

Upper San Luis Rey Groundwater Subbasin G.S.A Executive Team

Wednesday, June 30, 2021 3:00 P.M. 34928 Valley Center Road, Pauma Valley, California

This meeting will be held via Zoom.

AGENDA TOPICS

I. <u>Call to Order</u>

Roll Call - Executive Team

II. <u>ACTION DISCUSSION</u>

1. GSP Development Update

A. Review / Discussion of the Basin Setting Chapter and the Water Model

Background: The Basin Setting Chapter was reviewed by the Executive Team on June 2, 2021 and presented to the Stakeholders on June 16, 2021. This is another opportunity for the team to discuss any concerns or questions with the Geoscience team in relation to this chapter.

B. Discussion: Sustainability Goals

Background: The Geoscience Team will discuss the desired sustainability goals with the Executive Team.

III. OTHER BUSINESS

IV. <u>ADJORNMENT</u>

Sustainability Goals

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	- Migration of plumes - # of Supply wells - Volume - Location of Isocontour	Rate and extent of land subsidence	Chloride Concentration Isocontour

"Sustainability" is Defined Locally

Potential Guiding Principles Informing the USLR GSP:

1

Available groundwater supply reliably supports diverse needs in the Basin.

2

Stored groundwater cost-effectively supports water supply resilience.

3

Groundwater quality is maintained at a standard to maintain beneficial use to meet diverse Basin needs.

4

Cost of maintaining sustainable groundwater levels is fair, feasible, and fiscally-responsible.

SGMA Terminology

Sustainable Management Criteria Must:

- Include a **Sustainability Goal**, which is a succinct big-picture statement of the GSA's objectives and desired conditions and how they will be reached;
- Define Significant and Unreasonable Effects
- Identify representative monitoring sites
- Develop measurable objectives
- Define minimum thresholds
- Determine undesirable results
- Develop Interim Milestones, which are five-year check-ins to measure progress

Achieving Sustainability

Basin-Wide Sustainability Goal

Set minimum thresholds and measurable objectives for all Sustainable Management Criteria

SUSTAINABLE MANAGEMENT CRITERIA

Measure and monitor at each representative monitoring well

REPRESENTATIVE MONITORING WELLS

Achieve goals using projects and management actions, if necessary

PROJECTS & MANAGEMENT ACTIONS

Basin-Wide Sustainability Goal

SGMA requires
that Significant
and Unreasonable
Effects be
described for each
Sustainability
Indicator

What we don't want to happen . . .

SGMA requires that the GSA identify Representative Monitoring Points

Monitoring Points
 Should Be Selected
 Based on Sustainability
 Goal(s)

Undesirable
Results are the
worst-case
scenario

SGMA requires that GSAs develop Minimum Thresholds

 Thresholds are the quantitative, measurable lines in the sand that we don't want to cross.

SGMA requires that GSAs develop Measurable Objectives

 Objectives are specific, quantifiable goals to maintain or improve groundwater conditions

Projects and Management Actions may need to be identified to achieve sustainability

WHAT IS A GROUNDWATER SUSTAINABILITY PLAN?

A plan that will serve as a blueprint for the community's vision of a sustainably managed groundwater basin. The plan will include four main components.

Basin and Aquifer Description Sustainability
Goal to Avoid
Undesirable Results

GROUNDWATER SUSTAINABILITY PLAN

Actions to Achieve the Subbasin's Sustainability Goal

Monitoring Plan

Selection of Representative Monitoring Points

Sustainability Goals

Approach for Sustainability of Groundwater Levels

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	- Migration of plumes - # of Supply wells - Volume - Location of Isocontour	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals for Groundwater Levels

Potential Considerations:

- SGMA does not provide recommendations
- Screen interval in current pumping wells

Sustainability Goals

Approach for Sustainability of Groundwater Storage

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 - Migration of plumes - # of Supply wells - Volume - Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals for Groundwater Storage

Potential Considerations:

- SGMA does not provide recommendations
- Normal year storage
 - Evaluate storage needed to sustain average pumping year, based on average hydrology
- Single dry year storage
 - Evaluate storage needed to sustain pumping during a single dry year
- 5-year drought storage
 - Evaluate storage needed to sustain pumping during a 5-year drought period
 - Can be based on groundwater elevations before and after previous
 5-year drought experienced in Basin
 - Example: 2012 2016

5-Year Drought Conditions

Sustainability Goals

Approach for Sustainability of Interconnected Surface Water

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 Migration of plumes # of Supply wells Volume Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Surface Water Flow – SLR River Gaging Stations

Sustainability Goals

Approach for Sustainability of Water Quality

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 - Migration of plumes - # of Supply wells - Volume - Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals for Groundwater Quality

Potential Considerations:

- SGMA poses two questions:
 - 1. Were undesirable results occurring as of the SGMA baseline of January 2015?
 - 2. Is there a potential for future undesirable results?
- Other Considerations:
 - Current groundwater quality objectives
 - TDS = 800 mg/L (Pauma) and 900 mg/L (Pala)
 - Nitrate (as NO3) = 45 mg/L (Pauma and Pala)
 - Suitability of groundwater for agricultural use
 - Per Stetson (1984) yield is impaired when TDS surpasses:
 - 575 mg/L for avocados
 - 700 mg/L for citrus
 - Average groundwater concentration?

Current Groundwater Quality – TDS

Current Groundwater Quality – Nitrate

Current Groundwater Quality

Monitoring	Nit	trate	TDC	
Well	as N as NO₃*		TDS	
		[mg/L]		
	State MCL = 10	Pacin Ohi - 15	Basin Obj. = 800	
	State MCL - 10	Basin Obj. = 45	State MCL = 1,000	
MW-1	9.3	41.2	400	
MW-2	8.7	38.5	490	
MW-4	21	93.0	850	
MW-5	32	141.7	760	
MW-6	3.4	15.1	680	
MW-9	2.5	11.1	530	
MW-12	2.8	12.4	1,400	
MW-18	< 0.20	< 0.9	240	
MW-19	9.8	43.4	540	
MW-21	10	44.3	530	
MW-22	23	101.8	1,100	
MW-25	1.6	7.1	340	
MW-27	4.7	20.8	530	
MW-29	< 0.20	< 0.9	120	/alley GS
MW-30	4.2	18.6	310	CIENCE

*estimated based on measured Nitrate as N concentration (= [N] x 4.4268)