Answers to Some Questions in Exercises

UNIT 1

- **1.11** 106.57 u
- **1.13** 143.1 pm
- **1.15** 8.97 g cm⁻³
- **1.16** Ni²⁺ = 96% and Ni³⁺ = 4%
- **1.24** (i) 354 pm (ii) 2.26×10²² unit cells
- 1.25 6.02×10^{18} cation vacancies mol⁻¹

UNIT 2

2.4	16.23 M	2.5	0.617 m, 0.01 and 0.99, 0.67
2.6	157.8 mL	2.7	33.5%
2.8	17.95 m and 9.10 M	2.9	1.5×10 ⁻³ %, 1.25×10 ⁻⁴ m
2.15	$40.907 \text{ g mol}^{-1}$	2.16	73.58 kPa
2.17	12.08 <i>k</i> Pa	2.18	10 g
2.19	23 g mol ⁻¹ , 3.53 kPa	2.20	269.07 K
2.21	A = 25.58 u and B = 42.64 u	2.22	0.061 M
2.24	KCl, CH ₃ OH, CH ₃ CN, Cyclohexane		
2.25	Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol		
2.26	5 m	2.27	$2.45 \times 10^{-8} \mathrm{M}$
2.28	1.424%	2.29	3.2 g of water
2.30	4.575 g	2.32	0.65 ⁰
2.33	$i = 1.0753, K_a = 3.07 \times 10^{-3}$	2.34	17.44 mm Hg
2.35	178×10 ⁻⁵	2.36	280.7 torr, 32 torr
2.38	0.6 and 0.4	2.39	$x(O_2)$ 4.6x10 ⁻⁵ , $x(N_2)$ 9.22×10 ⁻⁵
2.40	0.03 mol of CaCl ₂	2.41	5.27×10^{-3} atm.

UNIT 3

3.4 (i) $E^{\odot} = 0.34$ V, $\Delta_r G^{\odot} = -196.86$ kJ mol⁻¹, $K = 3.124 \times 10^{34}$ (ii) $E^{\odot} = 0.03$ V, $\Delta_r G^{\odot} = -2.895$ kJ mol⁻¹, K = 3.2**3.5** (i) 2.68 V, (ii) 0.53 V, (iii) 0.08 V, (iv) -1.298 V 1.56 V 3.6 $124.0 \text{ S cm}^2 \text{ mol}^{-1}$ 3.8 $0.219 \ cm^{-1}$ 3.9 1.85×10^{-5} 3.11 3.12 3F, 2F, 5F 3.13 1F, 4.44F 2F, 1F 3.14 3.15 1.8258g 14.40 min, Copper 0.427g, Zinc 0.437 g 3.16

281 Answers...

ec

UNIT 4

4.2	(i) 8.0×10^{-9} mol L ⁻¹ s ⁻¹ ; 3.89×10^{-9} mol	$L^{-1} s^{-1}$
4.4	$bar^{-1/2}s^{-1}$	
4.6	(i) 4 times	(ii) ¼ times
4.8	(i) 4.67 × 10^{-3} mol $L^{-1}s^{-1}$	(ii) $1.98 \times 10^{-2} \text{ s}^{-1}$
4.9	(i) rate = $k[A][B]^2$	(ii) 9 times
4.10	Orders with respect to A is 1.5 and order	er with respect to B is zero.
4.11	rate law = $k[A][B]^2$; rate constant = 6.0 1	$M^{-2}min^{-1}$
4.13	(i) 3.47 x 10^{-3} seconds	(ii) 0.35 minutes (iii) 0.173 years
4.14	1845 years	4.16 4.6×10^{-2} s
4.17	0.7814 µg and 0.227 µg.	4.19 77.7 minutes
4.20	$2.20 \times 10^{-3} \text{ s}^{-1}$	4.21 2.23 × 10 ⁻³ s ⁻¹ , 7.8 ×10 ⁻⁴ atm s ⁻¹
4.23	$3.9 \times 10^{12} \text{ s}^{-1}$	4.24 0.135 M
4.25	0.158 M	4.26 232.79 kJ mol ⁻¹
4.27	239.339 kJ mol ⁻¹	4.28 24°C
4.29	$E_a = 76.750 \text{ kJ mol}^{-1}, \ k = 0.9965 \times 10^{-2}$	s ⁻¹

4.30 52.8 kJ mol⁻¹

UNIT 6

- **6.1** Zinc is highly reactive metal, it may not be possible to replace it from a solution of $ZnSO_4$ so easily.
- 6.2 It prevents one of the components from forming the froth by complexation.
- **6.3** The Gibbs energies of formation of most sulphides are greater than that for CS_2 . In fact, CS_2 is an endothermic compound. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
- 6.5 CO
- **6.6** Selenium, tellurium, silver, gold are the metals present in anode mud. This is because these are less reactive than copper.
- **6.9** Silica removes Fe_2O_3 remaining in the matte by forming silicate, $FeSiO_3$.
- **6.15** Cast iron is made from pig iron by melting pig iron with scrap iron and coke. It has slightly lower carbon content (* 3%) than pig iron (* 4% C)
- **6.17** To remove basic impurities, like Fe_2O_3
- **6.18** To lower the melting point of the mixture.
- 6.20 The reduction may require very high temperature if CO is used as a reducing agent in this case.

6.21 Yes,
$$2\text{Al} + \frac{3}{2}\text{O}_2 \rightarrow \text{Al}_2\text{O}_3 \quad \Delta_r\text{G}^{\ominus} = -827 \text{ kJ mol}^{-1}$$

$$2Cr + \frac{3}{2}O_2 \rightarrow Cr_2O_3 \qquad \Delta_r G^{\ominus} = -540 \text{ kJ mol}^{-1}$$

Hence
$$Cr_2O_3 + 2AI \rightarrow Al_2O_3 + 2Cr - 827 - (-540) = -287 \text{ kJ mol}^{-1}$$

- **6.22** Carbon is better reducing agent.
- **6.25** Graphite rods act as anode and get burnt away as CO and CO_2 during the process of electrolysis.
- 6.28 Above 1600K Al can reduce MgO.

Chemistry 282

UNIT 7

7.10	Becau	use of in	ability of	nitroge	n to expa	and its o	covalency	beyond	14.			
7.20	Freons											
7.22	It dissolves in rain water and produces acid rain.											
7.23	Due te	Due to strong tendency to accept electrons, halogens act as strong oxidising agent.										
7.24	Due te	o high e	lectrone	gativity a	and sma	ll size, i	it cannot	act as o	central a	tom in hig	gher oxoac	eids.
7.25	Nitrog	gen has s	smaller s	size thar	n chlorin	e. Small	ler size fa	vours l	nydrogen	bonding.		
7.30	Synth entha	esis of C lpies.	0 ₂ PtF ₆ ins	spired B	artlett to	prepare	e XePtF ₆ a	as Xe ar	nd oxyger	n have nea	arly same i	onisation
7.31	(i)	+3	(ii)	+3	(iii)	-3	(iv)	+5	(v)	+5		
7.34	ClF, Y	es.										
7.36	(i) I ₂ <	$F_2 < Br$	$c_2 < Cl_2$									
	(ii) HF	< HCl <	< HBr < I	HI								
	(iii) Bił	$H_3 \leq SbH$	$I_3 < AsH_3$	< PH ₃ <	H_3							
7.37	(ii) Nel	F_2										
7.38	(i) Xel	\mathbb{F}_4										
	(ii) Xel	F_2										
	(iii) Xe	0 ₃										

UNIT 8

- **8.2** It is because Mn^{2+} has $3d^5$ configuration which has extra stability.
- **8.5** Stable oxidation states.

 $3d^{3}$ (Vanadium): (+2), +3, +4, and +5 $3d^{5}$ (Chromium): +3, +4, +6 $3d^{5}$ (Manganese): +2, +4, +6, +7 $3d^{8}$ (Nickel): +2, +3 (in complexes)

 $3d^4$ There is no d^4 configuration in the ground state.

```
8.6 Vanadate VO_3^-, chromate CrO_4^{2-}, permanganate MnO_4^-
```

```
8.10 +3 is the common oxidation state of the lanthanoids
```

```
In addition to +3, oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
```

- **8.13** In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as +2, +3, +4, +5, +6, +7. In the nontransition elements the variation is selective, always differing by 2, e.g. +2, +4, or +3, +5 or +4, +6 etc.
- **8.18** Except Sc^{3+} , all others will be coloured in aqueous solution because of incompletely filled 3d-orbitals, will give rise to d-d transitions.
- 8.21 (i) Cr^{2+} is reducing as it involves change from d^4 to d^3 , the latter is more stable configuration (t_{2g}^3) Mn(III) to Mn(II) is from $3d^4$ to $3d^5$ again $3d^5$ is an extra stable configuration.

 - (ii) Due to CFSE, which more than compensates the $3^{\rm rd}$ IE.
 - (iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .
- **8.23** Copper, because with +1 oxidation state an extra stable configuration, $3d^{10}$ results.
- **8.24** Unpaired electrons $Mn^{3+} = 4$, $Cr^{3+} = 3$, $V^{3+} = 2$, $Ti^{3+} = 1$. Most stable Cr^{3+}
- 8.28 Second part 59, 95, 102.
- **8.30** Lawrencium, 103, +3

283 Answers...

8.36 $Ti^{2+} = 2, V^{2+} = 3, Cr^{3+} = 3, Mn^{2+} = 5, Fe^{2+} = 6, Fe^{3+} = 5, CO^{2+} = 7, Ni^{2+} = 8, Cu^{2+} = 9$

8.38 $M\sqrt{n(n+2)} = 2.2, n \approx 1, d^2 \text{ sp}^3, \text{ CN}^- \text{ strong ligand}$

= 5.3, n \approx 4, sp³, d^2 , H₂O weak ligand

= 5.9, $n \approx 5$, sp^3 , Cl^- weak ligand.

UNIT 9

9.5	(i) + 3	(ii) +3	(iii) +2	(iv) +3 (v) +3	
9.6	(i) [Zn(OH) ₄] ²⁻	(ii) K ₂ [PdCl ₄]	(iii) [Pt(NH ₃) ₂ Cl ₂] (iv) $K_2[Ni(CN)_4]$	
	(v) [Co(NH ₃) ₅ (ONO)] ²⁺	(vi) $[Co(NH_3)_6]_2(SO_4)_3$	(vii) $K_3[Cr(C_2O_4)_3]$] (viii) [Pt(NH ₃) ₆] ⁴⁺	
	(ix) [CuBr ₄] ²⁻	(x) $[Co(NH_3)_5(NO_2)]^{2+}$			
9.9	(i) [Cr(C ₂ O ₄) ₃] ^{3" -} Nil				
	(ii) [Co(NH ₃) ₃ Cl ₃] ⁻ Two	o (fac- and mer-)			
9.12	Three (two <i>cis</i> and on	e trans)			
9.13	Aqueous $CuSO_4$ solution	tion exists as $[Cu(H_2O)]$	$_{4}]SO_{4}$ which has blu	are colour due to $[Cu(H_2O)_4]^{2+}$ ion	ıs.
	(i) When KF is added which is a green p	, the weak H ₂ O ligands recipitate.	are replaced by F	ligands, forming $[CuF_4]^{2^n}$ ions	
	$[Cu(H_2O)_4]^{2+} + 4F^-$	$\rightarrow [CuF_4]^{2-} + 4H_2O$			
	(ii) When KCl is addee bright green colou:	d, Cl ⁻ ligands replace th r.	ne weak H ₂ O ligand	s forming $[CuCl_4]^{2-}$ ions which	has
	$[Cu(H_2O)_4]^{2+} + 4Cl^{-}$	\rightarrow [CuCl ₄] ²⁻ + 4H ₂ O			
9.14	$[Cu(H_2O)_4]^{2+} + 4 CI$	$N^- \rightarrow [Cu(CN)_4]^{2-} + 4H_2$	0		
	As CN is a strong Cu ²⁺ ions are not a	ligand, it forms a high available to form the pr	nly stable complex recipitate of CuS.	with Cu^{2+} ion. On passing H_2S ,	free
9.23	(i) $OS = +3$, $CN = 6$, $CN = 10$	d-orbital occupation is	$t_{2g}^{6} e_{g}^{0}$,		
	(ii) OS = +3, CN = 6, c	$d^{3}(t_{2g}^{3}),$			
	(iii) $OS = +2$, $CN = 4$, $CN = 4$	d^{7} ($t_{2g}^{5} e_{g}^{2}$),			
	(iv) $OS = +2$, $CN = 6$, $CN = 6$	$d^5 (t_{2g}^{3} e_{g}^{2}).$			
9.28	(iii)				
9.29	(ii)				
9.30	(iii)				
9.31	(iii)				
9.32	(i) The order of the lig	gand in the spectroche	mical series :		
	$\rm H_{2}O < \rm NH_{3} < \rm NO_{2}^{-}$				
	Hence the energy	of the observed light wi	ill be in the order :		
	$[Ni(H_2O)_6]^{2+} < [Ni(N_2O)_6]^{2+}$	$[\mathrm{H}_{3})_{6}]^{2^{+}} < [\mathrm{Ni}(\mathrm{NO}_{2})_{6}]^{4^{-}}$			
	Thus, wavelengths	s absorbed (E = hc/λ) w	rill be in the opposit	e order.	

Chemistry 284

INDEX

Terms	Page No.	Terms	Page No.
Absorption	124	Collision frequency	117
Actinoid contraction	238	Collision theory of chemical reactions	s 117
Actinoids	215, 238	Column chromatography	166
Activated complex	114	Concentration of ores	158, 154
Activators	134	Concentration of solutions	36
Activation energy	114	Conductivity	75, 80
Adsorption	124	Conductors	26
Adsorption isotherm	127	Coordination compounds	244
Allotropic forms	180, 192	Coordination entity	247, 249
Ambidentate ligand	247	Coordination isomerism	251
Amorphous solids	2	Coordination number	14
Anisotropic	3	Coordination polyhedron	241
Anomalous behaviour of oxyg	en 187	Coordination theory	244
Antiferromagnetism	30	Copper matte	156, 161
Aqua regia	204	Corrosion	91
Arrhenius equation	113, 115	Cryoscopic constant	53
Atomic radii	171, 186, 198, 209	Crystal defects	24
Average rate	97	Crystal field splitting	257, 258
Avogadro constant	22	Crystal field theory	257
Azeotrope	48, 49	Crystal lattice	9
Batteries	88	Crystalline solids	2, 3, 4
Binary solutions	35, 43, 46	Dalton's law	44
Biochemical catalysis	133	Daniell cell	66
Black phosphorus	181	Denticity	247
Blast furnace	159, 160, 161	Dependence of rate on concentration	100
Blister copper	162	Depressants	154
Body-centred unit	9, 13	Dialyser	140
Bohr magneton	29, 228	Dialysis	140
Bonding in metal carbonyls	261	Diamagnetism	30, 227
Bravais lattices	10	Didentate	247
Bredig's arc	139	Diode	29
Brown ring test	180	Dislocation defect	25
Brownian movement	142	Dispersed phase	136, 137
Calcination	155, 159	Dispersion medium	136, 137
Cast iron	160, 161	Dissociation constant	263
Catalyst	116, 130	Distillation	164
Cell potential	68	Ebullioscopic constant	51
Chelate	247	Electrical conductance	76
Chemical kinetics	95	Electro dialysis	140
Chemisorption	125	Electrochemical cells	66
Chiral	252	Electrochemistry	65
Chromatographic methods	165	Electrode potential 68	3, 224, 227
Cis - isomer	252	Electrolytes	81
Classification of colloids	136	Electrolytic cell	85
Close-packed structures	14	Electrolytic refining	164
Coagulation	144	Electromotive force	68
Colligative properties	49, 58	Electron hole	28

285 Index

Terms	Page No.	Terms
Electron vacancy	28	Inhibi
Electronegativity	172, 187, 199	Inner
Electronic configuration	216	Instab
Electronic defect	28	Instan
Electroosmosis	144	Insula
Ellingham diagram	157, 158	Inter 1
Emulsions	137, 145	Inters
Enantiomers	252	Inters
End-centred unit	9	Intrins
Enthalpy	126	Ionic
Enzyme catalysis	133, 134	Ionic
Equilibrium constant	73	Ionic
f block elements	234	Ionisa
Face centred unit	9,13	Ionisa
Facial isomer	252	Isolati
Faraday's law	85	Isome
Ferrimagnetism	30	Isoton
Ferromagnetism	30, 228	Kineti
First order reaction	106, 111	Kohlra
Froth floatation	154	Kraft
Fractional distillation	174	Lanth
Frenkel defect	24, 25	Lanth
Frequency factor	113	Le Ch
Freundlich isotherm	127	Leachi
Fuel cells	90	Lewis
Galvanic cell	66, 67, 90	Ligano
Gangue	153	Ligand
Gels	137	Line d
Geometric isomerism	251	Linkag
Giant molecules	5	Liquat
Gibbs energy	67, 74, 117	Long 1
Haber's process	131	Lyoph
Half-life	110	Lyoph
Hall heroult process	163	Magne
Halogens	197	Meridi
Henry's law	41	Metal
Heterogeneous catalysis	130	Metal
Heteroleptic complex	248	Metall
Holme's signals	182	Metall
Homogeneous catalysis	130	Micell
Homoleptic complex	248	Minera
Hybridisation	255	Misch
Hydrate isomerism	254	Molal
Hydration enthalpy	224	Molali
Hydraulic washing	153	Molar
Hydro metallurgy	163	Molari
Hydrogen bonded molecular solids	5	Mole
Ideal solution	47	Molect
Impurity defect	25	Mond

Terms	Page No.
Inhibitors	134
Inner transition metals	234
Instability constant	263
Instantaneous rate of a rea	ction 98, 99
Insulators	27
Inter molecular forces	2
Interstitial compounds	230
Interstitial defect	200
Interstitian delect	20
Intrinsic semiconductors	21
Ionie rodii	171 196 109
	171, 100, 190
	171 107 100 000
ionisation enthalpy	171, 187, 198, 209
Ionisation isomerism	253
Isolation of elements	149
Isomerism	251
Isotonic solution	56
Kinetic energy	115
Kohlrausch law	83, 84
Kraft temperature	138
Lanthanide contraction	219
Lanthanoids	215
Le Chateliers principle	40, 43
Leaching	154
Lewis acids	247
Ligand field theory	254
Ligands	247
Line defects	24
Linkage isomerism	253
Liquation	164
Long range order	2
Lyophilic colloids	137
Lyophobic colloids	137
Magnetic separation	153
Meridional isomer	252
Metal carbonyls	261
Metal excess defect	26
Metallic solids	20
Metallurgy	153 156
Misselles	100, 100
Minerolo	150
Winchars	102
Mischilletall	237
Molal elevation constant	51
Molality	39
Molar conductivity	81
Molarity	38, 55
Mole traction	37, 50
Molecularity of a reaction	103
Mond process	165

Chemistry 286

Terms	Page No.	Terms
Monoclinic sulphur	192	Secondary b
Mononuclear coordination compounds	249	Secondary va
Nernst equation	72.73	Semi conduc
Noble gases	208	Semipermeal
Non-ideal solution	47	Shape-select
Non-polar molecular solids	4	Short range
Octahedral voids	17.19	Smoke scree
Optical isomerism	252	Solid state
Order of a reaction	102	Sols
Ores	152	Solubility
Osmotic pressure	54	Solvate isom
Ostwald's process	131	Stereo isome
Oxidation number	248	Stoichiometr
Oxidation state	199	Strong field
Oxides of nitrogen	177	Structural is
Oxoacids of halogens	205	Super cooled
Oxoacids of phosphorus	184, 185	Surface cher
Oxoacids of sulphur	194	Temperature
Ozone	191	Tetrahedral
Packing efficiency	20	Tetrahedral
Paper chromatography	166	Thermodyna
Paramagnetism	29 227	Trans isome
n-block elements	170	Transition n
Pentization	140	Tyndall cone
Physisorption	125	Tyndall effec
Pig iron	161	Illtrafiltratio
Point defects	24	Unidentate
Polar molecular solids	5	Unit cells
Polydentate	247	Units of rate
Primary battery	88	Units of rate
Primary valence	244	Vacancy defe
Pseudo first order reaction	112	Valence bon
Pseudo solids	3	Van arkel m
Purification of metal	153	Vanour nhas
Pyrometallurgy	162	Vapour price
Racult's law	43.46	Voltaic cell
Rate law	100,101	Weak field li
Reaction rate constant	100, 101	Werner's the
Redox couples	67	Wheatstone
Red phosphorus	181	White phose
Reverberatory furnace	156	Wrought iro
Reverse osmosis	57	Zeolites
Rhombic sulphur	109	Zero order I
Posting	192	Zeto notorti
Sobottlar defect	100, 109	Zeta potenti
Schottky defect	24, 25	Zone refinir

Terms	Page No.
Secondary battery	89
Secondary valence	244, 245
Semi conductors	27
Semipermeable membrane	55
Shape-selective catalysis	132
Short range order	2
Smoke screens	182
Solid state	2
Sols	137
Solubility	39
Solvate isomerism	254
Stereo isomerism	254
Stoichiometric defect	24
Strong field ligands	258
Structural isomerism	251
Super cooled liquids	3
Surface chemistry	123
Temperature dependence of rate	113
Tetrahedral permanganate	226
Cetrahedral voids	16.18
Thermodynamics	156
Trans isomer	251
Transition metals	215
Vndall cone	141
Vndall effect	141
Iltrafiltration	140
Jnidentate	247
Unit cells	7.9
Jnits of rate constant	103
Units of rate of a reaction	97
Vacancy defect	25
Valence bond theory	254.257
Van arkel method	165
Vapour phase refining	165
Vapour pressure	43, 46
Voltaic cell	66
Veak field ligands	254
Werner's theory	244
Wheatstone bridge	75. 78
White phosphorus	181
Wrought iron	161, 167
Zeolites	132 133
Zero order Reaction	105, 111
Zeta potential	143
Zone refining	165
	100

287 Index

Notes