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1 Overview

A GPS-aided navigation filter uses high-rate inertial navigation sensors (INS) combined
with correcting GPS measurements to estimate, among other states, the dynamic po-
sition of a system (e.g., vehicle, human). In this example, a Kalman Filter is used
to estimate perturbations from nominal states. These nominal states consist of the
geographic-frame position (i.e., lattitude, longitude, and height), navigation-frame ve-
locity (i.e., velocity in the north, east, and down directions), the rotation matrix from
the body to navigation frame, and the measurement corrections required to relate di-
rect INS measurements to true inertial behaviors. The nominal states are propagated
forward through mechanization equations given the accelerometer and gyroscope (i.e.,
INS) measurements 1. One can think of the nominal states as the “dead-reckoning” so-
lution. The accelerometer and gyro measurements are also used to drive the dynamics
of the Kalman filter states; think of them as the system’s “control inputs”. The states
of the filter are perturbations from the nominal state used to obtain estimated corrected
states. This type of approach is used because the dynamics of the desired states (e.g.,
latitude, longitude) are in general nonlinear, and so they must be linearized about a
nominal state and applied to small perturbations. After the new perturbation states are
predicted given the INS measurements, new full position estimates can be made, which
are compared to the position output by the GPS receiver. The difference between the
position states predicted by the INS solution and those measured by the GPS receiver
is the “measurement” in the measurement update step of the Kalman filter. Based on
this difference and the uncertainty in the GPS measurement (which is also output by
certain GPS receivers), the estimated perturbation states are updated. Combined with
the nominal states, these estimates provide an updated belief of the true position, ve-
locity, and orientation of the system. In the open-loop version of the navigation filter,
which will be further described in this write-up, the perturbation states are not fed
back to correct the nominal states, as in the closed-loop version.

2 Coordinate Systems

The primary coordinate systems used throughout the navigation filter are the Earth-
Centered Inertial (ECI) frame, Earth-Centered Earth-Fixed (ECEF) frame, Tangential
frame (the Navigation frame), Geographic frame, and Body frame. These coordinate
systems are described below in Figures 1 - 3.

1Note that nominal accelerometer and gyro measurement corrections remain at zero, since there is
no way to directly measure these corrections and so they cannot be propagated forward.
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Figure 1: The Earth-Centered Inertial (ECI) and Earth-Centered Earth-Fixed (ECEF)
frame. The ECI Frame is static, while the ECEF Frame rotates with the Earth about the ze

axis (i.e., Earth’s rotation axis).
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Figure 2: The ECEF and Tangential (North-East-Down) frame - i.e., the Navigation frame.
The Tangential frame is a plane intersecting the Earth reference ellipsoid at a particular

location, with basis vectors in the north/east/down directions defined at that location.
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Figure 3: The Navigation, Body , and Geographic frames. The Geographic frame is the
projection of the vehicle’s origin onto the Earth reference ellipsoid. It has latitude, longitude,

and height components.

3 Terminology

The arbitrary variable α will be used to identify key terminologies used throughout this
write-up.

• The term α represents the true value of that particular state.

• The nominal state is written as α̂.

• If α described a sensor measurement, the direct output of the sensor would be
α̃.

• A correction term for α̃ to achieve the true values acting on the system would

be ∆α (e.g., fb = f̃
b −∆fb).

• The perturbation of the variable of interest {α} is written as δα = {α} − ˆ{α}
(e.g., δα = α− α̂ or δα = ∆α−∆α̂).

• The estimation error is the difference between the true value, α, and the esti-
mated corrected value, α̂ + δα.
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4 Variable Definitions

System state variables: The following states represent the actual behavior of the
system.

• p = [θ, λ, h]T → geographic frame position vector, consisting of the latitude,
longitude, and height of vehicle

• vne = [vn, ve, vd]
T → earth-relative velocity vector of vehicle, represented in the

navigation frame (i.e., in “east-north-down” coordinates)

• Rn
b → rotation matrix bringing vectors in the vehicle body frame to the navigation

frame

• fb → accelerometer reading (i.e., force), represented in the vehicle body frame

• ωbib → gyroscope reading (i.e., angular velocity of the vehicle body frame w.r.t.
the inertial frame), represented in the body frame

• ∆fb → accelerometer reading error in the body frame

• ∆ωbib → gyroscope reading error in the body frame

• xa → modeled accelerometer error states, related to the accelerometer reading
correction by ∆fb = Fvaxa

• xg → modeled gyroscope error states, related to the gyroscope reading correction
by ∆ωbib = Fρgxg

Direct Sensor Readings: Raw measurement readings directly outputted by sen-
sors.

• f̃
b → direct accelerometer reading, f̂

b
= f̃ b −∆f̂

b
.

• ω̃bib → direct gyroscope reading, ω̂bib = ω̃bib −∆ω̂bib.

• ỹGPSK+1 = [θ̃, λ̃, h̃]T → direct GPS reading of vehicle’s latitude, longitude, and height

• P̃
GPS

k+1 → direct GPS measurement noise covariance (i.e., measurement uncer-
tainty), reported to user through GPS module

INS Error States: states being estimated through navigation filter, representing
deviations of the nominal states from the true states.

• δp = [δθ, δλ, δh]T → position perturbation states (in geographic frame), δp =
p− p̂

• δv = [δvn, δve, δvd]
T → velocity perturbation states (relative to Earth, in naviga-

tion frame), δv = vne − v̂ne
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• ρ = [εN , εE, εD]→ small-angle rotations bringing true body-to-navigation rotation

matrix to belief2, R̂
n

b = (I− [ρ×])Rn
b

• δfb → perturbation states of accelerometer reading correction term, δfb = ∆fb −
∆f̂

b

• δωbib → perturbation states of gyroscope reading correction term, δωbib = ∆ωbib −
∆ω̂bib

• δxa = [xTba ,x
T
Aa
,xTka]→ perturbations of modeled accelerometer error states, con-

sisting of bias, scale factor and misalignment, and nonlinearity terms, respectively.
δfb = Fvaδxa + νa. Note that x̂Tba , x̂

T
Aa
, and x̂Tka = 0.

• δxg = [xTbg ,x
T
Ag
,xTkg] → perturbations of modeled gyroscope error states, consist-

ing of bias, scale factor and misalignment, and g-sensitivity terms, respectively.
δωbib = Fρgδxg + νg. Note that x̂Tbg , x̂

T
Ag
, and x̂Tkg = 0.

• δx = [δp, δv, ρ, δxa, δxg]→ state vector used in navigation filter (33 states total),
˙δx(t) = F(t)δx(t) + Γq

• νa → accelerometer reading process noise

• νg → gyroscope reading process noise

• ωa → process noise of modeled accelerometer perturbation states, δẋa = Faaδxa+
ωa

• ωg → process noise of modeled gyroscope perturbation states, δẋg = Fggδxg + ωg

2Note that ρ̂ = 0 since the nominal state of these small-angle rotations remain zero (i.e., they aren’t
propagated forward in the mechaniation equations), so δρ = ρ− ρ̂ = ρ.
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5 Block Diagrams
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Figure 4: Navigation filter high-level block diagram.
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Figure 5: Navigation filter lower-level block diagram (expansion of Block 1).
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Figure 6: Self-Alignment filter block diagram.
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Figure 7: Self-Alignment lower-level block diagram (expansion of Block 1.0).

6 Detailed Description

6.1 Mechanization (Strap-Down) Equations

Position vector: 


˙̂
φ
˙̂
λ
˙̂
h


 =




1

Rm+ĥ
0 0

0 1

cos(φ̂)(Rn+ĥ)
0

0 0 −1






v̂n
v̂e
v̂d


 (1)
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Velocity vector:




˙̂vn
˙̂ve
˙̂vd


 =



f̂n
f̂e
f̂d


+ gn +




0 −ωd ωe
ωd 0 −ωn
−ωe ωn 0





v̂n
v̂e
v̂d


 (2)



ωn
ωe
ωd


 = (ωnen + 2ωie

n) =




(
˙̂
λ+ 2ωie)cos(φ̂)

− ˙̂
φ

−(
˙̂
λ+ 2ωie)sin(φ̂)


 (3)



f̂n
f̂e
f̂d


 = f̂

n
= R̂

n

b f̂
b

(4)

Rotation matrix:

˙̂
Rn
b = R̂

n

b ([ω̂bib×]− [ω̂bin×]) (5)

ω̂bin = R̂
b

nω̂
n
in (6)

ω̂nin =




(
˙̂
λ+ ωie)cos(φ̂)

− ˙̂
φ

−(
˙̂
λ+ ωie)sin(φ̂)


 (7)

6.2 Navigation Filter State Dynamics Equations




δṗ
δv̇
ρ̇
δẋa
δẋg




=




Fpp Fpv Fpρ 0 0

Fvp Fvv Fvρ −R̂
n

bFva 0

Fρp Fρv Fρρ 0 R̂
n

bFρg

0 0 0 Faa 0
0 0 0 0 Fgg







δp
δv
ρ
δxa
δxg




+




0 0 0 0

−R̂
n

b 0 0 0

0 R̂
n

b 0 0
0 0 I 0
0 0 0 I







νa
νg
ωa
ωg


 (8)

The submatrices Fij above are found by linearized the state derivatives about the
cooresponding nominal states. For example, the derivation of Fpp,Fpv, and Fpρ is

provided below by linearizing ṗ about ˙̂p:
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˙̂p =




1

Rm+ĥ
0 0

0 1

cos(φ̂)(Rn+ĥ)
0

0 0 −1






v̂n
v̂e
v̂d


 =




v̂n
Rm+ĥ
ve

cos φ̂(Rm+ĥ)

−v̂d


 = fp(p̂, v̂) (9)

ṗ = fp(p̂, v̂) +
(δfp(p,v)

δp
|p̂,v̂,ρ̂

)
δp +

(δfp(p,v)

δv
|p̂,v̂,ρ̂

)
δv +

(δfp(p,v)

δρ
|p̂,v̂,ρ̂

)
ρ (10)

δṗ = ṗ− ˙̂p = Fppδp + Fpvδv + Fpρρ (11)

Fpp =
δfp(p,v)

δp
|p̂,v̂,ρ̂ =

[δfp(p,v)

δφ
|p̂,v̂,ρ̂,

δfp(p,v)

δλ
|p̂,v̂,ρ̂,

δfp(p,v)

δh
|p̂,v̂,ρ̂

]
(12)

=




0 0 −v̂n
(Rm+ĥ)2

v̂e sin(φ̂)

cos2(φ̂)(Rn+ĥ)
0 −v̂e

cos(φ̂)(Rn+ĥ)2

0 0 0


 (13)

Fpv =
δfp(p,v)

δv
|p̂,v̂,ρ̂ =

[δfp(p,v)

δvn
|p̂,v̂,ρ̂,

δfp(p,v)

δve
|p̂,v̂,ρ̂,

δfp(p,v)

δvd
|p̂,v̂,ρ̂

]
(14)

=




1

Rm+ĥ
0 0

0 1

cos(φ̂)(Rn+ĥ)
0

0 0 −1


 (15)

Fpρ =
δfp(p,v)

δρ
|p̂,v̂,ρ̂ = 0 (16)

The derivation and solutions of all other submatrices Fij in Equation 8 can be found in
Sections 11.4 (pp. 392-396) and 11.6 (pp. 406-413) of Jay Farrell’s Aided Navigation
[1]. The solutions are provided below in terms of the variables defined in Figure 8. Note
the approximation Rn = Rm = Re and that all hat symbols are omitted for further
simplification. Also, the submatrices associated with accelerometer and gyro pertur-
bations vary depending on the modeled INS error states; those provided below neglect
accelerometer nonlinearity terms (δxka) and gyroscope g-sensitivity terms (δxkg), and
assume that variations in the error states are independent of the previous state.
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11.5. INS ERROR CHARACTERISTICS 397

ΩN = ωie cos(φ) F41 = −2ΩNve − ρN ve

cos2(φ)

ΩD = −ωie sin(φ) F43 = ρEkD − ρNρD

ρN = ve

Re
F51 = 2(ΩNvn + ΩDvd) + ρN vn

cos(φ)2

ρE = −vn

Re
F53 = −ρEρD − kDρN

ρD = −ve tan(φ)
Re

F54 = −(ωD + ΩD)

ωN = ΩN + ρN F55 = kD − ρE tan(φ)
ωE = ρE F56 = ωN + ΩN

ωD = ΩD + ρD F63 = ρ2
N + ρ2

E − 2 g
Re

kD = vd

Re
F91 = ΩN + ρN

cos(φ)2

Table 11.1: Definition of notation for INS error equations.

11.5.1 Simplified Error Models

This section considers the initial condition and forced responses of the sim-
plified error dynamics derived in Exercise 3.12 on p. 99. This simplified
error analysis is useful for developing insight that is more difficult to discern
from the full error analysis that is presented in Section 11.5.2.

11.5.1.1 Vertical Error Channel

From eqn. (3.104), the vertical channel error dynamics can be represented
as [

ḣ
v̇d

]
=

[
0 −1(

v̂2
n

(Re+h)2
− 2GM

(Re+h)3

)
0

] [
h
vd

]
.

For a constant speed v̂n, the eigenvalues are ±
√

2GM

(Re+h)3
− v̂2

n

(Re+h)2
. For

the typical conditions where h ≪ Re and v̂n ≪ (Re + h), the eigenvalues

are near ±
√

2GM

R3
e

= ±
√

2g

Re

. Due to the pole with positive real part,

the vertical error dynamics are unstable. Some form of feedback error
mechanism such as altimeter or GPS aiding is required to stabilize the
vertical errors.

11.5.1.2 Lateral Error Channel

From eqn. (3.105), the lateral channel error dynamics can be represented
as

⎡
⎣

φ̇
v̇

θ̇

⎤
⎦ =

⎡
⎢⎣

0 1

Re

0

0 0 −g
0 1

Re

0

⎤
⎥⎦

⎡
⎣

φ
v
θ

⎤
⎦ +

⎡
⎣

0 0
1 0
0 1

⎤
⎦

[
ϵa

ϵg

]
. (11.81)

Figure 8: Definition of variables used to simplify state dynamics transition matrices.

6.3 Navigation Filter Measurement Equation

The “measurement” used in the Kalman Filter measurement update equation is the
difference in ECEF position between the GPS measurement and predicted INS nominal
states:

zk+1 = δpe = [δx, δy, δz] (17)

= ỹGPSk+1 − (p̂)e (18)

This measurement is related to the geographic-frame perturbation states as follows:

δpe = Re
nDδp, (19)

where, upon linearizing the relationships between φ, λ, h and ECEF x, y, z, it can be
shown that

D =




(Rm + h) 0 0
0 cos(φ)(Rn + h) 0
0 0 −1


 (20)

Given the entire state space δx = [δp, δv, ρ, δxa, δxg], the measurement matrix H used
in the Kalman Filter update equations is

H = [Re
nD,0,0,0,0] (21)

6.4 Self-Alignment Filter Equations

The states used for the self-alignment filter are exactly the same as those of the naviga-
tion filter: δx = [δp, δv, ρ, δxa, δxg]. Therefore the mechanization and state dynamics
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equations are identical, besides the closed-loop nature of the rotation matrix correc-
tion; after each iteration, the estimated small-angle rotations ρ− are applied to correct
the nominal body-to-navigation rotation matrix, (R̂

n

b )−, before the next filter itera-
tion:

R̂
n

b = (I + [ρ×])(R̂
n

b )− (22)

After correcting the rotation matrix, ρ is reset to zeros for the next iteration. The mea-
surements used during self-alignment are the exact, known zero position (if the system
is at a surveyed location) and/or velocity (if the system remains still). Therefore, the
position measurement equations are identical to those used in the ordinary navigation
filter,

δpe = Re
nDδp, (23)

while the velocity measurement equations are simply:

0− (v̂) = δv (24)

Therefore, the measurement matrix H used in the self-alignment Kalman Filter update
equation is

H = [Re
nD, I,0,0,0] (25)

7 Simulation Example Results

A simulation was ran for a vehicle with constant radial acceleration and angular velocity
(i.e., a spiral motion). Refer to Figures 9, 10, 11 for the truth trajectory (in the north-
east plane) and simulated GPS measurements, simulated accelerometer measurements,
and simulated gyroscope measurements, respectively.

The navigation filter results in the north-east plane are provided below in Figure
12.

Last, the estimation errors of all 33 states are provided below in Figures 13 - 20.
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Figure 9: Truth motion with simulated GPS measurements.
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Figure 10: Simulated accelerometer measurements.
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Figure 11: Simulated gyroscope measurements.
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Figure 12: Navigation filter results in the North-East plane.
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Figure 13: Position state estimation errors.
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Figure 14: Velocity state estimation errors.
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Figure 15: Accelerometer bias state estimation errors.
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Figure 16: Accelerometer scale factor state estimation errors.
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Figure 17: Accelerometer misalignment state estimation errors.
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Figure 18: Gyroscope bias state estimation errors.
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Figure 19: Gyroscope scale factor state estimation errors.
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Figure 20: Gyroscope misalignment state estimation errors.
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