South African greenhouse trials of Black UreaTM on Maize (Zee Mays)

Gary Murdoch-Brown, EcoTech (Aust) Pty Ltd, Brisbane. Australia Dr Arri van Vuuren, Independent Researcher, Pretoria. South Africa Prof. Andries Claasens, University of Pretoria, South Africa

Abstract: Pot trials were conducted at the research farm of the University of Pretoria in order to establish the efficacy of Black Urea[™] compared to normal granular Urea, as sources of nitrogen on maize (corn) production. The aim was two-fold; firstly to compare it as a banded nitrogen source, and secondly as a source of top dressed nitrogen at planting. The pots were leached to simulate normal field conditions. In the trials the Black Urea[™] proved superior to normal Urea particularly when top dressed.

Keywords: Black Urea[™], Urea, NUE, Band placed, Top dressed, Maize,

Introduction

Nitrogen use efficiency (NUE) is of significant importance in crop production systems due to its impact on farmer's economic outcomes and environmental impact. NUE may be reduced in crop production due to many factors including poor root development, reductions in plant vigour, losses of soil nitrogen (volatilisation, leaching, denitrification), fertiliser placement and probably other unknown mechanisms.

EcoTech has invented a proprietary (Patent filed) carbon based coating to urea to improve production systems economics and impact by improving plant uptake and utilization and reducing soil losses. The resultant product is Trade Marked as Black UreaTM.

In South Africa it is compulsory to register fertilizers under Act 36 of 1947. A new category has been created for any product that is claimed to have any soil or plant enhancement effects, and is subsequently given an "M" registration. A distributor of the product in South Africa commissioned Dr van Vuuren and Prof. Claasens to provide independent verification of the product claims in order to obtain "M" registration and to confirm typical Australian field trial results (Table 1) would be applicable in South Africa.

CROP	APPLICATION	SOIL	Result - UREA	Result - Black Urea TM
Dry land Wheat	50 kg/ha	Black Basalt	4.23t/ha or	4.89t/ha or 212kg/\$1.00
Quirindi	Aerial application	pH 6.5	151kg/\$1.00-spent	spent = 40% increase
				Advantage \$398/ha
Dry land Wheat	100kg/ha	Black Vertisol	4.05t/ha	5.12t/ha
Quirindi	Aerial application	pH 8.4		Advantage \$111.80/ha
Dry land Wheat	60kg/ha	Red Basalt	3.0t/ha	3.2 t/ha Protein 13.1%
Wee Waa	Surface spread	pH 7.0	Protein12.3%	Advantage \$24/ha
Pivot Irrigated	250kg/ha	Sandy loam	4.1 bales/ha	4.32 bales/ha
Cotton. Bonshaw	Surface spread	pH 5.5		Advantage \$84/ha
Dry land Pasture	80kg/ha	Red volcanic	After 3 weeks	After 3 weeks
Eureka	Surface spread	pH 5.0	8t/ha dry matter	10t/ha dry matter
				Advantage \$36/ha
Irrigated Corn	160kg/ha	Black Vertisol	11.5t/ha or 142kg/	12.3 t/ha or 149kg/\$1.00
Caroona	Side dress	Ph 8.5	\$1.00 spent	spent
				Advantage \$284/ha
Dryland Barley	80kg/ha	Black Vertisol	4.8t/ha or 118	5.2/ha or 126 kg/\$1.00 spent
Caroona	Surface spread	pH 8.3	kg/\$1.00 spent	Advantage \$89/ha

 Table 1. Typical Australian field trials results

MATERIALS AND METHODS

A typical soil from the research farm of the University of Pretoria was used (Table 2). Soil was sieved through a 2mm sieve and homogenised. Six (6) kgs of soil was used in every pot.

Table 2. Chemica	l analysis of the se	oil used in the trial	(before pH adjustment)
Tuble 2. Chemica	i analysis of the st	on abea m ene er a	(beloi e pii aujustinent)

Depth	$pH(H_2O)$	Resistance	CEC	Texture	Bray1P	1 N Ammonium Acetate		ate	
		(ohm)	cmol(+)/kg		(mg/kg)	(mg/kg)			
						Ca	Mg	K N	Ja
0-30cm	5.75	1620	6.26	SaClLm	2	374	175	106	7
30-60cm	5.95	1760	5.97	SaClLm	1	313	184	73	1

SaClLm = Sandy Clay Loam; CEC = Cation Exchange Capacity.

TREATMENTS:

Four maize (corn) seeds were planted in pairs on the sides in the pots. Different fertilizer placements were used in the pots:

- 1. 50 kg of N/ha equivalent of each nitrogen source was band placed in the centre of the pot, 10 cm deep.
- 2. 50 kg of N/ha equivalent of each nitrogen source was placed on the top of the soil and washed in the next day equivalent to 25ml rainfall.

After the plants emerged, the strongest growers were left and the weaker plants removed. Two plants were left on opposite sides in every pot.

All treatments were done in triplicate.

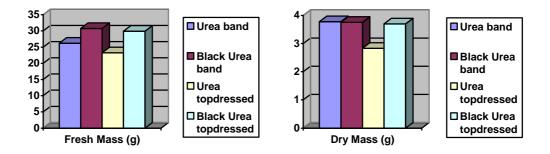
All treatments received all the additional essential nutrients in a 1N Hoagland solution.

Pots were placed on a rotating round table in the green house and allowed to grow for six weeks.

Soil moisture was kept at 50% of saturated field water capacity.

Two weeks after emergence the pots were leached by the addition of 3 litres of water Biomass at six weeks is accepted internationally as an indication of potential yield. Top growth was cut off above the soil, weighed, dried at 65°C and the dry mass determined.

RESULTS and DISCUSSION:


The averages of the fresh (wet) and oven dried (65° C) biomass of the top growth are given in Table 3.

· · · · · · · · · · · · · · · ·					
Treatment	Placement	Fresh mass (g)	Dry Mass (g)		
Urea	Band	26.24	3.78		
Black Urea TM	Band	30.78	3.76		
Urea	Top Dress	23.25	2.83		
Black Urea TM	Top Dress	29.94	3.70		

Table 3. Averages of the biomass production after 6 weeks.

■ Black UreaTM increased fresh mass production by 17% when banded but this did not translate to an increase in dry mass, probably due to the limitations of a closed system.

superior to Urea increasing fresh mass by 28% and dry mass by 30%.
This trial also supports the generally accepted view that band placement will produce greater biomass than top dressing thought to be due to a decrease in nitrogen losses, however, it is evident that by top dressing with Black UreaTM similar biomass production is achievable as that with band placement with normal Urea.

CONCLUSION:

Large scale Australian field trials have proven that Black UreaTM can be used in dryland systems at rates of 20-35% less than granular urea without suffering losses and can be used to significantly increase production economics in irrigated systems. This greenhouse trial suggests that similar results and benefits to farmers can be expected in South Africa. "M" registration has been granted to Black UreaTM in South Africa.