

Upper San Luis Rey Groundwater Subbasin G.S.A Executive Team Wednesday, September 15, 2021 3:00 P.M. 34928 Valley Center Road, Pauma Valley, California

This meeting will be held via Zoom.

AGENDA TOPICS

I. Call to Order

Roll Call - Executive Team

II. ACTION DISCUSSION

1. GSP Development Update

A. Review / Discussion of the Sustainable Management Criteria Chapter. The Team will review the sustainability goals for the six sustainability indicators

Background: The GSP Development Staff met weekly over the last several months with the consultant to aide in the development of the Sustainable Management Criteria. This will be reviewed and discussed with the entire team.

B. Review and Discussion: Review of draft calendar for required Draft GSP posting and public comment period.

Background: The Executive Team will discussion and coordinate the timing of the approval of the draft GSP, Public Notice for 45 day review and public comment period, subsequent public comment response and final submission to DWR. The posting of the GSP for review and public comment needs to allow a reasonable amount of time for the consultant to draft responses to the public comments.

DRAFT GSP 45 Day Public Comment, Response and Approval Calendar

S 4

OCTOBER 2021

S	Μ	Т	W	Т	F	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

Yuima / CSD Board Mtng. Need to approve
posting of public notice for 45 day Comment
Period. – Not necessarily required

November 2021

	m	t	W	t	f	S
	1	2	3	4	<mark>5</mark>	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	<mark>25</mark>	<mark>26</mark>	27
28	29	30				

11/5/21 – 45 days before 30-day public Comment response period

DECEMBER 2021

S	Μ	Т	W	Т	F	
			1	2	3	
5	6	7	8	9	10	
12	13	14	15	16	17	
19	20	21	22	23	<mark>24</mark>	
26	27	28	29	30	31	

JANUARY 2021

S	Μ	Т	W	Т	F	S
•	-		_	~	_	1
2	3	4	5	6	/	8
9	10	11	12	13	14	15
16	17	18	19	<mark>20</mark>	21	22
23	<mark>24</mark>	25	26	27	28	29
30	<mark>31</mark>					

Groundwater Sustainability Plan Upper San Luis Rey Groundwater Subbasin

GEOSCIENCE

The First Name in Groundwater

GSA Meeting

September 15, 2021

Sustainable Management Criteria Chapter

Sustainable Groundwater Management is defined as the "...management and use of groundwater in a manner that can be maintained during the planning and implementation horizon without causing undesirable results..." (Water Code Section 10721 (v))

Goal

• Develop sustainability goals based on findings from the Basin Setting chapter and desired basin operations. This includes the establishment of Undesirable Results, Measurable Objectives (or sustainability indicators), and Minimum Thresholds.

Sustainability Goals

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	- Migration of plumes - # of Supply wells - Volume - Location of Isocontour	Rate and extent of land subsidence	Chloride Concentration Isocontour

SGMA Terminology

- **Sustainability Goal:** a succinct big-picture statement of the GSA's objectives and desired conditions and how they will be reached.
- **Undesirable Result:** significant and unreasonable conditions for any of the six sustainability indicators.
- **Measurable Objective:** specific, quantifiable goal to track the performance of sustainable management.
- **Minimum Threshold:** numeric value used to define undesirable results for each sustainability indicator.
- Interim Milestone: target value representing measurable groundwater conditions, in increments of five years, set by the GSA as part of the GSP.

Representative Monitoring Points

Sustainability Goals: Groundwater Levels

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 Migration of plumes # of Supply wells Volume Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Groundwater Levels

- Undesirable Result: Groundwater levels at the elevation of current pump settings
- Minimum Threshold (MT): Set at wells by operators as lowest operational level
- **Measurable Objective (MO):** Elevation representing 3-yrs of groundwater in storage (approximately 50 ft above MT elevations)
- Interim Milestone (IM): ½ of representative pumping wells with current elevations at or above MO. IMs for wells with water levels below the MO will be determined at 5-yr reporting after consistent data collection and on refinement of groundwater model and updated analysis of basin storage to evaluate, if appropriate, the quantity of water needed to reach the MO elevations.

Setting Minimum Thresholds for Groundwater Level

Example of Provided Data

ID	Well Depth	Current Pump	Minimum Operational
T	-	Setting Depth	Groudwater Level
MW-10	229		180' static
MW-11	200	No pump	
MW-12	204		165' static
MW-13	230		
MW-14	210	180	150' static
MW-23	229	210	205' pumping
MW-24	364	340	335' pumping
MW-25	1016	609	604' pumping

Setting Measurable Objectives for Groundwater Level

Example from Table of Minimum Thresholds and Measurable Objectives

Well ID	(Deptl	h 2021 1 below P)	June 2021 Depth to Water (below RP)	June 2021 Groundwater Elevation	Minimum Threshold (elevation in ft amsl)	Depth to Water at Minimum Threshold Elevation (ft bgs) Model-Calculated	Measureable Objective Elevation (Threshold for 54,000 Acre-ft Operational Storage)	Depth to Water at Measureable Objective (ft bgs)
MW-10*	14	1.48	145.18	663.48	629	Model-Can 180	688	121
MW-11	15	8.88	164.48	603.02	NA	NA	NA	NA
MW-12*	12	3.73	130.00	630.65	596	165	655	106
MW-13*	14	3		Μ	W-12	85	625	126
MW-14*	15	900				.50	654	91
MW-23**	10	800			Land Surface= 759 ft ar	nsl .05	565	146
MW-24**	13					35	444	276
MW-25*	21	700			~~	04	216	545
MW-26*	13				- Marine	85	561	126
	•	600						
		500		Screen In Well Dept	terval 114 to 194 ft bgs h ? ft			
		400 1	966 1976 —Minimum T — Land Surfa	1986 hreshold —Measu	urable Objective → Measured	2016	Ра	auma Valley GSA GEOSCIENCE

Well ID	March 2021 (Depth below RP)	June 2021 Depth to Water (below RP)	June 2021 Groundwater Elevation	Minimum Threshold (elevation in ft amsl)	Depth to Water at Minimum Threshold Elevation (ft bgs)	Measureable Objective Elevation (Threshold for 54,000 Acre-ft Operational Storage)	Depth to Water at Measureable Objective (ft bgs)
MW-1*	138.51	178.45	1412.46	1291	300	1350	241
MW-2*	265.52	328.21	1205.24	1108	425	1168	366
MW-3	262.17	291.97	986.23	NA	NA	NA	NA
MW-4	207.25	212.10	987.56	NA	NA	NA	NA
MW-5*	195.05	215.88	784.36	730	270	789	211
MW-6***	74.65	170.00	635.36	620	185	680	126
MW-7***	80.19	105.10	696.80	NA	NA	NA	NA
MW-8***	95.52	118.35	681.35	NA	NA	NA	NA
MW-9*	98.2	115.88	682.36	623	175	682	116
MW-10*	141.48	145.18	663.48	629	180	688	121
MW-11	158.88	164.48	603.02	NA	NA	NA	NA
MW-12*	123.73	130.00	630.65	596	165	655	106
MW-13*	143.85	148.13	602.54	566	185	625	126
MW-14*	151.4	154.10	590.72	595	150	654	91
MW-15	47.9	48.27	708.42	NA	NA	NA	NA
MW-16	41.46	42.70	705.89	NA	NA	NA	NA
MW-17	40.46	41.43	705.88	NA	NA	NA	NA
MW-18	319.55	316.77	639.23	141	NA	NA	NA
MW-19*	222.2	255.01	556.46	549	262	609	203
MW-20*	218.51	258.82	545.36	545	259	604	200
MW-21	216.58	488.10	252.94			NA	NA
MW-22	100.2	120.12	621.22			NA	NA
MW-23**	109.13	133.54	577.03	506	205	565	146
MW-24**	137.35	244.65	475.01	385	335	444	276
MW-25*	217.1	516.91	243.86	157	604	216	545
MW-26*	134.6	142.70	544.48	502	185	561	126
MW-27*	133.55	196.09	486.28	497	185	557	126
MW-28	114.17	114.85	635.07	NA	NA	NA	NA
MW-29	124.69	117.55	1131.43	NA	NA	NA	NA
MW-30***	45.19	94.98	406.07	NA	NA	NA	NA

Wells with Current Water Levels Below Measurable Objectives

Pauma Valley GSA

Rainfall and Groundwater Level Recovery

Sustainability Goals: Groundwater Storage

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	- Migration of plumes - # of Supply wells - Volume - Location of Isocontour	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Groundwater Storage

- Undesirable Result: Groundwater in storage when water levels are at the elevation of current pump settings
- Minimum Threshold (MT): Groundwater in storage at groundwater level MTs
- Measurable Objective (MO): 3-years of groundwater in storage (approximately 54,000 acre-ft)
- Interim Milestone (IM): To Be Determined at 5-year reporting period based on refinement of groundwater model and analysis of basin storage from expanded data collection

Sustainability Goals: Interconnected Surface Water

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	- Migration of plumes - # of Supply wells - Volume - Location of Isocontour	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Interconnected Surface Water

- **Undesirable Result:** Groundwater levels falling below the lowest groundwater level during the 2015 through current time period
- Minimum Threshold (MT): MTs for groundwater levels
- **Measurable Objective (MO):** Highest groundwater elevations since 2015 in five areas with potential surface water interaction
- Interim Milestone (IM): None needed; groundwater levels in shallow areas are within three feet, at, or above ground surface

Surface Water Flow and Groundwater Elevations

Sustainability Goals: Water Quality

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 Migration of plumes # of Supply wells Volume Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Groundwater Quality

- Undesirable Result: Total Dissolved Solids (TDS) and Nitrate above Basin Objectives (800 mg/L for TDS, 45 mg/L for Nitrate as NO₃)
- Minimum Threshold (MT): Basin Objectives for TDS and Nitrate
- Measurable Objective (MO): Current groundwater quality for TDS and Nitrate as NO₃ at current ambient concentrations (ambient concentrations assumed to be the median of available basin wide concentrations: 607 mg/L for TDS, 25.7 mg/L for Nitrate as NO₃)
- Interim Milestone (IM): Current TDS and Nitrate concentrations are at the measurable objectives

Determining Ambient Groundwater Quality

- Identify wells in groundwater basin with 3 or more water quality datasets (USGS Methodology)
 - 44 Wells in Pauma Subbasin with 3 or more datasets between 2015-2021
- Calculate average water quality for each well
- Ambient water quality for the subbasin assumed to be median concentration
 - Medians were used instead of arithmetic averages because:
 - 1) Well medians can be reliably calculated for datasets with mixed censored and non-censored data (detects and non-detects) and
 - 2) Well medians allow for the use of an entire water quality dataset while minimizing the skewing effect of potential data outliers and do not rely on parametric statistical methods that assume normal data distribution to remove potential outliers.

Pauma Valley GSA

Wells with 3 or More Data Sets (2015 – 2020)

Sustainability Goals: Land Subsidence

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 Migration of plumes # of Supply wells Volume Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Land Subsidence

- Not applicable based on current information
- The GSP will include sections describing the indicator and note that there is no current reports/evidence of this issue occurring in the basin, but stipulate that 5-year reports will include a review of potential data to confirm or address whether these issues show new evidence during the five-year reporting period.

TRE Altamira InSAR Dataset (June 2015 – September 2020)

Sustainability Goals: Seawater Intrusion

The goal of SGMA is groundwater sustainability, which includes:

SUSTAINABILITY INDICATOR	CHRONIC LOWERING OF GROUNDWATER LEVELS	REDUCTION OF GROUNDWATER STORAGE	INTER- CONNECTED SURFACE WATER DEPLETIONS	WATER QUALITY DEGRADATION	LAND SUBSIDENCE	SEAWATER INTRUSION
METRIC(S) USED	Groundwater elevation	Total volume	Volume or rate of surface water depletion	 Migration of plumes # of Supply wells Volume Location of Isocontour 	Rate and extent of land subsidence	Chloride Concentration Isocontour

Sustainability Goals: Seawater Intrusion

- Not applicable based on current information
- The GSP will include sections describing the indicator and note that there is no current evidence of this issue occurring in the basin, but stipulate that 5-year reports will include a review of potential data to confirm or address whether these issues show new evidence during the five-year reporting period.

Achieving Sustainability

Projects and Management Actions

- A predictive scenario was run with the calibrated groundwater flow model to evaluate whether historical hydrology would provide enough natural recharge to meet measurable objectives without additional management actions.
 - Current estimated pumping relationship based on hydrology
 - Run for 30 years
 - Hydrologic period from 1991 through 2020
 - *Represents average hydrologic conditions, including wet and dry periods*

Precipitation at Henshaw Dam

Example of Scenario Results

Observed

 Annual Precipitation, inches

Model-Predicted MW-26 Model Simulated Land Surface • MO Land Surface= 684 ft **MW-26** Groundwater Elevation, ft amsl Predicted water levels in MW-26 do not meet 490 410 330 330 Measurable Objectives under current pumping conditions and assumed future (average) hydrology

2017

Ö Water Year

Pauma Valley GSA GEOSCIENCE

Calendar Year	Total Inflow	al Inflow Groundwater Pumping Bonsall Basin		Total Outflow	Change in Storage	
	acre-ft		acre-ft		acre-ft	
2021	18,324	14,154	4,822	21,564	-3,240	
2022	15,953	13,946	4,760	20,946	-4,993	
2023	42,937	14,808	5,448	24,019	18,919	
2024	11,429	14,388	4,754	21,990	-10,561	
2025	30,314	14,599	5,099	23,059	7,255	
2026	13,135	14,266	4,728	21,558	-8,422	
2027	12,178	13,972	4,733	20,920	-8,741	
2028	32,970	14,294	5,010	22,001	10,969	
2029	5,881	13,935	4,690	20,707	-14,826	
2030	11,938	13,517	4,661	20,016	-8,079	
2031	12,618	13,350	4,737	19,829	-7,211	
2032	5,584	12,971	4,626	19,057	-13,473	
2033	22,816	13,027	4,731	19,384	3,432	
2034	17,675	12,723	4,665	18,810	-1,135	
2035	49,016	14,250	5,311	22,009	27,007	
2036	14,170	13,751	4,757	20,500	-6,330	
2037	2,999	13,314	4,663	19,564	-16,565	
2038	19,592	13,154	4,728	19,410	182	
2039	20,420	13,251	4,701	19,605	815	
2040	33,677	13,457	4,849	20,223	13,455	
2041	34,951	13,953	5,181	21,662	13,289	
2042	15,257	13,763	4,845	20,773	-5,516	
2043	9,567	13,483	4,762	20,108	-10,541	
2044	9,500	13,202	4,722	19,568	-10,068	
2045	13,242	13,009	4,746	19,301	-6,059	
2046	18,989	12,974	4,792	19,318	-329	
2047	36,227	13,466	5,113	20,748	15,480	
2048	10,578	13,207	4,753	19,653	-9,075	
2049	44,356	13,686	5,251	21,348	23,007	
2050	28,812	13,983	5,118	21,741	7,071	
Average 2021 to 2050	20,504	13,662	4,858	20,646	-143	

Upper San Luis Rey Valley Groundwater Balance – Predictive Model Scenario

- Small amount of change in storage (approximately -143 acre-ft/yr) manageable through potential projects and management actions
- **NEXT STEPS:** Evaluate potential projects/management actions

Questions

Please feel free to contact us!

Geoscience Support Services, Inc.

Lauren Wicks (Project Geohydrologist) Lwicks@geoscience-water.com

Brian Villalobos (Principal Geohydrologist) Bvillalobos@geoscience-water.com

Yuima Municipal Water District

Amy Reeh (Interim General Manager) amy@yuimamwd.com