MAE 4730 - FINAL PROJECT

STEVEN DOURMASHKIN (SJD227)

1. PROBLEM STATEMENT

The purpose of this project is to simulate and animate the the motions of a triple pendulum
and a 4-bar linkage. For the triple-pendulum, the equations of motion must be found through
three different methods. In both problems, numerical solutions must be checked though as
many ways as possible, such as through verifying energy conservation and limiting cases where
simple pendulum motion is expected.

FI1GURE 2. Setup for 4-Bar Linkage Problem.

Date: December 17, 2014 @ 2:00 pm.
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2. ASSUMPTIONS

The assumptions made for both problems are as follows:
(1) No friction or other non-conservative forces are present.
(2) Gravity acts in the downward direction.

(3) Links have uniform shape. In particular, when solving the numerical solutions, they
are assumed rods with pins attached the end(s).

(4) Links do not change in length. Links stay connected to pin at joints.

(5) Pin connecting first link to wall (pin A in Figure 1), as well as the wall, is stationary.
3. TRIPLE PENDULUM EQUATIONS OF MOTION
The physical system we are modeling is shown in Figure 1. The motion of the triple pendu-

lum will be solved for through the following three approaches: angular momentum balances
(AMB), differential algebraic equations (DAE), and Lagrange equations

3.a. AMB Approach. First, we draw the three free body diagrams (FBDs) shown in Fig-
ure 3 for the triple pendulum system.

F1GURE 3. Three FBDs for AMB approach of triple pendulum problem

In the FBDs shown in Figure 3, the body coordinates of each link i € {1, 2,3} are represented
as follows:
(1) éir = cos 01+ sin 63, é;9 = — sin 0,1 + cos ;]

For each FBD, we then determine the position vector from each pin to the pins and center of
gravity that follow down the link in terms of #’s and the body coordinates.
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, .
(2) TG1/A = 51617‘
(3) TB/A = lhiéir
S . la .
(4) TGy/A = TB/A T 52627‘
(5) To/a = TB/a + laéar
l3 .
(6) TGs/A = Tcja + §3€3r
la .
(7) TGy/B = §2€2r
(8) Tc/B = laéay
" I3 .
(9) TGs/B =Tc/p + 5 €3
L I3 .
(10) TGy/c = 5 esr

Similarly, we solve for the accelerations of each pin and center of gravity down the pendulum
in the intertial frame of each FBD; for a combination of points p € A, B,C,G1, G2, G3 and
links ¢ € 1,2, 3, we use the 5 term acceleration formula provided below.

(11) Qg 5 = Gayg + g, s+ 01 X (@1 X Ty ja) + @1 X Ty ja + 26176, /4

Assuming that the rods do not change in length, each acceleration in the inertial frame is
computed below.

(12) oy = 2 (~ Bew + o)
(13) dp =l (—0e1, + 01é1p)
(14) G, = dp + %2( — 03¢éa, + Baé19)
(15) dc = dp + lo( — 03é, + Oaéz)
(16) gy = do + %3( — 03é3, + O330)

Finally, we set the sum of moments about A, B, and C in each FBD diagram, respectively,
equal to the change in angular momentum about that point; for p € {4, B,C}, where G;
represents the center of mass for link ¢, we solve the following.

(17) ZM/p = ﬁ/p

Applying Equation 17 to each FBD, we arrive at the following equations.
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FGl/A X mlgi+FG2/A X mggi—l—FG3/A X mggl = FGl/A X mlagl +'FG2/A X mQJGQ +'FG3/A X mgc_iGS

(18) TG0,k + 16265k + 193651

TGy/B X M2gl+ TGy B X M3gl = T, B X M2dG, + Tq,/B X M3dG,
(19) 1520,k + 14365k
(20) oy /0 X M3gl = T, 0 X madc, + 1905k

By substituting in the accelerations from Equations 12 - 16, the positions from Equations 2 -
10, and, in turn, the body-coordinate unit vectors from Equation 1, we can solve the equations
of motion stated above for the angles 61, 65, and 03. Because this substitution requires a
tremendous amount of algebra, it was done symbolically using MATLAB to solve for 6y, s,
and 3 (refer to the function MakeTriplePendSolverFile in the Appendix).

3.b. DAE Approach. For the DAE approach, we first choose the maximal coordinates 61,
02, 03, TG, TGa» TGy YG1s YGa, and Yy, Where zg, and yg, mark the center of gravity position
of link 7 based on the coordinate system shown in Figure 1. To solve for these values, the
three FBDs shown in Figure 4 are used.

7

F1GURE 4. Three FBDs for DAE approach of triple pendulum problem

First, the linear momentum balance of external forces {Fy, Fs, ..., F,, },

n
(21) ZFj = m;aq,
j=1

is performed for each link ¢ € {1,2,3} in the three FBDs provided above, resulting in the
following equations.
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(22) (m1g + Raz — Rpa)i+ (Ray — Rpy)l = mi(ic,1+ §ic,])
(23) (mag + Rpe — Rex)i+ (Ry — Rey)j = ma(ia,1 + iia,))
(24) (m3g + Rea)1+ (Rey)i = ms(Ea,1+ ja,))

By dotting Equations 22 - 24 with 1, we obtain the following set of equations.

(25) mitq, — Raz + Ry = mig
(26) maia, — Ry + Roy = mag
(27) msic, — Rox = mag

Similarly, we obtain a second set of equations by dotting Equations 22 - 24 with with j.

(28) milic, — Ray + Rpy =0
maijG, — Ry + Roy =0
msijcs — Roy =0

—~
LW N
oS ©
= =

Then, we perform an angular momentum balance about each rod’s center of mass, which
results in the following three equations.

(31)  Tajey X Ragl+Fajoy X Ragi + Fpjcy X —Rpai+7p/a, X —Rpyj = 196,k
(32) Ty, X Rpal+ Fpjay X Rpyi + Foygy, X —Reol +70/ay X —Reyj = 19260k
(33) ’FC/Gg X chi + FC/Gg X RCyj = IG3§3];'
By substituting in 74/q, = —Tp/q, = —%élr, TB/Gy = —TC/Gy = —%égr, and Tc/q, = —%’égr

into 31 - 33, and dotting the result by ];‘, we arrive at three new equations.

(34) —I1%0, + (%sin@l)RAx - (% cos 91)RAy + (% sin 91)R3x — (% cos 01)R3y =0
(35) — 120, + (%2 sin GQ)RBI — (%2 COS HQ)RBy + (%2 sin Hg)ch — (%2 cos 92)Roy =0
(36) —1%05 + (%3 sin 03) Ry — (%3 cosf3) Ry = 0

Next, using the constraints on each pin p € {A, B,C'}, we identify equal representations of
each acceleration @, using the 5-term acceleration formula provided in Equation 11. For pin
A, we solve for the following equation.
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1
1

A= QA

0=da, +dac,
(37) 6:xgli+yglj+é1/;XFA/Gl —|—(9‘1/;3>< (élkXT_"A/Gl)
Noting that 7y ,q, = €1r = —gl(cos 011 + sin Glj), Equation 37 can be simplified to the
following equations after takmg the 1 and j components, respectively.

(38) Fa, + (% Sinel)é.l = —(% cos 01)6}%
(39) UGy — (% cos 91)0"1 = —(% sinel)é}%

Similarly, we can obtain four more second-order differential equations by looking at hinges A
and B, as follows.

ip = dpB

Sl

ac, +dp/c, = ey, +dB/a,
{iGliJr Jead + 01k x Fryq, + 01k x (01k x Fpja,) = Ea,1+ ja,] + b2k x T, + 02k x (62k x FB/GQ)}
(40)
{ =g, —Iq, + (% sin 91)«9"1 + (%2 sin02)9“2 = —(% cos 01)9% — (%2 cos 92)6’5

l .. l . l . l .
J =9, — Ve, — (51 CoS 91)01 — (52 cos 92)02 = —(51 sin@l)ﬁ% — (52 sin 02)9%

dc = dc
aGy, + dcya, = Ay + Aojas
{:EG21+ fiaa] + Ok x Fosc, + Ok x (9215 X ToiGy) = Easl+ fias] + O3k x FosGs + O3k x (0'3]% X FC/Gg)}
(42)
{} 1= 2g, — Tag, + (% Sineg)éé + (%3 sinﬁg)é}, = —(%2 60592)«93 — (%3 cos@;;)é%
(43)
{} 1= 9as =Yg, — (%2 00592)9“2 — (%3 cost93)9“3 = —(%2 sin92)«9g — (%’sinﬂg)é%

Finally, we combine Equations 25 - 30, 34 - 36, and 38 - 43 into Matrix form, shown on the
next page and represented as follows.
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A7=1b

Ry
I

-1p

8y
|
>

(44)

By solving Equation 44, the equations of motion can be extracted for the three bars. This
equation is solved in the MATLAB ODEA45 right-hand-side function through the command =z
= A \ Db (refer to the Appendix).
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3.c. Lagrange Equations Approach. The third approach used to solve the triple pendulum
problem involves solving the lagrange equation,

d (8L> 0L

(45) @i\oa) ~ oa

QZ)

where ¢; is the generalized coordinate, Q; are the generalized forces associated with each g;,
and the Lagrangian £ is calculated as the kinetic subtracted by the potential energy of the
system,

(46) L=T-U

For this problem, we will use the general coordinates 61, 62, and 3 illustrated in Figure 1,
and will take our reference point for the potential energy to be the stationary point A. Thus,
the potential energy of the system is defined as follows, where h¢, corresponds to the vertical
height of the center of mass of link ¢ relative to point A.

U = mighg, +maghg, + m3gha,
=m1g(Fa,/a-3) +meg(Fpra-J+ 7y 3) +m39(Feja-J+ 7o/ J+Tayc-])
l l l
= mlg( — 5100891) + mgg( — 1 cosf; — 5200802) + mgg( — 11 cos@1 — o cos Oy + —53 00593)
= —glj cos by (% +m9 + mg) — gl cos 92(% + mg) — gl3 cos 03(%)
(47)

Next, the linear kinetic energy T is calculated using the squared velocities VG of each link i,
which are calculated as follows, assuming that point A is stationary and that the rod lengths
are fixed.
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d
Vg, = H&TGH/AW
I -
= |15 théwl”
Iy -
(48) = (5191)2
2 d . , 2
% ZH*(TB/AJFTGQ/B)H

l
= H—(zlelr 5ol

~ l2 ;oA 2
= |— (L6 =6
||dt(1 1€10 + 9 2629

(49) = ( — 116, sin 6y — %92 sin 92)2 + (llél cos B + %292 cos 92)2

d, S .
Vg, = H%(TB/A + 705 + Tay o) |I?

d l3 .
Hdt (lhé1r + laégy + 53631“) |2

. N l3 ..
= ||(l161619 + lobaézg + 5393%9”2

(50) = ( — 1161 sin 01 — l50, sin Oy — %393 sin 93)2 + (1191 cos 01 + lo05 cos Oy + %393 cos 93)2

Using the velocities derived in Equations 48 - 50, and taking into account rotational kinetic
energy, we define the total kinetic energy T' of the system as follows.

1 . 1 . 1

1o 1.g. 1
= 516'19% + 516'29% + 516'3 +

1 1 1

§m1VG2’1 -+ meVGQQ + §m3VG23

1 l1
0

2 1)*

7m1(

+ %mg [( — 116y sin 6y — %292 sin 92) + (llél cos 1 + %292 cos 92)2}

1 ) ) . ) . .
+ 5ma| (— b sin 0y — Laf sin b, — %393 sin6s)” + (1161 cos 6y + lo6s cos 0, + %393 cosb3)”|
(51)

Therefore, the Lagrangian £ is represented as
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L=T-U

Ui 1o 1 I
= 07 + ST + SIS ( .

2 591)2
+ %mg [( — 1,6, sin 0y — %92 sin 92)2 + (llél cos @1 + %92 cos 92)2}
+ %mg [( — 1160, sin 0y — l50 sin Oy — %30'3 sin03)” + (1161 cos 61 + 1262 cos 0 + %39'3 cos 93)2}
_ [— gli cos 91(% + mg + mg3) — gl cos 92(% + mg) — gl cos 03(%)]
(52)

Because we are assuming that there are no applied forces present (i.e., all forces are conser-
vative), we set all generalized forces ); = 0 for each generalized coordinate ¢;. Thus, the

lagrange equation becomes

d(&L)_@L

For ¢; = 61, we solve for % (g—i) as follows.
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i (o) = 1o 4l

- ) lo - . lo -
4+ molq | sin 6y (1191 sin 61 + 5292 sin 92) + cos 64 (l191 cos 1 + 5292 cos 92)}

+ masly -sin 01 (llél sin 61 + lgé’g sin 05 + %393 sin 93) + cos 64 (llél cos i + lgég cos 0y + %393 cos 93)})

mll%

_ (1G
= (I + 1

)0

+ moly 61 cos 01 (1191 sin 61 + %26?2 sin 62)
+ sin 61 (llél sin 61 + lléf cos 01 + %292 sin 69 + %29% cos 92)
— 6y sin 6, (llél cos B + %2(92 cos 02)
+ cos 64 (llél cos 61 — lléf sin 61 + %292 cos By — %29% sin 02)}
+ masly [91 cos 01 (llél sin 61 + lgég sin 69 + %393 sin 93)
4+ sin 64 (llél sin 61 + 119% cos 01 + lo05 sin Oy + lgé% cos B9 + %303 sin 03 + %305 cos 93)
— 6y sin (llél cos 01 + lo05 cos Oy + %303 cos 93)

. . . ) I - I« .
+ cos 01 (l191 cosf — l19% sin 61 + l969 cos 09 — 120% sin 09 + 5303 cos O3 — 53032) sin 63)}

mll%
4
. rmalyl

_1_92[ 2212

=0, [Icl + + mgl%(sin2 01 + cos> 91) + mgl% ( sin® 61 + cos® 01)}

( sin A1 sin A5 + cos 01 cos 92) + mslilsy ( sin 01 sin O + cos 01 cos 92)]

. 11
+ 03 [m321 3 (sin 61 sin 03 + cos 01 cos 03)}
I . . Iy - Iy - - ly -
+ moly [cos 01 (520192 sin g — 529% sin 92) —sin 64 (520192 cos Oy — 5203 CoS 02)]
. ) la . . I« .
o+ maly | cos 01 (1a010s sin Bz — 103 sin 0 + 5 010 sin 0 — 2203 sin 6)

—sin 64 (lgélég cos Oy — lgé% cos by + %9193 cos O3 — %39% cos 02)}

= 00 160 + 17 (T 4 ma 4+ ma) | + Balala (57 +ms) cos (01 — 2) + falala () cos (01 — a)
1 cos 01 ("5 + mg) (1o B2 5in 0 — o603 sin 02) + 5% (1yf 6 sin 03 — 16" sin 0) |
—lusin 6y [ (52 + mg) (120162 cos 0 — 1203 cos 0) + 2 (1af1 s cos 0y — 103 cos )|

= 0, 1% + B (5 + m2 +ma) | + GQlez(f o+ mg) cos (61— B2) + Balaly (20 cos (6 — 3)

)
. mo
+ 1161 |:(7 + m3) (1292) sin (02 — 91 + — (l393) sin (93 — 01 :|

- |:(7 + mg) (l292) sin (92 — 91) + 7([393) sin (03 — 91)]
(54)
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Next, we solve for the right-hand-side of Equation 53.

oL . - ly ;.
8791 = mal161 [COS 01 (l191 sin 61 + 5292 sin 92)

+sin 6y (— 116, cosfy — %29'2 cosf)|
+ myli by [ cos 0 (161 sin 01 + Lofsinds + %”ég sin )
+sin 0y (— 116y cos by — lofy cos Oy — %39'3 cos )|
— gl sin6; (% +ma + m3)
— L1 cos 01 [ (52 + m) (Iafa sin 62) + 2 (1af sin )]
— Uiy sin 0 | (52 + mg) (12fz cos 02) + 52 (1afs cos 0s) |
— gly sin 6, (% + mg + m3)
= L[ (52 + ms) (1afz) sin (02— 01) + 52 (Lafs) sin (65 — 01)]

— glisin (% + mg + m3)
(55)

By plugging Equations 54 and 55 into the lagrange equation (Equation 53), we arrive at the
following expression, in terms of all three minimal coordinates.

él [IGI + l%(% + mo + m;;)} + églllg(% + m3) cos (91 — 92) + églllg(%) COos ((91 — 93)

1101 [ (52 + mg) (120) sin (0 — 01) + 22 (Iad) sin (05 — 01)]
— [ (52 + ma) (1263) sin (62 — 01) + 2 (1203) sim (0 — 1)
= L[ (55 + ma) (1af2) sin (02 — 01) + 5 (Lafs) sin (65 — 01)]

— glysin 6, (% + mg + ms3)

= él [IGI + l%(% + mo + mg)] + ézlllg(% + ’m3) CoS (91 — 92) + é3l113(%) cos (91 — 93)

=01 [(% + mg) (lggg) sin (92 — 91) + %(lgeg) sin (03 — 91)] — gl sin 01 (% —+ mo + mg)
(56)

Similarly, for the minimal coordinate ¢; = 3, we solve for % (%) as follows.
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d 0L d . l . Iy - . o -
7 (302) = a7 <IG292 + m; 2 [sin ) (l191 sin 61 + 5292 sin 92) + cos 0y (l191 cos 01 + 5202 cos 92)]

+ mals [sin 0 (llél sin 0 + lo05 sin O + %393 sin 93) + cos 6y (1191 cos 01 + 1oy cos Oy + %393 cos 93)})

B I
— [G2g, 4 1122

) ) Io .
[92 cos 0y (l191 sin 61 + 5202 sin 02)
. . Iy . Iy -
-+ sin 0 (l191 sin 61 + 119% cos 01 + 5202 sin 69 + 529% cos 92)
. . Iy
— 05 sin 0o (l101 cos B1 + 502 cos 02)
.. . Iy . Iy -
+ cos 09 (l191 cos @ — llﬁf sin 61 + 5292 cos Oy — 529% sin 02)}
+ mgsls [92 cos 0 (1191 sin 01 + 265 cos O + %393 cos 93)
_ . " . " I3 . I3 -
+ sin 69 (l191 sin 01 + 1167 cos 01 + 202 sin O + 205 cos 02 + 593 sin A3 + 593 cos 03)
) ) ) Ia .
— 05 sin By (1191 cos 01 + 1505 cos O3 + 5303 cos 03)
, . , . I3 - Is -
+ cos Oy (l191 cos 0y — 1107 sin 01 + 202 cos B2 — 19605 sin O3 + 593 cos O3 — 503 sin 03)}
= éllllz(% + m3) cos (92 — 91) + ég [IGQ + l%(% + mg)} + églzlg(%) cos (92 — 93)
+ 1969 [(72 + m3> (1191> Sin (01 — 92) + ?3 (1393) Sin ((93 — 92)}

— la| (%57 + ma) (167) sin (61 — 0) + 2 (1a03) sin (0 — )|
(57)

Then, solving for the right-hand-side of Equation 53,
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oz
00,

= mQéQ% [ cos 0 (116 sin 6y + %292 sin 6, )
+sin 0y — 116, cos by — %29'2 cos6)|
+ malafy | os 03 (161 sin 01 + Lofysind; + %393 sin )
+sin 6y (— 110 cos fy — lafy cos By — %39'3 cos )|
— glasin 0 (2 + m)
— Lafy o8 0 [ (52 + ma) (L sin 1) + 2 (1afl sin )]
— lafysin 0| (52 + mg) (1161 cos 01) + 52 (1afs cos 0s) |
— glysin 92(% + ms3)
= 162 (%52 + ma) (1101 sin (61 — 02) + 2 (1afs) sim (0 — )|
— glysin 62(% + mg)
(58)

By plugging Equations 57 and 58 into the lagrange equation, we arrive at yet another expres-
sion in terms of all three minimal coordinates.

élllb(% + m3) cos (92 — (91) + ég [IG2 + l%(% + Tn3)} + églglg(%) cos (92 — 93)

+ lzég [(% + mg) (llél) sin (07 — 02) + %(lgég) sin (03 — 92)]
A [(% +mg) (1,67 sin (02 — 01) + %(139’%) sin (0 — 91)}

-2

— glysin 0 (% + mg)

+ mg) (l292) sin (92 — 91) + %(lgeg) sin ((93 — 91)]

= éllllz(% + mg) cos (92 — 91) + éz [IGQ + l%(% + mg)} + éngl;g(%) cos (92 - 03)

= l2 [(% + mg) (l19%) sin (91 — 92) + % (l39§) sin (93 — 92)} — glz sin 92(% + m3)

(59)

Last, to solve for the minimal coordinate ¢; = 03, we solve for % (%),
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p (803> = (IG393 + m; 3 [sin 03 (l1«91 sin 071 + 1209 sin 69 + 5303 sin 03) + cos 63 (l191 cos 01 + 1505 cos O3 + 530;

I3r. . . I3 .
% [93 cos 03 (1101 sin 61 + 1205 cos 09 + 5393 cos 03)

= I% 4+ 05 +
+ sin 03 (llél sin 61 + lléf cos 0 + lofy sin O + lgég cos by + %303 sin 03 + %36% cos 03)
— 93 sin 63 (llél cos 01 + lgég cos Oy + %303 cos 03)
+ cos O3 (llél cos 61 — lléf sin 0y + 265 cos Oy — 1203 sin #5 + %303 cos B3 — %3932) sin 03)}
= iluly(52) cos (05 = 01) + balaly (552) cos (05 — 02) + 0 |19 + B(T2)
13032 | (1101) sin (61 — ) + (Iaf2) sin (6 — 63)|

13 22 [(167) sim (61 — B5) + (1263) sin (6 — 6)

(60)
and for %—f,
oL mslzf - . Iy . .
8793 = 323 3 [cos 03 (l191 sin 071 + lo09sinbs + 5393 sin 93)
+ sin 93( - llél cosf — lgég cos g — %3«93 cos 93)}
. m
—gls sm63(?3)
= l393 77;3 [(1191) sin (91 — 93) + (lgég) sin (92 — (93)}
. ms
— gls 811193(73)
(61)

Using Equations 60 - 61, we arrive at the third expression in terms of all three minimal
coordinates.
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fulals (52) cos (05 — 01) + Oalaly (52 cos (0 — 02) + s | 190 + (1)
13032 [ (101) sin (01 — 0s) + (1z02) sin (02 — 3)]
R [(1192) sin (01 — 03) + (1202) sin (6, — 93)]
= L32[ (1101) sin (61 = bs) + (o) sin (6 — )|
— glssin 63(%)
= élzlzg(%) cos (05 — 1) + Galala(%5°) cos (05 — 02) + 0| 190 + B("2)]

= 1522 [ (103) sin (61 — 03) + (1203) sin (62 — 6s)] — gl sin 63(22)

(62)

By combining the three solutions to the lagrange equations (Equations 56, 59, and 62) in
matrix form, we can solve for the equations of motion of each minimal coordinate used, as
follows.

JG1 +l%(% + mao +TTL3) lllg( % +m3) CcOs (91 —02) l lg(mT CcOoSs ((91 —93))
A= lllz( + 77’L3) CcoS (92 — 91) %2 + 12(m2 + m3) lglg(m Ccos (92 — 93)
lllg( ) COS (93 — 91) lgl3( ) COS (93 - 92) 3 + l2(m3)

l [(% +m3) (1203) sin (65 — 01) + 2 (1302) sin (03 — 01)} — glysin @y (L + my + m3)
b= I [(% +m3) (1162) sin (01 — 02) + ™ (1362) sin (63 — 92)} — glysin 0 (™2 + m3)
I3753 [(1192) sin (61 — 63) + (lg@%) sin (62 — 63)} — glzsinf3(™22)
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4. ANALYSIS OF TRIPLE PENDULUM SOLUTIONS

The set of numerical solutions of the triple pendulum system using the AMB, DAE, and La-
grange approach were obtained through the following MATLAB ODE45 solver functions, re-
spectively: AMB_rhs (symbolically derived from MakeTriplePendSolverFile), DAE rhs,
and Lagrange_rhs. The following constants and initial conditions were used in a 10-second
simulation with the absolute and relative tolerances of the ODE45 solver set to 1E-10:

Lh=lb=I3=1m
m1:m2:m3:1kg
1, 1

g=9.8ms >
3 5
0, — g rad, 0y — Zﬂ rad, O3 — Zﬂ rad

91:92:93:0rad/8

Using these numerical solutions, the end positions of links 1, 2, and 3 (refer to Figure 1) for
each approach are plotted in Figures 5 - 7, shown below.
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End Positions of Link 1 for Triple Pendulum

=== AMB Approach
= = = DAE Approach
1t —— T T Lagrange Approach
E o5}
c
S
=
[%2]
§ o "
©
9
T
o -0.5
>
-1
. . . . .
-1 -0.5 0 0.5 1

Horizontal Position [m]

FIGURE 5. Positions of end of link 1 (i.e., pin B) for parameters stated above.

End Positions of Link 2 for Triple Pendulum

= AMB Approach
= = = DAE Approach
15+ |- Lagrange Approach H

Vertical Position [m]

2 15 -1 05 0 05 1 15 2
Horizontal Position [m]

FIGURE 6. Positions of end of link 2 (i.e., pin C) for parameters stated above.

End Positions of Link 3 for Triple Pendulum

3l = AMB Approach

= = = DAE Approach
----- Lagrange Approach

— 2t 1

E

c

S

I3

o o

©

O -1

T

)

> o

_3

-3 -2 -1 0 1 2 3
Horizontal Position [m]

FIGURE 7. Positions of end of link 3 (i.e., pin D) for parameters stated above.
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To better portray the motion of the triple pendulum, Figure 8 illustrates the end position of
the third link, where the color of the plotted trajectory blends from red to blue from the start
to end of the simulation, respectively, through constant time steps.

End Position of Link 3 for Triple Pendulum

3f e Start|]
* End
2_ .
£
(- L _
S |
2
o 9 |
©
2 -1 1
| -
o)
>
- i
-3 -

-3 -2 -1 0 1 2 3
Horizontal Position [m]

FIGURE 8. Trajectory of end position of link 3, blending from red (start) to
blue (stop).

Because Figures 5 - 7 illustrate that the three numerical solutions are almost identical in yield-
ing the links’ position, the approaches are valid and have been implemented successfully. To
further illustrate the similarity between the three solutions, Figure 9 illustrates the positions
of the ends of each link for the AMB and Lagrange approaches, while Figure 10 the angles,
relative to those for DAE solution at all equivalent times.

In addition, the total energies (kinetic + potential) of each link are plotted in Figures 11
- 13 with respect to their total energy calculated at the start of the simulation. Because
all calculated energies are less than 2E-9 J (i.e., essentially zero), total energy is conserved,
which further verifies the accuracies of all three solutions. The slight variation is simply due
to numerical error, and could be decreased using lower ODE45 tolerances.
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FI1GURE 9. End positions of each link found using the AMB and Lagrange
approaches relative to those found using the DAE method, using a constant
time step of 1E-5 s. Note that the largest variation is between the AMB and

DAE solutions towards the end of the simulation, of about 0.008 m. Also
note that the ODE45 solver is slightly less accurate when using a time span

determined by constant time steps rather than tolerances.
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F1GURE 10. Angles of each link found using the AMB and Lagrange
approaches relative to those found using the DAE method, using a constant
time step of 1E-5 s. Note that the angles begin to deviate towards the end of
the 10-second simulation.
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X 10 Total Energy of Link 1 of Triple Pendulum
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FIGURE 11. Total energy of Link 1 relative to start
x 107 Total Energy of Link 2 of Triple Pendulum
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FIGURE 12. Total energy of Link 2 relative to start
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of simulation.
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FiGURE 13. Total energy of Link 3 relative to start

of simulation.
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As a last verification, the solution of the triple pendulum was compared to the known solution

of a single pendulum (solved using SinglePendulum_rhs in the function ValidateSolutions)
by making the masses of the second two links negligible (1E-10 kg). The solutions found using
each approach followed those of the single pendulum for three different starting angles of the

first link, as illustrated below in Figure 14.

Triple Pendulum as Single Pendulum

= = = Single Pendulum
AMB Approach H
— — ~ DAE Approach
'~ '~ Lagrange Approach ||

9 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Theta [rad]

FiGure 14. Simplification of triple pendulum to a single pendulum by
making masses of second two links negligable. Note that the first start angle
is slightly less than 7 to ensure that the pendulum tips the same way for each

solution, and so that oscillations would occur in the 10-second simulation.

5. 4-BAR LINKAGE EQUATIONS OF MOTION

For the second part of the project, we derive the equations of motion for a 4-Bar Linkage, as
modeled in Figure 2. To solve for the equations of motion, we will use the DAE approach since
same FBDs created for the DAE solution to the triple pendulum problem (refer to Figure 4)
are identical except for the additional reaction force at pin D for the third FBD, as labeled
in Figure 15.
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FiGURE 15. Third FBD used in DAE solution to 4-Bar linkage problem.
Note that the first two are identical to those used in the triple pendulum
solution.

To account for the additional reaction force at pin D (i.e., Rp, and Rp,), we must modify the
linear momentum balance solutions found for Link 3 in the triple pendulum DAE approach
(Equations 27 and 30) as follows.

(64) maZa, — Roz + Rpe = msg
(65) m3ijc, — Roy + Rpy =0

Next, we must alter the angular momentum balance derived in Equation 36.

.. l l l l
(66) — 19305 + (53 sin 93)ch + (53 sin 93)RD$ — (53 cos 93)Rcy — (53 cos 93)RDy =0
Last, we derive two more equations by solving for the constraint, or by setting the acceleration
at pin D equal to zero, and solving for the 1 and j components. Similar to Equations 38 and 39,
we arrive at the following expressions.

(67) Fa, + (% sin&l)é-l = —(% cos 01)6}%
(68) U, — (% cos 01)0“1 = —(% sinﬁl)éf

To solve the system of equations for ultimately 6, 62, and 63, we combine these equations
into matrix form, as shown on the next two pages, and, in the ODE45 solver function, solve
the matrix equation

b
Ny
1.
>

L
S

(69)
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6. ANALYSIS OF TRIPLE PENDULUM SOLUTIONS

The numerical solution for the 4-bar linkage was found using the same constants, initial con-
ditions, and simulation parameters as those stated in Section 4. The end positions of the first,
second, and third link found from the numerical solution is shown below in Figure 16.

End Position of Links in 4-Bar Pendulum

Link 1
oL D - = —Link2{

\ ————— Link 3
151 ] R

A\ ~N_ |
L) |

1 1
-0.5 0 0.5 1 1.5 2 25
Horizontal Position [m]

Vertical Position [m]
o
<L

FIGURE 16. End positions of links 1, 2, and 3 of 4-bar linkage. Note that the
position of pin D is constant since it is fixed.

To help visualize this motion, an instant of the animation for this system is shown in Fig-
ure 16.

Animation of 4-Bar Linkage (DAE) at Time t=2.791 s

Vertical Distance (m)

-2 4

L L L L L
-3 -2 -1 0 1 2 3

Horizontal Distance (m)

FIGURE 17. Instant from 4-Bar linkage animation, created from simulation
using the same parameters described in Section 4.
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To validate the numerical solution of the 4-bar linkage, the end positions of the third link was
calculated with respect to its initial position. Since pin D is set to be fixed, there should be
no variation in position; as shown in Figures 18, there was in fact negligable drift.

3.5

x10° Distance of 4-Bar Link End from Start Position x 10 Distance of 4-Bar Link End from Start Position
0.5 T T T T T T

~ - - 4-Bar Linkage (DAE)

)
%)

D

I

et

@
N
o

Distance (m)
o

Vertical Distance (m)
i

-2
0.5F

. . . . . .
23 -25 -2 -15 -1 -05 0 05 0%
Horizontal Distance (m) X107

F1GURE 18. Drift in end position of third link in 4-Bar Linkage, plotted in
the 1 and j coordinate system and as a magnitude against time. Note that
the distance scales of both plots are miniscule, indicating negligable drift.

It was observed, however, that if an initial angular rate is given to any of the links, the
constraint is violated in that pin D is shown to move at a constant velocity. This is not an
error in the implementation of the 4-bar linkage solver, but rather a shortcoming of the DAE
approach, which only defines the acceleration at pin D to be zero; in other words, the change
in velocity of point D will be zero, but given an initial velocity, which occurs for nonzero
initial angular rates, its velocity will remain constant, as observed through animation.

In addition, similar to the triple pendulum analysis, the kinetic and potential energy of the
4-bar linkage was calculated for each link with respect to its total energy at the start of
the simulation. As illustrated in Figure 19, the energy is essentially zero throughout the
simulation. The slight decrease in energy is again associated with numerical error, and can
be related to the fact that pin D is observed to move slightly downward in Figure 18, in turn
decreasing the potential energy.

x 10 Total Energy of Link 1 of 4-Bar Linkage 1X 1oTotal Energy of Link 2 of 4-Bar Linkage x 10 Total Energy of Link 3 of 4-Bar Linkage
1 N 1
[——4-8arLinkage (045) —— 4-Bar Linkage (DAE)
0 0 )
s = s
w -1
w - i x
+ + +
[T
W ¥ 2 ¢
54 5 E
(S S =
g -5
o 2 4 6 8 10 ) 2 4 6 8 10
Time (s) Time (s)

FIGURE 19. Total energy (kinetic + potential) of each link in the 4-bar linkage.

Further, as in the triple pendulum analysis, the motion of the 4-Bar Linkage was compared
to a simplified case - a triangular 4-bar linkage, where pins A and D are fixed at the same
position and all links have equivalent mass and length, as illustrated in Figure 20. In this
case, the 4-bar linkage can be modeled as a single pendulum with the same moment of inertia,
center-of-mass position, and total mass.
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F1GURE 20. 4-Bar Linkage in triangular formation to solve for simplified
case of a single pendulum with equivalent physical peroperties.

Through trigonometry, the distance d marked in Figure 20 from pin A/D to the center of

mass of the triangle is found to be —=. Next, the total mass of the triangle is clearly 3m.

V3
Third, using the parallel axis theorem for each link, with the distance r found to be r = #,

the moment of inertia of the triangular 4-bar linkage can be calculated as follows.

(70) =

With a start angle of § = 45°, as illustrated in Figure 20, effectively identical numerical solu-
tions were found between the 4-bar linkage and the equivalent single pendulum, as illustrated
in Figure 21.

4-Bar Linkage as Triangular Pendulum

T \ T T T AT T
m—— Single Pendulum
06 4-Bar Linkage (DAE)

0.8

045 h

0.2 B

Time [s]

Theta [rad]

F1cUre 21. Comparison of 4-bar linkage triangle to equivalent single
pendulum, at an initial angle of § = 45°.
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To verify that the 4-bar linkage triangle was set up correctly in the simulation, the animation
was ran, of which a snapshot is provided below in Figure 22.

Animation of 4-Bar Linkage (DAE) at Time t=2.792 s

3r 4

- \¥]
T T
! !

Vertical Distance (m)

s 4

-3 -2 -1 0 1 2 3
Horizontal Distance (m)

FIGURE 22. Snapshot of 4-bar linkage triangle animation.

7. EXTRAS: GRAPHICAL USER INTERFACE AND N-LINK SOLVER/ANIMATOR

To make changing system constants and initial conditions easy and user-friendly, a MATLAB
GUI was developed, as shown in Figure 23. This GUI also allows simulation parameters to
be changed and can be used to select which approaches are solved, animated, and/or saved
as movies from their animations.

In addition, the function SolveAndAnimateNLinkPendulum was developed to find the
numerical solution for and animate the motion of an n-link pendulum. The user simply
inputs the initial angles of each link, and can optionally input their initial angular rates, the
duration of the simulation, gravity, and the masses, lengths, moments of inertia of each link.
Given the number of links n determined by the length of the inputted initial angles array, the
function MakeNLinkPendulumSolver writes the ODE45 solver function for the pendulum
by printing the A matrix and b vector solved through the DAE approach, as explained in
Section 3.b. A snapshot of a 6-link and 10-link pendulum animation is provided below in
Figures 24 and 25.
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FiGURE 23. Graphical user interface to control parameters and outputs of

triple pendulum and 4-bar linkage solvers

Animation of 6-Link Pendulum at Time t = 3.000
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FI1GURE 24. Snapshot of 6-Link Pendulum animation
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Animation of 11-Link Pendulum at Time t = 6.792
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FIGURE 25. Snapshot of 10-Link Pendulum animation



