which would be expected and desired as if
many would be reported at once a disturbance of the regular development process can
be expected. C-faults are less frequent. Overall, the result shows that it would be

Inflow C Inflow B Inflow A

Figure 9.4: MR Inflow for A, B, and C MRs (x-axis shows time and y-axis number of
MRs)

worthwhile to investigate a reason for the peaks when many faults are reported together.
Otherwise, no significant inefficiencies or a particularly poor performance with regard
to A-MRs can be observed.

9.5.2 Visualization Through Cumulative Flow Diagrams (M2)

Figure 9.5 shows the flow of A-faults. It is apparent that the actual analysis and im-
plementation appears to be a bottleneck in the beginning, leading to a high amount of
the MRs being proposed as a solution at once. In addition the area of MRs waiting
for finalization shows that improvements would be beneficial, as for a long time none

266

of the accepted MRs are finalized and thus become available for the customer or for
inclusion in a correction package.

A TRs

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.

Solution Proposed MR Answer waiting for Acc. MR waiting for finalization

Finished MRs

Figure 9.5: Maintenance Process Flow A MRs

The maintenance flow for B-MRs (Figure 9.6) shows that MRs are analyzed and
implemented continuously. The same observation as for the A-MRs can be made here
as well, with the difference that the B-MRs are finalized more continuously. However,
it is apparent that the rate in which MRs (solution proposals) are accepted is much
higher than the rate of finalization.

For the C-MRs a similar observation can be made, i.e. the MRs should be finalized
in a more continuous manner (see Figure 9.7).

With regard to the iterations needed to successfully pass a MR through internal
quality assurance Figure 9.8 illustrates that over 70 % of the MRs make it the first
time. Overall, the analysis shows that no specific inefficiencies can be detected here.
Of course, it would be worthwhile to investigate the reasons of why some MRs require
several revisions (e.g. MRs related to revision C and D).

With regard to differences between the A, B, and C MRs it should be noted that
it is particularly important to avoid the queuing of MRs waiting for finalization in the
A-case. The B-case appears to be more continuous, but still shows a bottleneck in this
phase.

267

Chapter 9. Lean Software Maintenance

B TRs

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.

Solution Proposed MR Answer waiting for Acc. MR waiting for finalization

Finished MRs

Figure 9.6: Maintenance Process Flow B MRs
C TRs

MRs wait for reg des. MRs waiting for start anal. MRs in analysis and impl.

Solution Proposed MR Answer waiting for Acc. MR waiting for finalization

Finished MRs

Figure 9.7: Maintenance Process Flow C MRs

9.5.3 Lead-Time Measurement (M3)

Figure 9.9 shows the lead-time of how long MRs reside in the different states, namely
MR waiting for registration in design (S01), MR waiting for the analysis to start (S02),

268

B

C

7%

D

3%

A

76%

B

14%

A B C D

Figure 9.8: Revisions

MR in analysis and implementation processing (S03), MR waiting for an answer ac-
knowledging the solution (S04), and MR waiting for finalization (either as a direct
delivery to the customer or the packaging into a maintenance request) (S05). The total
lead-time is shown as well.

Phase

Prio

Total LTS05S04S03S02S01

CBACBACBACBACBACBA

M
R
 L
T

Boxplot of MR LT

Figure 9.9: Leadtime

269

Chapter 9. Lean Software Maintenance

Comparing A, B, and C MRs it is apparent that A and B MRs have a high overlap
of the plots, and that the median values are similar. One could say that the lead-time
should be the shortest for A-MRs. However, as noted before A-MRs are hard to fix
and often rooted in performance problems, thus the similar lead-time in the analysis
and design phase could be justified. However, at the same time it is striking that long
lead-times are observed with regard to waiting times, the most significant waiting times
being in waiting for finalization. In fact, the waiting times are very similar to the value
adding time where the actual analysis and implementation takes place. As waiting
time is often easier to improve in comparison to productive time the figures show an
improvement potential. The total lead-time shows that MRs classified as C have a
similar median value as MRs classified as A, but the upper quartile for the lead-time
is much higher. This is an indication for the lower priority of C MRs, and thus is an
indication that the company focuses on effectiveness in concentrating more on getting
A and B MRs to the market quickly.

9.5.4 Work-Load (M4)

The workload is illustrated as individual values and moving ranges in Figure 9.10.
The continuous middle line shows the mean value, while the dashed lines show the
upper and lower control limits being three standard deviations away from the mean.
If values are outside of the control limits the situation is considered out of control. In
this case a peak work-load can be seen in the middle of the graph. For management to
gain a better understanding of the workload situation we propose to use the chart and
discuss the workload situation with the developers. This allows to determine how much
workload should be in the process at any given time to not overload the development
organization.

9.6 Discussion
The proposition of the study stated that the proposed solution allows capturing the
presence or absence of inefficiencies and ineffectiveness with regard to the questions
raised and allow to discover the need for improvements. Confirming the proposition
indicates the usefulness of the method. In the results the method was used to show the
presence or absence of inefficiencies and ineffectiveness. The following was identified:

• With regard to the inflow of MRs into the development organization no strik-
ing quality issues have been identified with regard to A-defects, they appeared
randomly and did not occur in large batches. With regard to B-defects we have

270

Work in Process

T imeI
n
d
.
V
a
lu
e
 (
M
R
s
 i
n
 A
n
a
l.
 a
n
d
 I
m
p
l.
)

T ime

M
o
v
in
g
 R
a
n
g
e
 (
M
R
s
 i
n
 A
n
a
l.
 a
n
d
 I
m
p
l.
)

1

11
1

1

1

11

11

1

111
11

1
11

Figure 9.10: Workload

shown that some peaks were visible, which should be investigated. Hence, the
method showed some potential inefficiencies here. One way of investigating the
faults is to define a test strategy determining when the fault should have been
found (known as fault-slip through [6]). This allows to know how early the fault
could have been detected.

• The analysis of the flow showed that a bottleneck exists in finalizing the MRs
across all types of MRs (i.e. A, B, and C). Hence, the reason for this waiting
time should be identified with priority on the most critical MRs. It is interesting
to observe that the bottleneck appeared in a phase which is regarded as waiting
time, which means that it could be more easily improved. No particular inef-
ficiencies were identified with regard to iterations needed to pass through the
internal quality control.

• A comparison of the lead-times showed that more than 50 % of the lead-time
appears to be waiting time. This is an interesting result as waiting time can more
easily reduced than productive time, meaning that the measures show potential
for the organization to significantly shorten their response time to MRs.

• It was also demonstrated that peaks of work-load could be identified.

271

Chapter 9. Lean Software Maintenance

In order to get a holistic picture it is important to bring the results together, as is
done in Figure 9.11. The figure shows the presence of efficiencies and effectiveness
on the top, and the discovery of inefficiencies and ineffectiveness on the bottom. In-
efficiencies and Ineffectiveness are to be discovered as they show the improvement
potential in the process. The efficiency generally refer to the performance that could be
improved. The effectiveness shows strength and improvement potential with a focus
on a comparative analysis between A, B, and C MRs. Overall, this analysis that the
proposition stated for this study holds, i.e. lean software maintenance is able to show
the presence or absence of inefficiencies and ineffectiveness.

S
tr

e
n

g
th

Im
p

ro
v
e

m
e

n
t

P
o

te
n

ti
a

l

M1: Inflow: B MRs have peak

levels (investigate)

M1: Inflow: Inflow A MRs

clearly lower than inflow B and

C MRs

M2: Flow: B MRs finalized more

continuously, need to finalize A

MRs earlier
M2: Flow: MR waiting for

finalization is bottleneck

M2: Flow: Productive time (MR

in analysis and implementation)

relatively continuous with good

throughput.

M3: Lead-Time: Similar lead-

M3: Lead-Time: Good situation

that the lead-time before

analysis is short.

Im
p

ro
v
e

m
e

n
t

P
o

te
n

ti
a

l

Efficiency Effectiveness

finalization is bottleneck

M3: Lead-Time: Large portion

of waiting time in process

M3: Lead-Time: Similar lead-

time (median) for A, B, and C.

Explanation is that A MRs hard

to fix. However, shorter time

for A would be a merit. M4: Workload: Peak-workload

outside control limits, investigate

Figure 9.11: Efficiency and Effectiveness Analysis

One important limitation of the approach as implemented at the company was iden-
tified. The classification of A, B, and C fault should clearly distinguish between criti-
cality (how important is the MR for the customer) and complexity (how hard is it to fix
the MR). This information allows to analyze which MRs should receive primary focus.
For example, MRs with high priority that are easy to fix should be realized first.

272

9.7 Conclusion
In this paper a novel approach of implementing lean software maintenance has been in-
troduced. The solution relies on the analysis of the software maintenance process with
a specific focus on lean aspects (see the whole, build quality in, continuous delivery of
value, etc.). The goal of the approach was to identify inefficiencies and ineffectiveness
with regard lean principles. Four analysis tools have been proposed, namely the inflow
of MRs, the visualization of the flow through the maintenance process with cumula-
tive flow diagrams, lead-time measures based on state diagrams, and the analysis of
workload peaks with process control charts.

The approach has been evaluated in an industrial case study at Ericsson AB. The
study demonstrated that the approach was able to identify the presence or absence of
inefficiencies and ineffectiveness in the maintenance process. We also have shown that
lean software maintenance requires the company to keep track of few measurements,
still allowing for a comprehensive analysis. In fact, the system implemented at the
company allowed the immediate application. The prerequisites for implementing the
approach are quite minimal, a company has only to keep track of registration of MRs
with time-stamps, state-changes of the MRs in the process, and the criticality of the
MRs have to be identified. Other companies can implement the process by defining
specific states and keeping track of them. In the case of the studied company we were
able to apply the measurements out of the box based on the tracking system already
existing. In future work lean software maintenance needs to be investigated in different
industrial contexts.

9.8 References
[1] Reiner R. Dumke, Alain April, and Alain Abran. Software maintenance pro-

ductivity measurement: how to assess the readiness of your organization. In
Proceedings of the International Conference on Software Process and Product
Measurement (IWSM/Metrikon 2004), pages 1–12, 2004.

[2] Omar Alam, Bram Adams, and Ahmed E. Hassan. Measuring the progress of
projects using the time dependence of code changes. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM 2009), pages 329–
338, 2009.

[3] David J. Anderson. Agile Management for Software Engineering: Applying the
Theory of Constraints for Business Results (The Coad Series). Prentice Hall PTR,
2003.

273

REFERENCES

[4] Victor R. Basili. The experience factory and its relationship to other quality ap-
proaches. Advances in Computers, 41:65–82, 1995.

[5] Taizan Chan. Beyond productivity in software maintenance: Factors affecting
lead time in servicing users’ requests. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2000), pages 228–235, 2000.

[6] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-through - a con-
cept for measuring the efficiency of the test process. Software Process: Improve-
ment and Practice, 11(1):47–59, 2006.

[7] Joel Henry, Robert Blasewitz, and David Kettinger. Defining and implementing
a measurement-based software process. Software Maintenance: Research and
Practice, 8:79–100, 1996.

[8] Craig Larman. Agile and Iterative Development: A Manager’s Guide. Pearson
Education, 2003.

[9] James M Morgan and Jeffrey K. Liker. The Toyota product development system:
integrating people, process, and technology. Productivity Press, New York, 2006.

[10] Shahid Mujtaba, Robert Feldt, and Kai Petersen. Waste and lead time reduction in
a software product customization process with value stream maps. In Proceedings
of the Australian Software Engineering Conference (ASWEC 2010) (accepted),
2010.

[11] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2009), pages 401–404, 2009.

[12] Kai Petersen and Claes Wohlin. Software process improvement through the lean
measurement (SPI-LEAM) method. Journal of Systems and Software, in print,
2010.

[13] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley, Boston, 2003.

[14] Mary Poppendieck and Tom Poppendieck. Implementing lean software develop-
ment: from concept to cash. Addison-Wesley, 2007.

[15] Mary Poppendieck and Tom Poppendieck. Leading lean software development:
results are not the point. Addison-Wesley, Upper Saddle River, NJ, 2010.

274

[16] Hans D. Rombach and Bradford T. Ulery. Improving software maintenance
through measurement. Proceedings of the IEEE, 77(4):581 – 95, 1989.

[17] Norman F. Schneidewind. Measuring and evaluating maintenance process us-
ing reliability, risk, and test metrics. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 1997), pages 232–242, 1997.

[18] T. Scott and D. Farley. Slashing software maintenance costs. Business Software
Review, 1988.

[19] Harry M. Sneed. Measuring the performance of a software maintenance depart-
ment. In Proceedings of the First Euromicro Conference on Software Mainte-
nance and Reengineering (EUROMICRO 1997), pages 119 –127, 1997.

[20] George E. Stark. Measurements for managing software maintenance. In Pro-
ceedings of the IEEE International Conference on Software Maintenance (ICSM
1996), pages 152–162, 1996.

[21] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslen. Experimentation in Software Engineering: An Introduction
(International Series in Software Engineering). Springer, 2000.

[22] Robert K. Yin. Case Study Research: Design and Methods, 3rd Edition, Applied
Social Research Methods Series, Vol. 5. Prentice Hall, 2002.

275

REFERENCES

276

Appendix A

Interview Protocol

A.1 Introduction

• Explain the nature of the study to the respondent, telling how or through whom
he came to be selected:

– Goal of the study: Understanding hindering factors in the different devel-
opment models (traditional, streamline, streamline enhanced).

– What is done: Compare the different models against each other in terms of
bottlenecks, avoidable rework and unnecessary work.

– Benefit for the interviewee: Interview is the basis for further improving
the different models considering the different views of people within the
organization, gives interviewee the chance to contribute to the improvement
of the model they are supposed to apply in the future

• Give assurance that respondent will remain anonymous in any written reports
growing out of the study, and that his responses will be treated with strictest
confidence.

• Indicate that he may find some of the questions far-fetched, silly or difficult to
answer, for the reason that questions that are appropriate for one person are not
always appropriate for another. Since there are no right or wrong answers, he
is not to worry about these but to do as best he can with them. We are only
interested in his opinions and personal experiences.

277

Chapter A. Appendix A: Interview Protocol

• Interviewee is to feel perfectly free to interrupt, ask clarification of the inter-
viewer, criticize a line of questioning etc.

• Interviewer is to ask permission to tape record the interview, explaining why he
wishes to do this.

A.2 Warm-up and Experience
• What is your professional background (how long at the company, education)?

• What is your role within the development life-cycle at Ericsson (short descrip-
tion)? Include information such as department, discipline (there are a number
of pre-defined disciplines at the company for different development activities).
How long have you been working in this role?

• In which other disciplines have you been working and for how long?

• What is your experience with traditional development and streamline develop-
ment? Select from the following options with multiple selections being possible
(has to be done once for each model):

– No previous experience
– Studied documentation
– Informal discussion with colleagues
– Seminar and group discussions
– Used in one project (started or completed)
– Used in several projects

A.3 Main Body of the Interview

A.3.1 Plan-Driven Development
The first question concerns bottlenecks.

Definition provided to the interviewee: Bottlenecks is a phenomena that hinders the
performance or capacity of the entire development lifecycle due to a single component
causing it (=bottleneck). Bottlenecks are therefore a cause for reduction in throughput.

Question: What are three critical bottlenecks you experienced / you think are
present in the traditional way of working (plan-driven)?

When describing three bottlenecks, please focus on:

278

• Which product was developed?

• Where in the development process does the bottleneck occur?

• Why is it a bottleneck (ask for the cause)?

• How does the bottleneck affect the overall development lifecycle?

The following questions concern waste. When talking about waste, we distinguish
two types of waste we would like to investigate. These types of waste are unnecessary
work and avoidable rework. A definition for each type is presented to the interviewee.

Type 1 - Avoidable Rework: Investigating avoidable rework helps us to answer:
“are we doing things right”? That is, if something has been done incorrectly, incom-
pletely or inconsistently then it needs to be corrected through reworked.

Question: What avoidable rework (three for each) has been done in the plan-driven
approach?

When describing the avoidable rework, please focus on:

• Which product was developed?

• Where in the development process is the avoidable rework done?

• What was done incorrectly, incompletely or inconsistently?

• Why is the rework avoidable?

Type 2 - Unnecessary work: Investigating unnecessary work helps us to answer:
“are we doing the right things”? That is, unnecessary work has been conducted that
does not contribute to customer value. It is not avoidable rework, as it is not connected
to correcting things that have been done wrong.

Question: What is unnecessary work (three for each) done in the plan-driven ap-
proach?

When describing the unnecessary work, please focus on:

• Which product was developed?

• Where in the development process is the unnecessary work done?

• Why is the unnecessary work executed?

• How is the unnecessary work used in the development?

279

Chapter A. Appendix A: Interview Protocol

A.3.2 Incremental and Agile Approach
After having identified the critical issues in plan-driven development we would like to
capture what the situation is after introducing the new incremental and agile practices.

Note: In this part the same questions were asked as was the case for the plan-driven
approach, now focusing on the situation after migrating to the incremental and agile
approach.

A.4 Closing
Is there anything else you would like to add that you think is interesting in this context,
but not covered by the questions asked?

280

Appendix B

Qualitative Analysis

Figure B.1 illustrates the analysis steps presented in the description of the research
methodology with an example of the identification of factor F01 shown in Table 4.6.

281

Appendix B

Clustering of Data

Interview statements belonging together are

grouped (e.g. all statements belonging to

requirements, verification, design, etc.). In this

case the grouping is done factor F01 to

examplify.

Derivation of factors

The raw formulations of the interviewees were

often long and detailed, and used company specific

terminology. To be able to use the factors in the

paper they have been rephrased in one or two short

sentences. References link to the original

Steps Example

Bad requirements, maybe you should not call them

bad, but not that clear. It is often we verified what we

thought was implemented or what we thought the

requirements was, but in the end we were reporting to

TPM or SPM what we have done, and they were like oh

that was not what we meant, and then we had to

redesign and retest it.

ID-R01: The requirements are not clear enough when they reach design so

that they implement something else that spm did not mean. (SR30, SR39,

SR41, SR49)

sentences. References link to the original

formulation (SR30, SR39, etc.)

Mind Mapping of Factors

Having a collection of statements the

statements were grouped based on their

relation to each other (e.g. hierarchy of detail

level). Factors with higher abstraction level

were closer to the center of the map.

F01: Requirements work was

wasted as documented and

validated requirements had to

be discarded and reworked

ID-R01: Work started based

on unclear requirements,

thus requiring rework

ID-R02: Long lead-times of

reuqirements phase

ID-R03: Lack of customer

communication

Root

F02: Reduction of test

coverage due to limited

testing time in the end

…
…

…

Figure B.1: Example of Analysis Illustrating the Identification of Factor F01

282

List of Figures

1.1 Waterfall Process According to Royce 4
1.2 Research Questions . 13

2.1 Mapping of Agile and Lean Principles 48
2.2 Cross-Functional Teams . 62
2.3 Kanban Board . 67

3.1 Waterfall Development at the Company 78

4.1 Development Process . 101
4.2 Data Analysis Process for Qualitative Data 113
4.3 Requirements Waste - Plan-Driven (left) vs. Incremental and Agile (right)127
4.4 Maintenance Effort . 128

5.1 Structure of the Chapter . 141
5.2 Development Process . 146
5.3 Cutout from Mind Map . 154

6.1 Development Process . 171
6.2 Comparison of Lead-Times between Phases 175
6.3 Single-System (label=0) vs. Multi-System Requirements (label=1) . . 176
6.4 Difference for System Impact (Number of systems a requirement is

affecting, ranging from 1-8) . 177
6.5 Difference for Small, Medium, and Large Requirements 177

7.1 SPI-LEAM: Integration of QIP and Lean Principles 188
7.2 Inventories in the Software Process 190
7.3 Method at a Glance . 191

283

7.4 Measuring Requirements Inventory 195
7.5 Good and Bad Inventory Levels . 196
7.6 FST-Level . 198
7.7 Analysis with Test Cases and FST 200
7.8 Improving the State of the Inventories 202
7.9 Implementation Steps of SPI-LEAM 205
7.10 Inventory of Requirements in Implementation over Time (Observation

= Time) . 207
7.11 Cumulative Flow Diagram . 208

8.1 Cumulative Flow Diagram for Software Engineering 221
8.2 Incremental Process Model . 229
8.3 Regression Analysis . 236
8.4 Slope and Variance . 238

9.1 Cumulative Flow Diagram . 259
9.2 Measuring Lead-Time . 260
9.3 Maintenance Process . 264
9.4 MR Inflow for A, B, and C MRs (x-axis shows time and y-axis number

of MRs) . 266
9.5 Maintenance Process Flow A MRs 267
9.6 Maintenance Process Flow B MRs 268
9.7 Maintenance Process Flow C MRs 268
9.8 Revisions . 269
9.9 Leadtime . 269
9.10 Workload . 271
9.11 Efficiency and Effectiveness Analysis 272

B.1 Example of Analysis Illustrating the Identification of Factor F01 . . . 282

284

List of Tables

1.1 Contrasting Plan-Driven and Agile Development (Inspired by [12]) . . 6
1.2 Comparison of Lean and Agile . 9
1.3 Sub-Contributions of the Chapters Relating to the Migration from Plan-

Driven to Agile Development (Contribution I) 10
1.4 Sub-Contributions of the Chapters Relating to the Implementation of

Lean Software Development (Contribution II) 12
1.5 Data Analysis and Evaluation Criteria 20
1.6 Validity Threats Observed in Empirical Studies at Case Company . . . 24
1.7 Overview of Results . 25

2.1 A Comparison of Goals for Lean and Agile 42
2.2 Wastes in Lean Software Engineering and their Mapping to Manufac-

turing (cf. [24] . 47
2.3 Comparison for Requirements Practices 54
2.4 Comparison for Design and Implementation Practices 56
2.5 Comparison for Quality Assurance Practices 58
2.6 Comparison for Software Release Practices 59
2.7 Comparison for Project Planning Practices 61
2.8 Comparison for Team Management Practices 63
2.9 Comparison for E2E Flow Practices 67

3.1 Issues in Waterfall Development (State of the Art) 77
3.2 Units of Analysis . 81
3.3 Distribution of Interviewees Between Roles and Units of Analysis . . 82
3.4 Number of Issues in Classification 85
3.5 Issues in Waterfall Development . 86
3.6 Distribution of Time (Duration) over Phases (in %) 89

285

3.7 Performance Measures . 89

4.1 Comparison with General Process Models 103
4.2 Context Elements . 106
4.3 Units of Analysis . 107
4.4 Distribution of Interviewees Between Roles and Units of Analysis . . 109
4.5 Questions for Issue Elicitation . 110
4.6 Classification of Identified Issues . 120
4.7 Commonly Perceived Improvements 121
4.8 Fault Slip Before System Test / LSV 127

5.1 Advantages in Incremental Agile Development (State of the Art) . . . 143
5.2 Issues in Incremental and Agile Development (State of the Art) 144
5.3 Mapping . 147
5.4 Units of Analysis . 150
5.5 Distribution of Interviewees Between Roles and Units of Analysis . . 151
5.6 Advantages Identified in Case Study 157
5.7 Issues Identified in Case Study . 160

6.1 Context Elements . 170
6.2 Results for Distribution of Lead-Time Phases, N=823 175
6.3 Test Results for H0,multi, N=823 . 176

7.1 Goal Question Metric for SPI-LEAM 192

8.1 Costs . 226
8.2 Roles . 233
8.3 Costs All . 239

9.1 Context Elements . 263

286

Without the right information, you’re just another person with an opinion.

–Tracy O’Rourke, CEO of Allen-Bradley

287

ISSN 1653-2090

ISBN 978-91-7295-180-8

Background: The software market is becoming
more dynamic which can be seen in frequent-
ly changing customer needs. Hence, software
companies need to be able to quickly respond
to these changes. For software companies this
means that they have to become agile with the
objective of developing features with very short
lead-time and of high quality. A consequence of
this challenge is the appearance of agile and lean
software development. Practices and principles
of agile software development aim at increasing
flexibility with regard to changing requirements.
Lean software development aims at systemati-
cally identifying waste to focus all resources on
value adding activities.

Objective: The objective of the thesis is to evalua-
te the usefulness of agile practices in a large-scale
industrial setting. In particular, with regard to agi-
le the goal is to understand the effect of migra-
ting from a plan-driven to an agile development
approach. A positive effect would underline the
usefulness of agile practices. With regard to lean
software development the goal is to propose no-
vel solutions inspired by lean manufacturing and
product development, and to evaluate their use-
fulness in further improving agile development.

Method: The primary research method used
throughout the thesis is case study. As secon-
dary methods for data collection a variety of
approaches have been used, such as semi-struc-
tured interviews, workshops, study of process
documentation, and use of quantitative data.

Results: The agile situation was investigated
through a series of case studies. The baseline
situation (plan-driven development) was eva-
luated and the effect of the introduction of agile
practices was captured, followed by an in-depth
analysis of the new situation. Finally, a novel ap-
proach, Software Process Improvement through
the Lean Measurement (SPI-LEAM) method, was
introduced providing a comprehensive measu-
rement approach supporting the company to
manage their work in process and capacity. SPI-
LEAM focuses on the overall process integrating
different dimensions (requirements, maintenance,
testing, etc.). When undesired behavior is obser-
ved a drill-down analysis for the individual dimen-
sions should be possible. Therefore, we provided
solutions for the main product development flow
and for software maintenance. The lean solutions
were evaluated through case studies.

Conclusion: With regard to agile we found that
the migration from plan-driven to agile develop-
ment is beneficial. Due to the scaling of agile new
challenges arise with the introduction. The lean
practices introduced in this thesis were percei-
ved as useful by the practitioners. The practitio-
ners identified concrete decisions in which the
lean solutions could support them. In addition,
the lean solutions allowed identifying concrete
improvement proposals to achieve a lean soft-
ware process.

ABSTRACT

2010:04

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2010:04

School of Computing

Implementing Lean and Agile
Software Development in Industry

Kai Petersen

Im
p

l
e

m
e

n
ti

n
g

 L
e

a
n

 a
n

d

A
g

il
e

 S
o

f
t

w
ar

e

 D
e

v
e

l
o

p
m

e
n

t
 in

 In
d

u
str

y

K
ai Petersen

2010:04

