
RPA Design and
Development
v4.0

Lesson 3&4 Studio Interface,
Variables & Arguments

Studio Interface:

1. Describe the different variable types, how they are used, managed, and the best practice for using the
variable scope

2. Describe the functions and differences between variables and arguments; including how arguments
are used, managed, and best practices

Variables and Arguments:

1. Explain what data types are and how they are used

2. Create, manage and use variables

3. Create, manage and use In, Out and In/Out arguments.

4. Create, manage and use global constants and variables

5. Explain the difference between variables, arguments, global constants and global variables.

Exam Topics:
Studio Interface, Variables & Arguments

What is a variable?

A variable is an element that holds data or values of a certain type.
It serves the essential purpose of storing data and passing it between activities.

Variables can be configured through four properties.
They are name, variable type, scope, and default value.

There are four ways of creating variables in Studio. They are:

▪ From the Data Manager
▪ From the Body of an Activity
▪ From the Properties Panel
▪ From the Variables Panel

Variables are containers that are used to store multiple types of data. A variable:

Introduction to Variables

• makes it easier to label and store data which can later be used

throughout the automation process

• has an initial value that may change during the program

through an external input, data manipulation or passing from

one activity to another

• is like a box that stores data

Example: A box (variable) named Counter that tracks the

number of times users clicked on an item

• can be used throughout the automation process later and can

also be used in multiple workflows with modifications

In Studio, a user can create, modify and initialize variables from the Variables Panel.

Managing Variables

Create InitializeModify

Creating, Using & Managing Variables

You can imagine variables as containers that hold data (value) of a certain type.

The value of a variable can change during the program's execution due to an external input, data manipulation, or as a result of
passing from one activity to another. In other words, variables store data dynamically.

Variables are vital in automation as they are one of the fundamental methods of storing data and passing it between activities.

Configuring a variable

Variables in Studio are configured through four main properties :
▪ Name
▪ Variable Type
▪ Scope
▪ Default Value

Scope
Designates parts of a

program that can use a

variable (local, global)

4

Type
Kind of data that the

variable is intended to

store

2

Value
Data that a variable

holds (may change

during the process)

3

Name
Name of the variable

1

Users can configure variables through their properties:

Properties of Variables

Configuring a variable : Name Property

It is the unique attribute that is used to identify a variable.
This is a mandatory field.
If you don't add a name to a variable, one is automatically generated.

In order to make automations easy to understand and manage, the names of the variables must be meaningful and as
descriptive as possible.

While not the only option, we recommend using the PascalCase naming convention.

In this convention, the first letter of each word in a variable is capitalized. For example: ItemValue, LastName, or KeyItem.

Configuring a variable : Variable Type

It defines the kind of data stored in a variable.
This is a mandatory field.

Some of the common data types include:

 Boolean
 Int32
 String
 Object
 System.Data.DataTable
 Array of [T]

Apart from these, UiPath also supports data types from imported dependencies.

Configuring a variable : Scope Property

It defines the context in which a variable can be used in the project.
The scope is a mandatory field.

The scope of variables can be set to the current workflow file or any of the container activity within the workflow file.

Apart from this, the scope of variables can also be set to global, meaning that they are accessible to all activities and workflows
in an automation project. These are called global variables.

A variable declared

for a parent activity is

available in the entire

workflow

A variable declared in

any specific activity is

available only for the

scope of that activity

The scope is chosen from

the list of sequences in

the Scope drop-down

field while creating a

variable. The variable is

available in the selected

container

The scope determines the containers in which the variable is available.

Scope of a Variable

Configuring a variable : Default Value

It is the default value of the variable.
This is an optional field.

If a variable is declared with this field empty, then a default value corresponding to the variable's data type is assigned to it. For
example, for an Int32, the default value is 0.

It enables the users to create variables and modify them.

The Variables Panel

Variables Panel

Step 01
Define a name

Step 02
Choose type from

drop-down list

Step 03
Choose scope

Step 04
Specify a default

value, if required

A variable’s name should be meaningful and hint towards the information it stores.
While naming any variable, the user should:

Best Practices for Naming Variables

Use clear & meaningful names

Assign names in a consistent manner

Use Camel case to name variable

Keep the names descriptive yet short

Best practices when working with
variables

Assign Meaningful Names

Meaningful names should be assigned to variables in order to accurately describe their usage in a project.

Follow a naming convention

To improve readability, variable names should also align to a naming convention. We recommend using the PascalCase naming
convention. In this convention, the first letter of each word in a variable is capitalized.
Eg: First1Name2, First1Name

Keep variables in the innermost scope

Variables should be kept in the innermost scope to reduce the clutter in the Variables panel and to show only what is relevant
at a particular point in the workflow.

Resources

Managing Variables - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-variables

Types of Variables - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/types-of-variables

https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-variables
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-variables
https://docs.uipath.com/studio/standalone/2022.10/user-guide/types-of-variables
https://docs.uipath.com/studio/standalone/2022.10/user-guide/types-of-variables

Build a workflow that swaps two numbers using a

third variable

• Ask the user to input two numeric values and store

them in two variables

• Swap values of both the variables using a third

variable

• Display initial and swapped values of both the

variables in the Output panel

Practice Exercise - Variables

Classroom Exercise

1. Asks for the user’s name, stores it and

2. Display only the first letter of the full name

3. Ask for the year of birth as well and calculate the age

4. Display the name and age in a window

5. At the same time, write the result of the execution to the Output

Panel

Create a project that

Exploring Data Types

What are data types?
As you can guess by the name, data types describe the kind of data a variable can hold.
For example, if the data type is Int32, then the variable must hold an integer.
Likewise, if the data type is a String, then the variable must hold a text.

Why are data types important?
Variables and arguments in Studio need to have a specific data type defined.
Data types ensure that the right data format is applied at each stage of an automated process.

02

String
1

3

4

2
Boolean

Number

Date and Time

5

6

7

DataTable

QueueItem

Array

Different types of variables in Studio are:

Types of Variables

• Company Name in

Invoice

• Variable name

can be

CompName

with value “XYZ

Corp”.

Example

To store text and reuse

it in the code for

specific actions

Usage

String variables help

store any sequence of

text

Definition

1. String Variables

• Is the item available

in the invoice?

• TRUE when the

item is available

• FALSE when the

item is

unavailable

Example

Used with control

statements to help

determine the flow of a

program

Usage

Boolean variables hold

only two values: “True”

or “False”

Definition

2. Boolean Variables

• Item Quantity

• Variable name

can be

ItemQuant with

value 50

Example

To execute equations

or perform

comparisons, pass

important data, etc.

Usage

Number variables store

numeric values

Definition

3. Number Variables

• An array of names of

two items

• Variable name

can be

ArrCompName

with value

{“ABC”, “XYZ”}

Example

Used to organize data

so that a related set of

values can be easily

sorted or searched

Usage

An Array variable is a

collection that stores

multiple elements of the

same data type

Definition

4. Array Variables

Array String

It is a sequential collection of elements of similar

data types

It is a sequence of single characters represented as a

single data type

Its elements are stored contiguously in increasing

memory locations
It can be stored in any manner in memory locations

It is a special variable that can hold more than one

value at a time
It can hold only character data

Its length is predefined Its size is not predefined

Array vs. String

Exploring Data Types

Collection

Collections are largely used for handling and processing complex data. Some of the most
encountered collections are:

• Array - ArrayOf<T> or System.DataType[] stores multiple values of the same data type. The
size (number of objects) is defined at creation.

• List - System.Collections.Generic.List<T> stores multiple values of the same data type, just
like Arrays. But unlike Arrays, the size is dynamic.

• Dictionary - System.Collections.Generic.Dictionary<TKey, TValue> stores objects in the
form of (key, value) pairs, where each of the two can be a separate data type.

• List of all items in the

invoice

• Variable name

can be

dt_InvItem with

values Item1,

Item2, Item3,….

Example

Used to migrate data

from a database to

another, extract

information from a

website and store it

locally in a spreadsheet

Usage

DataTable variables

store tabular data in

rows & columns and

may hold large pieces

of data & act as a

database

Definition

5. DataTable Variables

Exploring Data Types

DataTable

DataTable represents variables that can store big pieces of information and act as a database or
a simple spreadsheet with rows and columns.

.

• Invoice Date

• Variable name

can be InvDate

with value

01/01/2020

Example

Used to calculate the

number of days

between two dates,

store current date

details, etc.

Usage

Date and time variables

store information about

any date and time

Definition

6. Date and Time Variables

Exploring Data Types

Date and Time (Category)

 DateTime - System.DateTime stores specific time coordinates (mm/dd/yyyy hh:mm:ss).
 This kind of variable provides a series of specific processing methods like subtracting days,
calculating time remaining vs. today, and so on.
 For example, to get the current time, assign the expression DateTime.Now to a variable of
type DateTime.

 TimeSpan - System.TimeSpan stores information about a duration (dd:hh:mm:ss). You can
use it to measure the duration between two variables of the type DateTime.

 For example, you can save the time at the start of the process in one variable (of type
DateTime), the time at the end in another (of type DateTime) and store the difference in a
variable of type TimeSpan.

.

• A particular invoice

in the queue of

invoices

Example

Used to input extracted

items in other

processes

Usage

A variable particular to

UiPath, the QueueItem

variable stores an item

extracted from a queue

(container of items)

Definition

7. QueueItem Variables

Data Conversion is the process of converting one type of data to another. The methods
for data conversion include:

Data Conversion

Raw DateTime Formatted DateTime

.ToString Method
Convert any datatype to

string

Assign
Simply assigning the data

value to the desired data

type

Conversion methods of Data Types

There will be scenarios where we'll need to change the data type of a variable to another form.
For example, the conversion of an integer to a string or vice versa. In such cases, we can use the
conversion methods available in Studio.

Below is a list of some of the most commonly used conversion methods

• Convert.ToString Method
• Convert.Int32 Method
• Double.ToString Method
• Double.Parse Method
• Boolean.ToString Method
• Convert.ToBoolean Method
• Convert Date and Time to String

Conversion methods of Data Types

Convert.ToString Method

This method converts the specified value to its equivalent string representation.
For example, from an integer to String.

 Eg: StrVar = Convert.Tostring(IntVar)

Conversion methods of Data Types

Convert.Int32 Method

This method converts a specified value to an integer.
For example, from a String to integer or from a floating-point number to integer.

Eg:

IntVar = Convert.ToInt32(StrVar)

IntVar = Convert.ToInt32(DblVar)

There's another method to convert a string to an integer - CInt(String)

Eg: IntVar = CInt(StrVar)

Conversion methods of Data Types

Double.ToString Method

This method converts the numeric value of a floating-point number to its equivalent string representation.

Eg: StrVar = DblVar.ToString

Conversion methods of Data Types

Double.Parse Method

This method converts the string representation of a number to its floating-point number equivalent.

Eg: DblVar = Double.Parse(StrVar)

Conversion methods of Data Types

Boolean.ToString Method

This method converts the value of a Boolean to its equivalent string representation (either "True" or "False").

Eg: ToString()

Conversion methods of Data Types

Convert.ToBoolean Method

This method converts a specified value to an equivalent Boolean value.
For example, coveting an integer to an equivalent Boolean value.

Eg: Convert.ToBoolean(IntVar)

Conversion methods of Data Types

Convert Date and Time to String

This method converts the value of the specified DateTime object to its equivalent string representation.

Eg: DateTimeVar.ToString("dd-MM-yyyy")

Resources

Data Types Conversion Methods -
Microsoft Docs

https://learn.microsoft.com/en-
us/dotnet/api/system.convert.toint32?view=net-6.0

Data Types - Microsoft Docs
https://learn.microsoft.com/en-us/dotnet/visual-basic/language-
reference/data-types/

https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/
https://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/

Invoke Workflow File activity
and Arguments

Workflows are smaller blocks of automation, typically executing a specific part of an
automation process, which can be used across different projects.

Arguments, like variables, are elements that store data. While variables pass data between
activities within a workflow, arguments pass data between workflows.

Arguments Variables

Argument stores data and passes it between

workflows

Variable stores data and passes it between

activities

It can be used across multiple workflows

(direction to be defined)
It is limited to the workflow in which it is defined

It is created & modified through the Arguments

Panel

It is created & modified through the Variables

Panel

It is defined by properties: Name, Direction, Type,

Default Value

It is defined by properties: Name, Type, Scope,

Default Value

Arguments vs. Variables

Workflows

A workflow represents a relatively small piece of an automation project, typically executing a specific part of the
process. Once built, it can be reused across different projects.

A workflow is made of Studio activities, interconnected through variables to form a routine. The routine typically
has an input and an output. Basically, it defines the flow of automation. Hence the name, workflow.

UiPath Studio provides you with predefined workflow layouts to suit all the needs of a fast and reliable
automation process.

The workflow layouts are:
1. Sequences
2. Flowcharts
3. State Machines

The fastest, most reliable, and useful way of automating a process is to break it down into smaller bits. This allows
for independent testing of components, enables team collaboration, and component reuse. Hence, most of the
automation projects require the use of multiple workflows that come together to provide a solid business
automation solution.)

Arguments are used to pass data from one workflow to another.

Introduction to Arguments

Enable users

to reuse workflows

Store data

dynamically
Useful in automation projects

with multiple workflows

In
• Argument can only be used within a given project

Out
• Argument can be used to pass data outside a given project

In/Out
• Argument can be used both within and outside a project

01

02

03

Specify the direction from/to which the data is passed.

Introduction to Argument Directions

Arguments

While variables pass data between activities, arguments pass data between workflows.

An additional property associated with arguments is the direction.

Arguments have specific directions: In, Out, and In/Out.

This tells the Robot where the information stored in them is supposed to go.

Arguments are key components when it comes to building more complex automation where you need to store and
use data between multiple workflows.

Direction
Direction from/to

which the data is

passed

02
Name

Name of the

argument

01

Value
Data that an

argument holds

04
Type

Kind of data that the

argument is intended

to store

03

Users can configure arguments through their properties:

Properties of Arguments

Creating arguments – Where?

We can create arguments from Studio in four ways

1. From the Body of an activity
2. From the Properties Panel
3. From the Arguments Panel
4. From the Data Manager Panel

Creating arguments

1. From the Body of an activity

Directly from the activity panel in an activity input field:

• Right-click a field and select Create In Argument or Create Out Argument from the context menu.
Alternatively, press Ctrl+M or Ctrl+Shift+M.

• The Set Arg field is displayed.
• Fill in the name and press Enter. An argument is created.
• Check its direction and type in the Arguments panel.

Alternatively, from the Expression Editor:

• Select a part of the expression and press Ctrl+M (for In arguments) or Ctrl+Shift+M (for Out
arguments).

• Then Set Arg field is displayed.
• Fill in the name and press Enter. The argument is created.
• Check its direction and type in the Arguments panel.
• Arguments created in these ways automatically receive the type according to the activity.

Creating arguments

2. From the Properties Panel

In the Properties panel of any activity:

▪ Right-click a field that can be edited.
▪ Select Create In Argument or Create Out Argument from the context menu. Alternatively, press

Ctrl+M (In) or Ctrl+Shift+M (Out).
▪ The Set Arg field is displayed.
▪ Fill in the name and press Enter. The argument is created and visible in the field. Check its direction

and type in the Arguments panel.

The argument type is automatically generated depending on the selected property.

Creating arguments

3. From the Arguments Panel

• Navigate to the Arguments panel.
• Select the Create Argument line.
• Fill in the name, direction, and

type. A new argument is created.

Step 01
Define a name

Step 02
Set the direction

Step 03
Specify the data type

Step 04
Specify a default

value

In Studio, a user can create arguments from the Arguments Panel through the ‘Create
Argument’ option.

Managing Arguments : Arguments Panel

Creating arguments

4. From the Data Manager Panel

▪ Navigate to the Data Manager panel.
▪ Expand the Arguments options and click on New Argument.
▪ Fill in the name, direction, and data type. A new argument is created.

Best practices when working with
arguments and workflow files

Assign meaningful names
Meaningful names should be assigned to workflow files and arguments in order
to accurately describe their usage throughout the project.

Follow a naming convention
To improve readability, arguments names should also align to a naming
convention. We recommend using the PascalCase naming convention. In this
convention, the first letter of each word in a variable is capitalized.

Use prefixes in argument names
Argument names should have a prefix stating the argument type, such as
in_DefaultTimeout, in_FileName, out_TextResult, io_RetryNumber.

Use action verbs in workflow names
Except for Main, all workflow names should contain the verb describing what
the workflow does, such as GetTransactionData, ProcessTransaction,
TakeScreenshot.

Resources

Invoke Workflow File https://docs.uipath.com/activities/other/latest/user-guide/invoke-workflow-file

About Automation Projects
https://docs.uipath.com/studio/standalone/2022.10/user-guide/about-automation-
projects

Managing Arguments https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-arguments

Using Arguments
https://docs.uipath.com/studio/standalone/2022.10/user-guide/using-arguments

https://docs.uipath.com/activities/other/latest/user-guide/invoke-workflow-file
https://docs.uipath.com/studio/standalone/2022.10/user-guide/about-automation-projects
https://docs.uipath.com/studio/standalone/2022.10/user-guide/about-automation-projects
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-arguments
https://docs.uipath.com/studio/standalone/2022.10/user-guide/using-arguments

Classroom Exercise :
Invoke Workflow Activity

1. In the Main workflow, ask the user to enter the initial deposit amount and select the period
using multiple-choice option. The period can be either 1, 3, or 5 years. Store the input in two
variables. Create a third variable that will store the value of the final earnings.

2. Create a new workflow to calculate the simple interest using the user inputs. The formula to
calculate the interest can be Deposit Amount * Rate per year * Period chosen / 100. Set the
Rate per year to 1.75 for all deposit periods.

3. Pass the result back to Main.xaml and display on-screen the accumulated interest at the end
of the period and the final deposit balance.

4. Output: display a message box with the accumulated interest at the end of the period and the
final deposit balance.

Build a simple interest calculator using different workflows and

arguments. Steps can be broken down as follows:

Global constants and global variables

What are global constants and variables?

Just like variables, global constants and variables are containers that store data.
But unlike variables, these store data in a central location which can be accessed by all parts of an automation
project.

How are they useful?

It is sometimes necessary to share data between workflows in the same project.
With global constants and variables, this is possible without having to pass data as an argument.

Global constants and variables allow for greater flexibility as they can be easily accessed and modified as needed.
This can help save time and simplify your automations.

Global constants and global variables

Global constants and variables allow us to store data in a central location which can be accessed by all parts of an
automation project.

This allows for easier data management.

Global constants and variables can be created only from the Data Manger panel.

The difference between a global constant and a global variable is that none of the properties of a global constant
can be altered whereas the value of a global variable can be modified during the program execution.

Resources

Global Variables and
Constants- UiPath Studio
Guide

https://docs.uipath.com/studio/standalone/2022.10/user-guide/release-notes-2022-
10-3

Managing Variables - UiPath
Studio Guide

https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-variables

UiForum: Use cases of global
constants and global variables

https://forum.uipath.com/t/understanding-and-use-case-of-global-variables-and-
constants/482631

UiForum: Global Variables and
Constants

https://forum.uipath.com/t/global-variable-constants-latest-feature-in-2022-10-
version/490513

https://docs.uipath.com/studio/standalone/2022.10/user-guide/release-notes-2022-10-3
https://docs.uipath.com/studio/standalone/2022.10/user-guide/release-notes-2022-10-3
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-variables
https://forum.uipath.com/t/understanding-and-use-case-of-global-variables-and-constants/482631
https://forum.uipath.com/t/understanding-and-use-case-of-global-variables-and-constants/482631
https://forum.uipath.com/t/global-variable-constants-latest-feature-in-2022-10-version/490513
https://forum.uipath.com/t/global-variable-constants-latest-feature-in-2022-10-version/490513

A collection is used to represent a set of similar data type items in a single unit which is
used for grouping and managing the objects. Different types of collections are:

Collection and Its Types

A

Arrays

L

Lists

D

Dictionaries

Studio offers the following methods for manipulating collections:

Collection Manipulation

Add to Collection

• Adds an item to a specified

collection

• Example: It can be used to add

a new name to a list of

company names

Remove From Collection

• Removes an item from a

specified collection and can

output a Boolean variable that

confirms the success of the

removal operation

• Example: It can be used to

remove an invoice number from

a list of invoices to be

processed

Exists In Collection

• Indicates whether a given item

is present in a given collection

by outputting a Boolean as the

result

• Example: It can be used to

check whether a list of clients

contains a specific name

Clear Collection

• Clears a specified collection of

all items

• Example: It can be used to

empty a collection before

starting a new phase of a

process that will populate it

again

• An array of names of

two items

• Variable name

can be

ArrCompName

with value

{“ABC”, “XYZ”}

Example

Used to organize data

so that a related set of

values can be easily

sorted or searched

Usage

An Array variable is a

collection that stores

multiple elements of the

same data type

Definition

Arrays

Arrays are of fixed length

Array - ArrayOf<T> or System.DataType[] stores multiple values of the same data type. The size

(number of objects) is defined at creation

Array – Business Scenarios

What are some business scenarios where arrays are useful?

• When you want to save the names of the months to a variable.

• When a fixed collection of bank accounts has to be stored and used in the payment process.

• When all the invoices paid in the previous month have to be processed.

• When the names of the employees in a certain unit have to be verified in a database.

Disclaimer: As a good case practice, arrays are used for defined sets of data (for example, the months of the year or a
predefined list of files in a folder). Whenever the collection might require size changes, a List is probably the better option.

Lists are data structures consisting of objects of the same data type. Each object has a fixed position in
the list. Lists provide specific methods of manipulation, such as:

Lists

Adding and

removing items

Searching for an

element

Looping through the

items

Sorting the objects

Extracting items &

converting them to

other data types

List - System.Collections.Generic.List<T> stores multiple values of the same data type, just like
Arrays. But unlike Arrays, the size is dynamic

Dictionaries are collections of (key, value) pairs in which the keys are unique. The data types for both
keys and values are chosen when the variable is initialized. Operations on dictionaries include:

Dictionaries

Adding and deleting

(key, value) pairs

Retrieving the

value associated

with a key

Re-assigning new

values to existing keys

Dictionary - System.Collections.Generic.Dictionary<TKey, TValue> stores objects in the form of (key, value)
pairs, where each of the two can be a separate data type.

Dictionaries in Studio can be used in the following ways:

Working with Dictionaries

Initializing Removing Adding Retrieving

Methods for Working with Dictionaries

Initializing

1. Create a variable of type Dictionary in

the Variables panel

2. Drag and drop an Assign activity in the

Designer panel

• Enter Dictionary in the To textbox.

• Initialize the dictionary variable in

the Value textbox using new

Dictionary (Of String, Int32)

From {{key, value}, {key,

value}}, if the key is String and the

value is Integer

3. Insert a Message Box activity to

display the added key and value pair

4. Execute the workflow. The Value of the

first Key displays in the message box

1

2

3

4

Methods for Working with Dictionaries
(Contd.)

Removing

• VarName.Remove(Key) –

removes an item from the

Dictionary. It can be used in an

‘Assign’ activity

Retrieving

• VarName.Item(Key) – returns the

Dictionary item by its key

Adding

• Install the package

Microsoft.Activities.Extension.

• Drag and drop the Add to

Dictionary activity

• Enter the dictionary variable, key,

and value in their respective fields

Classroom Exercise - Lists

Sort a list in reverse order and print the first five items from

the list in a message box.

1. Create a list of ten names of people

2. Sort the names in reverse alphabetical order from Z to A

3. Extract the first five names from the list

4. Display the extracted names in a message box

Practice Exercise - Lists

Build a workflow using the Concat and Join method that merges

two lists containing the city names of the UK and Spain, sorts it,

capitalizes the first letter of each item, and displays it in a

message box.

1. Create a list containing three cities of the UK in Uppercase

2. Create another list containing three cities of Spain in Lowercase

3. Merge both the lists together

4. Sort the final list in alphabetical order from A to Z

5. Capitalize only the first letter of all the items in the final list

6. Display the final list in a message box in string format

Resources

Array Variables - UiPath
Studio Guide

https://docs.uipath.com/studio/standalone/2022.4/user-guide/array-variables

https://docs.uipath.com/studio/standalone/2022.4/user-guide/array-variables

Classroom Exercise - Arrays

1. You must request input from the user regarding the destination, departure
date, and return date.

2. Then add the user input to an array variable.

3. Lastly, write a text file where you confirm the reservation details using the
array variable.

4. Output: Write a text file using the data from the array variable to confirm the
user's reservation.

Build a simple process that simulates a flight reservation for

users

	Lesson 2
	Slide 1: RPA Design and Development
	Slide 2: Lesson 3&4 Studio Interface, Variables & Arguments
	Slide 3: Exam Topics: Studio Interface, Variables & Arguments

	Variables
	Slide 4: What is a variable?
	Slide 5: Introduction to Variables
	Slide 6: Managing Variables
	Slide 7: Creating, Using & Managing Variables
	Slide 8: Properties of Variables
	Slide 9: Configuring a variable : Name Property
	Slide 10: Configuring a variable : Variable Type
	Slide 11: Configuring a variable : Scope Property
	Slide 12: Scope of a Variable
	Slide 13: Configuring a variable : Default Value
	Slide 14: The Variables Panel
	Slide 15: Variables Panel
	Slide 16
	Slide 17: Best Practices for Naming Variables
	Slide 18: Best practices when working with variables
	Slide 19: Resources
	Slide 20: Practice Exercise - Variables
	Slide 21: Classroom Exercise

	Data Types
	Slide 22: Exploring Data Types
	Slide 23: Types of Variables
	Slide 24: 1. String Variables
	Slide 25: 2. Boolean Variables
	Slide 26: 3. Number Variables
	Slide 27: 4. Array Variables
	Slide 28: Array vs. String
	Slide 29: Exploring Data Types
	Slide 30: 5. DataTable Variables
	Slide 31: Exploring Data Types
	Slide 32: 6. Date and Time Variables
	Slide 33: Exploring Data Types
	Slide 34: 7. QueueItem Variables

	Conversion Methods
	Slide 35: Data Conversion
	Slide 36: Conversion methods of Data Types
	Slide 37: Conversion methods of Data Types
	Slide 38: Conversion methods of Data Types
	Slide 39: Conversion methods of Data Types
	Slide 40: Conversion methods of Data Types
	Slide 41: Conversion methods of Data Types
	Slide 42: Conversion methods of Data Types
	Slide 43: Conversion methods of Data Types
	Slide 44: Resources

	Workflow and Arguments
	Slide 45: Invoke Workflow File activity and Arguments
	Slide 46: Arguments vs. Variables
	Slide 47: Workflows
	Slide 48: Introduction to Arguments
	Slide 49: Introduction to Argument Directions
	Slide 50: Arguments
	Slide 51: Properties of Arguments
	Slide 52
	Slide 53: Creating arguments – Where?
	Slide 54: Creating arguments
	Slide 55: Creating arguments
	Slide 56: Creating arguments
	Slide 57: Managing Arguments : Arguments Panel
	Slide 58: Creating arguments
	Slide 59: Best practices when working with arguments and workflow files
	Slide 60: Resources
	Slide 61: Classroom Exercise : Invoke Workflow Activity

	Globals
	Slide 62: Global constants and global variables
	Slide 63: Global constants and global variables
	Slide 64
	Slide 65: Resources

	Collections
	Slide 66: Collection and Its Types
	Slide 67: Collection Manipulation
	Slide 68: Arrays
	Slide 69: Array – Business Scenarios
	Slide 70: Lists
	Slide 71: Dictionaries
	Slide 72: Working with Dictionaries
	Slide 73: Methods for Working with Dictionaries
	Slide 74: Methods for Working with Dictionaries (Contd.)
	Slide 75: Classroom Exercise - Lists
	Slide 76: Practice Exercise - Lists
	Slide 77
	Slide 78: Resources
	Slide 79: Classroom Exercise - Arrays

