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• Vision: teams of humans and robots performing 
opportunistic, scalable cooperative localization.

• Important in uncertain and/or hostile environments, 
with…
– Obstructed / limited measurements
– Minimal communication

• Approach: 
– Fuse state estimates among human, robot, and/or 

vehicle agents tracking and communicating with 
one another in an ad-hoc, scalable fashion. 

– Use radio ranging as primary opportunistic 
measurement to maintain precise state estimation 
when particular agents loose reliable GPS. 

Squad X Concept, source: DARPA
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• Develop and analyze partial state DDF techniques to allow cooperative 
localization and tracking in a scalable, ad-hoc network of soldiers and 
vehicles in the presence of obstructed GPS measurements.
– Phase I (Fall 2016 – Spring 2017): Build a 

simulation to verify successful cooperative 
localization given Army’s available sensors and 
corresponding characteristics.

– Phase II (Summer 2017 – Spring 2018): 
Implement framework on hardware using 
realistic sensors and environments. 
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• “Multi-robot SLAM with moving landmarks that communicate 
minimally”

• Agents: Human, robot, and/or vehicle agents 

• Tracked Processes: human, robot, and/or vehicles tracked by 
Agent  

• State Space: combination of local navigation filter + tracking 
filter states for Agent local nav. states tracking states of each

Squad X Concept, source: DARPA
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• Vanilla Distributed Data Fusion (DDF) (1,2,3)
– Assumes uncorrelated state uncertainties, tree 

network topology, identical states across agents
• SLAM (4)

– Involves nonlinear, iterative least-squares 
optimization à not scalable because of required 
uncertainty bookkeeping

• GPS-denied solutions (5,6)
– Computationally expensive, requires high quality 

sensors, and does not take advantage of sensor data 
available to other agents (i.e., information sharing) 
(e.g., LASOIS)

• Covariance Intersection / Factorized DDF (7,8)
– Generally conservative and applied to agents with 

consistent tracking models

B. Grocholsky et. al.3

S. Julier et. Al.7
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Prediction:

Write-up: https://tinyurl.com/nav-filter

Previous Talk: Nav. Filter

Update:
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1. Agent i runs filter 
prediction locally

2.  Agent i runs filter 
update locally

3.  Agent i communicates local 
estimate relevant to agent j

4.  Agent i fuses new information 
from agent j through DDF

1. Channel Filter (CF)
between agents i and j
predicts propagation of 
common information 

2. CF receives local estimates 
from agents i and j

3. CF updates common 
information

B. Grocholsky et. al.3
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• Most DDF solutions replace local Kalman Filter with Information Filter (IF) – better 
when more sensors than local states, which is typically the case with distributed 
estimation.2

• However...
– Navigation filter equations are linearized about nominal state à need actual states at 

each iteration rather than information form.
– Need nominal states to recover shared tracking estimations

• IF states / covariance:

• IF prediction: IF update:
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• Channel Filter (CF) between communicating neighbors i and j to estimate 
common information to avoid double-counting. 

CF states / covariance:

CF prediction CF update

(same as IF)

DDF update
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For distributed data fusion (DDF), we define a channel filter (CF) between communi-
cating neighbors i and j. The CF estimates common information yij and Y
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k+1|k+1 + ỹj
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i
k+1|k+1 + Ỹ
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Channel 
Filter

Agent i

geo2nav

+

geo2nav

+

Agent j
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Motion of Tracked States

Truth: Dubin’s (Unicycle) Model
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• Two agents moving in unicycle motion, communicating and tracking 
each other with Cartesian range measurements.

local “nav.” states

tracked position states
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NCV Model:

Truth (unicycle): NCV Tuning 
Parameter
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Chi-squared NCV, 100 sims
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2-agent EKF with unicycle + shared input tracking, no DDF – example 
estimation errors for both agents
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2-agent EKF with unicycle + shared input tracking, no DDF – chi-
squared results for 100 sims
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2-agent EKF with unicycle + shared input tracking & DDF – example 
estimation errors for both agents
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2-agent EKF with unicycle + shared input tracking & DDF – chi-
squared results
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1. Achieve consistency of channel filter DDF implementation of unicycle 
tracking model.

2. Test channel filter implementation with alternate tracking models
- NCV model
- Unicycle without shared inputs

3. Implement DDF algorithm + tracking model in nav. filter and verify 
consistency.

4. Simulate more realistic range measurements / characteristics (e.g., 
through radio-ranging)
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ECI & ECEF
ECEF & Tangential frame 

(North-East-Down)

Navigation frame

Navigation, Body, & 
Geographic frame 

Coordinate Systems
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4 Variable Definitions

System state variables: The following states represent the actual behavior of the
system.

• p = [✓,�, h]T ! geographic frame position vector, consisting of the latitude,
longitude, and height of vehicle

• vn
e = [vn, ve, vd]T ! earth-relative velocity vector of vehicle, represented in the

navigation frame (i.e., in “east-north-down” coordinates)

• Rn
b ! rotation matrix bringing vectors in the vehicle body frame to the navigation

frame

• fb ! accelerometer reading (i.e., force), represented in the vehicle body frame

• !b
ib ! gyroscope reading (i.e., angular velocity of the vehicle body frame w.r.t.

the inertial frame), represented in the body frame

• �fb ! accelerometer reading error in the body frame

• �!b
ib ! gyroscope reading error in the body frame

• xa ! modeled accelerometer error states, related to the accelerometer reading
correction by �fb = Fvaxa

• xg ! modeled gyroscope error states, related to the gyroscope reading correction
by �!b

ib = F⇢gxg

Direct Sensor Readings: Raw measurement readings directly outputted by sen-
sors.

• f̃
b ! direct accelerometer reading, f̂

b
= f̃ b � �f̂

b
.

• !̃b
ib ! direct gyroscope reading, !̂b

ib = !̃b
ib � �!̂b

ib.

• ỹGPS
K+1 = [✓̃, �̃, h̃]T ! direct GPS reading of vehicle’s latitude, longitude, and height

• P̃
GPS

k+1 ! direct GPS measurement noise covariance (i.e., measurement uncer-
tainty), reported to user through GPS module

INS Error States: states being estimated through navigation filter, representing
deviations of the nominal states from the true states.

• �p = [�✓, ��, �h]T ! position perturbation states (in geographic frame), �p =
p � p̂

• �v = [�vn, �ve, �vd]T ! velocity perturbation states (relative to Earth, in naviga-
tion frame), �v = vn

e � v̂n
e
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• ỹGPS
K+1 = [✓̃, �̃, h̃]T ! direct GPS reading of vehicle’s latitude, longitude, and height

• P̃
GPS

k+1 ! direct GPS measurement noise covariance (i.e., measurement uncer-
tainty), reported to user through GPS module

INS Error States: states being estimated through navigation filter, representing
deviations of the nominal states from the true states.

• �p = [�✓, ��, �h]T ! position perturbation states (in geographic frame), �p =
p � p̂

• �v = [�vn, �ve, �vd]T ! velocity perturbation states (relative to Earth, in naviga-
tion frame), �v = vn

e � v̂n
e

6

4 Variable Definitions

System state variables: The following states represent the actual behavior of the
system.

• p = [✓,�, h]T ! geographic frame position vector, consisting of the latitude,
longitude, and height of vehicle

• vn
e = [vn, ve, vd]T ! earth-relative velocity vector of vehicle, represented in the

navigation frame (i.e., in “east-north-down” coordinates)

• Rn
b ! rotation matrix bringing vectors in the vehicle body frame to the navigation

frame

• fb ! accelerometer reading (i.e., force), represented in the vehicle body frame

• !b
ib ! gyroscope reading (i.e., angular velocity of the vehicle body frame w.r.t.

the inertial frame), represented in the body frame

• �fb ! accelerometer reading error in the body frame

• �!b
ib ! gyroscope reading error in the body frame

• xa ! modeled accelerometer error states, related to the accelerometer reading
correction by �fb = Fvaxa

• xg ! modeled gyroscope error states, related to the gyroscope reading correction
by �!b

ib = F⇢gxg

Direct Sensor Readings: Raw measurement readings directly outputted by sen-
sors.

• f̃
b ! direct accelerometer reading, f̂

b
= f̃ b � �f̂

b
.

• !̃b
ib ! direct gyroscope reading, !̂b

ib = !̃b
ib � �!̂b

ib.

• ỹGPS
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2Note that ⇢̂ = 0 since the nominal state of these small-angle rotations remain zero (i.e., they aren’t
propagated forward in the mechaniation equations), so �⇢ = ⇢ � ⇢̂ = ⇢.

7

• ⇢ = [✏N , ✏E, ✏D] ! small-angle rotations bringing true body-to-navigation rotation
matrix to belief2, R̂

n

b = (I � [⇢⇥])Rn
b

• �fb ! perturbation states of accelerometer reading correction term, �fb = �fb �
�f̂

b

• �!b
ib ! perturbation states of gyroscope reading correction term, �!b

ib = �!b
ib �

�!̂b
ib

• �xa = [xT
ba ,x

T
Aa
,xT

ka] ! perturbations of modeled accelerometer error states, con-
sisting of bias, scale factor and misalignment, and nonlinearity terms, respectively.
�fb = Fva�xa + ⌫a. Note that x̂T

ba , x̂
T
Aa
, and x̂T

ka = 0.

• �xg = [xT
bg ,x

T
Ag
,xT

kg] ! perturbations of modeled gyroscope error states, consist-
ing of bias, scale factor and misalignment, and g-sensitivity terms, respectively.
�!b

ib = F⇢g�xg + ⌫g. Note that x̂T
bg , x̂

T
Ag
, and x̂T

kg = 0.

• �x = [�p, �v, ⇢, �xa, �xg] ! state vector used in navigation filter (33 states total),
˙�x(t) = F(t)�x(t) + �q

• ⌫a ! accelerometer reading process noise

• ⌫g ! gyroscope reading process noise

• !a ! process noise of modeled accelerometer perturbation states, �ẋa = Faa�xa+
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Navigation Filter Block Diagram – High Level
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4 Variable Definitions

System state variables: The following states represent the actual behavior of the
system.

• p = [✓,�, h]T ! geographic frame position vector, consisting of the latitude,
longitude, and height of vehicle

• vn
e = [vn, ve, vd]T ! earth-relative velocity vector of vehicle, represented in the

navigation frame (i.e., in “east-north-down” coordinates)

• Rn
b ! rotation matrix bringing vectors in the vehicle body frame to the navigation

frame

• fb ! accelerometer reading (i.e., force), represented in the vehicle body frame

• !b
ib ! gyroscope reading (i.e., angular velocity of the vehicle body frame w.r.t.

the inertial frame), represented in the body frame

• �fb ! accelerometer reading error in the body frame

• �!b
ib ! gyroscope reading error in the body frame

• xa ! modeled accelerometer error states, related to the accelerometer reading
correction by �fb = Fvaxa

• xg ! modeled gyroscope error states, related to the gyroscope reading correction
by �!b

ib = F⇢gxg

Direct Sensor Readings: Raw measurement readings directly outputted by sen-
sors.

• f̃
b ! direct accelerometer reading, f̂

b
= f̃ b � �f̂

b
.

• !̃b
ib ! direct gyroscope reading, !̂b

ib = !̃b
ib � �!̂b

ib.

• ỹGPS
K+1 = [✓̃, �̃, h̃]T ! direct GPS reading of vehicle’s latitude, longitude, and height

• P̃
GPS

k+1 ! direct GPS measurement noise covariance (i.e., measurement uncer-
tainty), reported to user through GPS module

INS Error States: states being estimated through navigation filter, representing
deviations of the nominal states from the true states.

• �p = [�✓, ��, �h]T ! position perturbation states (in geographic frame), �p =
p � p̂

• �v = [�vn, �ve, �vd]T ! velocity perturbation states (relative to Earth, in naviga-
tion frame), �v = vn

e � v̂n
e
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Tracking Measurement Equation

Range 
Meas.

Tracking 
States

Corrected 
Nav. States

Range Sensor 
Noise
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Meas. Sharing Measurement Equations

Agent 2 Agent 1
Tracking, GPS:

1. Tracking:

same tracking meas. eq.

1. GPS:
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• Most DDF solutions replace local Kalman Filter with Information Filter (IF) – better 
when more sensors than local states, which is typically the case with distributed 
estimation.2

• However...
– Navigation filter equations are linearized about nominal state à need actual states at 

each iteration rather than information form.
– Need nominal states to recover shared tracking estimations

• IF states / covariance:

• IF prediction: IF update:
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• Channel Filter (CF) between communicating neighbors i and j to estimate 
common information to avoid double-counting. 

CF states / covariance:

CF prediction CF update

(same as IF)

DDF update

iik+1 = (H i
k+1)

T (Ri
k+1)

�1zik+1, (9)

I
i
k+1 = (H i

k+1)
T (Ri

k+1)
�1
H

i
k+1, (10)

ỹk+1|k+1 = yk+1|k +
NX

i=1

iik+1, (11)

Ỹk+1|k+1 = Yk+1|k +
NX

i=1

I
i
k+1, (12)

For distributed data fusion (DDF), we define a channel filter (CF) between communi-
cating neighbors i and j. The CF estimates common information yij and Y

ij between
its two nodes such that new information can be communicated without biases. The CF
prediction step for the next time step k+ 1 is equivalent to Equations 5 - 8, yielding
yij
k+1|k and Y

ij
k+1|k.

To perform the DDF update step on node i, we fuse new information i
j
k+1 from

neighboring nodes j 2 Ni by summing the di↵erence between the local estimates of j and
the common information predicted by the CF between nodes i and j, as follows:

yi
k+1|k+1 = ỹi

k+1|k+1 +
X

j2Ni

⇥
ỹj
k+1|k+1 � yij

k+1|k
⇤
, (13)

Y
i
k+1|k+1 = Ỹ

i
k+1|k+1 +

X

j2Ni

⇥
Ỹ

j
k+1|k+1 � Y

ij
k+1|k

⇤
, (14)

Finally, the CF update step for neighboring nodes i and j is performed as fol-
lows:

yij
k+1|k+1 = �yij

k+1|k + ỹi
k+1|k+1 + ỹj

k+1|k+1, (15)

Y
ij
k+1|k+1 = �Y

ij
k+1|k + Ỹ

i
k+1|k+1 + Ỹ

j
k+1|k+1, (16)

Where ỹi
k+1|k+1 and Ỹ

i
k+1|k+1 are the local information state and matrix estimates of

node i, and ỹj
k+1|k+1 and Ỹ

j
k+1|k+1 are those of node j, as calculated through Equations

9 - 12 (i.e., prior to the DDF update).
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