
EXAMPLE BY 

 

ANALYTICS TX, LLC 
 
 

Recreating the Output of the “margins” Function from STATA to 
Python 

Dr. Kruti Lehenbauer 

 

 

 

 

 

 

4/2/2023 

 

 

 

 
11703 Huebner Rd.| Ste 106-451| San Antonio, TX 78230  | Ph. 972-292-8338| ANALYTICSTX.COM 

 



April 2, 2023 Analytics TX, LLC  https://analyticstx.com/  

 

The “margins” function from STATA presented in Python 

For this illustration of defining and applying the “margins” function of STATA to regression 
outputs in Python, I am using the dataset “breast_cancer” from sklearn.datasets. A more detailed 
example of how to create logistic regression using this dataset is available at: 
https://data.library.virginia.edu/logistic-regression-four-ways-with-python/ and I used Method 1 
(statsmodels.formulas.api.Logit()) to create the Logit Model and the corresponding OLS formula 
for the Linear Regression Model discussed below.  

Start by importing pandas, numpy, statsmodels.formula.api and importing the load_breast_cancer 
dataset from sklearn.datasets. Note that you can import any data using your standard import tools. 
While this illustration uses the Breast Cancer dataset, the actual Margins Function defined below 
can be used in any dataset as long as it is called correctly with the four parameters listed in the 
function. Note that I have skipped some output information in the code below for the sake of 
brevity. 

import pandas as pd 
import numpy as np 
import statsmodels.formula.api as smf 
from sklearn.datasets import load_breast_cancer 
# Loading the data 
cancer1 = load_breast_cancer() 
print("Predictors: ", cancer1.feature_names) 
print("\nResponse: ", cancer1.target_names) 
Predictors:  ['mean radius' 'mean texture' 'mean perimeter' 'mean area' 'mean 
smoothness' 'mean compactness' 'mean concavity' 'mean concave points' 'mean 
symmetry' 'mean fractal dimension' 'radius error' 'texture error' 'perimeter 
error' 'area error' 'smoothness error' 'compactness error' 'concavity error' 
'concave points error' 'symmetry error' 'fractal dimension error' 'worst 
radius' 'worst texture' 'worst perimeter' 'worst area' 'worst smoothness' 
'worst compactness' 'worst concavity' 'worst concave points' 'worst symmetry' 
'worst fractal dimension'] 
 
Response:  ['malignant' 'benign'] 
# Creating the dataframe  
cancer = pd.DataFrame(cancer1.data, columns=cancer1.feature_names) 
cancer.columns = cancer.columns.str.replace(' ','_') 
cancer.shape #Omitted output below 
# Add a column for response variable: malignant or benign 
cancer['Target']=cancer1.target 

This dataset does not have any explicit dummy functions, so we will create a dummy based on the 
“worst_texture” variable. There is no statistical importance of choosing that variable; this is being 
done to demonstrate the use of the margins function, so please take that into account.  

# Output of this cell has been omitted but note:  
# The dummy variable ‘flagvar’ has a mean of 0.530756 
print(cancer.worst_texture.describe()) 
cancer['flagvar']= np.where(cancer.worst_texture>25,1,0) 
print(cancer.flagvar.describe()) 
# Export csv file for use in STATA to compare results 
cancer.to_csv("cancer.csv") 

https://analyticstx.com/
https://data.library.virginia.edu/logistic-regression-four-ways-with-python/


April 2, 2023 Analytics TX, LLC  https://analyticstx.com/  

 

Now, we will define the “Margins” function using four main attributes: the name of the dataset (in 
this example, it would refer to cancer), the dummy variable of interest (“flagvar” in this example), 
the dependent variable in the regression model (“Target” in this example), and the result of the 
regression model (this will be obtained after defining the marginsat0_1 function). 

# Define the Margins Function: 
 
def marginsat0_1(dataname, dummy, y, result): 
    testflag0 = dataname.copy() 
    testflag0[dummy]=0 
    testflag0['prob0'] = result.predict(testflag0) 
    mean0 = round(testflag0.prob0.mean(),5) 
    testflag1 = dataname.copy() 
    testflag1[dummy]=1 
    testflag1['prob1'] = result.predict(testflag1) 
    mean1 = round(testflag1.prob1.mean(),5) 
    diff = round((mean1-mean0),5) 
    print("Pr(" + str(y) + ")|"+ str(dummy) + "=0 : {}".format(mean0), 
          "Pr(" + str(y) + ")|"+ str(dummy) + "=1 : {}".format(mean1), 
          "Difference: {}".format(diff), sep="\n") 

For this example, we will simply select the first 10 columns of the DataFrame that will be 
predictors in the models. Again, there is no statistical reason for picking these. This model is for 
illustrative purposes, only. Note that we are estimating both Logit and OLS models below and 
obtaining the Predicted Values of the Target variable for values of “flagvar” being equal to 1 and 
0.  

# Select the first 10 columns of the DataFrame as predictors in the models  
# Create the formula string 
 
all_columns = ' + '.join(cancer.columns[:10]) 
formula = "Target ~ "+ all_columns + " + " 'flagvar' 
print("Formula: ", formula, "\n") 
Formula:  Target ~ mean_radius + mean_texture + mean_perimeter + mean_area + 
mean_smoothness + mean_compactness + mean_concavity + mean_concave_points + 
mean_symmetry + mean_fractal_dimension + flagvar 
# Estimate the Logit model (Output from the LOGIT model omitted below): 
 
log_reg = smf.logit(formula, data=cancer).fit() 
log_reg.summary() 
 
# Using the Margins Function 
marginsat0_1(cancer, 'flagvar', 'Target', log_reg) 
Pr(Target)|flagvar=0 : 0.68893 
Pr(Target)|flagvar=1 : 0.58749 
Difference: -0.10144 
 
For Logit models, the Pr(Target) refers to the probability of Target being equal to 1 (malignant 
breast cancer), given that the value of “flagvar” is equal to 0 in the first line of the output. The 
second line refers to the probability of Target being equal to 1 (malignant breast cancer) given that 
the value of “flagvar” is equal to 1. The difference being negative indicates that the probability of 
malignancy is lower for the value of “flagvar” being 1 as compared to being 0. Important note: 
Logit models typically have a binary dependent variable (which is the case in this example). Thus, 
the Probability values will fall within the range of 0 and 1.  

https://analyticstx.com/


April 2, 2023 Analytics TX, LLC  https://analyticstx.com/  

 

# Build the OLS model & apply Margins function (Output from the Regression 
model omitted for brevity): 
lin_reg = smf.ols(formula, data=cancer).fit() 
lin_reg.summary() 
marginsat0_1(cancer, 'flagvar', 'Target', lin_reg) 
Pr(Target)|flagvar=0 : 0.71026 
Pr(Target)|flagvar=1 : 0.55418 
Difference: -0.15608 
 

For OLS models, the Pr(Target) refers to the predicted value of the Target, given that the value of 
“flagvar” is equal to 0 in the first line of the output. The second line refers to the predicted value 
of the Target given that the value of “flagvar” is equal to 1. The difference being negative indicates 
that the predicted value of the Target is lower for the value of “flagvar” being 1 as compared to 
being 0.  

Important note: Typically OLS models do not have a binary dependent variable (which is the 
case in this example). Thus, the Predicted values will fall within the range of the values that the 
dependent variable takes and are not restricted to being between 0 and 1.  

--------------------------------------------------------------------------------------------------------------------- 

The Outputs from STATA for this model are shared below. Note that we have not indicated in 
either the Python or the STATA model that our dummy variable is infact a categorical variable. 
The estimates are based upon the assumption that “flagvar” is a continuous variable that can take 
any value between 0 and 1. Compare the circled values with our Python results given above!  

Corresponding Outputs from STATA 

LOGIT REGRESSION STATA OUTPUT for margins function: 

 

https://analyticstx.com/


April 2, 2023 Analytics TX, LLC  https://analyticstx.com/  

 

 

ORDINARY LEAST SQUARES REGRESSION STATA OUTPUT for margins function: 

 
 

 

 

 

 

 

https://analyticstx.com/

	Recreating the Output of the “margins” Function from STATA to Python
	Dr. Kruti Lehenbauer

	The “margins” function from STATA presented in Python
	Corresponding Outputs from STATA


