
Linear Programming Example

ANALYTICS TX, LLC

Linear Programming Using Python – Basic Example

Dr. Kruti Lehenbauer

4/14/2023

11703 Huebner Rd.| Ste 106-451| San Antonio, TX 78230 | Ph. 972-292-8338| ANALYTICSTX.COM

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

Example: PAR Insights, Inc. Profit Maximization using Python

In an effort to learn (and share it) Python Programming to perform various Data Analytics
operations instead of using the traditional Excel and STATA methods that I have used for over 2
decades, here is the first installment of solving a simple linear programming profit maximization
problem in Python. This example was created for the book, Introduction to Management Science:
A Stepwise Approach to Basic Models in a Management Toolkit (referred to as “the book” for the
remainder of this file) and it is available in Kindle and Paperback format on Amazon from here.

Chapter 6 of the book goes into detailed explanations of what Linear Programming is and how it
can be used in business applications to optimize outcomes, so I am not delving too deeply into the
background or the theory behind LP in this document. The book also covers step by step methods
to solve LP Models using Graphical Methods and Excel Solver, so please feel free to refer to that
if you need the stepwise approach.

In this example, we will be focusing on recreating and solving the Example 6.1 titled “PAR
Insights, Inc LP Maximization Model” from page 139-143 of the book.

Start by importing pandas, numpy, matplotlib.pyplot, and tabulate in the Python file. The most
important import for solving Linear Programming problems in Python is PuLP. You might need
to install these packages before you can import them to the workspace. Note that I have skipped
some output information in the code below for the sake of brevity.

import pandas as pd
import pulp as p
import numpy as np
import matplotlib.pyplot as plt
pd.set_option("display.max_columns", None)
pd.set_option("display.max_rows", None)
from tabulate import tabulate

The Linear Program that we need to solve is represented by the following LP Model (see pg. 142
of the book):

Now, we can try to create this in Python in the following stepwise manner:

https://analyticstx.com/
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

First, we put in some text to describe what the Problem is and set up the type of model that we
want to solve in PuLp by “initializing” the model (PARM in our example) as shown below:

PAR Insights Example 6_1
The Problem: PAR Insights is trying to expand its business into the educational
apps market and can create two types of products with which they can enter the
market.
The management is trying to identify how many apps of each type should they
launch in the next four months.

Initialize the LP
PARM = p.LpProblem("PAR_Insights_Profit_Max", p.LpMaximize)

In the Linear Program described, there are two main variables that need to be estimated: the
number of Children’s Apps (C) and the number of Teenager’s Apps (T). The constraints come
from the number of hours available within each department of the company. So, let us define the
Decision Variables in Python, next.

Decision Variables
C = p.LpVariable(name = "Children Apps", lowBound = 0)
T = p.LpVariable(name = "Teenager Apps", lowBound = 0)

The p.LpVariable assigns the variable names and their descriptions to the LP Model. Next, we will
define the Objective Function (the function that we need to maximize) and the Constraints that
need to be added to our model (PARM) as shown below.

Objective Function
PARM += 15000*C + 25000*T

Constraints
PARM += (10*C + 4*T <= 100, "Theme")
PARM += (18*C + 18*T <= 240, "Graphics & Imaging")
PARM += (20*C + 24*T <= 400, "Educational Content")
PARM += (8*C + 16*T <= 180, "Coding")
PARM += (8*C + 6*T <= 120, "Testing & Launching")

Before proceeding to solving this model, it might help to see how these constraints can be
visualized in a graph and to identify the region of feasibility for this problem. Note that since we
have ONLY two variables in this model, we are able to visualize them in a 2-D graph. If we have
larger number of variables, that would not be feasible. This graph has been created by using
matplotlib.pyplot tools. The code for this is shown in the Appendix 1 below at the end of the PAR
Insights Example.

https://analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

Chart 1. Feasibility Region for PAR Insights, Inc LP Problem

One can see that the three constraints that define the region of feasibility are the Theme, Graphics,
and Coding Department constraints. The Educational Content and Testing constraints are therefore
not impacting the solution are likely to have a lot of “slack” or unused resources within them.
Now, we can solve the problem by using the “solve” function. There are many ways to see the
relevant output. I have defined a special function for output called “pretty_output()” and the code
can be found in Appendix 2 below.

Solving the model:
PARsol1 = PARM.solve()
pretty_output(PARM)
This will yield the following output below the cell (if you are using ipynb Jupyter notebook).
PAR_Insights_Profit_Max:
MAXIMIZE
15000*Children_Apps + 25000*Teenager_Apps + 0
SUBJECT TO
Theme: 10 Children_Apps + 4 Teenager_Apps <= 100
Graphics_&_Imaging: 18 Children_Apps + 18 Teenager_Apps <= 240
Educational_Content: 20 Children_Apps + 24 Teenager_Apps <= 400
Coding: 8 Children_Apps + 16 Teenager_Apps <= 180
Testing_&_Launching: 8 Children_Apps + 6 Teenager_Apps <= 120

VARIABLES
Children_Apps Continuous
Teenager_Apps Continuous

Model status: 1, Optimal

https://analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

Value of Objective function: 291,666.67
Variable Cells Table:
+---------------+-----------------+----------------+-------------------------+
| Name | Optimal Value | Reduced Cost | Objective Coefficient |
+===============+=================+================+=========================+
| Children_Apps | 4.17 | -0 | 15000 |
+---------------+-----------------+----------------+-------------------------+
| Teenager_Apps | 9.17 | -0 | 25000 |
+---------------+-----------------+----------------+-------------------------+

Constraints Table:
+---------------------+---------------+----------------+------------------+---------+
| Name | Final Value | Shadow Price | RHS Constraint | Slack |
+=====================+===============+================+==================+=========+
| Theme | 78.33 | -0 | 100 | 21.67 |
+---------------------+---------------+----------------+------------------+---------+
| Graphics_&_Imaging | 240 | 277.78 | 240 | -0 |
+---------------------+---------------+----------------+------------------+---------+
| Educational_Content | 303.33 | -0 | 400 | 96.67 |
+---------------------+---------------+----------------+------------------+---------+
| Coding | 180 | 1250 | 180 | -0 |
+---------------------+---------------+----------------+------------------+---------+
| Testing_&_Launching | 88.33 | -0 | 120 | 31.67 |
+---------------------+---------------+----------------+------------------+---------+
** The constraints for which the Slack value is 0 are binding constraints

Note that in PuLP, we are unable to directly get the values for allowable increase/decrease for
either the coefficients of the objective function or the RHS values of the constraints for the
Sensitivity Report. These outputs are easier to obtain in Excel or by using one of the commercial
Linear Programming in Python tools such as Gurobipy. The corresponding solution from Excel is
shown in Chart 2.

Chart 2. Excel Solver Sensitivity Report

https://analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

We can also visualize this maximum solution of $291,666.67 for 4.17 Children’s Apps and 9.17
Teenager’s Apps as seen in Chart 2. Note that the Graphics & Imaging and the Coding Constraints
are binding (because the slack values are 0), so we are only keeping the constraints that form the
region of feasibility in this chart.

Chart 3. Optimal Solution Line for PAR Insights, Inc. Profit Maximization Problem

This example is mainly to demonstrate how Python is able to create similar outputs as Excel for
Linear Programming. There are more complexities that will be covered in future examples. Hope
you’ve enjoyed learning alongside us… give our website www.analyticstx.com a visit and let us
know if we can help you with any of your business or learning needs!

https://analyticstx.com/
http://www.analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

APPENDIX 1. PYTHON CODE TO CREATE THE GRAPHS FOR LP

Code for Creating Chart 1:

Plot the feasible region
d = np.linspace(-2, 16, 300)
C, T = np.meshgrid(d,d)
plt.imshow(((10*C + 4*T <= 100) & (18*C + 18*T <= 240) & (20*C + 24*T <= 400) &
(8*C + 16*T <= 180) & (8*C + 6*T <= 120)).astype(int),
 extent=(C.min(),C.max(),T.min(),T.max()),origin="lower",
cmap="Purples", alpha = 0.3);

Plot the lines defining the constraints:
C=np.linspace(0, 16, 2000)
10*C + 4*T <= 100, "Theme"
T1 = (100-10*C)/4.0
18*C + 18*T <= 240, "Graphics & Imaging"
T2 = (240-18*C)/18.0
20*C + 24*T <= 400, "Educational Content"
T3 = (400-20*C)/24.0
8*C + 16*T <= 180, "Coding"
T4 = (180-8*C)/16.0
8*C + 6*T <= 120, "Testing & Launching"
T5 = (120-8*C)/6.0

#Make Plot
plt.plot(C,T1, label=r'$Theme: 10C+4T\leq100$')
plt.plot(C,T2, label=r'$Graphics: 18C+18T\leq240$')
plt.plot(C,T3, label=r'$Content: 20C+24T\leq400$')
plt.plot(C,T4, label=r'$Coding: 8C+16T\leq180$')
plt.plot(C,T5, label=r'$Testing: 8C+6T\leq120$')
plt.xlim(0, 15)
plt.ylim(0, 15)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.xlabel(r'$Children Apps$')
plt.ylabel(r'$Teenage Apps$')

https://analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

Code for Creating Chart 3:

plot the feasible region
d = np.linspace(-2, 16, 300)
C, T = np.meshgrid(d,d)
plt.imshow(((10*C + 4*T <= 100) & (18*C + 18*T <= 240) & (20*C + 24*T <= 400) &
(8*C + 16*T <= 180) & (8*C + 6*T <= 120)).astype(int),
 extent=(C.min(),C.max(),T.min(),T.max()),origin="lower",
cmap="Purples", alpha = 0.3);

Plot the lines defining the constraints:
C=np.linspace(0, 16, 2000)
10*C + 4*T <= 100, "Theme"
T1 = (100-10*C)/4.0
18*C + 18*T <= 240, "Graphics & Imaging"
T2 = (240-18*C)/18.0
8*C + 16*T <= 180, "Coding"
T4 = (180-8*C)/16.0
#Optimal Solution Maximize Z: 15000C + 25000T = 291666.67
Topt = (291666.67 - 15000*C)/25000.0

#Make Plot
plt.plot(C,T1, label=r'$Theme: 10C+4T\leq100$')
plt.plot(C,T2, label=r'$Graphics: 18C+18T\leq240$')
plt.plot(C,T4, label=r'$Coding: 8C+16T\leq180$')
plt.plot(C, Topt, label = "Optimal Solution Line", c='k', linestyle='dashed')
plt.xlim(0, 15)
plt.ylim(0, 15)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.xlabel(r'$Children Apps$')
plt.ylabel(r'$Teenage Apps$')

https://analyticstx.com/

April 14, 2023 Analytics TX, LLC https://analyticstx.com/

APPENDIX 2. PYTHON CODE FOR PRETTY_OUTPUT() FOR LP MODELS

def pretty_output(model):
 # Variable Cells Table
 variable_cells_table = [["Name", "Optimal Value", "Reduced Cost", "Objective
Coefficient"]]
 variable_cells = [
 [variable, variable.varValue, variable.dj, model.objective.get(variable,
0.0)]
 for variable in model.variables()
]
 for row in variable_cells:
 variable_cells_table.append([row[0].name, f"{row[1]:.2f}",
f"{row[2]:.2f}", f"{row[3]:.2f}"])

 # Constraints Table
 constraints_table = [["Name", "Final Value", "Shadow Price", "RHS
Constraint", "Slack"]]
 constraints = [
 [constraint.name, (-constraint.constant -constraint.slack),
constraint.pi, -constraint.constant, constraint.slack]
 for constraint in model.constraints.values()
]
 for row in constraints:
 constraints_table.append([row[0], f"{row[1]:.2f}", f"{row[2]:.2f}",
f"{row[3]:.2f}", f"{row[4]:.2f}"])

 # Print the variable cells table and constraints table using tabulate
 print(model)
 print(f"Model status: {model.status}, {p.LpStatus[model.status]}")
 print("Value of Objective function:
{:,}".format(round(model.objective.value(), 2)))
 print("Variable Cells Table:")
 print(tabulate(variable_cells_table, headers='firstrow', tablefmt='grid',
numalign='center', stralign='center'))
 print("\nConstraints Table:")
 print(tabulate(constraints_table, headers='firstrow', tablefmt='grid',
numalign='center', stralign='center'))
 print("** The constraints for which the Slack value is 0 are binding
constraints")

https://analyticstx.com/

Linear Programming Example 2

ANALYTICS TX, LLC

Linear Programming Using Python – 3 Variable Example

Dr. Kruti Lehenbauer

4/18/2023

11703 Huebner Rd.| Ste 106-451| San Antonio, TX 78230 | Ph. 972-292-8338| ANALYTICSTX.COM

April 18, 2023 Analytics TX, LLC https://analyticstx.com/

Example: Profit Maximization with 3 Variables

Continuing with the effort to learn (and share) Python Programming to perform various Data
Analytics operations instead of using the traditional Excel and STATA methods that I have used
for over 2 decades, here is the SECOND installment of solving a fairly simple linear programming
profit maximization problem in Python. This example builds on the previous Example that I had
shared and is also included in the book, Introduction to Management Science: A Stepwise
Approach to Basic Models in a Management Toolkit (referred to as “the book” for the remainder
of this file) and it is available in Kindle and Paperback format on Amazon from here.

Chapter 6 of the book goes into detailed explanations of what Linear Programming is and how it
can be used in business applications to optimize outcomes, so I am not delving too deeply into the
background or the theory behind LP in this document. The book also covers step by step methods
to solve LP Models using Graphical Methods and Excel Solver, so please feel free to refer to that
if you need the stepwise approach.

In this example, we will be focusing on recreating and solving the Example 6.5 titled “PAR
Insights, Inc Adding an App” from page 155-158 of the book.

If you followed along with attempting Example 6.1 from my previous notes, you do not need to
import everything again, as long as you are using the same ipynb or py file. Otherwise, if you want
start with a new Notebook, import Pandas and Tabulate as shown below. The most important
import for solving Linear Programming problems in Python is PuLP1. I am also starting to use
more compact command lines as compared to the previous example.

import pandas as pd, pulp as p
from tabulate import tabulate
The Linear Program that we need to solve is represented by the following LP Model (see pg. 156
of the book). Note that as compared to the previous problem, we are now trying to add another app
for Babies in the production line for PAR Insights. The main reason for considering adding another
app is that as we observed in the previous example, there was a lot of slack time available in some
of the departments in the company and maximizing profits alongside maximizing usage of
available resources is a key element of business.

1 You might need to install these packages before you can import them to the workspace. Note that
I have skipped some output information in the code for the sake of brevity.

https://analyticstx.com/
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp

April 18, 2023 Analytics TX, LLC https://analyticstx.com/

The new app requires 10 hours of Theme Department, 2 hours from Graphics & Imaging
Department, 40 hours from the Educational Content Department, 1 hour from the Coding
Department, and 12 hours from the Testing Department. Now, we can try to create this in Python
in the following stepwise manner:

First, we put in some text to describe what the Problem is and set up the type of model that we
want to solve in PuLp by “initializing” the model (PARM5 in our example) as shown below:

Example 6_5 PAR Insights - additional product to be created
The Problem: PAR Insights is trying to expand its business into the educational
apps market and can create three types of products with which they can enter the
market.
The management is trying to identify how many apps of each type should they
launch in the next four months after adding Baby Apps to the lists.
Also, they want the answers in terms of Integers, and not continuous variables.

PARM5 = p.LpProblem("PAR_Insights_Profit_Max_3_products", p.LpMaximize)
Let us first create the datasets that will allow us to access the various hours, apps, profit values,
and other relevant information that is available in the problem (see the book for details). We will
create two datasets or “DataFrames” for ease of access.

Data
idx = ['C','T','B']
df = pd.DataFrame({"Apps": idx,
 'Theme':[10, 4, 10],
 'Graphics':[18,18,2],
 'EdContent':[20, 24, 40],
 'Coding':[8, 16, 1],
 'Testing':[8, 6, 12],
 'Profit':[15000, 25000, 13000]}).set_index('Apps')
avail = pd.DataFrame({"Dept":['Theme','Graphics','EdContent',
'Coding','Testing'], "Hours":[100, 240, 400, 180, 120]}).set_index('Dept')
By using the commands “print(df)” and “print(avail)” the following output can be obtained:

 Theme Graphics EdContent Coding Testing Profit
Apps
C 10 18 20 8 8 15000
T 4 18 24 16 6 25000
B 10 2 40 1 12 13000
 Hours
Dept
Theme 100
Graphics 240
EdContent 400
Coding 180
Testing 120

https://analyticstx.com/

April 18, 2023 Analytics TX, LLC https://analyticstx.com/

In the Linear Program described, there are three main variables that need to be estimated: the
number of Children’s Apps (C), the number of Teenager’s Apps (T), and the number of Baby Apps
(B). In our data named “df”, these three variables are the “Apps” and are assigned as “indexes” for
the dataframe. Since they are in the DataFrame, we can define the Decision Variables in Python,
with one line. Notice we are also putting the requirement that these variables can only take integer
values by choosing “cat” (represents category) to be ‘Integer.’

Decision Variables
x = p.LpVariable.dicts('',df.index, lowBound=0, cat='Integer')
The p.LpVariable assigns the variable names and their descriptions to the LP Model. Next, we will
define the Objective Function (the function that we need to maximize) and the Constraints that
need to be added to our model (PARM5) as shown below. Note that unlike the previous example,
we are using more complex methods to write the code but it implies that the code is shorter and
more consistent.

#Objective Function
PARM5 += sum([x[idx]*df['Profit'][idx] for idx in df.index])
Constraints
for dept in avail.index:
 PARM5 += sum([x[idx]*df[dept][idx] for idx in df.index]) <=
avail['Hours'][dept], f"{dept} Department"
Since there are three variables in this example, we can no longer visualize the Linear Problem in
a 2-dimensional graph. The concept remains the same. The constraints create a region of feasibility
and the optimal solution occurs at one of the end-points of this region in a multi-dimensional space.
Now, we can solve the problem by using the “solve” function. There are many ways to see the
relevant output. I have defined a special function for output called “pretty_output()” and the code
can be found in Appendix 1 below.

Solving the model:
PARM5sol = PARM5.solve()
pretty_output(PARM5)
This will yield the following output below the cell (if you are using ipynb Jupyter notebook).

PAR_Insights_Profit_Max_3_products:
MAXIMIZE
13000*_B + 15000*_C + 25000*_T + 0
SUBJECT TO
Theme_Department: 10 _B + 10 _C + 4 _T <= 100
Graphics_Department: 2 _B + 18 _C + 18 _T <= 240
EdContent_Department: 40 _B + 20 _C + 24 _T <= 400
Coding_Department: _B + 8 _C + 16 _T <= 180
Testing_Department: 12 _B + 8 _C + 6 _T <= 120

VARIABLES
0 <= _B Integer
0 <= _C Integer
0 <= _T Integer

Model status: 1, Optimal
Value of Objective function: 319,000.0
Variable Cells Table:

https://analyticstx.com/

April 18, 2023 Analytics TX, LLC https://analyticstx.com/

+--------+-----------------+----------------+-------------------------+
| Name | Optimal Value | Reduced Cost | Objective Coefficient |
+========+=================+================+=========================+
| _B | 3 | 13000 | 13000 |
+--------+-----------------+----------------+-------------------------+
| _C | 2 | 15000 | 15000 |
+--------+-----------------+----------------+-------------------------+
| _T | 10 | 25000 | 25000 |
+--------+-----------------+----------------+-------------------------+

Constraints Table:
+----------------------+---------------+----------------+------------------+---------+
| Name | Final Value | Shadow Price | RHS Constraint | Slack |
+======================+===============+================+==================+=========+
| Theme_Department | 90 | -0 | 100 | 10 |
+----------------------+---------------+----------------+------------------+---------+
| Graphics_Department | 222 | -0 | 240 | 18 |
+----------------------+---------------+----------------+------------------+---------+
| EdContent_Department | 400 | -0 | 400 | -0 |
+----------------------+---------------+----------------+------------------+---------+
| Coding_Department | 179 | -0 | 180 | 1 |
+----------------------+---------------+----------------+------------------+---------+
| Testing_Department | 112 | -0 | 120 | 8 |
+----------------------+---------------+----------------+------------------+---------+
** The constraints for which the Slack value is 0 are binding constraints

As one can see the optimal number of Baby Apps to make are 3 for a profit of $13,000 each, 2
Children’s Apps for profit of $15,000 each and 10 Teenager Apps for profit of $25,000 each for a
a total maximum profit of $319,000 in the four months that are available to PAR Insights, Inc.

Hope you are enjoyng learning Linear Programming in Python alongside us… give our website
www.analyticstx.com a visit and let us know if we can help you with any of your business or
learning needs!

https://analyticstx.com/
http://www.analyticstx.com/

April 18, 2023 Analytics TX, LLC https://analyticstx.com/

APPENDIX 1. PYTHON CODE FOR PRETTY_OUTPUT() FOR LP MODELS

def pretty_output(model):
 # Variable Cells Table
 variable_cells_table = [["Name", "Optimal Value", "Reduced Cost", "Objective
Coefficient"]]
 variable_cells = [
 [variable, variable.varValue, variable.dj, model.objective.get(variable,
0.0)]
 for variable in model.variables()
]
 for row in variable_cells:
 variable_cells_table.append([row[0].name, f"{row[1]:.2f}",
f"{row[2]:.2f}", f"{row[3]:.2f}"])

 # Constraints Table
 constraints_table = [["Name", "Final Value", "Shadow Price", "RHS
Constraint", "Slack"]]
 constraints = [
 [constraint.name, (-constraint.constant -constraint.slack),
constraint.pi, -constraint.constant, constraint.slack]
 for constraint in model.constraints.values()
]
 for row in constraints:
 constraints_table.append([row[0], f"{row[1]:.2f}", f"{row[2]:.2f}",
f"{row[3]:.2f}", f"{row[4]:.2f}"])

 # Print the variable cells table and constraints table using tabulate
 print(model)
 print(f"Model status: {model.status}, {p.LpStatus[model.status]}")
 print("Value of Objective function:
{:,}".format(round(model.objective.value(), 2)))
 print("Variable Cells Table:")
 print(tabulate(variable_cells_table, headers='firstrow', tablefmt='grid',
numalign='center', stralign='center'))
 print("\nConstraints Table:")
 print(tabulate(constraints_table, headers='firstrow', tablefmt='grid',
numalign='center', stralign='center'))
 print("** The constraints for which the Slack value is 0 are binding
constraints")

https://analyticstx.com/

Linear Programming Example 3

ANALYTICS TX, LLC

Linear Programming Using Python – Shortest Route Example

Dr. Kruti Lehenbauer

4/28/2023

11703 Huebner Rd.| Ste 106-451| San Antonio, TX 78230 | Ph. 972-292-8338| ANALYTICSTX.COM

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

Example: Shortest Route Transportation Problem

Continuing with the effort to learn (and share) Python Programming to perform various Data
Analytics operations instead of using the traditional Excel and STATA methods that I have used
for over 2 decades, here is the THIRD installment of solving a linear programming SHORTEST
ROUTE problem in Python. This example is included in Chapter 8 of the book, Introduction to
Management Science: A Stepwise Approach to Basic Models in a Management Toolkit (referred
to as “the book” for the remainder of this file) and it is available in Kindle and Paperback format
on Amazon from here.

Chapter 8 of the book goes into detailed explanations of usage of Linear Programming (LP) in
Supply Chain and Distribution Models, so I am not delving too deeply into the background or the
theory behind the LP in this document. The book also covers step by step methods to solve LP
Models using the Excel Solver, so please feel free to refer to that if you need the stepwise approach
to solve the problem in Excel.

In this document, we will be focusing on recreating and solving the Example 8.4 titled “Shortest
Route Problem BCWM” on pages 236-240 of the book.

On a new Jupyter Notebook (extension is .ipynb) or Python program, import the following1:

• Pandas – for data operations
• PuLP – for Linear Programming
• Networkx – for creating Network graphs for the route or flow
• MatPlotLib.PyPlot – to work with Networkx to create better graphical output
• Tabulate – for creating table for LP output (optional if you want to skip the output)

import pandas as pd, pulp as p, networkx as nx, matplotlib.pyplot as plt
from tabulate import tabulate

The LP for finding the shortest route that we need to solve is represented by the following LP
Model (see pg. 237-239 of the book for details on how to create the constraints and objective
functions). Here, the goal is to minimize the total number of miles travelled by a trash truck in one
trip going from the Start Node to the final destination or End Node via intermediate nodes that
represent various neighborhoods. The data that is being used to create this model is shown
alongside the LP Model for ease of reference in this document. The book discusses the intermediate
steps in significant details so those are not being repeated in this document.

1 You might need to install these packages before you can import them to the workspace using the
pip install method in your command window. Note that I have skipped some output information
in the code for the sake of brevity.

https://analyticstx.com/
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp
https://a.co/d/2W59sVp

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

What is most important about this problem is that only one Trash Truck is entering this

network at a given time and thus, the value of each of the variables or pathways is either 1 or 0.
The 1 represents that the truck takes a particular route, whereas the 0 indicates that it is not efficient
for the truck to take that route. Thus, we have binary variables in our LP, which is different than
the continuous or integer variables that we used in earlier examples. Now, we can try to create the
example in Python in the following stepwise manner:

First, since this is a Network Problem, the easiest way to visualize the problem at hand is
to create a Network graph after importing the data. Note that the data can be imported from an
excel file or a csv file as shown below. We are also setting the Index of our dataset to the “Nodes”
function for ease of use in programming. This creates our DataFrame for the Graph as well as the
LP. The ‘NaN’ values in the DataFrame refer to “Not a Number” which is standard practice in
Python for missing values. Now, a Network graph function can be created to get the output in the
form of a graph. Appendix 1 below shows how to define this function in Python. It takes the
arguments “df” that represents the name of the dataset and “num”, which represents whether it is
the initial graph (1) or post-LP graph (2).

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

Example 8.4: Shortest Route Problem - Binary Variables - 'SR'
The Problem: Bexar County Waste Management Company manager needs to identify
the shortest route from the holding center to the dump in order to submit a
successful bid for purchasing a large-capacity but fuel-inefficient trash truck.
Get Data
df = pd.read_csv('Example8_4.csv').set_index('Nodes')
print(df)
Draw Initial Network using "SR" and choose number=1 to make sure all possible
routes are included
Network_graph_SR(df,1)
OUTPUT:
 Start N2 N3 N4 N5 N6 End Supply
Nodes
Start NaN 10.0 10.0 NaN NaN NaN NaN 1
N2 NaN NaN 1.0 5.0 8.0 NaN NaN 0
N3 NaN 1.0 NaN NaN 3.0 7.0 NaN 0
N4 NaN 5.0 NaN NaN 2.0 NaN 9.0 0
N5 NaN 8.0 3.0 2.0 NaN 2.0 8.0 0
N6 NaN NaN 7.0 NaN 2.0 NaN 5.0 0
End NaN NaN NaN NaN NaN NaN NaN -1

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

The next step is to initialize the Linear Program (Trash in our example) by using PuLP, as shown
below:

Define LP using a function
Trash = p.LpProblem("Example8_4", p.LpMinimize)

In this example, the variables go in multiple directions. That is, there are valid routes from
one node to another and then there are some invalid routes (note the NaN values in the DataFrame).
Only the valid routes should be considered for defining the variables, defining the Objective
Function, and defining the Constraints. We also know that a Truck can only LEAVE from the
“Start” Node and stops at the “End” Node. We also need to include the requirement that these
variables can only take binary (0, 1) values by choosing “cat” (represents category) to be ‘Binary’
when defining the variables.

This implies that defining a function that iterates over various Nodes and connections in
the DataFrame might be the most efficient method to define each of the variables and constraints.
The following code helps us to define this specific function (please note that the text is wrapping
automatically in the following code and you might have to adjust it a bit in your Python Notebook
to ensure that the code is in compliance with the program requirements):

def add_variables_and_constraints(df, model):
 x = {}
 for i in df.index:
 for j in df.columns[:-1]:
 if not pd.isna(df.loc[i,j]):
 x[(i,j)] = p.LpVariable(f'{i}{j}', lowBound=0, cat="Binary")
 # Add constraints
 for i in df.index:
 if i == "Start":
 model += sum(x[i,j] for j in df.columns[:-1] if not
pd.isna(df.loc[i,j])) == 1, f'Start Constraint'
 elif i in df.index[1:6]:
 model += sum(x[i,j] for j in df.columns[:-1] if not
pd.isna(df.loc[i,j])) == sum(x[j,i] for j in df.columns[:-1] if not
pd.isna(df.loc[j,i])), f'Node_{i} Constraint'
 model += sum(x[i,'End'] for i in df.index if not pd.isna(df.loc[i,j])) == 1,
f'End Constraint'
 # Add objective function
 model += sum(x[i,j]*df[j][i] for i in df.index for j in df.columns[:-1] if
not pd.isna(df.loc[i,j]))
 return x
Adding Variables and Constraints to LP Problem
x = add_variables_and_constraints(df, Trash)
print(Trash)

If we print out the LP Program by using the command “print(Trash)” hereafter, we would
get the following output. This allows us to cross-check the code variables and equations with our

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

originally derived equations. Note that there is a small difference in the “End Constraint” in the
use of the “minus” sign on the RHS. This is because of the way PuLP arranges its variables as
compared to how they are arranged in Excel Solver.

Example8_4:
MINIMIZE
1.0*N2N3 + 5.0*N2N4 + 8.0*N2N5 + 1.0*N3N2 + 3.0*N3N5 + 7.0*N3N6 + 9.0*N4End +
5.0*N4N2 + 2.0*N4N5 + 8.0*N5End + 8.0*N5N2 + 3.0*N5N3 + 2.0*N5N4 + 2.0*N5N6 +
5.0*N6End + 7.0*N6N3 + 2.0*N6N5 + 10.0*StartN2 + 10.0*StartN3 + 0.0
SUBJECT TO
Start_Constraint: StartN2 + StartN3 = 1
Node_N2_Constraint: N2N3 + N2N4 + N2N5 - N3N2 - N4N2 - N5N2 - StartN2 = 0
Node_N3_Constraint: - N2N3 + N3N2 + N3N5 + N3N6 - N5N3 - N6N3 - StartN3 = 0
Node_N4_Constraint: - N2N4 + N4End + N4N2 + N4N5 - N5N4 = 0
Node_N5_Constraint: - N2N5 - N3N5 - N4N5 + N5End + N5N2 + N5N3 + N5N4 + N5N6 -
N6N5 = 0
Node_N6_Constraint: - N3N6 - N5N6 + N6End + N6N3 + N6N5 = 0
End_Constraint: N4End + N5End + N6End = 1

VARIABLES
0 <= N2N3 <= 1 Integer
0 <= N2N4 <= 1 Integer
0 <= N2N5 <= 1 Integer
0 <= N3N2 <= 1 Integer
0 <= N3N5 <= 1 Integer
0 <= N3N6 <= 1 Integer
0 <= N4End <= 1 Integer
0 <= N4N2 <= 1 Integer
0 <= N4N5 <= 1 Integer
0 <= N5End <= 1 Integer
0 <= N5N2 <= 1 Integer
0 <= N5N3 <= 1 Integer
0 <= N5N4 <= 1 Integer
0 <= N5N6 <= 1 Integer
0 <= N6End <= 1 Integer
0 <= N6N3 <= 1 Integer
0 <= N6N5 <= 1 Integer
0 <= StartN2 <= 1 Integer
0 <= StartN3 <= 1 Integer

Note that since the variables are all defined as being “Binary”, the LP places their values
as being between 0 and 1 and imposes the “Integer” restriction on them implying that each variable
can ONLY take one of the two values of 0 and 1 in the solution. The full program has been defined
using the function defined above, so now we can proceed to solve it by using the command
“Trash.solve()” which calls the default solver from the PuLP module. In order to get output for all

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

variables, we will use a modified version of the pretty_output() function that we used in previous
examples called the “transport_output()” which is included below.

Trash_sol = Trash.solve()
def transport_output(df,model):
 # Variable Cells Table
 variable_cells_table = [["Name", "Optimal Value"]]
 variable_cells = [[variable, variable.varValue] for variable in
model.variables()]
 for row in variable_cells:
 variable_cells_table.append([row[0].name, format(row[1], ',.2f')])
 # Print the variable cells table using tabulate to open file (switch # in
line 12)
 print(df, model,
 f"Model status: {model.status}, {p.LpStatus[model.status]}",
 "Value of Objective function: {:,}".format(round(model.objective.value(),
2)),
 "Variable Cells Table:",
 tabulate(variable_cells_table, headers='firstrow', tablefmt='grid',
numalign='center', stralign='center'),sep ="\n")
transport_output(df,Trash)

The produced output is shown below. Note that I am not including the “df” or the “model”
output since they were shared earlier.

Model status: 1, Optimal
Value of Objective function: 20.0
Variable Cells Table:
+---------+-----------------+
| Name | Optimal Value |
+=========+=================+
| N2N3 | 0 |
+---------+-----------------+
| N2N4 | 0 |
+---------+-----------------+
| N2N5 | 0 |
+---------+-----------------+
| N3N2 | 0 |
+---------+-----------------+
| N3N5 | 1 |
+---------+-----------------+
| N3N6 | 0 |
+---------+-----------------+
| N4End | 0 |
+---------+-----------------+
| N4N2 | 0 |
+---------+-----------------+
| N4N5 | 0 |
+---------+-----------------+

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

| N5End | 0 |
+---------+-----------------+
| N5N2 | 0 |
+---------+-----------------+
| N5N3 | 0 |
+---------+-----------------+
| N5N4 | 0 |
+---------+-----------------+
| N5N6 | 1 |
+---------+-----------------+
| N6End | 1 |
+---------+-----------------+
| N6N3 | 0 |
+---------+-----------------+
| N6N5 | 0 |
+---------+-----------------+
| StartN2 | 0 |
+---------+-----------------+
| StartN3 | 1 |
+---------+-----------------+

While this output is consistent with the output we obtained using Excel Solver (see pg. 239
of the book), it is not easy to interpret visually. The objective function is minimized at the value
of 20, implying that the Trash Truck has to travel a minimum distance of 20 miles through the
route “Start – Node3 – Node5 – Node6 – End.

In order to make this output more “readable” and to create an updated network, we can
write some more code to clean up the results and put them in a new DataFrame called “res” which
we can use to create the updated Network Graph. If you creating all the code in one box in the
Jupyter Notebook, you do not need to include the first graph (as shown below) again..

Creating Formatted Output from Linear Program
res = pd.DataFrame(index=df.index,columns=df.columns[:-1])
res_dict = {}
for i, j in x.keys():
 res_dict[i,j] = (x[i,j].varValue)
for i, row_label in enumerate(res.index):
 for j, col_label in enumerate(res.columns):
 res.loc[row_label, col_label] = res_dict.get((row_label, col_label),
None)
res['Outgoing'] = res.sum(axis=1)
Network_graph_SR(df,1)
Network_graph_SR(res,2)
res.loc['Incoming'] = res.sum(axis=0)
res.loc[res.index[-1], res.columns[-1]] = ''
print(res)

The output from this code will be obtained directly under the box of the code in the Jupyter
Notebooks. All of these outputs can also be written to an external file and graphs can be saved as
.png or other formats if desired by adding appropriate lines of code. I have not included those lines

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

here, but feel free to reach out if you need help with saving graphs or output files. The red pathway
shows the exact route that the Trash Truck will take from the starting point to the ending point
while collecting trash from the neighborhoods (nodes) that it drives through.

 Start N2 N3 N4 N5 N6 End Outgoing
Nodes
Start None 0.0 1.0 None None None None 1.0
N2 None None 0.0 0.0 0.0 None None 0.0
N3 None 0.0 None None 1.0 0.0 None 1.0
N4 None 0.0 None None 0.0 None 0.0 0.0
N5 None 0.0 0.0 0.0 None 1.0 0.0 1.0
N6 None None 0.0 None 0.0 None 1.0 1.0
End None None None None None None None 0
Incoming 0 0.0 1.0 0.0 1.0 1.0 1.0

Hope you are enjoyng learning Linear Programming in Python alongside us… give our website
www.analyticstx.com a visit and let us know if we can help you with any of your business or
learning needs!

https://analyticstx.com/
http://www.analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

APPENDIX 1. PYTHON CODE FOR Network_graph_SR(df, num)

Always double check all nodes for examples in the first few lines
"SR": Shortest Route
def Network_graph_SR(df,num):
 start_nodes = list(df.index[0:1])
 inter_nodes = list(df.columns[1:-2])
 end_nodes = list(df.index[-1:])
 node = list(df.index)
 # print(start_nodes, inter_nodes, end_nodes)
 #Draw Graph
 G = nx.DiGraph()
 #Add nodes
 G.add_nodes_from(node)
 # print(G.nodes)
 #Add edges & Labels
 edge_labels={}
 for start_node in node:
 for end_node in node:
 if end_node in df.index:
 weight = df.loc[start_node, end_node]
 if weight != 0.0:
 if not pd.isna(weight):
 G.add_edge(start_node, end_node)
 edge_labels[(start_node, end_node)] = weight
 # print(edge_labels)
 pos = {}
 pos.update((node, (-0.5, 0.5-index)) for index, node in
enumerate(inter_nodes[0:2]))
 pos.update((node, (0, 1-index)) for index, node in
enumerate(inter_nodes[2:]))
 pos.update((node, (-1,index)) for index, node in enumerate(start_nodes))
 pos.update((node, (1, index)) for index, node in enumerate(end_nodes))
 if num==1:
 nx.draw(G, pos, with_labels=True, node_size=2000, font_size=16,
node_color="lightblue", style ="dashed")
 nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels,
label_pos=0.4, font_size=8)
 else:
 nx.draw(G, pos, with_labels=True, node_size=2000, font_size=16,
node_color="lightblue", edge_color='red', width=2.0)
 nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels,
label_pos=0.4, font_size=12,font_color="red")
 plt.savefig("Graph_Example8_4" + str(num)+ "SR.png")

https://analyticstx.com/

April 28, 2023 Analytics TX, LLC https://analyticstx.com/

We Help You Make Sense of Your Data

ANALYTICS TX, LLC

Helping Businesses with Their Data Analytics Needs Since 2012

https://analyticstx.com/

	LP_using_PuLP_Example6_1
	Linear Programming Using Python – Basic Example
	Dr. Kruti Lehenbauer

	Example: PAR Insights, Inc. Profit Maximization using Python
	APPENDIX 1. PYTHON CODE TO CREATE THE GRAPHS FOR LP
	Code for Creating Chart 1:
	Code for Creating Chart 3:

	APPENDIX 2. PYTHON CODE FOR PRETTY_OUTPUT() FOR LP MODELS

	LP_using_PuLP_Example6_5
	Linear Programming Using Python – 3 Variable Example
	Dr. Kruti Lehenbauer

	Example: Profit Maximization with 3 Variables
	APPENDIX 1. PYTHON CODE FOR PRETTY_OUTPUT() FOR LP MODELS

	Shortest Route Example LP
	Linear Programming Using Python – Shortest Route Example
	Dr. Kruti Lehenbauer

	Example: Shortest Route Transportation Problem
	APPENDIX 1. PYTHON CODE FOR Network_graph_SR(df, num)

