
RPA Design and
Development
v4.0

Lesson 7 Exception handling

Use

1. Try Catch

2. Throw

3. Rethrow

4. Retry Scope

Error Handling– Exam Topics

Errors are events that hamper the regular execution of the program. Based on their source, there are
different types of errors:

Errors

Syntax errors

Where the

compiler/interpreter

cannot parse the written

code into meaningful

computer instructions

User errors

Where the software

determines that the

user’s input is not

acceptable for some

reason

Programming
errors (bugs)

Where the program

contains no syntax

errors but does not

produce the expected

results

Exceptions are a subset of errors that are recognized (caught) by the program, categorized, and handled. More specifically,
there is a routine configured by the developer that is activated when an exception is caught. Sometimes, the handling
mechanism can be simply stopping the execution.

Some of the exceptions are linked to the systems used, while others are linked to the logic of the business process. The two
types of exceptions are:

System and Business Exceptions

Application (System) Exception

• Describes an error rooted in a technical

issue, such as an application that is not

responding

• Has a chance of being solved simply by

retrying the transaction, as the

application can unfreeze

• Can be managed by following good

naming conventions for activities and

workflows. This helps in tracking the

activity that caused the exception

Business Exception

• Describes an error rooted in the fact that

certain data which the automation project

depends on is incomplete, missing,

outside of set boundaries, or does not

pass other data validation criteria

• An exception from the usual process flow

and the validation is made explicitly by

the developer inside the workflow

• The text in the exception should contain

enough information for a human user

(business user or developer) to

understand what happened and what

actions need to be taken

Application (System) Exception

The unexpected exceptions are the one known as System Exceptions (SE). They're also called Application Exceptions (AE), but the underlying
concept remains the same. They belong to the .NET framework and are categorized under the System.Exception class. Proper handling should
be in place for these kinds of exceptions as they can cause the process to fail.

The below list encompasses the most common exceptions that you can encounter in projects developed with Studio. They are derived from
System.Exception as mentioned already, so using this generic type in a TryCatch, for example, will catch all types of errors.

Exception Description

NullReferenceException Occurs when using a variable with no set value (not initialized)

IndexOutOfRangeException Occurs when the index of an object is out of the limits of the collection

ArgumentException Is thrown when a method is invoked and at least one of the passed arguments doesn't meet the parameter
specification of the called method

SelectorNotFoundException Is thrown when the robot is unable to find the specified selector for an activity in the target app within the
Timeout period. As you know, the timeout property specifies the amount of time, in seconds, that the
system will wait for an operation to finish before generating an error

ImageOperationException Occurs when an image isn't found within the Timeout period

TextNotFoundException Occurs when the indicated text isn't found within the Timeout period

ApplicationException Describes an error rooted in a technical issue, such as an application that isn't responding

Application (System) Exception

Business Rule Exceptions

Describes an error rooted in the fact that certain data which the automation project depends on is incomplete, missing, outside
of set boundaries, or does not pass other data validation criteria

BREs aren't automatically generated as system exceptions.

They must be defined by a developer by using the Throw Activity and handled inside a TryCatch.

Resources

https://docs.uipath.com/orchestrator/standalone/2023.4/user-guide/business-exception-
vs-application-exception

Business Exception Vs Application Exception

https://docs.uipath.com/orchestrator/standalone/2023.4/user-guide/business-exception-vs-application-exception
https://docs.uipath.com/orchestrator/standalone/2023.4/user-guide/business-exception-vs-application-exception

It is common for automation projects to encounter events that interrupt or interfere with the projected
execution. The different approaches to handle errors are:

Error Handling Approach

Stop the
execution

Execute specified
actions within the

workflow

Escalate the
issue to a

human operator

Error handling is the mechanism for identifying and addressing the errors in a program.

Some of the important error handling activities are:

Error Handling Activities

Retry Scope Rethrow

Error

Handling

Activities

Terminate

Workflow

ThrowTry Catch

Catches a specified exception type in a sequence or activity, and either displays an error notification or
dismisses it and continues the execution.

Try Catch Activity

Try

The activities performed which have a chance of

throwing an error.

Catches

The activity or set of activities to be performed when

an error occurs. Multiple errors and corresponding

activities can be added in this block.

Finally

Holds an activity that should be executed only if no

error occurred or if the error was already caught

Retries the contained activities as long as the condition is not met or an error is thrown.

Retry Scope Activity

Retry Scope

Retry Scope

Retries the contained activities as long as the

condition is not met, or an error is thrown.

Retry Scope activity retries the contained activities as long as the condition is not met,
or an error is thrown.

It is used to retry the execution in situations in which an error is expected. The execution
will be retried until a certain event happens (for a number of times) or without any
condition (retried until no exception is thrown).

It is used for catching and handling an error, which is why it’s similar to Try Catch. The
difference is that this activity simply retries the execution instead of providing a more
complex handling mechanism.

Some of the properties of Retry Scope are:
• NumberOfRetries: The number of times that the sequence is to be retried
• RetryInterval: Specifies the amount of time (in seconds) between each retry

For example, consider a website that simply works faulty, and the user just needs to click
the same button over and over until it goes to the desired screen

To know more, visit: https://docs.uipath.com/activities/docs/retry-scope

https://docs.uipath.com/activities/docs/retry-scope

Retry Scope

The Retry Scope activity in Studio allows for the repetition of activities until a condition is met or an error
is encountered. It is a helpful mechanism for handling errors and recovering from failures in an automation
process.

This activity is a powerful tool in cases where exceptions are thrown sporadically and other measures, like
tuning selectors, already took place.

For example, a particular selector isn't found in a certain application in less than 5% of the time the
workflow runs, but no further selector improvements are possible. Using Retry Scope in this scenario will
make the robot try to access the selector again in case a SelectorNotFoundException is thrown.

The Retry Scope will throw an exception if the retry number is exceeded.
Therefore, it should be place is a Try Catch, with a proper Log Message in the Catch section.

Throw

Throw

Throws a user-defined exception

This activity throws a user-defined exception.
It can be a system or business exception

Example: new Exception("Throwing an exception")
OR new BusinessRuleException("Throwing a business
exception")

To know more, visit:
https://docs.uipath.com/activities/docs/try-catch

https://docs.uipath.com/activities/docs/try-catch

Rethrow

Rethrow

Takes an existing exception that has been

encountered and regenerates it at

 a higher level

This activity takes an existing exception that has been

encountered and regenerates it at a higher level.

It always comes in the catch block of Try Catch activity.

It is used when the user wants the activities to occur before the

exception is thrown

Example: “FileNotFound” error

Terminate Workflow

Terminate Workflow
Terminates the workflow when the

task encounters an error

This activity terminates the workflow when the
task encounters an error.

Example: If login is unsuccessful, the workflow
is terminated

Resources

Topic Link

Try Catch https://docs.uipath.com/activities/other/latest/user-guide/try-catch

Error Handling in Project
Organization

https://docs.uipath.com/studio/standalone/2023.4/user-guide/project-
organization#error-handling

Logging Levels in UiPath https://docs.uipath.com/orchestrator/standalone/2023.4/user-guide/logging-levels

Retry Scope https://docs.uipath.com/activities/other/latest/user-guide/retry-scope

UI Activities Properties https://docs.uipath.com/studio/standalone/2023.4/user-guide/ui-activities-properties

https://docs.uipath.com/activities/other/latest/user-guide/try-catch
https://docs.uipath.com/studio/standalone/2023.4/user-guide/project-organization#error-handling
https://docs.uipath.com/studio/standalone/2023.4/user-guide/project-organization#error-handling
https://docs.uipath.com/orchestrator/standalone/2023.4/user-guide/logging-levels
https://docs.uipath.com/activities/other/latest/user-guide/retry-scope
https://docs.uipath.com/studio/standalone/2023.4/user-guide/ui-activities-properties

Classroom Exercise - Try Catch

Build a workflow using Try Catch that:

• Inserts a text into a Notepad file in the first attempt

• Encounters an error when attempting to write a second text

• Catches and displays the error in a message box

• Continues to save and close the Notepad file

Classroom Exercise - Retry Scope

Build a workflow using a Retry Scope that simulates a

failing Notepad window.

Your goal is to create a workflow that handles different

scenarios based on the value of a random variable.

If the value of the Random variable is not 0 for three

consecutive times, display the message "Notepad Window

failed to start" and terminate the workflow with the error

message "Notepad failed to start."

If the value of the Random variable is 0, open the Notepad

application. Since the exist condition of the loop is to find

the Notepad window, consider this scenario as a successful

completion of the workflow.

A type of workflow designed to determine the behavior when encountering an execution error at the
project level.

Global Exception Handler

• Only one Global Exception Handler can be

set per automation project

• It is used in conjunction with Try Catch and

only uncaught exceptions will reach the

Exception Handler

• It is only available for processes and not for

library projects

The Global Exception Handler has a predefined structure.

Global Exception Handler

Predefined Actions

(can be removed)

Predefined Arguments

(shouldn't be removed)

• errorInfo, with the In direction:

• Contains the error that was thrown

& the workflow that failed

• result, with the Out direction:

• Stores the next behavior of the

process when it encounters the

error

• Log Error:

• Logs the error

• Choose the logging level: Fatal, Error,

Warning, Info, and so on

• Choose Next Behavior:

• Choose the action to be taken when an

 error is encountered during execution

• Continue, Ignore, Retry, Abort

Specifies if the automation should continue, even if the activity throws an error.

ContinueOnError

NOTE: If an activity is included in Try Catch, in the Try section,
and the value of the ContinueOnError property is True,
no error is caught when the project is executed.

The best practices for handling errors are:

Best Practices for Error Handling

Breaking the process into smaller workflows

Using Try Catch blocks

Using Global Exception Handler

Best Practices: TryCatch Donts

While the Try Catch activity can be helpful, it's important to avoid excessive usage.

Catching an exception should only be done when there's a valid reason to do so.

Typically, the Catch block is responsible for handling the exception and enabling error recovery.

However, there are instances where an exception is caught performing certain actions, for the purpose of logging
it, before being rethrown to higher levels.

Here are a few examples where the Try Catch activity shouldn't be used:

• When dealing with an Assign activity that involves filtering a DataTable. Instead of using it in a Try block, it's advisable to use
an If statement. This Assign can throw an exception if the input DataTable (in_Datatable) is empty or if the Select operation
doesn't return any results. By using an If statement, we can first check the necessary requirements before executing the
Assign activity.

• In case of UI interaction, avoid placing Click or Type Into activities in Try Catch. Instead, use synchronization activities to
check the availability of the target elements, such as: Element Exists, Find Element, Check App State etc.

Practice Exercise

Build a workflow using a Try Catch activity that does the

following:

• Take the Name, Gender, and Age as the user input

• Subtract current year with Age value to get the Year of

Birth

• Handle an error that occurs due to a reckless user input

of an incorrect age containing the 11-digit number

• Continue the process to display the Name, Gender, and

Year of Birth of the user in a message box

	Default Section
	Slide 1: RPA Design and Development
	Slide 2: Lesson 7 Exception handling
	Slide 3: Error Handling– Exam Topics
	Slide 4: Errors
	Slide 5: System and Business Exceptions
	Slide 6: Application (System) Exception
	Slide 7: Application (System) Exception
	Slide 8: Business Rule Exceptions
	Slide 9
	Slide 10: Error Handling Approach
	Slide 11: Error Handling Activities
	Slide 12: Try Catch Activity
	Slide 13: Retry Scope Activity
	Slide 14: Retry Scope
	Slide 15: Retry Scope
	Slide 16
	Slide 17: Throw
	Slide 18: Rethrow
	Slide 19: Terminate Workflow
	Slide 20
	Slide 21
	Slide 22: Classroom Exercise - Try Catch
	Slide 23: Classroom Exercise - Retry Scope
	Slide 24: Global Exception Handler
	Slide 25: Global Exception Handler
	Slide 26: ContinueOnError
	Slide 27: Best Practices for Error Handling
	Slide 28: Best Practices: TryCatch Donts
	Slide 29: Practice Exercise

