Machine Learning and Deep learning						
Session No.	Module Name	Layman Understanding about the module	Technical Content which will be	Practical Session which will be covered		
1	Introduction	Basics of machine learning	 Definition Popular use cases Data: labeled and unlabeled Supervised and Unsupervised learning Reinforcement learning 			
2	Model creation in machine learning	How to start building a machine learning model	 Train test split Data preprocessing Dealing with missing values Outliers and data cleaning 	 Loading data using pandas isna(), fillna() functions, preprocessing using pandas 		
3	Regression	Predicting continuous data values	 Linear Regression Cost Function Gradient Descent Learning Rate Polynomial Regression Multivariate Regression, Ridge, Lasso 	 Implementation of gradient descent using numpy, user defined functions Implementation of gradient descent using sklearn 		
4	Classification/Logistic regression	Predicting discrete values/classifying data into categories	 Logistic Regression Updated Cost Function Gradient Descent for logistic regression Effect of learning rate 	 Implementation of logistic regression using user defined functions Implementation of logistic regression using sklearn Analyzing effect on output by changing learning rate 		
5	ML algorithms (supervised)	Different ML algorithms that can be used to solve a problem	- kNN - SVMs - Decision Trees - Random Forest - Naive Bayes	 Implementing all algorithms using sklearn on same dataset and analyzing their performance 		
6	Unsupervised learning - Clustering	Basic algorithms for clustering	 KMeans Hierarchical Clustering Difference between clustering and classification 	Implementing kmeans on a toy dataset		
7	Introduction to deep learning	Artificial Neural Networks and their working	 Neural networks - neurons, layers Forward pass Activation Functions - Sigmoid, tanh, ReLU, LeakyReLU, Softmax Backpropagation 	Programming a neural network without libraries or predefined functions and then with tensorflow 2.0 on MNIST dataset		
8	Maths of neural networks and optimizers	w is error reduced in neural networks and how are they traine	Optimizers - Adam - Adamax - SGD - Adadelta Error functions			

Machine Learning and Deep learning							
Session No.	Module Name	Layman Understanding about the module	Technical Content which will be	Practical Session which will be covered			
9	Layers in Neural Networks	Different layers in neural networks.	Session name - To avoid overfitting: Dropout - Fully connected layer Freezing a neural network and saving weights - Restoring weights.	Making a neural network with and without dropout and comparing performance			
10	Convolutional Neural Networks	Using deep learning to classify images	 Convolution operation Filters Vertical and Horizontal edge detector, Gaussian filter Combining filters for complex features 	Making a CNN for MNIST, fashion MNIST and CIFAR-10 datasets			
11	Transfer learning and Data augmentation	What to do when you don't have enough training data.	 Data augmentation (Different ways) Using pretrained model to classify images Popular architectures: LeNet, AlexNet, GoogleNet/Inception, VGG, ResNet 	 Cat and dog classifier usign transfer learning and data augmentation 			
12	RNNs	Neural Networks with memory to deal with data in series	- RNNs - Vanishing Gradients - LSTMs - GRUs	Using RNNs for stock price prediction			
13	Advanced RNNs	RNNs for complex problems	 Bidirectional RNNs Attention model RNNs for NLP 	Text Summarixzation using attention model			
14	Generative Adversarial Networks	Using neural networks to generate data	 Autoregressive models Variational Autoencoders GANs DCGN_StyleGAN 	Fake face generator using GANs			
15	Introduction to Reinforcement Learning	The third domain of machine learning: reinforcement learning	- Introduction - Use cases - Reward Policy				