

201 Daktronics Drive Brookings, SD 57006-5128 www.daktronics.com/support 800.325.8766

Copyright © 2018

All rights reserved. While every precaution has been taken in the preparation of this manual, the publisher assumes no responsibility for errors or omissions. No part of this book covered by the copyrights hereon may be reproduced or copied in any form or by any means—graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems—without written permission of the publisher.

Daktronics trademarks are property of Daktronics, Inc. All other trademarks are property of their respective companies.

Table of Contents

1	Component Identification	.1
2	Installation	.2
	System/Cable Requirements	2
3	Maintenance	.4
	LED Diagnostics	4
	Replacement Parts List	5
4	Troubleshooting and Radio Diagnostics	.6
	Download the Utility	6
	Open the Utility	6
	Network Map	6
5	Technical Specifications	.8
	900xTR (900 MHz)Technical Specifications	8
	2400xTR (2.4 GHz) Technical Specifications	9
	FCC Compliance	9
	Compliance Statement (Part 15.19)	.9
	Warning (Part 15.21)	10
	RF Exposure (OET Bulletin 65)	10
	Information to the User - Part 15.105 (b)	10

This page intentionally left blank.

1 Component Identification

Ethernet: A technology for highspeed bandwidth connectivity over local area networks (LAN).

Client Radio: This radio receives signal from the server radio. The client radio is connected to and receives power from the display. Signal between the client and the display is both transmitted and received.

Server Radio: This radio is connected to the local Ethernet network through a DC injector which provides power to the radio. It transmits and receives information to and from the client radio at the display.

DC Injector: This unit, shown in **Figure 5**, receives signal in from the customer's network and relays signal out to the radio. It contains a power input to power the server radio.

Note: The DC Injector is for indoor use only.

Figure 1: Ethernet Bridge Radios – Two-Wire Client Radio

Figure 2: Ethernet Bridge Radios – Single-Wire (10-pin Quick Connect) Client Radio

2 Installation

The controller has either a default IP address (172.16.192.25) for Galaxy® displays or a DHCP address for GalaxyPro® Series displays. Once the default IP address is used to connect to the display, it can be changed to a personalized address. Refer to the display manual for further information on setting an IP address. Various LAN and Internet service providers (ISP) have differing IP requirements. Consult the network administrator or ISP for more information. The DHCP address automatically adjusts to suit the local network.

System/Cable Requirements

In an Ethernet radio system, two radios are required. A server radio transmits/receives signal to/from a client radio, shown in **Figure 1** and **Figure 2**, at the display. The server radio connects to the Ethernet LAN through a DC injector.

Daktronics provides a yellow 20-foot CAT 5e Ethernet cable, which is required to connect the DC injector to the LAN. The customer must supply a longer cable if it is needed.

Ethernet and power cables are provided to connect the client radio to the display and the server radio to the DC injector.

An Ethernet radio-controlled display requires the following connections, refer to **Figure 3** for a system layout:

Figure 3: Wireless Ethernet Display Layout

 Mount radios with antennas pointing upward. Figure 4 illustrates correct and incorrect antenna placement.

Do not mount the radios with the wire grommet pointing upward.

There are two types of client radio connectors for Galaxy products – two wire – **Figure 1** and single wire – **Figure 2**.

Figure 4: Antenna Alignment Examples

- 2. Route a CAT 5e Ethernet cable from the LAN switch/router to the DC injector.
- 3. Connect the Ethernet cable to the Switch Hub jack on the DC injector, as shown in Figure 5.
- **4.** The DC injector is provided with an AC power adapter. Connect the AC power adapter to the AC input jack on the DC Injector and inserted into a 120 VAC wall outlet.

Note: The DC Injector is for indoor use only.

5. The server radio is provided with a 25 ft. (7.6 m) attached Ethernet cable. Connect this Ethernet cable to the RJ45 jack on the DC injector.

The maximum distance between the network switch and server radio is 300 ft. (91.44 m).

6. Mount server and client radios outdoors for best signal quality. Indoor mounting significantly reduces signal quality and can cause communication issues to

> Note: Install a Cat 5e inline coupler, example shown in Figure 6, to the end of the server radio cable and connect it to a high-quality Cat 5e cable.

Figure 6: Extend Cat 5e Cable Using a Cat 5e Inline Coupler

(VL)us

Cables - Two-Wire Design

the display.

- 7. Mount the client radio within 25 ft. (7.6 m) of the input jacks.
- 8. Route the signal quick-connect cables from the enclosure to the rear of the display.
- 9. The cable from the enclosure to the display can be routed through conduit or through the display pole, and should be

secured to protect it from weather or vandalism. Provide drip loops to prevent water migration to display quick-connect interface board.

- **10.** Connect the quick-connect cables to the top two (J32 and J33) jacks. Refer to Figure 7 and Figure 8 for examples. Or connect the quick-connect cable to the middle jack if the display is a single-cable design, as shown in Figure 9 and Figure 10.
 - Older displays use a one-cable system, which connects to jack J32.
 - Newer displays use a two-cable system, which connects to the signal cable to jack J32 and the power cable to J33.

Figure 9: 10-Pin Quick-Connect Cable - Single-Wire Design

Figure 10: Input Jacks

ETHERNET IN

Figure 8: Input Jacks

Installation

3 Maintenance

LED Diagnostics

Use the label affixed to the radio, shown in **Figure 11** and **Figure 19**, and the 16 diagnostic LEDs on boards inside the housing of both the server and client radios to determine whether the radio is linking properly and which channel is currently being used.

The following chart also describes the diagnostic LEDs' functions:

Name	Function			Color			
Power	Unit has power and has successfully booted.			Red			
RF TX	Radio transmission is occurring.				Green		
RF RX	Radio reception is occurring.				Green		
Ethernet Link	The Ethernet Port has a valid Ethernet connection.		٦.	Green			
CH 1 CH 2	By adding the numbers that are lit, the user can determine the current radio channel.					Green	
CH 4 CH 8	900	900MHz Radios					
CH 16 (not used with 900 MHz	1	903.12500 MHz	5	911.45833 MHz	9	919.79167 MHz	
radios) CH 32 (not used)	2	905.20833 MHz	6	913.54167 MHz	10	921.87500 MHz	
	3	907.29167 MHz	7	915.62500 MHz	11	923.95833 MHz	
	4	909.37500 MHz	8	917.70833 MHz	12	926.04167 MHz	
	2.4 GHz Radios						
	0	Auto Mode	10	2.435417 GHz	20	2.456250 GHz	
	1	2.416667 GHz	11	2.437500 GHz	21	2.458333 GHz	
	2	2.418750 GHz	12	2.439583 GHz	22	2.460417 GHz	
	3	2.420833 GHz	13	2.441667 GHz	23	2.462500 GHz	
	4	2.422917 GHz	14	2.443750 GHz	24	2.464583 GHz	
	5	2.425000 GHz	15	2.445833 GHz	25	2.466667 GHz	
	6	2.427083 GHz	16	2.447917 GHz	26	2.468750 GHz	
	7	2.429167 GHz	17	2.450000 GHz	27	2.470833 GHz	
	8	2.431250 GHz	18	2.452083 GHz	28	2.472917 GHz	
	9	2.433333 GHz	19	2.454167 GHz	29	2.475000 GHz	

Name	Function			Color
	Excellent link quality	No retransmissions	Green	
	Very good link quality	Few retransmissions	Green	
Link Quality Meter: The more LEDs that	Good link quality	Occasional retransmissions	Amber	
are lit, the higher the link quality	Fair link quality	Some retransmissions	Amber	
	Poor link quality	Many retransmissions	Red	
	No link quality	No link available	Red	

Replacement Parts List

The following table contains some of the items that may need to be replaced over a period of time.

If a component is not listed in the replacement parts list, use the label to order a replacement. Most components within this display carry a label that lists the part number of the unit. A typical label is shown in **Figure 12** with the part number in bold.

900 xTR Radios (900 MHz)			
Part Description	Part Number		
DC Injector with Internal Transformer and Power Cable	A-2551		
Patch Cable, Ethernet RJ45 2ft.	W-1537		
900 MHz Ethernet Bridge Radio Kit With 6-Pin Quick Connect (2 Wire Client)	0A-1327-1111		
902-928 MHz Antenna	A-2545		

2400 xTR Radios (2.4 GHz)			
Part Description	Part Number		
DC Injector with Internal Transformer and Power Cable	A-2551		
Patch Cable, Ethernet RJ45 2ft.	W-1537		
2.4 GHz Ethernet Bridge Radio Kit With 6-Pin Quick Connect (2-Wire Client)	A-3446		
2.4 GHz Antenna	A-3457		

Figure 11: Radio Label

Figure 12: Typical Parts Label

Troubleshooting and Radio Diagnostics

Troubleshooting and Radio Diagnostics 4

The Daktronics Ethernet Bridge Radio Diagnostics utility helps determine if radios are linked and communicating effectively.

Note: The utility can only be used on Ethernet Bridge Radios with Radio Firmware version v81 or greater and Web Page Firmware version v1.58.4250 or greater.

Download the Utility

Go to http://dakfiles.daktronics.com/downloads/ venus1500/utils/EBRDiagnostics.

Click EBRDiagSetup.exe and Save. Save the file on your computer's hard drive. Run the installer from that location to complete the installation process.

Open the Utility

Access the utility by clicking the Windows Start button located at the bottom-left of your computer screen. Click All Programs > Daktronics > Utilities > Ethernet Bridge Radio Diagnostics, refer to Figure 13.

Network Map

The Network Map opens when you start the utility. It provides basic connection and signal strength information.

Information shown in the Network Map reloads every 6 seconds by default. Each time data updates, **Reloading...** appears on the map, as shown in Figure 14.

A green line with connection information, for

example 100 Mbps, shown below it reflects a successful Ethernet Connection between the Control Computer, Server and Client Radios, and Display. A green line will also link the server and client radios, as shown in Figure 15.

When a red line with either Disconnected or Unknown below it appears in the Network Map, you will know the Ethernet Connection is not successful.

Figure 13: Open the Ethernet

Figure 15: Daktronics Ethernet Bridge Radio Diagnostics Network Map

If a disconnect state is noted on the Network Map, check how the radios are installed.

- Are they installed correctly with both antennas pointing upward and are the radios mounted high enough to eliminate obstructions like semi-trailer traffic?
- Or are there obstructions like trees between radio installations?
- Are the radios installed at an appropriate distance to one another?

All of these can disrupt signal strength. If the radios are installed correctly, but transmission problems still exist, call the Daktronics Help Desk at 866-343-3122 for further instruction.

Figure 16: Server and Client Radio Signal Strength Bars

Observe the diagrams that represent the Server and Client radios.

The bars reflect Signal Strength and are directly affected by the Block Error Rate in Advanced Diagnostics. Signal Strength is strongest when all five bars are green, as shown in **Figure 16**.

Figure 17: Weak Signal Strength

When signal strength is weak, as

shown in Figure 17, bar 1 is red, and bars 2 and 3 are amber.

The colored boxes below each Signal Strength diagram, shown in **Figure 18**, correspond to the Link Quality LEDs, shown in **Figure 19**, found on the board in each radio. When both green boxes at the right side of each diagram are lit, you know that communication between radios is good.

If neither green box is lit, check how the radios are installed. Are they installed correctly with both antennas pointing upward and are the radios mounted high enough to eliminate obstructions like semi-trailer traffic? Or are there obstructions like trees between radio installations? Are the radios installed at an appropriate distance to one another?

All of these can disrupt signal strength. If the radios are installed correctly, but transmission problems still exist, call the Daktronics Help Desk at 866-343-3122 for further instruction.

Figure 18: Server and Client Radio Status LEDs

Figure 19: Link Quality LEDs and Label Found on Radios

Troubleshooting and Radio Diagnostics

5 Technical Specifications

900xTR (900 MHz)Technical Specifications

Characteristic	Specification/Description		
RF Transmission Rate	1.536 Mb/s		
Ethernet Throughput	935 Kb/s		
Output Power	21 dBm (4 Watts EIRP used with 15 dBi antenna)		
Receiver Sensitivity	-97 dBm at10-4 BER		
Range	40 miles line of sight with 15 dBi antenna		
Radio Channels/Bandwidth	12 non-overlapping channels with 2.0833 MHz spacing and 1.75 MHz occupied bandwith		
Frequency Selection	Automatic or manually selectable via web browser interface		
Connector Types	RF: RPTNC Female/10/100 baseT Ethernet RJ45		
Data Encryption	128-bit AES, FIPS197, keys set through password-protected browser interface		
Error Correction Technique	Sub-block error-detection and retransmission		
Adjacent Band Rejection	SAW receiver filter attenuates cellular and pager interference		
Power Regulation	Built-in switching regulator		
Browser Management Tools	QoS Statistics, Network Settings, Spectrum Analyzer, and Firmware Upgrade		
Power Consumption	Transmit: 1.7 Watts Receive: 0.8 Watts		
Voltage	9 to 48 VDC via unused pins in RJ45 jack – pins 4,5 positive, pins 7,8 ground		
	• 175 mA at 9 VDC		
Transmit Current Draw	• 140 mA at 12 VDC		
	• 35 mA at 48 VDC		
Temperature Range	-40° C to 70° C		
Physical Package	Heavy die-cast aluminum, black powder-coated finish. Meets IP66 Standard for water and dust protection. Sealing gland for Ethernet cable entry.		
Size	200 x 80 x 50 mm not including connectors; .0570 Kg		
Compatibility	May be mixed in combination with AW900iTR and AW900xTP radios, not compatible with older AW900xT, AW900i, and AW900iT radios.		

2400xTR (2.4 GHz) Technical Specifications

Characteristic	Specification/Description		
RF transmission rate	1.536 Mb/s		
Ethernet data rate	935 Kb/s		
RF Output Power	+21 dBm (4 Watts EIRP with 15 dBi antenna)		
Receiver Sensitivity	-97 dBm at 10 ⁻⁴ Bit Error Rate		
Range	Up to 40 miles line of sight with 15 dBi antenna		
RF Channels/Bandwidth	29 non-overlapping channels with 2.048 MHz spacing and 1.75 MHz occupied bandwith 5.728125 GHz to 5.846909 GHz		
Connector types	RF: RPTNC Female / 10/100 base T Ethernet: RJ-45		
Data Encryption	128-bit AES, FIPS197, keys set through password-protected browser interface		
Error correction technique	Sub-block error detection and retransmission		
Adjacent band rejection	SAW receiver filter attenuates cellular and pager interference		
Power regulation	Built-in switching regulator		
Browser management tools	QoS Statistics, Network Settings, Spectrum Analyzer, Firmware Upgrade		
Power consumption	Transmit: 1.7 Watts Receive: 0.8 Watts		
Voltage	9 to 48 VDC via unused pins in RJ-45 jack - pins 4,5 positive, 7,8 ground		
Power regulation	Switching regulator		
Transmit current draw	140 ma at 12 VDC		
Operating Temperature Range	-40 °C to +75 °C		
Enclosure	Die cast aluminum, powder-coated, gasket-sealed connectors and cover. Meets IP66 for water and dust resistance.		
Size	6 by 8 by 20 cm, 0.8 Kg, connectors included Mounting holes on bottom flange, 52 by 190 mm, 4 mm dia		

FCC Compliance

Compliance Statement (Part 15.19)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Technical Specifications

Warning (Part 15.21)

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

RF Exposure (OET Bulletin 65)

To comply with FCC RF exposure requirements for mobile transmitting devices, this transmitter should only be used or installed at locations where there is at least 20 cm separation distance between the antenna and all persons.

Information to the User - Part 15.105 (b)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This product should be installed ONLY by experienced, professional installers who are familiar with local building and safety codes, and wherever applicable, are licensed by the appropriate authorities. Failure to do so may void the warranty and may expose the user or the service provider to legal and financial liabilities.