ITEM	IMAGE	DESCRIPTION
1		BIOTENSEGRITY MODEL Stability of the solar panel base through: - A compression Ball joint. - Four Wire rods in tension.
2		DEGREE OF FREEDOM FOR DAYTIME MOVEMENT OF THE SUN. - The ball joint has no limit in axial rotation to the ball axis, y-axis. This allows a wide degree of freedom to follow the daytime movement of the sun. - The motor moves the brown wire rod to rotate the ball joint on the y -axis. \rightarrow The blue wire rod, attached to the traction spring, maintains the opposite tension to the brown wire rod attached to the motor. Achieving stability. - The Y axis of the drawing must be aligned with the meridian - The X axis of the drawing must be aligned with the parallel.
3		DEGREE OF FREEDOM FOR PRECESSION MOVEMENT. - The ball joint allows limited rotation in the X axes. Enough to follow the annual precession. - The motor moves the red wire rod to rotate the ball joint in the X axis. - The green wire rod, attached to the traction spring, maintains the opposite tension to the red wire rod attached to the motor. Achieving stability.

