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IE120R Single Chip Image Encoder 

 
Introduction 
The IE120R is a high-performance, Verilog-based image encoder designed to convert 896x896x3 
RGB images into 7x7x512 feature maps at 100 frames per second and constant latency of 
11.572740 milliseconds. Implementing a VGG-style convolutional neural network (CNN) backbone 
with 21 layers and 10 million weights, the IE120R utilizes pipelining and parallel execution to 
achieve efficient, low-latency operation with a 250MHz clock. 

The encoder supports AXI-S-compatible real-time streaming interfaces and uses pretrained 
weights distilled from a ResNet-18 model available on HuggingFace. Its self-contained architecture 
minimizes intermediate storage requirements by processing images on a per-row basis. The IE120R 
is optimized for integration into real time systems, with a constant input rate of 100,000 rows per 
second and fixed latency from input to output. 

This specification outlines the Verilog module architecture, implementation, and performance 
evaluation. Key topics include PyTorch and Verilog implementations, pretraining methodology, 
functional verification flow, and system integration use cases. The IE120R is designed to address 
the demands of real-time vision systems, offering a robust solution for applications ranging from 
robotic control to human imitation learning. 

PyTorch Model 
The IE120R is implemented as a CNN backbone using PyTorch, consisting of 21 layers composed of 
Conv2d, BatchNorm2d, and ReLU operations as shown in Figure 1. Five intermediate feature maps 
are projected into a ResNet-compatible feature space using 1×1 convolution layers with linear 
activation functions. These projections are employed during pretraining for knowledge distillation. 

Installation of the IE120R PyTorch model is supported via Python using import 
siliconperception, or by cloning the siliconperception/IE120R.git github repository. The 
pretrained weights are hosted on HuggingFace, enabling straightforward initialization for further 
development or evaluation. The model supports conversion to its Verilog implementation, including 
operations for weight quantization and batch normalization fusion. 
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Figure 1 

 

To install the IE120R. 

pip install --upgrade siliconperception 

git clone git@github.com:siliconperception/IE120R.git 

Model Accuracy Evaluation 
The accuracy of the IE120R was evaluated using a single linear layer trained to map the 7x7x512 
output feature map to 1000 ImageNet class logits. By freezing the encoder weights and training only 
the linear classifier layer, we can benchmark the accuracy of the IE120R against a pretrained 
Resnet-18 feature extractor. This procedure is shown in Figure 2. Note that the IE120R accepts an 
896x896 resolution image compared to the 224x224 Resnet-18 input resolution. The output feature 
maps are the same shapes. 

To compare the accuracy of the IE120R and Resnet-18 pretrained encoders, we train for 10000 
batches on the Imagenet training distribution and then measure the top-1 accuracy using the 
validation set. The code below produces the accuracy validation test results. 

cd IE120R/scripts 

./dataset.bash 

python classify.py –backbone resnet18 

python classify.py -backbone ie120r 
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Figure 2 

The results from this comparison are shown in Table 1, demonstrating that the IE120R is a 
functional replacement for the Resnet-18 backbone. 

Table 1 

 IE120R_HW Resnet-18 
Top-1 accuracy @10K batches 47.1% 47.3% 
Weights 10.1M, bfloat18 11.1M, float32 
FLOPS 0.684T 0.181T 
Input shape [896,896,3] [224,224,3] 
Output shape [7,7,512] [7,7,512] 

Verilog Module 
The IE120R Verilog module is a streaming dataflow implementation of the Pytorch IE120R() 
model, with the following modifications: 

• only the 7x7x512 projected feature map is emitted  
• BatchNorm2d() layers are merged with the previous layer Conv2d() parameters 
• weights are quantized to bfloat18 (1 sign, 8 exponent, 9 mantissa bits) 
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Note that the bias values and intermediate tensor results use float32 precision. 

The module ports are shown in Figure 3. The clock runs at 250Mhz and the reset signal is 
synchronous to clk.  

 

Figure 3 

The input signals are s_valid, s_col, s_row and s_data. The s_data bus contains 3*32 signals 
containing the float32 values of the RGB pixels. The s_valid signal is used to qualify s_data, s_row, 
and s_col. The s_row and s_col signals range from 0..895. After reset is deasserted, the input 
interface should receive 896*896 clocks with valid asserted per frame. The s_row and s_col signals 
should increment in ‘C’ order, corresponding to the s_data RGB pixels in raster order. The row time 
is designed to run at a fixed 10 microsecond period, which requires s_row to increment with row 
time Trow>= 10us. This rate is equivalent to 100000 rows/s, or 100 frames/s with 12% blanking time 
at 896 rows/frame. 

The ie120r() top level interface protocol is shown in Figure 4 and Figure 5. 
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Figure 4 

The output signals are m_valid, m_row, m_col, m_chan, m_last and m_data. The output features 
are interleaved in the channel dimension. The equation to map the ie120r() outputs m_chan[5:0] 
and m_data[8*32-1:0] to the deinterleaved m_data_flat[512*32-1:0] is: 

for i=0…7, mchan=0..63 : 

    m_data_flat[(511-i*64-m_chan)*32 +:32] = m_data[i*32 +=32]  

 

Figure 5 
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To minimize internal buffering, the IE120R is designed to run at a constant row rate which can be 
controlled using the TDMPAD parameters in the ie120r() module. Each layer has a separate 
TDMPAD parameter which must be scaled depending on the target row rate. The parameter values 
in the default code are designed for 100000 rows/s which corresponds to 111.6071429 frames/s. 
Each layer TDMPAD value must be scaled linearly to change the input row rate. For example, to 
process 100 frames/s the row rate is 896*100, so all the TDMPAD values must be multiplied by 
100000/89600=1.116. Note that the IE120R requires a partial frame buffer between the image 
sensor and the ie120r() module to remove the blanking time and ensure a constant row rate. 

To prepare a trained Pytorch IE120R model to run on the Verilog hardware, the Batchnorm2d() layers 
must be merged with Conv2d() and the weights quantized to bfloat18 format. The IE120R_HW() 
model is a Pytorch model which contains methods to perform these operations. Here is code to 
create a hardware model using the pretrained weights from HuggingFace and then generate files 
containing the layer weight and bias values. 

encoder = IE120R.from_pretrained(‘siliconperception/IE120R’) 

h _encoder = IE120R_HW(encoder) 

h _encoder. rite_memh(x) 

h _encoder. rite_mif(x) 

Functional Verification 
The IE120R/ erilog/sim directory contains a testbench which verifies that the Verilog code 
matches the Pytorch reference implementation. The test.py program first loads the IE120R_HW() 
model with pretrained weights, then evaluates the model using a test image, and finally writes 
Verilog .memh files for the weight and bias values, the input image, and the intermediate layer 
activations from Pytorch. These .memh files are read by the testbench test. , which first preloads 
 eight*.memh and bias*.memh into per-layer memories, then injects input.mem serially into the 
encoder ie120r. , and finally checks the output against the Pytorch reference outputs 
acti ation*.memh.  

The verification flow is shown in Figure 6. 
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Figure 6 

To run the simulation 

pip install numpy torch torchinfo c 2 

pip install --upgrade siliconperception 

python3 test.py 

i erilog -  -g2012 -o sim.  p ie120r_func.  test.  -s tb 

  p sim.  p -lxt2 

 

The waveform in Figure 7 was produced by test.  and shows the data flow through 22 layers, the 
11.572 ms latency from last pixel in to last feature out, and continuous pipelined operation from 
frame 0 to frame 1. 
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Figure 7 

Quartus Compilation 
The IE120R/ erilog/agilex directory contains the files necessary to compile the IE120R using 
Quartus. 

top. , top.sdc, ie120r_agilex.  *.ip 

The weight and bias values are stored in Agilex ROM IP, which is initialized using a memory 
initialization file and compiled into the bitstream. IE120R.py currently only produces .memh format 
files for weight and bias via write_memh(). TBD: add support to produce .mif or .hex format files for 
bitstream generation. TBD: run functional verification test using Agilex simulation models for weight 
and bias ROM IP, and native floating point DSP IP. 

Flo  Status Successful - Thu Dec 26 12:55:07 2024 

Quartus Prime Version 23.4.0  uild 79 11/22/2023 SC Pro Edition 

Re ision Name top 

Top-le el Entity Name top 

Family Agilex 7 

De ice A I 027R29A1E1V  

Timing Models Preliminary 

Po er Models Preliminary 

De ice Status Preliminary 

Logic utilization (in ALMs)  266,302 / 912,800 ( 29 % ) 

Total dedicated logic registers 435942 

Total pins     394 / 1,040 ( 38 % ) 

Total block memory bits   216,203,136 / 271,810,560 ( 80 % ) 

Total RAM  locks    12,978 / 13,272 ( 98 % ) 
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Total DSP  locks    3,960 / 8,528 ( 46 % ) 

Total HSSI HPS    0 / 1 ( 0 % ) 

Total HSSI R-Tiles   0 / 3 ( 0 % ) 

Total PLLs     0 / 36 ( 0 % ) 

Pretraining 
The IE120R has been pretrained using knowledge distillation from the timm resnet18 weights. The 
pretraining starts with unlabeled images drawn from the Imagnet training set. The unlabeled images 
are resized to 224x224 and evaluated using the pretrained timm resnet18 model to produce target 
labels for the output feature maps. These dense labels are used to train the output of the IE120R 
using a pairwise distance loss function. This approach produces a pretrained IE120R student 
model which is effectively a clone of the timm resnet 18 teacher model. This procedure is shown in 
Figure 8. 

IE120R/scripts/pretrain.py 

 

Figure 8 

Reference Designs 
The IE120R can be used as a component in a real time system. To highlight the high speed and low 
latency capabilities, the following concepts are potential reference design projects. 

Figure 9 shows a simple active vision demo with a low latency vision to action loop. The images are 
captured using an image sensor with 896x896 RGB resolution, 100 frames/s, and low latency PCIe 
connectivity. For example, the XIMEA camera with PCIE adapter board. A passive PCIe backplane 
connects the camera interface board to the Agilex development board using the PCIe gold finger 
connector. The Agilex board reads pixels from the camera over PCIe, sends them to the IE120R 

https://www.ximea.com/accessories/hostadapters/host-adapter-with-2-ports-for-pcie-gen-3-x4-firefly-cables
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module, receives the encoded 7x7x512 feature map, and executes a small decoder to predict servo 
pose for high speed, low latency keypoint tracking e.g. “follow my finger”. 

 

Figure 9 

In Figure 10, the stateless pose decoder is replaced with a transformer model running on 
another device, for example from the Jetson Orin family. The transformer is a sequence-to-
sequence model, which enables the pose decoder to perform complex actions guided by the 
perception tokens from the IE120R. The Agilex board is responsible for reading pixels from the 
camera and running the IE120R image encoder. The feature maps are sent as a token stream to 
the downstream transformer model over either PCIe or Ethernet. This type of system is capable 
of imitation learning using shadowing. For example, it could learn how to control a marble maze 
game using human imitation. Another example is a “pinball wizard” demo which controls a 
commercial pinball machine, including ball launch and flippers, also trained from human 
example. A system with IE120R encoders and a small, fast transformer-based pose decoder 
can perform sophisticated actions. Multiple IE120R encoders allow full perception with 
binocular vision, 3D audio, and inertial sensors. The transformer pose decoder predicts the 
target angle for each degree of freedom DoF in the robot. 
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Figure 10 

The ultimate application for the IE120R is in a humanoid robot, converting binocular images and 
spectrogram encoded signals for audio, tactile, inertial and other sensors into a sequence of dense 
tokens. Intermediate milestones toward this goal include low latency keypoint detection for human 
shadowing, low latency shadowing using a seated humanoid robot, and fast pose decoding using a 
small transformer or CNN. 


