Homonuclear Diatomic Molecules

Element	Form
Oxygen	O ₂
Nitrogen	N ₂
Chlorine	Cl ₂
Fluorine	F ₂
Bromine	Br ₂
Iodine	I ₂
Astatine	As ₂
Hydrogen	H ₂

UNITS

Prefixes for Naming Covalent Compounds Table 3.1, page 91			
<u>Prefix</u>	Meaning	<u>Prefix</u>	Meaning
Mono	one	Неха	Six
Di	two	Hepta	Seven
Tri	three	Octa	Eight
Tetra	four	Nona	Nine
Penta	five	Deca	ten

SPECIFIC HEAT

SUBSTANCE	SPECIFIC HEAT, $c = \frac{J}{g \circ C}$
Copper	c = 0.3851
Iron	c = 0.4521
Glass	c = 0.8372
Aluminum	c = 0.9000

TEMPERATURE CONVERSIONS

TEMPERATURE UNITS		
Temperature scale	Notation	Units
Fahrenheit	° F	°F= <u>9</u> (°C) + 32 5
Celsius	° C	° C = $\frac{9}{5}$ (° F - 32)
Kelvin	° K	° K = ° C + 273.15

UNITS

UNITS FOR HEAT FORMULA		
Element	Notation	Units
Specific Heat		J
	С	g ° C
Mass	g	grams
Temperature	T _{initial} or T _{final}	• C
Heat lost or gained	q	J
Change in Temperature	ΔΤ	• C

FORMULAS FOR MEASURING HEAT

FORMULAS WORKING WITH HEAT		
MISSING VARIABLE	Notation	Formula
Change in Temperature	ΔT =	q (m)(c)
Specific Heat of object	C =	q (m)(ΔT)
Mass	m =	q (c)(ΔT)
Heat lost or gained	q =	(m)(c) (ΔT)
Initial or Final Temperature	T initial or T final	$\Delta T = T_{final} - T_{initial}$

CALORIMETER PROBLEMS

FORMULAS WORKING WITH CALORIMETER PROBLEMS		
MISSING VARIABLE	Notation	Setup the Problem
An object in a liquid, ignore the calorimeter	q object = q liquid	(m)(c) (Δ T) _{object} = (m)(c) (Δ T) liquid
An object in a liquid, do not ignore the calorimeter	-q _{object} = q liquid + qcalorimeter	$-(m)(c)(\Delta T)_{object} = (m)(c)(\Delta T)_{liquid} + (m)(c)(\Delta T)_{calorimeter}$