
Machine Learning Cookbook 

1 MACHINE LEARNING BLUEPRINT 

 

Figure 1: Basic flow of a Machine Learning Model 

 

Figure 2: Blueprint for Machine Learning 



2 10 STAGES OF A MACHINE LEARNING PROJECT 

2.1 Problem Definition 

Problem definition is the initial stage of a Computer Vision/ML project, and it focuses on gaining an 

understanding of the problem poised to be solved by applying ML. 

It usually involves a problem descriptor that records, in a selected form, a scenario-based description of 

first-hand experience of an encounter of the problem to be solved. 

This stage also captures what an ideal solution to a problem will be from the problem descriptor’s 

perspective. 

A problem descriptor can be clients, customers, users or colleagues. 

2.1.1 Deliverables 

The deliverable for this stage is a document (word of pdf) with the following included (but not limited 

to): 

1. Problem Statement 

2. Ideal Problem Solution 

3. Understanding and insight into the problem 

4. Technical requirements 

2.2 RESEARCH 

This stage sets the foundation for later stages, along with the planning of implementation and 

development work carried out within subsequent stages. 

An exploration into the form a solution will take is conducted, along with information into the data 

structures, formats, and sources. 

A combination of an understanding of the problem, unified with proposed solutions, and available data, 

will enable a suitable ML model selection process to achieve the ideal solution result. 

At this stage, it is helpful to research the hardware and software requirements for the algorithms and 

model implementation; this saves a lot of time in later stages. 

 



2.2.1 Deliverables 

The deliverable for this stage is a document (word or pdf) with research into the following included: 

1. Data Structure and Source 

2. Solution form 

3. Neural Network / Model Architecture 

4. Algorithm Research 

5. Hardware Requirements 

6. Software Requirements 

2.3 DATA AGGREGATION/ MINING / SCRAPING 

Data is the fuel for an ML/CV application. Data aggregation is a crucial step that sets a precedent for 

the effectiveness and performance of the trained model. 

The output of the agreed-upon solution defines the data aggregated. 

Data understanding is paramount, and any sourced data should be examined and analysed utilizing 

visualization tools or statistical methods. 

Data examination promoted data integrity and credibility by ensuring the data sourced is the expected 

data. 

Data analysis and exploration carried on the data also ensure the following requirements are met: 

• The data gathered needs to be diverse enough to ensure that the model predictions capabilities 

accommodate a variety of possible scenarios. 

• The data gathered needs to aspire to be unbiased to ensure that the model can generalize 

appropriately during inference. 

• The data gathered needs to be abundant. 

Tools for collecting data will vary. Data sources could come in the form of APIs, XML feeds, CSV, or 

Excel files. In some scenarios, data mining/scraping from online sources is required. Ensure to check 

on third party websites scraping/mining policies before conducting scrapes. 

2.3.1 Deliverable 

The deliverable for this stage is a folder with raw source data along with annotation files within each 

subfolder. 



2.4 DATA PREPARATION / PRE-PROCESSING / AUGMENTATION 

Pre-processing steps for data are based mainly on the model input requirements. Refer to the research 

stage and recall input parameters and requirements that the selected model / neural network architecture 

requires. 

The pre-processing step transforms the raw sourced data into a format that enables successful model 

training. 

Data pre-processing could include the identified steps below, but not limited to the mentioned steps: 

• Data Reformatting (resizing images, modification to colour channels, noise reduction, image 

enhancement) 

• Data Cleaning 

• Data Normalisation 

Data augmentation is a step that is carried out to improve the diversification of data that has been 

sourced. Augmentation of image data could take the following forms: 

• Rotation of an image by any arbitrary degrees 

• Scaling of an image either to create zoomed in/out effects 

• Cropping of an image 

• Flipping (horizontal or vertical) of an image 

• Mean Subtraction 

2.4.1 Deliverable 

The deliverable for this stage is a folder with subfolders labelled train, test, and validation along with 

annotation files within each subfolder. 

2.5 MODEL IMPLEMENTATION 

Typically, model implementation is simplified by leveraging existing models that are available from a 

variety of online sources. Most ML/DL framework such as PyTorch or TensorFlow, have pre-trained 

models that are leveraged to speed up the model implementation stage. 

These pre-trained models have been trained on robust datasets and mimic the state-of-the-art neural 

network architectures’ performance and structure. 

You rarely must implement a model from scratch. The following might be expected to be conducted 

during the model implementation stage: 

https://pytorch.org/
https://www.tensorflow.org/


• Removal of last layers within a neural network to repurpose models for specific tasks. For 

example, removing the last layer of a Resnet neural network architecture enables the utilization 

of a descriptor provided by the model within an encoder-decoder neural network architecture 

• Fine-tuning pre-trained models 

2.5.1 Deliverable 

The deliverable for this stage is a model that is ready to be trained. 

2.6 TRAINING 

The training data delivered from the previous Data stages are utilized within the training stage. The 

implementation of model training involves passing the refined aggregated training data through the 

implemented model to create a model that can perform its dedicated task well. 

The training of the implemented model involves iteratively passing mini batches of the training data 

through the model for a specified number of epochs. During the early stages of training, model 

performance and accuracy can be very unimpressive. Still, as the model conducts predictions and a 

comparison of predicted values is made to the desired/target value, backpropagation takes place within 

the neural networks, the model begins to improve and gets better at the task it’s designed and 

implemented to do. 

Just before training can commence, we have to set hyperparameters and network parameters that will 

steer the effectiveness of our training stage on the model. 

Hyperparameters: These are values that are defined before the training of the network begins; they 

are initialized to help steer the network to a positive training outcome. Their effect is on the machine / 

deep learning algorithm, but they are not affected by the algorithm. Their values do not change during 

training. Examples of hyperparameters are regularization values, learning rates, number of layers, etc. 

Network parameter: These are components of our network that are not manually initialized. They are 

embedded network values that are manipulated by the network directly. An example of a network 

parameter is the weights internal to the network. 

When conducting training, it is vital to ensure that metrics are recorded of each training process and at 

each epoch. The metrics that are generally collected are the following: 

• Training accuracy 

• Validation accuracy 

• Training Loss 



• Validation Loss 

To collate and visualize training metrics, tools such as visualization tools Matplotlib and Tensorboard 

can be utilized. 

By visualizing the training metrics, it is possible to identify some common ML model training pitfalls, 

such as underfitting and overfitting. 

• Underfitting: This occurs when a machine learning algorithm fails to learn the patterns in a 

dataset. Underfitting can be fixed by using a better algorithm or model that is more suited for 

the task. Underfitting can also be adjusted fixed by recognizing more features within the data 

and presenting it to the algorithm. 

• Overfitting: This problem involves the algorithm predicting new instances of patterns 

presented to it, based too closely on instances of patterns it observed during training. This can 

cause the machine-learning algorithm to not generalize accurately to unseen data. Overfitting 

can occur if the training data does not accurately represent the distribution of test data. 

Overfitting can be fixed by reducing the number of features in the training data and reducing 

the complexity of the network through various techniques. 

2.6.1 Deliverable 

The deliverable for this stage is a developed model and training metrics 

2.7 EVALUATION 

At this stage, you should have a trained model and are ready to conduct evaluation techniques on its 

performance. 

For evaluation, we utilize a partition of the refined data, usually referred to as the ‘test data’. The test 

data have not been seen during the model during training. They are also representative of examples of 

data that are expected to be encountered in practical scenarios. 

Some examples of evaluation strategies that can be leveraged are as follows: 

• Confusion matrix (error matrix): Provides a visual illustration of the number of matches or 

mismatches the annotation of the ground truth to the classifier results. A confusion matrix is 

typically structured in tabular form, where the rows are filled with the observational results 

from the ground-truth, and the columns are filled with inference results from the classifier. 

• Precision-Recall: These are performance metrics that are used to evaluate classification 

algorithms, visual search systems, and more. Using the example of evaluating a visual search 



system(find similar images based on a query image), precision captures the number of results 

returned that are relevant, while recall captures the number of relevant results in your dataset 

that are returned. 

2.7.1 Deliverables 

The deliverable for this stage is a document containing the evaluation results, and evaluation strategies 

outputs are also included. 

2.8 PARAMETER TUNING AND INFERENCE 

Parameter tuning is the process of model refinement that is conducted by making modifications to 

hyperparameter values. The purpose of parameter tuning is to increase the model performance, and this 

correlates to improvements in evaluation results. 

Once hyperparameters are tuned and new values are selected, training and evaluation commence again. 

The process of parameter tuning is carried out until a suitable enough model is generated. 

Inference is a real-world test of our model. It involves utilizing real-world data that have been sourced 

from applicable environments. At this stage, we should be confident in our model performance. 

2.8.1 Deliverable 

The deliverable for this stage is a refined model. 

2.9 MODEL CONVERSATION TO AN APPROPRIATE FORMAT 

Once we have our refined model, we are ready to place it on devices where it can be utilized. 

Model conversion is a step that is required when developing models that are to be used within edge 

devices such as mobile phones or IoT devices. 

Model conversion involves ML models trained in a GPU/CPU environment and converting them into 

an optimized and efficient version. The streamlined model is small enough to be stored on devices and 

sufficiently accurate to conduct suitable inference. 

Examples of tools that enable model conversion to the mobile-optimized model are: 

• Core ML: This is a framework released by Apple to create iOS only dedicated models. CoreML 

provides some models for common machine learning tasks such as recognition and detection. 

It’s an iOS-only alternative to TensorFlow Lite. 

https://developer.apple.com/documentation/coreml


• PyTorch Mobile: PyTorch is a popular machine learning framework and is used extensively in 

machine learning-related research. PyTorch mobile can be compared to TensorFlow Lite, as it 

enables the conversion of PyTorch trained model to a mobile-optimized version that can be 

leveraged on iOS and Android devices. Although, PyTorch Mobile is still in its infancy and 

currently in experimental release status. 

• TensorFlow Lite: takes existing TensorFlow models and converts them into an optimized and 

efficient version in the form of a. tflite file. The streamlined model is small enough to be stored 

on devices and sufficiently accurate to conduct suitable inference. 

2.9.1 Deliverable 

The deliverable for this stage is an ML model that has been optimized for on-device usage. 

2.10 MODEL DEPLOYMENT 

Deploying our final trained model is the last step within all the identified stages. Integrating our model 

within a broader ecosystem of application or tool, or simply building an interactive web interface around 

our model, is an essential step of model deployment. 

There is also a monitoring responsibility that should be undertaken to assess the performance of the 

model while in a production environment. This is to ensure that the model is performing sufficiently 

well, and it still fit for purpose. 

Model retraining and updating is also a process within the model deployment stage. Model updating 

ensures the credibility and reliability of our model for the desired task. 

2.10.1 Deliverables 

The deliverables for this stage could be the following: 

1. Model performance monitoring system 

2. Web UI Interface to access model functionalities 

3. Continuous integration pipelines that enable model redeployment 

 

 

https://pytorch.org/mobile/home/
https://www.tensorflow.org/lite


3 TOP OPEN SOURCE AI TECHNOLOGIES IN MACHINE 

LEARNING USED BY US 

 TensorFlow 

 Keras 

 Scikit-Learn 

 Microsoft Cognitive Toolkit 

 Caffe 

 PyTorch 

 Darknet  

 MXNet 

4 MODEL DEPLOYMENT EXAMPLES 

There is no one-model fits all ideology behind deploying machine learning models. Thereby this section 

is being left open-ended for the students to explore. A couple of examples and a list of technologies has 

been discussed as follows. 

4.1 EXAMPLES OF DEPLOYMENT 

 

 

Figure 3: Standard TensorFlow Serving based deployment 

 

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://caffe.berkeleyvision.org/
https://pytorch.org/
https://pjreddie.com/darknet/
https://mxnet.apache.org/


 

Figure 4: TensorFlow vs TensorFlow JS 

 

Figure 5: Deploying using Heroku and Flask 

 



 

Figure 6: Build, Test and Deploy using Amazon Sage Maker 

4.2 TECHNOLOGIES INVOLVED 

 Docker / Virtual machine  

 TensorFlow Serving 

 PyTorch Serving  

 Flask / Django 

 Angular / React and Node 

 Various cloud platforms for pre-baked solutions 

 

 

https://www.docker.com/
https://www.virtualbox.org/
https://flask.palletsprojects.com/en/1.1.x/
https://www.djangoproject.com/
https://angular.io/
https://reactjs.org/
https://nodejs.org/en/


Setting up your Machine learning 

environment 

5 ON CLOUD 

 Gradient by Paperspace 

 Collaboratory by Google 

 Kaggle Kernels by Kaggle 

 FloydHub Kernels 

 Deepcognition.ai  

6 LOCAL MACHINE  

Most of the project these days can be run on a local machine unless we ought to design something that 

outperforms the current state of art. This is possible using the concept called Transfer Learning (Must 

read).  

In order to set up your local machine for various Machine Learning/ Deep Learning projects kindly 

ensure that the following conditions are met. If you feel you are lagging in either of the aspects as 

discussed below, we highly recommend that you use one of the free services listed in the category 

above. 

So, the following is the recommended configuration: 

1. Central Processing Unit (CPU) — Intel Core i3 8th Generation or i5 6th Generation processor or 

higher. An AMD equivalent processor will also be optimal. 

2. RAM — 8 GB minimum, 16 GB or higher is recommended. 

3. Graphics Processing Unit (GPU) — NVIDIA GeForce GTX 960 or higher. AMD GPUs are 

not able to perform deep learning regardless. For more information on NVIDIA GPUs for deep 

learning please visit https://developer.nvidia.com/cuda-gpus. 

4. Operating System — Ubuntu (Any LTS Version) or Microsoft Windows 10. We recommend 

updating Windows 10 to the latest version before proceeding forward. 

Note: You could refer to the guided setup here. If you are facing any issues kindly let us know, our 

team shall be assisting you with that. We also recommend using Docker for running the environment 

on a local machine. For instructions refer to the this link. 

https://gradient.paperspace.com/
https://colab.research.google.com/
https://www.kaggle.com/kernels
https://www.floydhub.com/
https://deepcognition.ai/
https://developer.nvidia.com/cuda-gpus
https://towardsdatascience.com/setup-an-environment-for-machine-learning-and-deep-learning-with-anaconda-in-windows-5d7134a3db10
https://johannesfilter.com/how-to-set-ubuntu-16-04-for-deep-learning-with-gpu/


Reference Materials 

 Collection of random sources (Medium): This is a medium blogpost that contains a variety of 

resources that one can refer to regarding machine learning and deep learning.  

 Machine Learning in Python 

 Introduction of Machine Learning Stack 

 Datasets – Kaggle 

 Datasets – UCI 

  The 50 Best Free Datasets for Machine Learning 

 Free MOOC by Fast.AI on Deep Learning 

 Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp by Peter 

Norvig (1992), with Code 

 Machine Learning crash course – Google 

 Open source machine learning tools 

 Python Basics to Advanced – Guided course 

 MIT Open courseware – Artificial Intelligence 

 Neural Networks and Deep Learning – Informative read 

 Neural networks class at University of Sherbrooke 

 The Microsoft Cognitive Toolkit 

 Understanding Machine Learning, © 2014 by Shai Shalev-Shwartz and Shai Ben-David - PDF 

 Play with neural networks in the browser – A better intuitive understanding 

 Computer vision, Deep Learning and OpenCV 

 The following books shall be found on Google Drive Link: 

▪ Advanced Applied Deep Learning Convolutional Neural Networks and Object 

Detection by Umberto Michelucci 

▪ Programming Collective Intelligence by O’Reilly 

▪ Kubernetes Cookbook  

▪ Hands-On Neuro-evolution with Python: Build high-performing artificial neural 

network architectures using neuro-evolution-based algorithms by Iaroslav 

Omelianenko 

▪ Programming PyTorch for Deep Learning by O’Reilly 

▪ Machine Learning for Cybersecurity Cookbook: Over 80 recipes on how to implement 

machine learning algorithms for building security systems using Python by Emmanuel 

Tsukerman 

▪ Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow by Aurelien 

Geron 

https://medium.com/machine-learning-in-practice/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
https://www.springboard.com/resources/learning-paths/machine-learning-python/
https://hackernoon.com/introduction-to-the-machine-learning-stack-f5b64bba7602
https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
https://lionbridge.ai/datasets/the-50-best-free-datasets-for-machine-learning/
https://www.fast.ai/
https://github.com/norvig/paip-lisp
https://github.com/norvig/paip-lisp
https://developers.google.com/machine-learning/crash-course/
https://www.analyticsvidhya.com/blog/2019/07/21-open-source-machine-learning-tools/
https://learnpythonthehardway.org/python3/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/
http://neuralnetworksanddeeplearning.com/about.html
https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.25164&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://www.pyimagesearch.com/
https://drive.google.com/open?id=1GUYauqVJa3BTIUjvqmPo7Ed0llx2kU6W


References for Recommendation 

Systems 

 A Collaborative Location Based Travel Recommendation System through Enhanced 

Rating Prediction for the Group of Users 

 A Machine Learning Approach — Building a Hotel Recommendation Engine 

 A recommendation engine for travel products based on topic sequential patterns 

 Data Science and AI in the Travel Industry: 12 Real-Life Use Cases 

 A recommendation engine for travel products based on topic sequential patterns 

 A simple way to explain the Recommendation Engine in AI 

 Intelligent Travel Recommendation System by Mining Attributes from Community 

Contributed Photos 

 GuideMe-A Tourist Guide with a Recommender System and Social Interaction 

 How Recommendation Engines Actually Work – Strategies and Principles 

 Smart Itinerary Recommendation based on User-Generated GPS Trajectories 

 A recommender system for tourism industry using cluster ensemble and prediction 

machine learning techniques 

 Kaggle – Recommender Systems 

 Tourist Recommender Systems 

 9 Must-Have Datasets for Investigating Recommender Systems 

 LightFM Hybrid Recommendation system 

 Powered by AI: Instagram’s Explore recommender system 

 RecSys - Basics 

 High-performing Travel Recommendation Engine built with AI/ML models 

 Evolving OYO’s Ranking Systems using Wide and Deep Networks 

 Using Machine Learning to Improve Customer Retention 

 Image Similarity Detection in Action with Tensorflow 2.0 

 Building a Personalized Real-Time Fashion Collection Recommender 

 Predicting Hotel Cancellations with Machine Learning 

 Shortest Path Distance with Deep Learning 

 BERT NLP — How To Build a Question Answering Bot 

 Video Content-Based Advertisement Recommendation using NLP 

 Creating a production ready recommender system 

 Deep Dive into Netflix’s Recommender System 

 Incremental Recommender System 

 Book Recommendation System 

 A guide to Collaborative Topic Modelling recommender systems - Theory and 

implementation of a recommender system with out-of-matrix prediction capabilities. 

 How to build a content-based movie recommender system with Natural Language 

Processing 

https://www.hindawi.com/journals/cin/2016/1291358/
https://www.hindawi.com/journals/cin/2016/1291358/
https://towardsdatascience.com/a-machine-learning-approach-building-a-hotel-recommendation-engine-6812bfd53f50
https://link.springer.com/article/10.1007/s11042-017-4406-6
https://www.altexsoft.com/blog/datascience/data-science-and-ai-in-the-travel-industry-9-real-life-use-cases/
https://www.semanticscholar.org/paper/A-recommendation-engine-for-travel-products-based-Zhu-Cao/8c3630db929848b6123b2d6ed4bfe80e554a5714
https://medium.com/voice-tech-podcast/a-simple-way-to-explain-the-recommendation-engine-in-ai-d1a609f59d97
https://www.sciencedirect.com/science/article/pii/S1877050915005153
https://www.sciencedirect.com/science/article/pii/S1877050915005153
https://pdf.sciencedirectassets.com/282073/1-s2.0-S2212017314X00071/1-s2.0-S2212017314004848/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBoaCXVzLWVhc3QtMSJHMEUCIG920QHJmv55ue5p5JM%2BThWvrQSLrd%2Bz8xTnBjMftmCQAiEAhgEF%2Fr7JgYpCQgI3gqWEAva9pPZ%2FGb33sFQZqIsN6cYqvQMIw%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARADGgwwNTkwMDM1NDY4NjUiDEYjS1Dk06GQjw84wSqRA3R9IhL1Jea3E6DEIukR2Q8Be6X1IybeFKGDCqsFRjLsIjCIAR%2Fo%2BIOSSacmru%2Fh2R74QQvMwxYVA3mgNk7P3x%2BM1mWb7IrrVqkdJWt9V1Lm8U%2Fg25%2Fdzh5WVgqmYxXkaDINuZNR7cab6ErMViBffCRqWMuQGunj%2BA730EvuriX7tZyZuetLJa9IXpz7a8P03PF5rPw2YvAbYvzB9BUUE5n37X3o30sY3%2BYkYDkvGn258nxeYQwZPAi82njJ%2Fk9HqiDD4aAE1BfQ6gAfPrOM2wN%2BDUrRz7289uAA0nSf4I7QDeDOnseRCKARxPNdEtOx%2FIGiiJAN5p5dR7UtiZ1cBU%2Fsc%2BaD8yzmC2wQ7SlnD8f1HE4Q1EzS7aGSn%2BEO0qdtvx%2FrRR3nqbxnVKIckod12ksAiV3MBcBl7gKh1aaHr4r17Gd%2FCyn4q%2FDZ9YggeUS8mQ5uTSMHVPC7JnSbBsU2ByJPmh4EimKcBHMGWa6pO4WNKuRKoAMZXOIICJcKTutYokQlOMVJSgjauP5gP0Twsl2WMMGjwvgFOusBWUM3JkHJgz7e83jNyGnAGbPXp7QTmwFThdX3BJc9oV8Omc2vuU49EzjzchKGsbcNz3K4xPf%2BvSq3PclPTPHlDDM9r2SnP2QYzKuM%2Fe2n8C7XIFsouwI4Ssn%2FJw40t13xpojmGYLuUAbFZVr0f2gijBQKs9TzquCwZ79%2BHW9XlU5LEEKxqSU%2Bb%2FitKois8%2Bt3vjcZg9%2FDfgS9oa%2BX0m13XXY1nBw%2BNuILw%2FG8v1lPX%2FvvGd60H0UVPPuhNk%2FxtHUtRbB0qti5xnnP4%2FFfiPwZ3KNUTOZViXCBScas1XqRlqJHi5LmhF7auWOusg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200716T183456Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYQ2EHTEA7%2F20200716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=1b0ba0ce2547655ebeb86ae5e5bce600882a2a6bc936a4ffefb139f03a424b8a&hash=0c51fe3cd909b84d424f31a7089653ad64ffb26012513e257ffe4d90f0914a1d&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2212017314004848&tid=spdf-a38b117c-f700-4e8d-b4ca-9ca09c337736&sid=486ca00a35234140ad5b1c36753bf2464cc0gxrqb&type=client
https://emerj.com/ai-podcast-interviews/recommendation-engines-actually-work-strategies-principles/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/UIC2010Final.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0360835217302206
https://www.sciencedirect.com/science/article/abs/pii/S0360835217302206
https://www.kaggle.com/tags/recommender-systems
https://github.com/somyamakkad97/Tourist-Recommender-System
https://www.kdnuggets.com/2016/02/nine-datasets-investigating-recommender-systems.html
https://www.kaggle.com/niyamatalmass/lightfm-hybrid-recommendation-system
https://instagram-engineering.com/powered-by-ai-instagrams-explore-recommender-system-7ca901d2a882
https://github.com/HaiTMai/RecommenderSystem
https://www.goodworklabs.com/travel-recommendation-engine-ai-models/
https://medium.com/oyotech/evolving-oyos-ranking-systems-using-wide-and-deep-networks-75dc8425fb44
https://towardsdatascience.com/using-machine-learning-to-improve-customer-retention-ee742087a3fd
https://towardsdatascience.com/image-similarity-detection-in-action-with-tensorflow-2-0-b8d9a78b2509
https://towardsdatascience.com/building-a-personalized-real-time-fashion-collection-recommender-22dc90c150cb
https://towardsdatascience.com/predicting-hotel-cancellations-with-machine-learning-fa669f93e794
https://towardsdatascience.com/shortest-path-distance-with-deep-learning-311e19d97569
https://towardsdatascience.com/bert-nlp-how-to-build-a-question-answering-bot-98b1d1594d7b?gi=10c4bd61a917
https://link.medium.com/zfSzCrRc46
https://link.medium.com/s3PjIcbEv6
https://towardsdatascience.com/deep-dive-into-netflixs-recommender-system-341806ae3b48
https://towardsdatascience.com/building-an-incremental-recommender-system-part-ii-2d0e782b2cf6
https://datascienceplus.com/building-a-book-recommender-system-the-basics-knn-and-matrix-factorization/
https://towardsdatascience.com/a-guide-to-collaborative-topic-modeling-recommender-systems-49fd576cc871
https://towardsdatascience.com/a-guide-to-collaborative-topic-modeling-recommender-systems-49fd576cc871
https://towardsdatascience.com/how-to-build-from-scratch-a-content-based-movie-recommender-with-natural-language-processing-25ad400eb243
https://towardsdatascience.com/how-to-build-from-scratch-a-content-based-movie-recommender-with-natural-language-processing-25ad400eb243

