EISP: Alt Fuels and Vehicles

- Date: February 28, 2023
- Location: Virtual
- Presenter name: Barry Carr, Dir. of Business Development, ABM Board Chair: Clean Communities of CNY Barry.Carr@abm.com

Presenter

Barry Carr Director, of Business Development ABM eMobility USA Board Chair: CC of CNY

Agenda

- Clean Cities / ABM
- Vehicles
- Infrastructure
- EV / EVSE Update
- Additional Resources

What is Clean Cities? For 30 Years ; a Collaborative Partnership with DOE

Clean Cities

advances the energy, economic, and environmental security of the United States by supporting local actions to cut petroleum use in transportation. **Reduced petroleum consumption**

Reduced greenhouse gas (GHG) emissions

Reduced dependence on imported petroleum

US Department of Energy Support Programs: Ask Clean Cities!

Laws and incentives in your region of the country

https://afdc.energy.gov/fuels/laws/ELEC

Who is ABM?

eMOBILITY & ELECTRICAL INFRASTRUCTURE

- Federal
- State
- Hospitals
- Parking
- Dealerships
- Airports
- Universities
- Fleet Charging
- Maintenance & Service

Basics: Electricity Production and Distribution

- Sources of electricity vary by region
- With planning, EVs are unlikely to strain existing electricity infrastructure

Helpful Resources

- The Alternative Fuels Data Center (AFDC) **Electricity Sources and Emissions tool**—find state-level electricity sources and how they affect EV well-to-wheels emissions.
- AFDC EVI-Pro Lite tool—estimate how increased EV charging may affect your area's electricity load profile.

Basics: Smart Grids and Renewables

- Smart grids allow twoway communication between utilities and customers
- Smart charging paves the way to smoother integration of EVs and renewable energy

Basics: Benefits

Benefits:

- Increased energy security
- Improved fuel economy
- Lower fuel costs
- Reduced emissions

Considerations:

- Higher initial vehicle cost
- Infrastructure availability
- Battery life

Basics: Electric-Drive Vehicles

Electric Vehicles (EVs):

- All-Electric Vehicles
 - Powered by an electric motor
 - Uses charging infrastructure to charge the battery
- Plug-In Hybrid Electric Vehicle (PHEV)
 - Powered by an electric motor and engine
 - Uses charging infrastructure to charge the battery

Hybrid Electric Vehicle (HEV):

- Powered by an engine and electric motor
- Does not use charging infrastructure to charge the battery

Vehicles: EVs

- Battery stores electrical energy that powers the motor
- Battery charged by plugging in to outside electric power source
- Zero tailpipe emissions, but air pollution may be produced through electricity generation
- Driving range of 100 to over 400+ miles

Vehicles: PHEVs

- Internal combustion engine uses alternative or conventional fuel
- Battery charged by outside electric power source, engine, and regenerative breaking
- During urban driving, most power comes from stored electricity

Vehicles: HEVs

- Battery is charged by the engine and regenerative braking
- Power from electric motor allows smaller engine and better fuel economy
- Fuel-efficient system design
 - Mild hybrid: Cannot power vehicle using electric motor alone
 - Full hybrid: More powerful electric motor, larger batteries can drive vehicle on just electric power for short distances and at low speeds

Vehicles: Medium- and Heavy-Duty Vehicle Availability

Medium-Duty

- Variety of electric vehicles available
- New models becoming available, including vans and pickup trucks
- Certified conversions an option

Heavy-Duty

- Several EV and HEV makes and models available
- EV transit buses growing in popularity
- Regional haulers, refuse trucks, and yard tractors available

Source: <u>https://caletc.com/wp-content/uploads/2019/12/ICF-</u> Truck-Report Final December-2019.pdf

Vehicles: Conversions

- Provide options beyond what is standard from manufacturers
- Consider space and weight from added batteries and electric motors
- Conversions must meet vehicle standards

Vehicles: Batteries

- Energy storage systems, such as batteries, are essential for electric-drive vehicles
- All original equipment manufacturer EVs made today use **lithium-ion** batteries.
 - For more information about lithium extraction, contact the Technical Response Service at <u>technicalresponse@icf.com</u>
- Other energy storage options:
 - Nickel-metal hydride batteries (HEVs)
 - Lead-acid batteries
 - Ultracapacitors

Vehicles: Battery Recycling and Second Life

Recycling:

- Separating battery materials is a challenge
- Standardizing battery materials and design could help

Second life:

- Battery used in post-vehicle application
- Could help address battery cost barriers

The U.S. Department of Energy is supporting the Lithium-Ion Battery Recycling Prize to develop battery-recycling processes.

Other Considerations: Maintenance and Safety

- PHEVs and HEVs have maintenance requirements like conventional vehicles
- EVs typically need less maintenance:
 - Battery, motor require little to no maintenance
 - Fewer fluids to change
 - Brake wear is reduced due to regenerative braking
 - Fewer moving parts
- Electric-drive vehicles must meet the same safety standards as conventional vehicles

- Biofuels
- CNG/RNG
- LPG/RLPG
- Electricity
- Hydrogen
- OEMs / Upfitters

- Biofuels
- CNG/RNG
- LPG/RLPG
- Electricity
- Hydrogen
- OEMs / Upfitters

EVs: Automotive OEM EV Commitments

CADILLAC

100% Electric by 2025

BMW

50% Electric by 2030 •

VOLVO

MINI-COOPER

100% Electric by early 2030's

GMC

General Motors 100% by 2035

PORSCHE

• 80% Electric by 2030

STELLANTIS

100% Electric by 2030

GMC

AUDI

100% Electric by 2026

VOLVO

100% Electric by 2030

BENTLEY STELUANTIS

100% Electric by 2030 ٠

VOLKSWAGEN

MINI)

100% Electric in Europe by 2035. US to follow.

FORD

\$22Bn investment in EV through 2025

FERRARI

40% Electric by 2030

Funding Opportunities : OPM

BIL = Bipartisan Infrastructure Law IRA =Inflation Reduction Act

NEVI Plans

All 50 States, plus DC and Puerto Rico

National Electric Vehicle Infrastructure Act

- <u>Electric Vehicle (EV-Round 1,2,3,4,5 and 6) FHWA</u> <u>HEPGIS Maps (dot.gov)</u>
- Each State. Plus DC and PR have Approved Plans for Deploying DC Fast Charge
- Alt Fuel Corridors Include Most Inter and Intrastate Highways
- Sites Will be Located Every 50 Miles; Within 1 Mile of Highway
- Each Site Will Need 600 KW Available to Charge 4 Vehicles
- Site Hosts/Real Estate Needed ! MOST IMPORTANT
- ABM eMobility Participating in Multiple States

Infrastructure: Alternative Fuel Corridors Designated EV Corridors for NEVI Funding:

eMobility Turnkey Solutions : Where do we Start?

Questions for Clients:

- Have you started an EV implementation?
- Are you working with Clean Cities?
- Are you familiar with the current federal, state, and local requirements for offering and funding EV charging programs?
- Do you have near-term and long-term goals for your EV implementation?

EVSE US Options (~3 miles/ kWh)	A Equipme	ent ()		
Level 1 AC 3-5 MPH	Level 2 AC 18-60 MPH	Leve DC FAST 60-600	el 3 Charge) Mph	Mega Watt DC MCS
 120V @ 12-16A 15-20A Dedicated Circuit/Outlet 	 208 / 240V @ 32A 7.2 kw 40A Dedicated Circuit up to 19.2kW 80A Dedicated Circuit per Port 	 Low Power DC 240V, 208V, 480V 22.5-65kW 40A- 125A Dedicated Circuit 	 High Power DC 480V-13.2kV 3- Phase "WYE" 150-500kW 200-800A Feeders & Cooling 	 3-Phase "WYE" 3,750 kW 1250VDC 3,000 ADC Standard vehicle location
000	000	 Mid-Power DC 480V 3-Phase "WYE" 70-100kW 150-300A Feeder 		27

Charger Types

Level 1: 1.5-1.9 kW typical

- Cord-set connects to a regular outlet
- Single-phase hookup produces about 1.5kW
- Charge time is 7 to 80 hours
- Meets overnight charging needs
- 3-6 miles per hour of charge

Current: Charger Types

Level 2: 7.2 -19.2KW

- Wall or Pedestal mount
- 208 240VAC single phase
- 40-80A two pole circuit breaker
- Single-phase hookup produces about 6.6-19.2 kW
- Charge time is 4 to 24 hours depending on battery
- 21-57 miles per hour of charge
- Most common home and public charging station
- Charge rate is limited by onboard rectifier

Current: Charger Types

- Wall mount
- 208 240VAC single phase
- 100A two pole circuit breaker or 480V (WYE) three phase, 40A three pole circuit breaker
- Pad mounted all in one unit: 480V (WYE) three phase, 80 - 300A three pole circuit breaker
- Produces about 22.5-180 kW
- Charge time is 1.5 to 5 hours
- 67-500 miles per hour of charge.
- Charge rate is limited by Battery Control Module

30

alue

abr 213-3

Future: Charger Types

Level 4: 150-500+ KW

- Pad mounted all in one unit, 480V (WYE) three phase, 200 – 300+A three pole circuit breaker
- Produces about 150-500+ kW
- Charge time is 1/2 to 2 hours
 - 400-600 miles per hour of charge
 - Charge rate is limited by the Battery Control Module

Resilience

- <u>Ravenvolt</u>
- Nationwide advanced turnkey microgrid systems
- Utilized by commercial and industrial customers, national retailers, utilities, and municipalities.

Current: EVSE Suppliers

33

ABM

Building Value

EVSE Networks

	ABB		🕖 ampUp	
-	blink	BTCPOWER	+ CHARGELAB	-chargepoin+
	Chargie	eMotorWerks	electrify america	enel ×
K	EV+	nrg .ُ EVgo	EV PASS PORT	flo
V	Guidehouse	Juice bar '	ev charging network	THE MOBILITY HOUSE
1.	noodoe	NŰVVE	ower dot	Some powerflex EDF renewables
	SemaConnect	Shell & Kecharge	SIEMENS	ŶTESLA 34 34

EVSE User/Owner Operating System Platform

ABM. Building Value

- Tiered Pricing Capabilities
- Time Based Pricing
- Prepaid Cards
- Consumer Loyalty Programs
- Promotions/Marketing
- Payment Gateway Integration
- Load Management
- Fleet Charging
- Client or ABM Managed

The driver simply scans the QR code, touches Pay on the phone, and starts charging.

Membership Management Application

<u>Questions?</u> Barry Carr Barry.Carr@abm.com

cleancities.energy.gov

