
R Chapter 1
We set apart the R code in a different font, and preface it with 
a “>” symbol. This is the symbol that appears on the R console 
after which you type in the command. Don’t type in the > symbol 
itself. After you are done typing in the code for a particular com-
mand, press Return (i.e., the Enter key). More information on R, 
including scripts that go along with many of the examples in each 
chapter is available on the book’s website www.ArtofStat.com. 

jj Data Entry:  To create a single list of observations of,  
say, numbers of hours watching TV, use the c() command, as in  
> tvhours <- c(3, 1, 0, 0, 2, 1, 3)  for entering seven 
observations. The c stands for concatenate. To see the result of
your entry, type > tvhours and press Return. For reading
in descriptions instead of numbers, such as seven observations
on happiness, use > happiness <- c('very', 'not',
'very', 'pretty', 'very', 'not', 'pretty').
You can use single quotes (as in 'very') or double quotes (as in
"very") to enclose each description.

For reading in more complex data, it is best to create a data 
file as discussed in Section 1.3 with a spreadsheet program 
(i.e., Excel or Google Sheets) and save it in .csv format. Then, 
in R, use the read.csv()function to read in the data file.  
To automatically open a dialogue that lets you select the file, 
use > mydata <- read.csv(file.choose()). Then, to see  
the result, type > mydata and press Return. Here is how your 
screen should look like when entering the above commands:

jj Random Samples:  The R command sample() generates ran-
dom numbers. For instance, > sample(30, 5) provides five 
numbers randomly selected from the numbers 1 through 30.
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R Chapter 2

Check out the sample R scripts posted on www.ArtofStat.com 
(go to the tab titled “R Code”), which replicate the entire anal-
ysis from Examples 2 through 10. Here is just a short summary.

jj Frequency Tables and Bar and Pie Charts:  To create a fre-
quency table when data are already available in summarized 
form, use the data.frame command to create two columns, 
as in:
> favcol <- c('red', 'blue', 'green')

> frequency <- c(25, 17, 14)
> mytab <- data.frame(favcol, frequency)

Then, get percentages for each category through

> �mytab$percent <- 100*mytab$frequency/
sum(mytab$frequency)

> mytab
favcol frequency  percent

1    red 25 44.64286
2   blue 17 30.35714
3  green 14 25.00000

You can obtain a pie chart with

> pie(mytab$frequency, labels=mytab$favcol)

and a bar graph with

> barplot(mytab$frequency, names.arg=
mytab$ favcol)

If you prefer to plot percentages, use mytab$percent instead.

If you have the individual observations, as in

> favcol <- c('blue', 'red', 'red', 'blue',
'green', 'red', 'blue', 'red', 'red', 'green')

you can get a frequency table like this

> mytab <- as.data.frame(table(favcol))
> colnames(mytab) <- c('favcol', 'frequency')
> mytab$percent <- 100*mytab$frequency/
sum(mytab$frequency)

and continue with plots as before.
jj Summary Statistics, Histograms, and Box Plots:  If > tvhours =  
c(3, 1, 0, 0, 2, 1, 3) then > summary(tvhours) gives  
the 5-number summary and the mean. mean, median, sd, 
IQR are individual R commands used as in > mean(tvhours). 
> hist(tvhours)and > boxplot(tvhours) give the corre-
sponding plots.
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> plot(protein, cost, xlab='Protein Content
(g)', ylab='Cost of Sandwich', main=
'Scatterplot of 15 Sandwiches', col='red')

jj Loading .csv Data File into R and Fitting Regression Model:  
Now, we illustrate loading a .csv data file (the Internet Use 
data) into R, creating a scatterplot, overlaying the regression 
line, and obtaining the intercept and slope. (Note: Any text 
after the # symbol is a comment. It is not part of the R com-
mand and only serves to explain what the command is doing. 
You don’t have to type it into R.) 

jj

> myfile <- file.choose()  #point to where 
your .csv file is located
> InternetUse <- read.csv(myfile)  #reads in
the file
> colnames(InternetUse)  #to see the names of
variables in dataset
> attach(InternetUse)  #so you can refer to 
variable names
> plot(Internet.Penetration,
Facebook.Penetration, col='red')
> lin.reg <- lm(Facebook.Penetration ~ 
Internet.Penetration)
> lin.reg
Coefficients:

(Intercept)  Internet.Penetration
7.8980                0.4389

> abline(lin.reg, col='blue')

R Chapter 3

Check out the sample R scripts posted on ArtofStat.com (go to 
the tab titled R Code), which replicate the analysis from many 
examples in this chapter. Here is just a short summary.

jj Contingency Tables and Bar Graphs: To read in a 2 : 2 contin-
gency table, create a matrix and give it row and column names:
> counts <- c(29, 98, 19485, 7086)
> mytable <- matrix(counts, nrow=2, ncol=2,
byrow=TRUE, dimnames=list('Food Type'
= c('Organic', 'Conventional'), 'Pesticides'
= c('Present', 'Absent')))
> mytable

Pesticides
Food Type Present Absent
  Organic 29 98
  Conventional   19485   7086
Then, find the conditional proportions for pesticide status 
through
> cond.props <- prop.table(mytable,1)
> cond.props

Pesticides
Food Type Present    Absent
  Organic 0.2283465 0.7716535
  Conventional 0.7333183 0.2666817
Plot the ones for the presence of pesticides in a bar graph 
like this:
> barplot(cond.props[,1], xlab='Food Type',
ylab='Proportion', ylim=c(0,1), main=
'Proportion of Food Samples \n with Pesticide
Present', col=c('green4', 'orange2'))

jj Scatterplots: To create a scatterplot in R, provide the x- and 
y-variable and use the plot() command, illustrated here
with the Subway Sandwich data:
> protein <- c(19, 36, 16, 19, 20, 23, 25,
29, 18, 23, 24, 25, 19, 18, 9)
> cost <- c(3.89, 4.99, 3.89, 4.39, 3.99,
4.39, 5.09, 4.89, 3.99, 4.89, 4.89, 4.89, 
4.39, 4.49, 3.89)
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j Correlation Coefficient r and r2: To obtain ‘the correlation  
coefficient r, use the cor() command. Square it to get r2:
> cor(protein, cost)
[1] 0.7824487
> cor(protein, cost)^2
[1] 0.6122259

j Intercept and Slope for Regression Equation: To obtain the in-
tercept and slope for the linear regression equation, and to over-
lay the regression line over the scatterplot constructed above, 
use:
> lin.reg <- lm(cost ~ protein)
> lin.reg
Coefficients:
(Intercept) protein
    3.23228 0.05717
> abline(lin.reg, col='blue')



R Chapter 4

jj Random Samples:  The R command sample generates 
random numbers. For instance, > sample(30, 5) provides 
five numbers randomly selected from the numbers 1 through 
30. For sampling with replacement, use > sample (30, 5,
replace=TRUE).
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30. For sampling with replacement, use > sample(30, 5,
replace=TRUE). The simple command > sample(30) 
provides a random permutation of the first 30 numbers.

R Chapter 5
j Random Samples: The R command sample() generates 
random numbers. For instance, > sample(30, 5) provides  
five numbers randomly selected from the numbers 1 through  
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R Chapter 6

jj Normal Distribution:   The R command pnorm finds proba-
bilities under the normal curve. From Example 7,

> pnorm(230, mean=330, sd=80)
[1] 0.1056498

tells us that the probability of falling below 230 in a nor-
mal distribution with mean 330 and standard deviation 80 is  
0.1056, or 10.56%. The command > pnorm(430, mean=330,

sd=80, lower=FALSE) gives the probability of falling 
above 430. To get the probability of falling within 230 and 430, 
use > pnorm(430, mean=330, sd=80) - pnorm(230,
mean=330, sd=80), or, for the answer to the question in 
Example 10, > pnorm(90, mean=83, sd=5) - pnorm(80, 
mean=83, sd=5).

To find a percentile, for instance the 98th percentile for Mensa 
membership in Example 8, use

> qnorm(0.98, mean=100, sd=16)
[1] 132.86

to find that the required IQ score is 133.  When you don’t spec-
ify a mean and standard deviation, R automatically assumes a 
mean of 0 and standard deviation of 1, i.e., the standard nor-
mal distribution, so that > pnorm(1.96)returns 0.975 or  
> qnorm(0.025)returns -1.96. Finally, to draw a normal dis-
tribution in R, let

> mu <- 0
> sigma <- 1
> x <- mu + seq(-3.2, 3.2, 0.01)*sigma
> plot(x, dnorm(x, mean=mu, sd=sigma), type='l',
ylab="")

You can set your own values for mu and sigma in the first 
two lines.

jj Binomial Distribution:  The R command dbinom finds prob-
abilities for the binomial distribution, such as the probability of 
2  matches P122 = 0.096 when n = 3 (specified using size) 
and p = 0.2 (specified using prob) in Example 12:

> dbinom(2, size=3, prob=0.2)
[1] 0.096
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To find the probability for the number of successes to be less 
than or equal to 2, use > pbinom(2, size=3, prob=0.2). 
To draw the binomial distribution in R, such as in Figure 6.13 
use

> n <- 10
> p <- 0.15

> plot(0:n, dbinom(0:n, size=n, prob=p), type=’h’,
ylab='Probability')

You can set your own values for n and p in the first two lines.



> bootsamp2 <- sample(sugar, replace=TRUE) #
another bootstrap sample
> median(bootsamp2) #median of bootstrap sample
[1] 6
> bootmedian <- c() #initializing
> for(i in 1:10000) bootmedian[i] <-
median(sample(sugar, replace=TRUE))
#creating 10,000 bootstrap samples
> head(bootmedian) #first 6 bootstrapped medians
[1] 9.5 12.0 11.5  6.5 11.0 10.0
> summary(bootmedian)
Min.     1st Qu.     Median     Mean     3rd Qu.  Max.
3.00          7.00      9.50     8.96     11.00 14.50
> sd(bootmedian) #bootstrap std. deviation
[1] 2.1797

We specified the sugar values and then illustrated how to cre-
ate a bootstrap sample (bootsamp1, bootsamp2). The for 
loop generates a bootstrap sample 10,000 times and finds the 
median for each, saving it to bootsmedian—which we needed 
to initialize—for each iteration. After the for loop is com-
pleted, bootmedian contains the 10,000 medians generated. 
Summary statistics of the 10,000 generated bootstrap medians 
are shown via summary and sd. Type > hist(bootmedian) 
to obtain a histogram of the bootstrap distribution. To obtain 
the bootstrap distribution for the mean or standard deviation, 
simply replace the median command with mean or sd in the 
for loop. For carrying out the bootstrap with R for other sta-
tistics, such as the correlation, refer to the book’s website for 
examples.

R Chapter 7

jj Bootstrap:  The sample command in R, together with the 
replace=TRUE option can draw samples with replacement, 
i.e., bootstrap samples. We illustrate with finding the boot-
strap distribution for the median as in Activities 4 and 5, using
the cereal sugar data.

> sugar <- c(11, 18, 5, 14, 12, 1, 10, 16,
0, 12, 14, 7, 9, 6, 3, 15, 4, 4, 3, 11)
> median(sugar) #observed median
[1] 9.5
> bootsamp1 <- sample(sugar, replace=TRUE) #
a bootstrap sample
> bootsamp1
[1] 9  4 11  4 11  0 12 11  3  7  9  7 15
6  5  6 16 11 16  4
> median(bootsamp1) #median of bootstrap sample
[1] 8
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> se <- sqrt(phat  *(1- phat)/n)
> zscore <- qnorm(0.975)
> me <- zscore*se
> phat + c(-1,1)*me

pressing return after each, to obtain the 95% confidence inter-
val and its components (e.g., to see the margin of error, type me 
and press return). Alternatively, you can use the prop.test 
function to obtain a confidence interval, with output (edited) 
shown below:

> prop.test(637, 1361, conf.level=0.95,
correct=FALSE)
95 percent confidence interval:
 0.4416559 0.4946004
sample estimates:

p
0.4680382

This is actually the (Wilson) interval from Exercise 8.123, 
which for large n is the same as the one from Section 8.2. For a 
99% confidence interval, use conf.level=0.99.

jj Confidence Interval for a Mean:  In R, using data from 
Example 9, type

> x <- c(540, 565, 570, 570, 580, 590, 590,
590, 595, 610, 620)

to read in the observations, then type

> n <- length(x)
> xbar <- mean(x)
> s <- sd(x)
> se <- s/sqrt(n)
> tscore <- qt(0.975, df=n-1)
> me <- tscore*se
> xbar + c(-1,1)*me

to obtain the confidence interval. More conveniently, the
t.test function returns the same, with output (edited):

> x <- c(540, 565, 570, 570, 580, 590, 590,
590, 595, 610, 620)
> t.test(x, conf.level=0.95)
95 percent confidence interval:
 568.7583 598.5144
sample estimates:
mean of x
 583.6364

For a 99% confidence interval, use conf.level=0.99.

R Chapter 8
jj Confidence Interval for a Proportion:  In R, using data from 

Example 3, type

> x <- 637
> n <- 1361
> phat <- x/n
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R Chapter 9
jj Test for a Proportion:  The prop.test function returns re-

sults of a significance test about a proportion. Using the data 
from Example 4,

> prop.test(637, 1353, p=0.5, alternative=
'two-sided', correct=FALSE)
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data: 637 out of 1353, null probability 0.5
X-squared = 4.6127, df = 1, p-value = 0.03174
alternative hypothesis: true p is not equal
to 0.5

Here, p=0.5 specifies the value for the proportion under 
the null hypothesis. For the test in Example 3, you would use 
p=1/3 and also alternative='greater' to specify a one-
sided test. The output spells out the alternative hypothesis and 
shows that the P-value is equal to 0.03174 (0.032 rounded), 
but doesn’t show the z test statistic value of -2.15. (Instead, it 
shows the square of it and labels it X-squared.)

j Test for a Mean: The t.test function returns results of a 
significance test about a mean. Illustrating with the small data 
set from Exercise 9.33, we get the following output:

> x <- c(2000, 1000, 3000, 2000)
> t.test(x, mu=1000, alternative='greater')

One Sample t-test
data:  x
t = 2.4495, df = 3, p-value = 0.04586
alternative hypothesis: true mean is greater 
than 1000

Here, mu=1000 specifies the value of the mean under the null 
hypothesis. The output spells out the alternative hypothesis 
tested and shows the value of the test statistic (t = 2.4495, or 
2.45 rounded), the degrees of freedom (df = 4 - 1 = 3) and the 
P-value (0.04586).



R Chapter 10
jj Comparing two proportions: The prop.test function returns 

a confidence interval and results of a significance test for the 
difference of two proportions. Using data from Example 4,

> prop.test(c(347, 327), c(11535, 14035),
correct=FALSE)
X-squared = 11.352, df = 1, p-value = 0.0007536
alternative hypothesis: two.sided
95 percent confidence interval:
 0.002790305 0.010776620

returns the 95% confidence interval for p1 - p2 and the 
P-value for the two-sided test H0: p1 - p2 = 0. (To change

the confidence level or type of alternative hypothesis, insert
conf.level = 0.99 or alternative = 'greater',
respectively; see Chapters 8 and 9.) As mentioned in Chapter
9, the R output doesn’t show the z test statistic value directly
(here: z = 3.37) but rather its square (3.37)2 = 11.35, labeled
X-squared. The P-value is not influenced by this. For compar-
ing proportions from two dependent samples, the mcnemar.
test function returns results of a significance test, as in

> mcnemar.test(matrix(c(1921, 16, 58, 5),
nrow =  2), correct = FALSE)

for data from Example 17. (Again, the function returns the 
square of the test statistic, (4.88)2 = 23.8, but the P-value is not
affected by this.)

jj Comparing two means: The t.test function returns a con-
fidence interval and results of a significance test for the 
difference of two means, where the user supplies the obser-
vations from the samples in the two groups. Using part of the 
small data set from Exercise 10.31 on the time spent on social 
media,

> males <- c(5, 9, 12, 12, 13, 15, 20)
> females <- c(5, 7, 10, 11, 12, 14, 16, 20,
20, 23, 40)
> t.test(males, females)
t = -1.1404, df = 15.256, p-value = 0.2717
alternative hypothesis: true difference in 
means is not equal to 0
95 percent confidence interval:

-11.167226   3.375018

we obtain a 95% confidence interval for m1 - m2 and the 
P-value for the two-sided test H0: m1 - m2 = 0. You cannot
use the t.test function when only supplying summary
statistics (sample size, mean, and st. dev.). Use the var.
equal=TRUE option when you want to use the test assuming
equal standard deviations. Use the paired=TRUE option to
analyze paired data, as in (using data from Exercise 10.58):

> before <- c(5.08, 5.99, 5.32, 6.03, 5.44)
> after <- c(5.36, 5.98, 5.62, 6.26, 5.68)
> t.test(before, after, paired=TRUE)

Paired t-test
t = -3.7155, df = 4, p-value = 0.02056
95 percent confidence interval:

-0.36343134 -0.05256866
sample estimates:
mean of the differences

-0.208
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R Chapter 11
jj Chi-squared distribution:  The pchisq function finds (lower- 

tail) probabilities under the chi-squared distribution, such 
that > 1  -  pchisq(2.86, df = 2) returns the upper tail 
probability 0.239 from the chi-squared distribution with df = 
2, which is the P-value from Example 5. qchisq returns per-
centiles, such as > qchisq(0.95, df = 4) returning 9.49, 
the value mentioned in Table 11.6.

jj Chi-squared test:  You can get the X 2 statistic, its associated 
P-value, expected counts, and standardized residuals from the
chisq.test function. This function expects a table as input,
so if you have raw data, you first need to create a contingency
table from them, using the table command. We illustrate
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with the raw data from Example 5, which you can find on the 
book’s website, under the name “HeadacheRaw.csv.” (If you 
already have the data in contingency table format, you can 
type it into R as shown in the R code for Chapter 3.)

> myfile <- file.choose() #path to file
> headache <- read.csv(myfile) #reads in file
> attach(headache) #can reference names
>  mytable <- table(drug, outcome) #get table
> mytable

outcome
drug mild moderate severe
  active   486     113 16
  placebo   355  80 5

> mytest <- chisq.test(mytable)
> mytest
Pearson's Chi-squared test

data:  mytable
X-squared = 2.8601, df = 2, p-value = 0.2393

This shows the X 2 statistic and P-value we obtained in 
Example 5. You can get the expected cell counts by typing  
> mytest$expected, and residuals and standard-
ized residuals through > mytest$residuals and
> mytest$stdres. To carry out the permutation test with
10,000 random permutations mentioned in Section 11.5, use
> chisq.test(mytable, simulate.p.value = TRUE,
B = 10000).



> predict(myfit, newdata=data.frame(BP60=11),
interval='confidence', se.fit=TRUE)
$fit

fit lwr upr
1 79.93844 77.81405 82.06283

$se.fit
[1] 1.060051

This shows the predicted value 79.9, the confidence interval’s 
lower bound 77.8 and upper bound 82.1, and the se of 1.06 
for the construction of the confidence interval. Compare this to 
Table 12.5. The prediction interval is

> predict(myfit, newdata=data.frame(BP60=11),
interval='prediction')

fit      lwr upr
1 79.93844 63.75961 96.11727

which is also the one shown in Table 12.5 or the screenshot from 
the Linear Regression app.

You can obtain fitted values, residuals, and residual plots 
through:

> myfitted <- fitted(myfit) #fitted values for
observations in dataset
> myres <- residuals(myfit) #raw residuals
> mystdres <- rstandard(myfit) #standardized
residuals
> head(mystdres,4)

1          2          3          4
 0.1957575  0.4501844 -1.0692080 -0.7602345
> hist(mystdres) #histogram of std. residuals
> boxplot(mystdres) #box plot of std. residuals

Finally, the ANOVA table in Table 12.6 is requested through: 

> anova(myfit).
Analysis of Variance Table
Response: maxBP

of Sum sq  Mean sq F value    Pr(>F)
BP60 1  6351.8 6351.8   99.161 6.481e-14
Residuals 55  3522.8   64.1

We recognize the columns of Table 12.1: Estimate, standard error, 
t statistic and P-value, labeled Pr(>|t|) in R. Because both 
P-values are extremely small, R prints them in scientific notation, 
e.g., 6.48e-14 for the slope, which stands for 6.48 * 10-14. We
also recognize the residual standard deviation 8.003 (R calls
it the residual standard error), the r2 statistic 0.6432, and the
F-statistic 99.17 and P-value 6.481e-14 from Table 12.6.

To obtain the predicted mean of the response at given x-value 
of 11 and to obtain the confidence interval for the mean, use the 
predict function:

R Chapter 12
jj Linear Regression:  The lm function fits linear regression mod-

els and was introduced in the R code for Chapter 3. We illus-
trate by loading the female athlete data set into R and fitting a 
linear regression model to replicate the output of Table 12.1:

> myfile <- file.choose() #path to file
> athletes <- read.csv(myfile) #reads in file
> head(athletes,3) #check column names

Athlete BP60 maxBP LP200 maxLP
1 1   10    80    15   295
2 2   12    85    35   330
3 3   20    85    23   410
> myfit <- lm(maxBP ~ BP60, data=athletes)
#fits regression model
> summary(myfit) #replicates Table 12.1

Coefficients:
Estimate Std.  Error t value   Pr(>|t|)

(Intercept) 63.5369  1.9565   32.475   < 2e-16
BP60      1.4911    0.1497  9.958   6.48e-14

Residual standard error: 8.003 on 55 degrees  
  of freedom
Multiple R-squared: 0.6432, 
Adjusted R-squared: 0.6368
F-statistic: 99.17 on 1 and 55 DF,
p-value: 6.481e-14
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R Chapter 13
jj F Distribution:  The pf function finds (lower-tail) probabilities under the F distribution, such that > 1 - pf(40.48, df1=3,
df2=60) returns the upper tail probability 0.000 from the F distribution that is reported as the P-value in Example 5. qf returns 
percentiles, such as > qf(0.95, df1=3, df2=40) returning 2.84, as shown in Table 13.8.

jj Multiple Regression:  The lm function also fits multiple regression models. It was introduced in the R code for Chapter 3 and 
expanded on in the R code for Chapter 12. To illustrate multiple regression with two quantitative predictors, we load the Oregon 
house selling price data set and replicate Table 13.3 about the parameter estimates and their standard errors. (Below, some original 
output that R produces has been removed to focus on the essentials. We also created simple variable names in the Oregon .csv file 
for ease of presentation.)

> myfile <- file.choose() #path to file
> oregon <- read.csv(myfile) #reads in file
> head(oregon,3) #show the first three rows and column names

Price Size Acres Lotsize Bedrooms Bathrooms
1 232500 1679  0.23 10018.8 3 1.5
2 470000 4494  0.52 22651.2 5 4.0
3 150000 2542  0.11  4791.6 4 0.0
> myfit <- lm(Price ~ Size + Bedrooms, data=oregon) #fits multiple regression model
> summary(myfit) #provides estimates, standard errors, P-values and R2, compare to Table 13.3
Coefficients:

Estimate  Std. Error  t value    Pr(>|t|)
(Intercept) 60102.140   18622.905    3.227   0.00146
Size 62.983 4.753   13.250   < 2e-16
Bedrooms    15170.411    5329.806    2.846   0.00489

Residual standard error: 80270 on 197 degrees of freedom
Multiple R-squared:  0.5244, Adjusted R-squared:  0.5196
F-statistic: 108.6 on 2 and 197 DF,  p-value: < 2.2e-16
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We recognize the elements of Table 13.3 (parameter estimates, standard errors, t statistics and P-values, labeled Pr(>|t|)) in the 
output. We also recognize R2 as 0.5244 (compare to Table 13.5), the residual standard deviation 80270 (R calls it the Residual
 standard error), and the F statistic 108.6 for the overall test with corresponding P-value 2.2e-16, which is essentially 0. We 
can obtain 95% confidence intervals for each slope parameter through

> confint(myfit)
2.5 % 97.5 %

Size 53.60892    72.35647
Bedrooms 4659.61107 25681.20995

We get the predicted price of the first home (see Example 2) and a confidence interval for it via

> predict(myfit, newdata=data.frame(Size=1679, Bedrooms=3), interval='confidence')
fit lwr upr

    1 211361.3   197605.3   225117.3

You can obtain all fitted values, residuals, and residual plots (histogram and standardized residuals plotted against house size, see 
Examples 8 and 9) through:

> myfitted <- fitted(myfit)  #fitted values for all observations
> myres <- residuals(myfit) #raw residuals
> mystdres <- rstandard(myfit) #standardized residuals
> hist(mystdres) #histogram of std. residuals
> plot(mystdres ~ oregon$Size) #scatterplot of std. residuals vs size



jj Categorical Predictors:  To illustrate multiple regression with one categorical predictor, we consider the condition of the house, to-
gether with its size. (In our data set, condition had the two categories “Good” and “Bad,” and we keep it that way to illustrate how 
R creates indicator variables automatically. However, in the .csv file, you can replace “Good” with 1 and “Bad” with 0 to create the 
indicator variables yourself.)

> oregon[c(1,2,11), c(1,2,9)] #show rows 1, 2 and 11 and columns 1, 2 and 9 of the oregon data
    Price Size Condition
1  232500 1679 Good
2  470000 4494 Good
11 357500 3189 Bad
> myfit1 <- lm(Price ~ Size + Condition, data=oregon)
> summary(myfit1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept)   109197.911  19951.982   5.473 1.34e-07
Size 66.463 4.682  14.196  < 2e-16
ConditionGood -12926.940  17196.712  -0.752    0.453

This replicates the output from Table 13.11. By default, for categorical variables with two categories, R creates indicator variables 
following this rule: The category that comes alphabetically first (here: “Bad”) is set to 0, the other (here: “Good”) is set to 1.

jj Scatterplot and Correlation Matrix:  To obtain the scatterplot matrix, type >  pairs(oregon[, c(1,2,5)]), where c(1,2,5) 
specifies the column numbers of the variables in the data set you want to plot (e.g., Bedroom is the 5th column in the oregon data 
set). This reproduces Figure 13.1. The correlation matrix is obtained in a similar fashion, using >  cor(oregon[, c(1,2,5)]). 
This reproduces the correlation matrix shown in the margin at the beginning of Section 13.2.
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(labeled Pr(>F)). With the data set up this way, you can get 
side-by-side box plots (see the one next to Example 4) through 

> boxplot(y~group). The times=c(5, 5, 5) in the
definition of group tells R to repeat each of the labels 5 times,
because we had 5 observations in each group. If we had 3 ob-
servations in the first, 7 in the second, and 4 in the third group,
we would need to use times=c(3, 7, 4). Alternatively,
you can always create a .csv file (with two columns, one for
the group labels, the other for the observations), read it into R
and provide it to the aov function, as we did in the R code for
Linear Regression in Chapter 13.

jj Pairwise Comparisons of Means: To obtain the multiplicity 
adjusted (Tukey) confidence intervals for all pairwise com-
parisons of means, such as the ones shown in Table 14.4, use

> TukeyHSD(myAnova)
Tukey multiple comparisons of means

95% family-wise confidence level
diff    lwr   upr p adj

C-A   5.0  -0.75 10.75 0.091
M-A  -2.6  -8.35  3.15 0.472
M-C  -7.6 -13.35 -1.85 0.011

This shows the estimated difference and lower and upper con-
fidence bounds. You can visualize these intervals by typing:  
> plot(TukeyHSD(myAnova))
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R Chapter 14
j F Distribution: The pf function finds (lower-tail) probabilities 

under the F distribution, such that > 1 - pf(6.43, df1=2, 
df2=12) returns the upper tail probability 0.013 from the F 
distribution that is reported as the P-value in Example 3. qf 

returns percentiles, such as > qf(0.95, df1=2, df2=12) 
returning 3.88, as shown in the table and graph in the mar-
gin of Example 3.

j One-way Analysis of Variance: To obtain the one-way 
ANOVA table (Table 14.2) for the telephone holding time 
data (Example 2), we can use R’s aov function. (Note the way 
we enter the data.)

> y <- c(5, 1, 11, 2, 8, 0, 1, 4, 6, 3, 13,
9, 8, 15, 7) #all observations
> group <- rep(c('A', 'M', 'C'), times=c(5, 5,
5))
> myAnova <- aov(y ~ group) #creates ANOVA
table
> summary(myAnova)
Analysis of Variance Table

Df Sum Sq Mean Sq F value  Pr(>F)
group   149.2    2 74.6   6.431 0.01264
Residuals 12  139.2    11.6

This shows the sum of squares, mean squares, the resulting F 
statistic and the P-value of 0.013 we obtained in Example 3 

j Regression and ANOVA: To obtain the multiple linear re-
gression output from Table 14.6 where R sets up the indicator 
variables automatically, use

> myfit <- lm(y ~ group)
> summary(myfit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept)    5.400 1.523   3.545  0.00403

groupC 5.000 2.154   2.321  0.03868

groupM -2.600 2.154   -1.207 0.25068

This shows that R uses a different way (compared to 
MINITAB or other software) to set up indicator variables. It 
sets the first indicator variable to 1 when the group is Classical 
(indicated by labeling it groupC) and 0 otherwise, and it sets 
the second indicator variable to 1 when the group was Muzak 
(indicated by labeling it groupM) and 0 otherwise. By de-
fault, R sorts the group labels alphabetically and with three 
labels uses the last two to set up indicator variables, making 
the first the reference category. Results do not depend on 
how indicator variables are set up, and you will find the same 
fitted means as given in part b of Example 7. You can get the 
ANOVA table shown in Table 14.6 via > anova(myfit).

j Two-way Analysis of Variance: To replicate Table 14.10 in 
Example 9 for corn yield, load the data set cornyield.csv from 
the book’s website into R. Using the relationship between re-
gression and ANOVA, we can replicate Table 14.10 through

> myfile <- file.choose() #provide path
> corn <- read.csv(myfile) #load file
> head(corn, 3) #show first 3 rows
fertilizer manure yield

1 high   high  13.7
2 high   high  15.8
3 high   high  13.9
> myfit <- lm(yield ~ fertilizer + manure,
data=corn) #main effects
> anova(myfit)

Analysis of Variance Table
Df  Sum Sq  Mean Sq   F value  Pr(>F)

fertilizer  1  17.672  17.6720   6.3324  0.02219

manure 1  19.208  19.2080   6.8828  0.01779

Residuals  17  47.442   2.7907

and the regression coefficients for the regression model 
(Example 10) through

> summary(myfit)
Coefficients:

Estimate Std. Error  t value    Pr(>|t|)

(Intercept)    0.647015.4900        23.941  1.55e-14

fertilizerlow  -1.8800 0.7471   -2.516    0.0222
manurelow 0.7471-1.9600        -2.624    0.0178



This shows different values for the parameter estimates from 
the ones reported in Table 14.12, but it’s because R sets up in-
dicator variables differently. (For instance, it set the first indi-
cator to 1 when fertilizer is low instead of high, which you can 
see by the label fertilizerlow.) Results do not depend on 
the way indicator variables are set up. Plugging in, you get the 
same results as in Example 10.7. To investigate the interaction 
(see Example 11), use

> myfit2 <- lm(yield ~ fertilizer + manure +
fertilizer:manure, data=corn) #fits interaction
> anova(myfit2)
Analysis of Variance Table

Df Sum Sq  Mean Sq  F value    Pr(>F)

fertilizer 1 17.672   17.672   6.3683  0.02258

manure 1 19.208   19.208   6.9218  0.01816

fertilizer:manure   1  3.042    3.042   1.0962  0.31066

Residuals 16 44.400    2.775

This replicates Table 14.14. 
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