

DEMO DEMO

FINAL REPORT

Accession ID: 2566646155

Name: DEMO DEMO
Date of Birth: 03-06-1980
Biological Sex: Female
Age: 45
Height:
Weight:
Fasting:

Telephone: 000-000-0000
Street Address:
Email:

Provider Information

Practice Name: DEMO CLIENT, MD
Provider Name: DEMO CLIENT, MD
Phlebotomist: 0
Telephone: 000-000-0000
Address: 3521 Leonard Ct, Santa Clara, CA 95054

Report Information

📍 Current Result ⓘ Previous Result 🟢 In Control 🟠 Moderate 🟥 Risk

Specimen Information

Sample Type	Collection Time	Received Time	Report	Final Report Date
Stool	2025-07-07 07:00 (UTC)	2025-07-08 19:40 (UTC)	Gut Zoomer - P2	2025-07-21 21:12 (UTC)
Unpreserved Stool	2025-07-07 07:00 (UTC)	2025-07-08 19:40 (UTC)	Gut Zoomer - P2	2025-07-21 21:12 (UTC)

3521 Leonard Ct, Santa Clara, CA 95054
1-866-364-0963 | support@vibrant-america.com | www.vibrant-america.com

TNP Test not performed

R&L Refer to risks and limitations at the end of report

Notes Refer to Lab notes at the end of the table

INTRODUCTION

Vibrant Wellness is pleased to present to you 'Gut Zoomer' testing to help you make healthy lifestyle choices in consultation with your healthcare provider. It is intended to be used as a tool to encourage general healthy lifestyle choices.

Gut Zoomer is a health analytics tool based on the gut microbiome which provides potential risks for intestinal permeability, cardiovascular, metabolic, neurological, intestinal, autoimmune, liver, hormonal, and nutritional health conditions. Additionally, it has panels for detection of gut pathogens and digestive markers. It is intended to be used to improve functions associated with a general state of health, and where it is well understood as well as accepted that healthy lifestyle choices may play an important role in these health outcomes.

Methodology:

Gut Zoomer is split into 6 sections: Gut Pathogens, Gut Commensal, Digestion and Immune Balance, Gut Inflammatory, Gut Antibodies, and Gut Metabolites. Gut Pathogens uses real-time PCR Assay designed for semi-quantitative and qualitative detection of group-specific DNA in clinical stool samples. Gut Commensal uses deep metagenomic PCR to semi-quantitatively assess the presence of key commensal bacterial populations, providing resolution from phylum down to species level to support comprehensive gut microbiome profiling. Digestion and Immune Balance panel and Gut Inflammatory markers are a quantitative assay that detects calprotectin, anti-gliadin, eosinophil protein X, lactoferrin, zonulin, lysozyme, MMP 9, pancreatic elastase 1, S100A12, and sIgA levels with Sandwich ELISA Enzyme-Linked ImmunoSorbent Assay methodology. ELISA (enzyme-linked immunosorbent assay) methodology is used for detecting β -glucuronidase, pH, and fecal immunochemical test (FIT). Gut Antibodies panel utilizes a multiplexed microarray chip technology to provide accurate quantitative analysis of gut-related antibody markers. Tandem mass spectrometry methodology (LC-MS/MS) is used for detecting Gut Metabolites like fatty acids markers and bile acid markers and dietary fiber detection. Colorimetric assay methodology is used for detecting fat malabsorption like fecal fat, fecal triglycerides, and total phospholipids.

Interpretation of Report:

The following terminologies are used consistently in the report and are explained below.

Gut Diversity is an indicator for the amount of individual bacteria from each of the bacterial species present in your gut microbiome. There are two indices calculated including Shannon's Index (scale 0-3) and Simpson's Index (scale 0-1). For both calculations, higher index value represents increased diversity of species. While Shannon's is a better indicator of "richness" of the diversity, Simpson's is a better indicator of "evenness." The calculated Index values are surrounded with a risk indicator (green – high diversity, yellow – moderate diversity, and red – low diversity).

Gut Phyla distribution is displayed in a pie chart with each pie representing the % of individual phyla tested.

Key Ratios are calculated and displayed comprising of F/B (Firmicutes to Bacteroidetes ratio) and P/B (Prevotella to Bacteroides ratio), along with the corresponding risk indicator.

Gut Commensal bacteria is represented using relative abundance values. Relative abundance is the percent composition of an organism of a particular kind relative to the total number of organisms in your gut microbiome. The abundance of individual bacterial phylum/family/genus/species is calculated by comparing the relative abundance to the healthy reference range. Reference ranges have been established using results from 200 healthy individuals. The abundance is always mentioned in the report along with the potential associated risks; however, it is applicable only when indicated in RED. Associated probiotic tests are displayed in each panel with suggestions based on potential associated risks.

Gut Pathogens comprising of pathogenic bacteria, parasites, virus, and fungi are indicated as DETECTED or NOT DETECTED along with the levels in respective units. Worm and antibiotic resistance gene testing are displayed as DETECTED or NOT DETECTED based on the test result.

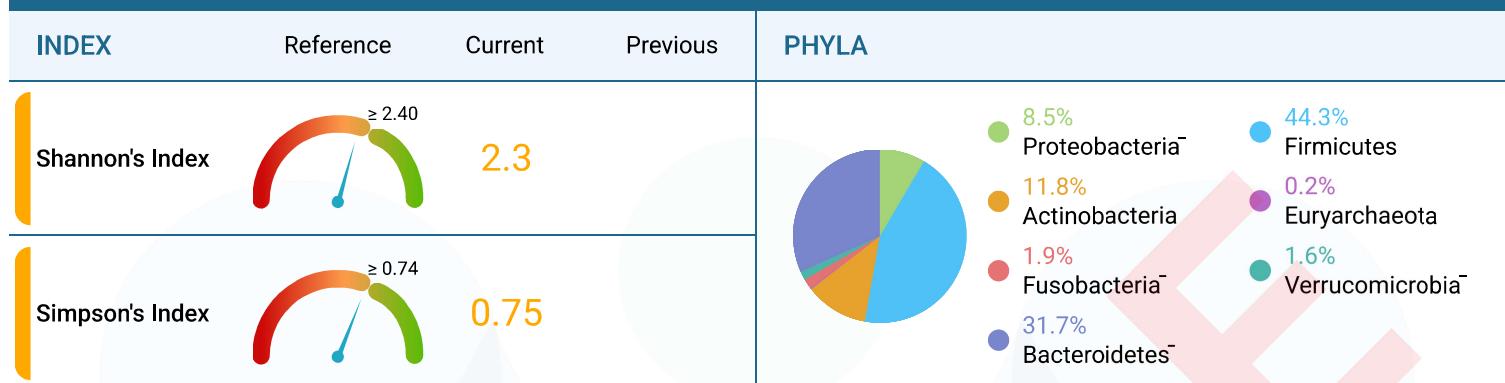
Digestion and Immune Balance, Gut Inflammatory, Gut Antibodies, and Gut Metabolites markers are displayed along with a risk indicator and the corresponding reference range for each test calculated using results from 200 healthy individuals. All test results are displayed with risk indicator and abundance direction as applicable. (red – high risk, yellow – moderate risk and green – low risk).

Vibrant Wellness is a personalized health analytics company founded out of our passion to serve patients and providers. The Vibrant Wellness platform provides tools for you to track and analyze your general wellness profile. All testing offered by Vibrant Wellness is performed by Vibrant America, a CLIA certified lab CLIA#:05D2078809 and Vibrant Genomics, a CLIA certified lab CLIA#: 05D2098445. Vibrant Wellness provides and makes available this report and any related services pursuant to the Terms of Use Agreement (the "Terms") on its website at www.vibrant-wellness.com. By accessing, browsing, or otherwise using the report or website or any services, you acknowledge that you have read, understood, and agree to be bound by these terms. If you do not agree to these terms, you shall not access, browse, or use the report or website. The statements in this report have not been evaluated by the Food and Drug Administration and are only meant to be lifestyle choices for potential risk mitigation. Please consult your healthcare provider for medication, treatment, or lifestyle management. This product is not intended to diagnose, treat, or cure any disease.

INTRODUCTION

Vibrant Wellness is pleased to present to you 'Gut Zoomer' testing to help you make healthy lifestyle choices in consultation with your healthcare provider. It is intended to be used as a tool to encourage general healthy lifestyle choices.

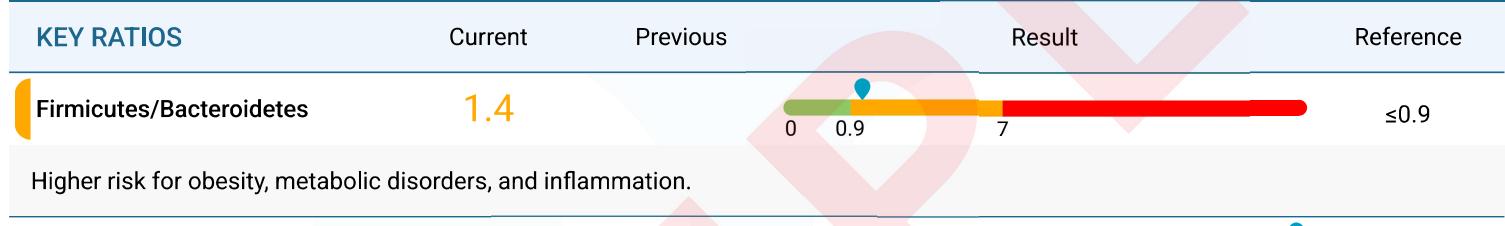
Gut Zoomer is a health analytics tool based on the gut microbiome which provides potential risks for intestinal permeability, cardiovascular, metabolic, neurological, intestinal, autoimmune, liver, hormonal, and nutritional health conditions. Additionally, it has panels for detection of gut pathogens and digestive markers. It is intended to be used to improve functions associated with a general state of health, and where it is well understood as well as accepted that healthy lifestyle choices may play an important role in these health outcomes.


Interpretation of Report:

Comments provided by Vibrant Wellness are for educational purposes only and are not intended to be used as or substituted for medical advice. We do not treat or cure medical conditions. Vibrant Wellness does not replace the care of a medical practitioner or counselor and does not recommend self-diagnosis or self-medication. Depending on the nature of your testing, if you receive a high risk or moderate risk result, confirmatory testing may be recommended, and you will be encouraged to seek medical attention for additional follow up. Vibrant Wellness shall not be liable to you or anyone else for loss or injury caused in whole or part by procuring, compiling, interpreting, delivering, or reporting information through this report. Also, in no event shall Vibrant Wellness be held liable to you or anyone else for any decisions made or action taken or not taken by you in reliance on such information.

Please note:

Consider all supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. It is important that you discuss any modifications to your diet, exercise, and nutritional supplementation with your healthcare provider before making any changes. Pediatric ranges have not been established for these tests.


Gut Diversity

NOTE

Shannon's Index: Higher values indicate richness.

Simpson's Index: Higher values indicate evenness.

Gut Commensals

Reference Range: In Control: <2 Moderate: 2-3.9 Risk: >3.9

Risk Category	Current	Previous	Risk Score	Risk Association
Intestinal Permeability	5.9			Impaired intestinal barrier, Low butyrate production, Low propionate production, Low acetate production
GENUS/SPECIES IMBALANCE				
Enterobacteriaceae, Faecalibacterium prausnitzii, Eubacterium rectale, Bacteroides, Veillonella, Bacteroidales				
Intestinal Gas	>6			Elevated hydrogen production, Elevated carbon dioxide production, Elevated hydrogen sulfide production

GENUS/SPECIES IMBALANCE

Coprococcus, Dorea, Desulfovibrio piger, Methanobrevibacter smithii, Fusobacterium

SIBO	3.1		SIBO syndrome
GENUS/SPECIES IMBALANCE			
Escherichia coli			
Irritable Bowel Syndrome	4.1		Irritable bowel syndrome
GENUS/SPECIES IMBALANCE			
Bifidobacterium catenulatum, Dorea, Enterobacteriaceae			

Gut Commensals				
Risk Category	Current	Previous	Risk Score	Risk Association
Inflammatory Bowel Disease	5.2			Crohn's disease, Ulcerative colitis
GENUS/SPECIES IMBALANCE				
Faecalibacterium prausnitzii, Fusobacterium, Escherichia coli, Eubacterium rectale				
Autoimmune Health	3.1			Celiac disease, Inflammation, Allergy
GENUS/SPECIES IMBALANCE				
Enterobacteriaceae, Clostridia clusters IV				
Metabolic Health	>6			Glucose dysregulation and obesity, Altered bile acid metabolism, Poor biosynthesis of GLP-1
GENUS/SPECIES IMBALANCE				
Eggerthella lenta, Escherichia coli, Bacteroides, Eubacterium, Faecalibacterium prausnitzii				
Liver Health	>6			Alcohol-related liver cirrhosis, Alcoholic hepatitis, Primary sclerosing cholangitis
GENUS/SPECIES IMBALANCE				
Enterobacteriaceae, Escherichia coli, Lachnospiraceae, Faecalibacterium prausnitzii, Fusobacterium				
Hormones	1.3			
GENUS/SPECIES IMBALANCE				
Nutrition	6.0			Poor vitamin synthesis, Poor tryptophan metabolism
GENUS/SPECIES IMBALANCE				
Bacteroides, Faecalibacterium prausnitzii				
Cardiovascular Health	3.2			Cardiovascular risk
GENUS/SPECIES IMBALANCE				
Escherichia coli, Faecalibacterium prausnitzii				
Neurological Health	4.0			Parkinson's disease, Autism, Poor biosynthesis of neurotransmitters
GENUS/SPECIES IMBALANCE				
Enterobacteriaceae, Veillonellaceae, Eubacterium				
Probiotic Health	3.0			Low probiotic diversity
GENUS/SPECIES IMBALANCE				
Streptococcus thermophilus				
Keystone Health	3.1			Reduced keystone species
GENUS/SPECIES IMBALANCE				
Eubacterium				

Gut Commensals

Supplement Suggestions

PROBIOTICS

Intestinal Permeability: Lactobacillus acidophilus, Lactobacillus plantarum, Bifidobacterium infantis, E. coli Nissle 1917, Bifidobacterium animalis lactis BB-12

Inflammatory Bowel Disease: Butyrate

SUPPLEMENTS

Intestinal Permeability: Vitamin D, Inulin, Vitamin A, Glutamine, Curcumin, Zinc, Cocoa, L-arginine, Epigallocatechin 3-gallate, Quercetin, Tributyrin, Inulin-propionate ester

Irritable Bowel Syndrome: Vitamin D, Psyllium husk, Peppermint oil

Inflammatory Bowel Disease: Vitamin D, Milk thistle, Phosphatidylcholine

Autoimmune Health: Vitamin D, Vitamin E

Metabolic Health: Vitamin D, Folate, Glutamine, Calcium, Cocoa, Green tea extract

Liver Health: Milk thistle, Artichoke extract

Nutrition: Folate

Cardiovascular Health: Vitamin D, Folate, Green tea extract

Neurological Health: Vitamin D, Vitamin A, Curcumin, Omega-3 fatty acids, Glutamine, N-acetyl-cysteine

SUPPORTIVE SUPPLEMENTS

Intestinal Permeability: Resistant starch

Inflammatory Bowel Disease: Folate, Phosphatidylcholine

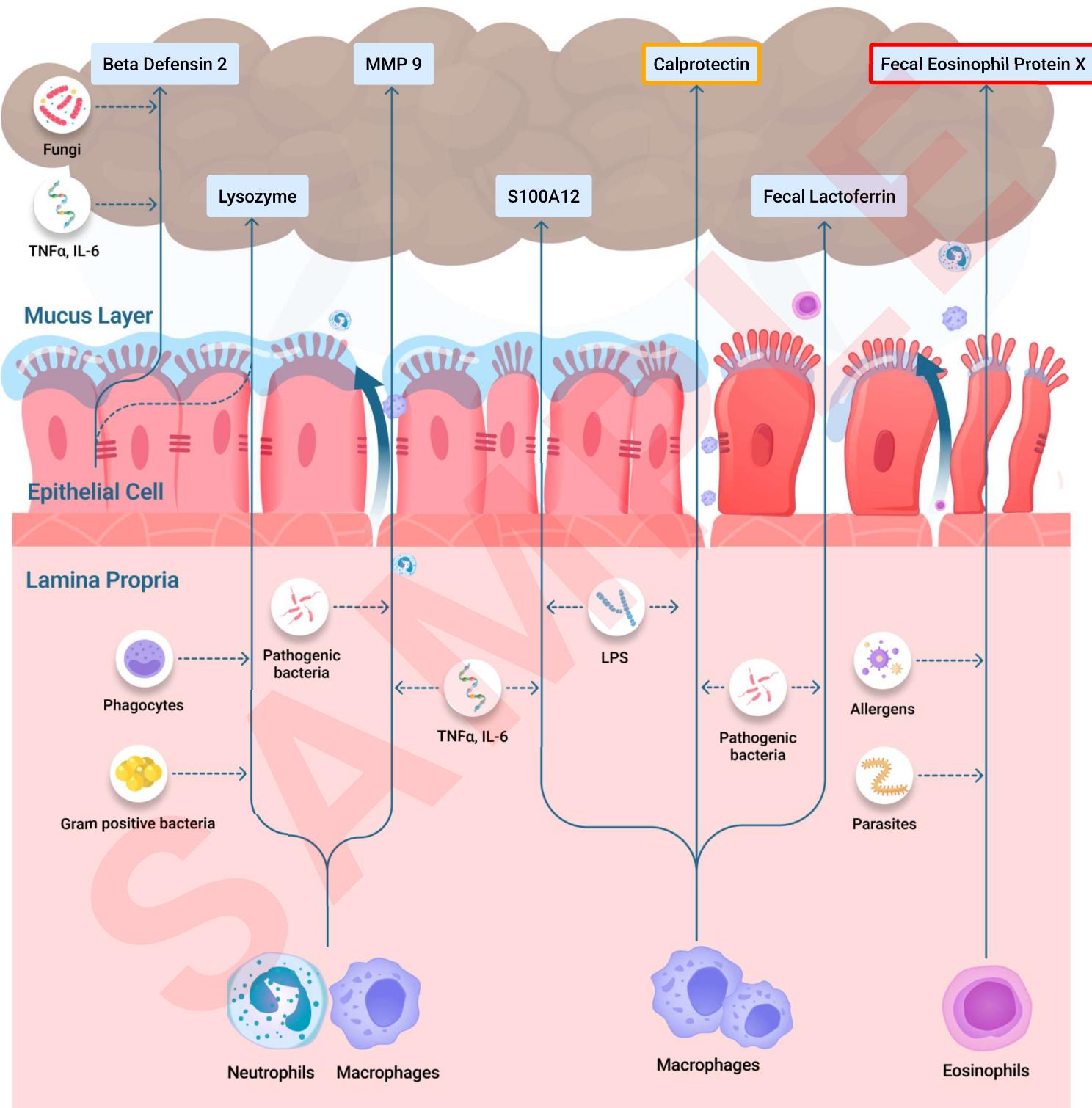
Autoimmune Health: Vitamin A, Zinc

Metabolic Health: Inulin, Fructooligosaccharides, Galactooligosaccharides

Liver Health: Vitamin D, Milk thistle, Artichoke extract, Curcumin

Cardiovascular Health: Protocatechuic acid

Neurological Health: Berberine, 5-HTP


Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

GUT PATHOGENS

No markers are outside the normal reference range

Gut Inflammation

Gut Lumen

GUT INFLAMMATORY MARKERS

Test Name	Current	Previous	Result	Reference
Calprotectin (mcg/g)	59.2			≤50.0
Calprotectin, a protein released by neutrophils, is a hallmark of inflammation in the gastrointestinal tract. Elevated calprotectin levels indicate active disease and immune cell infiltration, which can result in tissue damage and disrupted gut function. Symptoms may include abdominal pain and loose stools. The presence of elevated calprotectin in stool serves as a marker of neutrophil activity and gastrointestinal inflammation. This makes it a valuable biomarker for conditions such as inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, and for distinguishing these conditions from irritable bowel syndrome (IBS), which typically does not involve significant inflammation.	8.4			≤4.8

Eosinophil Protein X (EPX) is a water-soluble protein produced by eosinophils and reflects their activity in the gastrointestinal tract. Elevated levels of EPX may result from food allergies, parasitic infections, or inflammatory conditions. High EPX levels signify active tissue damage and inflammation associated with eosinophilic activity. Prolonged elevation of EPX is commonly associated with symptoms such as bloating and abdominal pain and is indicative of conditions such as inflammatory bowel disease (IBD).

Supplement Suggestions

SUPPLEMENTS

Calprotectin: Phosphatidylcholine

Fecal Eosinophil Protein X: Lactoferrin

Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

DIGESTION AND IMMUNE BALANCE

Test Name	Current	Previous	Result	Reference
SIgA (mcg/g)	234.7			426.0-1450.0

Secretory IgA (SIgA) is an antibody that plays a critical role in mucosal immunity, protecting epithelial barriers by neutralizing pathogens and modulating the intestinal microbiota. SIgA is secreted by plasma cells in the lamina propria and transported across the gut epithelium. Low SIgA levels reflect compromised mucosal immunity, potentially leaving the gut epithelial barrier more vulnerable to pathogens. This deficiency is often linked to chronic stress, malnutrition, or underlying immunodeficiency conditions. Insufficient SIgA production can result in increased susceptibility to infections, digestive disturbances, and food intolerances. Associated symptoms may include bloating, diarrhea, and recurrent infections. Monitoring SIgA levels is crucial for identifying weakened immune function and addressing the underlying factors to restore intestinal homeostasis and enhance mucosal defense.

Supplement Suggestions

SUPPLEMENTS

SIgA: Saccharomyces boulardii, Beta-glucans, Vitamin A

Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

GUT ANTIBODIES

Test Name	Current	Previous	Result	Reference
Actin Antibody	10.3		<div><div style="width: 100%;">0.1</div><div style="width: 10%;">10</div><div style="width: 20%;">20</div></div>	≤10.0

The actin antibody test identifies autoantibodies directed against filamentous actin (F-actin), a key cytoskeletal protein found within intestinal epithelial cells and hepatocytes. The presence of these antibodies reflects an autoimmune response often triggered by significant epithelial damage and disruption of cellular integrity. Elevated actin antibody levels are most commonly associated with autoimmune hepatitis but may also appear in severe forms of celiac disease, particularly those involving villous atrophy or refractory disease states. In the gastrointestinal context, their presence suggests advanced mucosal injury and immune dysregulation. Symptoms may include persistent diarrhea, abdominal discomfort, fatigue, and in hepatic involvement, jaundice or elevated liver enzymes. The actin antibody test serves as a marker of tissue-specific autoimmunity and helps evaluate the extent of epithelial and mucosal damage, making it particularly valuable in assessing the severity and chronicity of immune-mediated gut disorders.

Supplement Suggestions

SUPPORTIVE SUPPLEMENTS

Actin Antibody: Curcumin, Omega-3 fatty acids, Green tea extract

Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

MALABSORPTION

FAT MALABSORPTION	Current	Previous	Result	Reference
Total Fecal Fat (mg/g)	68.5		<div><div style="width: 100%;">0</div><div style="width: 2.8%;">2.8</div><div style="width: 37.5%;">37.5</div></div>	2.9-37.5

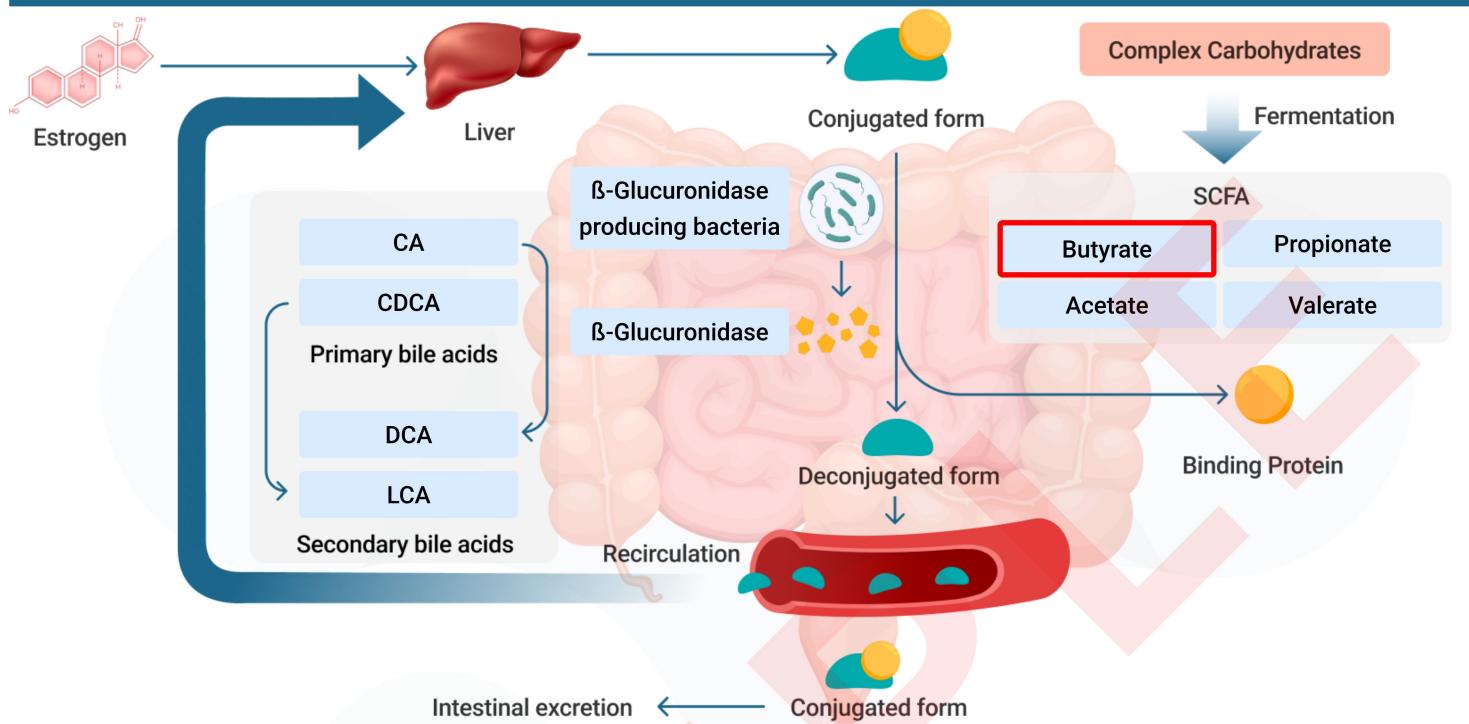
Total fecal fat is the amount of undigested fat excreted in the stool and is used as a marker to assess fat digestion and absorption efficiency. Excess fecal fat, or steatorrhea, indicates malabsorption disorders caused by inadequate bile production, pancreatic enzyme deficiencies, or impaired intestinal function. Conditions such as celiac disease, Crohn's disease, pancreatitis, or cystic fibrosis can lead to fat malabsorption. Elevated fecal fat may signify digestive insufficiency and is often associated with symptoms such as greasy stools, abdominal discomfort, and nutrient deficiencies due to poor absorption of essential fatty acids and fat-soluble vitamins.

Long Chain Fatty Acids (mg/g)	60.0		<div><div style="width: 100%;">0</div><div style="width: 0.8%;">0.8</div><div style="width: 28.1%;">28.1</div></div>	0.9-28.1
-------------------------------	------	--	--	----------

Long-chain fatty acids (LCFAs), including omega-3 and omega-6 families, are essential for immune regulation, brain health, and membrane structure. However, elevated LCFA levels in stool indicate malabsorption, often due to bile salt insufficiency, excessive dietary fat intake, or intestinal inflammation. Conditions impairing pancreatic lipase activity or bile acid production can also contribute to LCFA malabsorption. Elevated fecal LCFAs may cause symptoms such as greasy stools, bloating, and systemic nutrient deficiencies. Efficient lipid digestion is crucial for maintaining energy balance and supporting vital physiological functions.

Supplement Suggestions

SUPPLEMENTS


Total Fecal Fat: Lipase

SUPPORTIVE SUPPLEMENTS

Long Chain Fatty Acids: Betaine HCL

Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

Gut Metabolites

CHOLIC ACID (CA)

- Fat malabsorption (greasy stools) from dysregulated bile synthesis and affected cholesterol metabolism.
- Digestive discomfort due to gut dysbiosis.

CHENODEOXYCHOLIC ACID (CDCA)

- Affected bowel movements from gut inflammation and impaired motility.
- Insulin resistance and poor blood sugar regulation due to disrupted GLP-1 sensitivity.

DEOXYCHOLIC ACID (DCA)

- Elevated gut inflammation via NF- κ B.
- Bowel discomfort due to low stool water content affecting gut motility and bowel movement.

LITHOCHOLIC ACID (LCA)

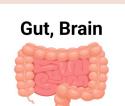
- Toxin build-up due to poor detoxification
- Frequent gut infections from reduced immunity via VDR.
- Bloating and irregular stools from gut dysbiosis.

β -GLUCURONIDASE

- Increased toxin reabsorption due to impaired glucuronidation.
- Hormonal imbalances leading to estrogen dominance.
- Elevated risk of inflammation.

ACETATE

- Dysregulated cholesterol levels due to altered lipid metabolism.
- Mood swings from affected neuronal signaling.
- Increased inflammation.


PROPIONATE

- Potential weight regulation issues due to altered energy homeostasis.
- Impaired satiety leading to overeating due to affected GLP-1 secretion.

BUTYRATE

- Gastric discomfort from weakened intestinal lining.
- Poor blood sugar control due to disrupted glucose regulation via GLP-1.
- Brain fog from impaired neurogenesis.

VALERATE

- Affected skin barrier function leading to dry, irritated, and itchy skin

β -GLUCURONIDASE PRODUCING BACTERIA

- Increased toxin reabsorption due to glucuronide cleavage (release of toxins or hormones).
- Hormonal disruptions, including estrogen dominance.
- Gut microbiota imbalance leading to inflammation.

GUT METABOLITES

SHORT CHAIN FATTY ACIDS	Current	Previous	Result	Reference
Butyrate (%)	1.2		<div><div style="width: 100%;"><div style="width: 50%;">0</div><div style="width: 12.4%;">5</div><div style="width: 12.4%;">12.4</div></div></div>	5.1-12.4

Butyrate is a short-chain fatty acid (SCFA) primarily produced through the bacterial fermentation of resistant starch and dietary fibers. This process involves the microbial hydrolysis of dietary polysaccharides into monosaccharides, which are then fermented to form butyrate. Butyrate serves as a vital energy source for colonocytes and supports gut barrier function by enhancing tight junction integrity. It also reduces intestinal inflammation and oxidative stress, promoting a healthy gut environment. Butyrate exerts its effects through G-protein-coupled receptors 41 and 43 (GPR41 and GPR43), contributing to insulin sensitivity via glucagon-like peptide-1 (GLP-1), which aids in glucose metabolism and enhances insulin secretion. Recent studies have shown that butyrate can support neurogenesis (the formation of new neurons) in the brain via the 'gut-brain axis.' Low fecal butyrate levels can cause gastrointestinal issues due to a compromised intestinal lining, impaired blood sugar regulation from disrupted GLP-1 activity, and cognitive symptoms like brain fog due to affected neurogenesis.

Total Short Chain Fatty Acids (micromol/g)	36.4	<div><div style="width: 100%;"><div style="width: 45.3%;">0</div><div style="width: 210%;">45.3</div><div style="width: 210%;">210</div></div></div>	45.4-210.1
--	------	--	------------

Total short-chain fatty acids (SCFAs) refer to the combined concentration of acetate, butyrate, propionate, valerate, iso-butyrate, and other SCFAs in the gut. They are produced through the anaerobic fermentation of indigestible dietary fibers, such as resistant starch and polysaccharides, by gut microbiota. SCFAs play essential roles in maintaining gut health by serving as energy sources for intestinal epithelial cells, strengthening the gut barrier, and regulating microbial diversity. They help suppress intestinal inflammation, support gut homeostasis, and influence systemic metabolic and immune responses. SCFAs interact with G-protein-coupled receptors 41 and 43 (GPR41 and GPR43), affecting gut motility, energy metabolism, and inflammatory pathways. Their benefits extend beyond the gut, impacting insulin sensitivity, lipid metabolism, and neuroimmune interactions. Low fecal SCFA levels indicate dysbiosis and are linked to various health conditions, including irritable bowel syndrome, inflammatory bowel disease, obesity, and metabolic disorders. Symptoms of reduced SCFAs may include bloating, abdominal discomfort, fatigue, and irregular bowel movements.

Supplement Suggestions

SUPPLEMENTS

Butyrate: Fructans, Inulin, Vitamin B2

Total Short Chain Fatty Acids: Fructans, Inulin

Consider these supplements in relation to medical history and symptoms. Not all recommended supplements are appropriate in all individual cases. Consult a knowledgeable healthcare provider before taking any supplemental nutrients or probiotics.

Suggestions

Prebiotics

Prebiotics are non-digestible fibers that serve as a food source for beneficial gut bacteria, promoting a balanced microbiome and enhancing digestive health. By nourishing beneficial microbes, prebiotics help strengthen the gut barrier, support nutrient absorption, and regulate inflammation, all of which contribute to overall well-being. Based on the assessment of gut commensals, pathogenic microorganisms, and digestive health markers, increasing your intake of prebiotic-rich foods or supplements may help improve gut health and microbial balance.

SUPPLEMENTS	Inulin	10 g/day	Fructooligosaccharides	20 g/day	Galactooligosaccharides	5 g/day
	Resistant starch	15 g/day	Fructans	7.5 g/day	Inulin-propionate ester	10 g/day

FOOD SOURCES	Fruits
	Bananas
	Vegetables
	Onions, Garlic, Green Bananas, Cooked Potatoes, Asparagus
	Dairy
	Milk, Cheese, Yogurt, Butter
	Fiber
	Chicory Root, Legume, Wheat

Suggestions

Probiotics

Probiotics are beneficial bacteria and yeasts that contribute to gut health by maintaining a balanced microbiome, supporting digestion, and enhancing immune function. A healthy gut microbiome aids in breaking down nutrients, producing essential vitamins, and preventing the overgrowth of harmful microbes, which collectively support metabolic balance and immune resilience. Based on the assessment of gut commensals, pathogenic microorganisms, and digestive health markers, incorporating probiotic-rich foods and supplements may help improve your gut health and support overall well-being.

SUPPLEMENTS	Butyrate	300 mg/day	Lactobacillus acidophilus	10 billion CFU/day	Lactobacillus plantarum	10 billion CFU/day
	Bifidobacterium infantis	10 billion CFU/day	E. coli Nissle 1917	10 billion CFU/day	Bifidobacterium animalis lactis BB-12	10 billion CFU/day
	Saccharomyces boulardii	10 billion CFU/day				
FOOD SOURCES						
Vegetables Kimchi, Sauerkraut, Pickles						
Dairy Kefir, Yogurt						
Fiber Natto						

Suggestions

Nutrients

Essential nutrients, including vitamins and minerals, play a vital role in maintaining gut health by supporting digestive processes, microbial diversity, and immune function. Proper nutrient intake helps regulate gut motility, maintain intestinal integrity, and reduce inflammation, which in turn promotes overall metabolic and physiological balance. Based on the evaluation of key biomarkers, ensuring adequate intake of these nutrients through a well-balanced diet or supplementation may help optimize gut function and overall well-being.

SUPPLEMENTS	Vitamin D	600 IU/day	Folate	400 mcg/day	Vitamin A	2333 IU/day
	Omega-3 fatty acids	950 mg/day	Glutamine	25 mg/day	Phosphatidylcholine	6 g/day
	Zinc	9 mg/day	Calcium	1,000 mg/day	N-acetyl-cysteine	600 mg/day
	L-arginine	1.5 g/day	Vitamin E	22 IU/day	Betaine HCL	350 mg/day
	Vitamin B2	1.1 mg/day				

FOOD SOURCES

Fruits

Citrus Fruits

Vegetables

Leafy Greens, Spinach, Legumes, Carrots, Cabbage, Soybeans, Garlic, Onions, Beets

Dairy

Milk, Cheese, Yogurt, Butter

Fiber

Legumes, Nuts, Seeds, Flaxseeds, Walnuts, Beans, Whole Grains, Almonds

Animal Protein

Eggs, Meat, Fatty Fish, Poultry, Liver, Shellfish, Seafood

Suggestions

Botanicals

Botanicals are plant-derived compounds, such as polyphenols, flavonoids, and terpenoids, that support gut health by aiding digestion, modulating the microbiome, and reducing gastrointestinal inflammation. Many botanicals possess prebiotic, antimicrobial, and anti-inflammatory properties, which help maintain gut microbial balance and improve digestive efficiency, ultimately benefiting systemic health. Based on the assessment of relevant biomarkers, incorporating specific botanical extracts may help promote gut health and enhance overall well-being.

SUPPLEMENTS	Berberine Artichoke extract Psyllium husk	900 mg/day 50 mg/day 7 g/day	Milk thistle Green tea extract	450 mg/day 3 g/day	Curcumin Cocoa	0.1 g/day 5 g/day
FOOD SOURCES	<p> Vegetables Goldenseal, Barberry, Oregon Grape, Tree Turmeric, Turmeric, Artichokes, Green Tea</p> <p> Fiber Milk Thistle Seeds, Cocoa Beans, Dark Chocolate, Cocoa Powder, Psyllium Seeds</p>					

GUT PATHOGENS

Bacteria	Current	Previous	Reference	Bacteria	Current	Previous	Reference
Clostridium difficile	<1e1		≤5e2	Clostridium difficile Toxin A	<1e2		≤5.8e2
Clostridium difficile Toxin B	<1e2		≤5.8e2	Clostridium perfringens	<1e2		≤1e2
Campylobacter spp.	<1e1		≤4.8e2	Campylobacter coli	<1e1		≤5e2
Campylobacter jejuni	<1e1		≤5e2	Campylobacter upsaliensis	<1e1		≤5e2
Vibrio (vulnificus)	<1e2		≤5e2	Vibrio (parahaemolyticus)	<1e2		≤7e2
Vibrio (cholerae)	<1e2		≤5e2	Enteropathogenic E.coli (EPEC)	<1e2		≤5e2
Enteroaggregative E.coli (EAEC)	<1e2		≤6.5e2	Enterotoxigenic E.coli (ETEC) Lt/St	<1e2		≤3e2
Shiga-Like Toxin Producing E.coli (STEC) Stx1/Stx2	<1e2		≤3e2	E.coli 0157	<1e2		≤3e2
Shigella/EIEC	<1e2		≤8e2	Helicobacter pylori	<1e2		≤3e3
Non-pylori Helicobacter spp.	<1e2		≤1e3	Listeria	<1e3		≤1.5e3
Klebsiella pneumoniae	<1e2		≤1e3	Yersinia enterocolitica	<1e2		≤5e2
Salmonella	<1e2		≤9e2	Plesiomonas shigelloides	<1e2		≤8e2
Edwardsiella tarda	<1e3		≤2e3	Aeromonas spp.	<1e2		≤1e3
Staphylococcus aureus	<1e3		≤1e3	Bacillus cereus	<1e1		≤5e2
Parasites - Protozoans	Current	Previous	Reference	Parasites - Protozoans	Current	Previous	Reference
Cryptosporidium	<1e3		≤2.5e3	Giardia lamblia	<1e2		≤3e3
Chilomastix mesnili	<1e2		≤5e2	Dientamoeba fragilis	<1e2		≤5e2
Entamoeba coli	<1e3		≤3e3	Blastocystis hominis	<1e3		≤1.5e3
Isospora belli	<1e3		≤1e3	Pentatrichomonas hominis	<1e2		≤5e2
Entamoeba histolytica	<1e2		≤2.5e3	Cyclospora cayetanensis	<1e3		≤5e3
Cyclospora spp.	<1e3		≤5e3	Endolimax nana	<1e3		≤1.5e3
Trichomonas hominis	<1e2		≤5e2	Balantidium coli	<1e2		≤4.6e2

GUT PATHOGENS

Fungi	Current	Previous	Reference	Fungi	Current	Previous	Reference
Candida spp.	<1e1		≤1e2	Candida albicans	<1e1		≤2.5e2
Candida glabrata	<1e2		≤7.6e2	Rodotorula spp.	<1e2		≤1e3
Geotrichum spp.	<1e3		≤2e3	Microsporidium spp.	<1e3		≤1.2e3
Virus	Current	Previous	Reference	Virus	Current	Previous	Reference
Adenovirus F40/41	<1e2		≤5e2	Astrovirus	<1e2		≤5e2
Norovirus GI	<1e1		≤5e2	Norovirus GII	<1e1		≤5e2
Sapovirus I	<1e2		≤5e2	Sapovirus II	<1e2		≤5e2
Sapovirus IV	<1e2		≤5e2	Sapovirus V	<1e2		≤5e2
Enterovirus	<1e2		≤1e2	Epstein Barr virus	<1e2		≤1e3
Rotavirus A	<1e2		≤5e2	Cytomegalovirus	<1e2		≤1e3
Human bocavirus	<1e1		≤1e2				
Antibiotic Resistance Genes	Current	Previous		Antibiotic Resistance Genes	Current	Previous	
Helicobacter - Clarithromycin	NOT DETECTED			Helicobacter - Fluoroquinolones	NOT DETECTED		
Fluoroquinolones	NOT DETECTED			Vancomycin	NOT DETECTED		
b-lactamase	NOT DETECTED			Macrolides	NOT DETECTED		
Tetracycline	NOT DETECTED			Aminoglycoside	NOT DETECTED		
Bactrim	NOT DETECTED			Carbapenem	NOT DETECTED		
Rifampin	NOT DETECTED			Polymyxins	NOT DETECTED		
Parasites - Helminths	Current	Previous		Parasites - Helminths	Current	Previous	
Larval Nematode	NOT DETECTED			Taenia solium	NOT DETECTED		
Fasciola/Fasciolopsis	NOT DETECTED			Dipylidium caninum	NOT DETECTED		
Enterobius vermicularis	NOT DETECTED			Ancylostoma duodenale	NOT DETECTED		
Necator americanus	NOT DETECTED			Taenia spp.	NOT DETECTED		

GUT PATHOGENS

Parasites - Helminths	Current	Previous	Parasites - Helminths	Current	Previous
Strongyloides stercoralis	NOT DETECTED		Schistosoma	NOT DETECTED	
Hymenolepis	NOT DETECTED		Diphyllobothrium latum	NOT DETECTED	
Mansonella	NOT DETECTED		Ascaris lumbricoides	NOT DETECTED	
Trichuris trichiura	NOT DETECTED				

GUT INFLAMMATORY MARKERS

Test Name	Current	Previous	Result	Reference
Beta Defensin 2 (ng/mL)	9.5		9.5	≤34.9
Lysozyme (ng/mL)	546.7		546.7	≤575.0
MMP 9 (ng/mL)	0.2		0.2	≤0.2
S100A12 (mcg/ml)	14.5		14.5	≤50.0
Calprotectin (mcg/g)	59.2		59.2	≤50.0
Fecal Lactoferrin (mcg/ml)	5.3		5.3	≤6.4
Fecal Eosinophil Protein X (mcg/g)	8.4		8.4	≤4.8

DIGESTION AND IMMUNE BALANCE

Test Name	Current	Previous	Result	Reference
Pancreatic Elastase 1 (mcg/g)	353.4		353.4	≥200.0
Fecal Immunochemical Test (FIT) (mcg/g)	3.1		3.1	≤10.0
Fecal Zonulin (ng/mL)	48.2		48.2	25.1-160.8
pH	6.5		6.5	6.1-7.8
slgA (mcg/g)	234.7		234.7	426.0-1450.0

GUT ANTIBODIES

Test Name	Current	Previous	Result	Reference
Lipopolysaccharide Antibody	4.5		4.5	≤10.0

GUT ANTIBODIES

Test Name	Current	Previous	Result	Reference
Anti-Saccharomyces Cerevisiae Antibody	7.6	0.1	10 20	≤10.0
Tissue Transglutaminase	5.3	0.1	10 20	≤10.0
Deamidated Gliadin Peptide	7.5	0.1	10 20	≤10.0
Fecal Anti Gliadin	9.5	0.1	10 20	≤10.0
Actin Antibody	10.3	0.1	10 20	≤10.0

MALABSORPTION

DIETARY FIBER	Current	Previous	DIETARY FIBER	Current	Previous
Meat Fiber	NOT DETECTED		Vegetable Fiber	NOT DETECTED	
FAT MALABSORPTION					
	Current	Previous	Result		Reference
Total Fecal Fat (mg/g)	68.5	0 2.8	37.5		2.9-37.5
Total Fecal Triglycerides (mg/g)	1.5	0 0.2	2.5		0.3-2.5
Long Chain Fatty Acids (mg/g)	60.0	0 0.8	28.1		0.9-28.1
Total Cholesterol (mg/g)	3.2	0 0.4	5.3		0.5-5.3
Total Phospholipids (mg/g)	1.0	0 0.2	6.4		0.3-6.4

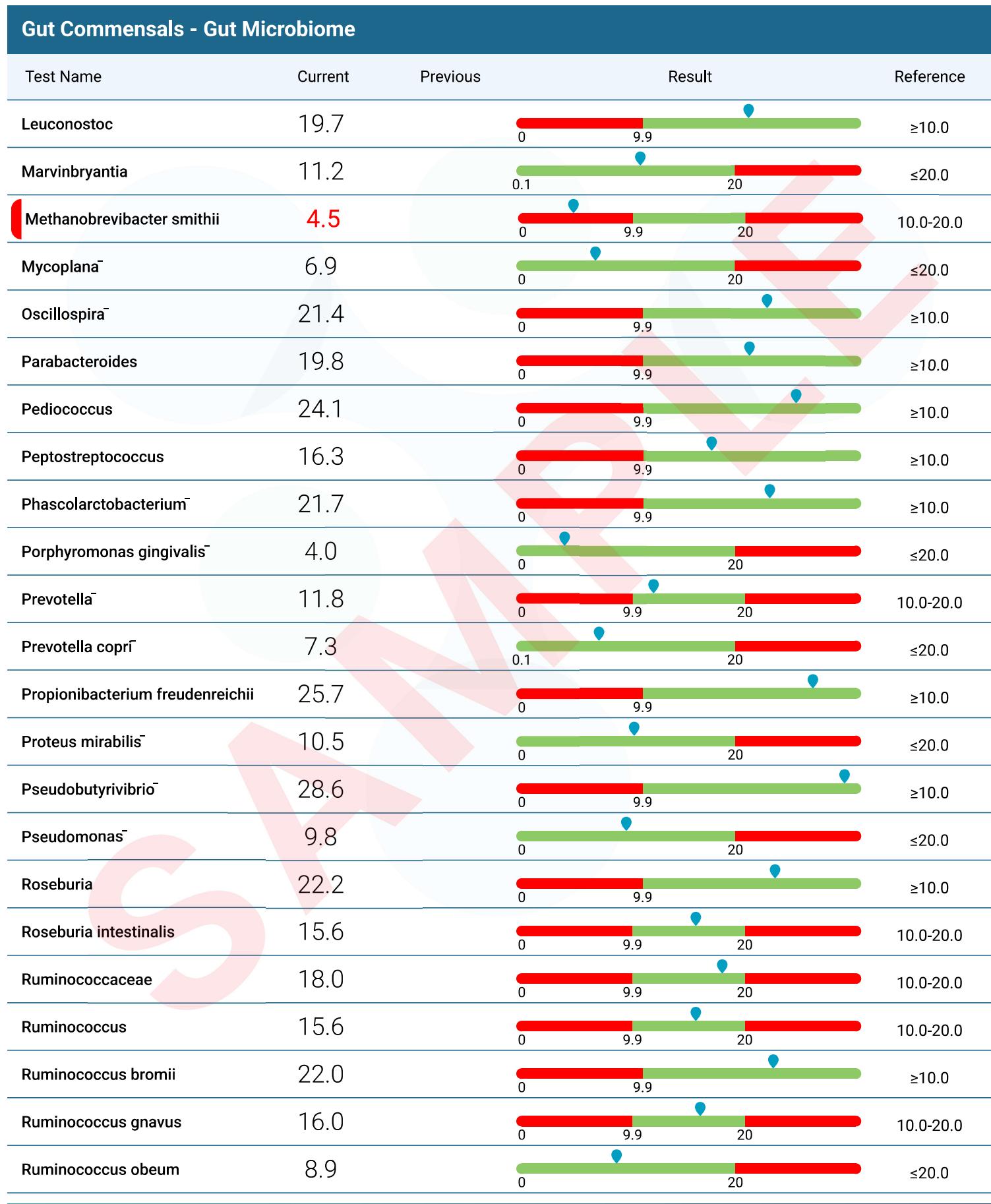
GUT METABOLITES

BILE ACID METABOLITES	Current	Previous	Result	Reference
Cholic Acid (CA) (%)	0.25	0	0.36	≤0.36
Chenodeoxycholic Acid (CDCA) (%)	0.58	0	1.25	≤1.25
Deoxycholic Acid (DCA) (%)	27.65	0 24.2	75.8	24.25-75.84
Lithocholic Acid (LCA) (%)	57.36	0 24.1	75.7	24.16-75.75
LCA/DCA Ratio	2.07	0 0.31	3.38	0.32-3.38
SHORT CHAIN FATTY ACIDS	Current	Previous	Result	Reference
Acetate (%)	67.3	0	60.1 72.7	60.2-72.7

GUT METABOLITES

SHORT CHAIN FATTY ACIDS	Current	Previous	Result	Reference
Propionate (%)	28.9	0 15.3	30.3	15.4-30.3
Butyrate (%)	1.2	0 5	12.4	5.1-12.4
Valerate (%)	2.6	0 0.7	3.5	0.8-3.5
Total Short Chain Fatty Acids (micromol/g)	36.4	0 45.3	210	45.4-210.1
ESTROGEN METABOLISM	Current	Previous	Result	Reference
β-Glucuronidase (U/mL)	1330	0 2300		≤2300.0

Gut Commensals - Gut Microbiome


Test Name	Current	Previous	Result	Reference
Acinetobacter ⁻	1.6	0 20		≤20.0
Actinomyces	10.6	0.1 20		≤20.0
Akkermansia muciniphila ⁻	16.6	0 9.9		≥10.0
Alistipes	6.2	0.1 20		≤20.0
Alloprevotella ⁻	18.0	0 9.9		≥10.0
Atopobium	12.2	0 20		≤20.0
Atopobium parvulum	10.6	0 20		≤20.0
Bacillus subtilis	14.7	0 9.9		≥10.0
Bacteroidales ⁻	5.1	0 9.9 20		10.0-20.0
Bacteroides ⁻	6.9	0 9.9 20		10.0-20.0
Bacteroides caccae ⁻	8.3	0 20		≤20.0
Bacteroides vulgatus ⁻	14.1	0 9.9		≥10.0
Bifidobacterium	25.6	0 9.9		≥10.0
Bifidobacterium adolescentis	16.0	0 9.9 20		10.0-20.0
Bifidobacterium animalis	18.3	0 9.9		≥10.0

Gut Commensals - Gut Microbiome

Test Name	Current	Previous	Result	Reference
<i>Bifidobacterium animalis</i> subspecies <i>lactis</i>	22.9	0 9.9	22.9	≥10.0
<i>Bifidobacterium catenulatum</i>	9.3	0 9.9	9.3	≥10.0
<i>Blautia</i>	17.6	0 9.9 20	17.6	10.0-20.0
<i>Blautia hydrogenotrophica</i>	14.3	0 9.9 20	14.3	10.0-20.0
<i>Bradyrhizobiaceae</i> ⁻	9.7	0 9.9 20	9.7	≤20.0
<i>Butyrimonas</i> ⁻	30.0	0 9.9	30.0	≥10.0
<i>Butyrivibrio</i>	20.5	0 9.9	20.5	≥10.0
<i>Catenibacterium</i>	17.2	0 9.9	17.2	≥10.0
<i>Christensenella minuta</i>	25.2	0 9.9	25.2	≥10.0
<i>Clostridia clusters IV</i>	4.4	0 9.9	4.4	≥10.0
<i>Clostridia clusters XIVa</i>	15.8	0 9.9	15.8	≥10.0
<i>Clostridia clusters XVIII</i>	5.2	0 9.9	5.2	≥10.0
<i>Clostridiales Family XIV Incertae Sedis</i>	12.3	0 9.9	12.3	≥10.0
<i>Clostridium</i>	12.6	0 9.9 20	12.6	10.0-20.0
<i>Clostridium hathewayi</i> ⁻	8.8	0 20	8.8	≤20.0
<i>Clostridium ramosum</i>	9.3	0 20	9.3	≤20.0
<i>Clostridium symbiosum</i> ⁻	7.2	0 20	7.2	≤20.0
<i>Clotridiales Incertae Sedis IV</i>	14.2	0 20	14.2	<20.0
<i>Collinsella</i>	11.5	0 20	11.5	≤20.0
<i>Coprococcus</i>	29.0	0 9.9 20	29.0	10.0-20.0
<i>Desulfovibrio</i> ⁻	12.6	0 20	12.6	≤20.0
<i>Desulfovibrio piger</i> ⁻	7.2	0 20	7.2	10.0-20.0
<i>Dialister invisus</i> ⁻	26.5	0 9.9	26.5	≥10.0

Gut Commensals - Gut Microbiome

Test Name	Current	Previous	Result	Reference
Dorea	21.7	0	20	≤20.0
Eggerthella lenta	20.2	0	20	≤20.0
Enterobacter aerogenes ⁻	9.7	0	20	≤20.0
Enterobacteria ⁻	11.5	0	20	≤20.0
Enterobacteriaceae ⁻	29.2	0	9.9 20	10.0-20.0
Enterococcus	15.0	0	9.9 20	10.0-20.0
Enterococcus gallinarum	18.5	0	20	≤20.0
Enterococcus species	9.6	0	20	≤20.0
Escherichia coli ⁻	21.4	0	9.9 20	10.0-20.0
Eubacterium	5.5	0	9.9	≥10.0
Eubacterium rectale	9.8	0	9.9 20	10.0-20.0
Faecalibacterium prausnitzii	6.9	0	9.9 20	10.0-20.0
Fusobacterium ⁻	27.7	0	9.9 20	10.0-20.0
Haemophilus ⁻	14.8	0	9.9	≥10.0
Hafnia	28.3	0	9.9	≥10.0
Holdemania	9.2	0.1	20	≤20.0
Lachnospiraceae	20.7	0	9.9 20	10.0-20.0
Lactobacillaceae	14.6	0	20	≤20.0
Lactobacillus	17.0	0	9.9	≥10.0
Lactobacillus animalis	18.7	0	9.9	≥10.0
Lactobacillus ruminis	11.3	0	20	≤20.0
Lactobacillus sakei	13.3	0	9.9	≥10.0
Lactococcus	12.3	0.1	20	≤20.0

Gut Commensals - Gut Microbiome

Test Name	Current	Previous	Result	Reference
Solobacterium moorei	7.0		<div style="width: 70%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
β-Galactosidase producing bacteria	18.4		<div style="width: 92%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
β-Glucuronidase producing bacteria	13.9		<div style="width: 69%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Staphylococcaceae	4.7		<div style="width: 23%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Staphylococcus epidermidis	2.0		<div style="width: 10%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Staphylococcus pasteurii	2.4		<div style="width: 12%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Staphylococcus species	2.8		<div style="width: 14%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Streptococcus species	19.4		<div style="width: 97%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Tyzzerella	0.6		<div style="width: 3%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Tyzzerella 4	2.4		<div style="width: 12%;"><div style="width: 20%; background-color: #008000;"></div><div style="width: 80%; background-color: #FF0000;"></div></div>	≤20.0
Veillonella ⁻	5.9		<div style="width: 29%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	10.0-20.0
Veillonellaceae ⁻	5.5		<div style="width: 55%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0

Gut Commensals - Probiotic Organisms

Test Name	Current	Previous	Result	Reference
Bacillus coagulans	6.7		<div style="width: 67%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Bifidobacterium bifidum	22.3		<div style="width: 92%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Bifidobacterium breve	11.9		<div style="width: 59%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Bifidobacterium dentium	13.0		<div style="width: 60%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Bifidobacterium infantis	25.8		<div style="width: 95%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Bifidobacterium longum	25.8		<div style="width: 95%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Escherichia coli Nissle ⁻	24.0		<div style="width: 96%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Lactobacillus acidophilus	12.8		<div style="width: 68%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0
Lactobacillus brevis	17.0		<div style="width: 85%;"><div style="width: 20%; background-color: #FF0000;"></div><div style="width: 80%; background-color: #008000;"></div></div>	≥10.0

Gut Commensals - Probiotic Organisms

Test Name	Current	Previous	Result	Reference
Lactobacillus bulgaricus	21.8	0	9.9	≥10.0
Lactobacillus casei	19.0	0	9.9	≥10.0
Lactobacillus fermentum	27.1	0	9.9	≥10.0
Lactobacillus paracasei	23.4	0	9.9	≥10.0
Lactobacillus plantarum	24.4	0	9.9	≥10.0
Lactobacillus reuteri	15.6	0	9.9	≥10.0
Lactobacillus rhamnosus	12.4	0	9.9	≥10.0
Lactobacillus rhamnosus GG	22.3	0	9.9	≥10.0
Lactobacillus salivarius	19.4	0	9.9	≥10.0
Saccharomyces boulardii	21.2	0	9.9	≥10.0
Streptococcus	19.4	0	9.9	10.0-20.0
Streptococcus thermophilus	6.4	0	9.9	10.0-20.0

Risk and Limitations

This test has been developed and its performance characteristics determined by Vibrant America LLC., a CLIA certified lab and Vibrant Genomics, a CLIA and CAP certified lab. These assays have not been cleared or approved by the U.S. Food and Drug Administration. Vibrant Wellness provides additional contextual information on these tests and provides the report in a more descriptive fashion.

Gut Zoomer testing is performed at Vibrant Genomics and Vibrant America utilizing ISO-13485 developed technology. Vibrant America has effective procedures in place to protect against technical and operational problems. However, such problems may still occur. Examples include failure to obtain the result for a specific test due to circumstances beyond Vibrant's control. Vibrant may re-test a sample to obtain these results but upon re-testing the results may still not be obtained. As with all medical laboratory testing, there is a small chance that the laboratory could report incorrect results. A tested individual may wish to pursue further testing to verify any results.

Tested individuals should not change their diet, physical activity, or any medical treatments they are currently using based on the results without consulting their personal health care provider. The information in this report is intended for educational purposes only. While every attempt has been made to provide current and accurate information, neither the author nor the publisher can be held accountable for any errors or omissions. Tested individuals may find their experience is not consistent with Vibrant's selected peer reviewed scientific research findings of relative improvement for study groups. The science in this area is still developing and many personal health factors affect diet and health. Since subjects in the scientific studies referenced in this report may have had personal health and other factors different from those of tested individuals, results from these studies may not be representative of the results experienced by tested individuals. Further, some recommendations may or may not be attainable, depending on the tested individual's physical ability or other personal health factors. A limitation of this testing is that many of these scientific studies may have been performed in selected populations only. The interpretations and recommendations are done in the context of these studies, but the results may or may not be relevant to tested individuals of different or mixed ethnicities. Please note that pediatric ranges have not been established for these tests. Interference studies have not been established for individuals on immunosuppressive drugs.

Based on test results and other medical knowledge of the tested individual, health care providers might consider additional independent testing, or consult another health care provider or genetic counselor.

Vibrant Wellness makes no claims as to the diagnostic or therapeutic use of its tests or other informational materials. Vibrant Wellness reports and other information do not constitute medical advice and are not a substitute for professional medical advice. Please consult your healthcare practitioner for questions regarding test results, or before beginning any course of supplementation or dietary changes.

Vibrant America/Wellness makes no claims as to the diagnostic or therapeutic use of its tests or other informational materials. Vibrant Wellness reports and other information do not constitute medical advice and are not a substitute for professional medical advice. Please consult your healthcare practitioner for questions regarding test results, or before beginning any course of supplementation, dietary or lifestyle changes. A summary of the test information that allows the user to understand how the test works and how to interpret the results of the test is provided at the start of the test report.