

PATH HVDC Conceptual Study

TEAC Meeting

10/22/09

Potomac-Appalachian Transmission Highline (PATH) Project:

Scope

 New 765kV line from Amos to Kemptown with intermediate Welton Spring 765 / 500kV substation

Planning Driver

-Based on the PJM analysis of 2014, the Amos – Kemptown project is required to resolve numerous thermal and reactive problems starting June 1, 2014

- •APS and AEP assigned baseline project with PJM id's
 - AEP b0490
 - APS b0491 and b0492
- Energization
 - Expected in service: 6/1/2014
- •Related Information

http://www.pathtransmission.com/

Background

- Develop Scope of work for study
- Solicit proposals from vendors
- Black & Veatch (w/ ABB) awarded PO
- PJM identified project requirements
- Study completed in two steps:
 - Welton Spring Kemptown
 - Amos Welton Spring

PATH Current Design

Single circuit 765kV AC overhead transmission line from Amos - Kemptown

PATH HVDC Study

Concept 1: HVDC overhead transmission from Amos-Welton Spring-Kemptown

Concept 2: Single circuit
765kV AC overhead
transmission from AmosWelton Spring; HVDC
underground
transmission from Welton
Spring-Kemptown

HVDC overhead transmission from Amos - Welton Spring - Kemptown

5

PJM©2009

6

PJM©2009

Key Physical Features Comparison Summary

	Current Design	Concept 1	Concept 2
Structures			
Max Structure Height	130 ft	150 ft	N/A
Max Structure Width	150 ft	80 ft	N/A
Right-of-Way			
Amos – Welton Spring	200 ft	150 ft	200 ft
Welton Spring - Kemptown	200 ft	150 ft	110 ft

www.pjm.com 7 PJM©2009

Comparison Aspects HVDC vs. AC

- Permitting
- Future Expansion
- Operations and Reliability
- Maintenance

www.pjm.com 8 PJM©2009

Estimated Cost Comparison

	Current Design	Concept 1	Concept 2
AC Overhead Line	\$1,204 M		\$756 M
AC Interconnection Substations	\$563 M	\$563 M	\$563 M
HVDC Overhead Line		\$1,002 M	
Overhead Tap Switchyard		\$8 M	
HVDC Underground Line			\$884 M
HVDC Convertor Stations (LCC)		\$838 M	
HVDC Convertor Station (VSC)			\$1,392 M
TOTALS	\$1,767 M	\$2,411 M	\$3,595 M

www.pjm.com 9 PJM©2009

- Complete final edits to report
- Post report by mid November

www.pjm.com 10 PJM©2009