
RPA Design and
Development
v4.0

Lesson 8 Logging

1. Describe and interpret robot execution logs

2. Apply logging best practices during development

Logging – Exam Topics

Logging

Logging is the process of keeping logs of various events that occur during project execution. There are
four types of logs:

Studio Logs

• Diagnostic log messages generated by

Studio regarding its behavior

Robot Logs
• Diagnostic log messages providing

information related to the Robot and

 its context

Setup Logs
• Track events related to installing UiPath

Studio (logged in the Event Viewer)

Orchestrator Logs

• Diagnostic log messages generated by

Orchestrator regarding its behavior

Logging

There are two types of Robot logs::

Robot Execution Logs

These are messages

generated by the execution

of a process and contain

information related to its

behavior and user-defined

messages.

Robot Diagnostics Logs

These provide information

related to the Robot itself

and its context.

Logging

The types of logs generated while running processes in Studio are a subset of Robot logs, called Robot
Execution logs. Robot Execution Logs can be of two types: Default Logs & User-Defined Logs

Default
Logs

User-
Defined
Logs

Robot Execution Logs

Generated by default
when the execution
of a project starts &
ends

Generated
according to the
process designed by
the user in Studio

Logging – Default Logs

Default logs are generated automatically when certain events
take place. These events can be the start/end of a process or a
transaction, encountering an error, or when the Robot Logging
Setting is set to Verbose.

▪ Execution start is generated every time a process is started
(Level = Information).

▪ Execution end is generated every time a process is finalized
(Level = Information).

▪ Transaction start is generated every time a transaction
within a process is started (Level = Information).

▪ Transaction end is generated every time a transaction within
a process is finalized (Level = Information).

▪ Error log is generated every time the execution encounters
an error and stops (Level = Error).

▪ Debugging log is generated if the Robot Logging Setting is
set to Verbose, and contains, Activity names, types, variable
values, arguments, etc. (Level = Trace).

Logging – User Defined Logs

User-defined logs are generated according to the process
designed by you in Studio when using

• Log Message Activity or

• Write Line Activity

Logging Levels

There are six levels of logging:

Critical Level

Indicates critical

issues wherein a

robot may not

recover and stop

working

Error Level

Indicates errors

after which a

robot retries for

recovery and

moves on

Warn Level

Indicates events

that may have an

adverse impact on a

robot’s performance

Info Level

To know the

progress of a robot

at each stage of

execution

Trace Level

To collect

information for

developing or

debugging

Verbose Level

To log message at

activity start and

end, plus values of

the variables and

arguments

How to do Logging?

Logs are applied using the Log Message activity.

1
Fatal (Critical) Log Message

4 Info Log Message

3
Warn Log Message

2 Error Log Message

5
Trace Log Message

Log Message Activity

Resources

Topic Link

Types of Logs https://docs.uipath.com/studio/standalone/2022.10/user-guide/types-of-logs

Logging Levels
Learn more about the logging
levels in UiPath, the log message
types, and log fields.

https://docs.uipath.com/studio/standalone/2022.10/user-guide/logging-levels

Robot Logs
Learn more about the robot
diagnostics and robot execution
logs.

https://docs.uipath.com/robot/standalone/2022.10/user-guide/robot-logs#robot-
execution-logs

https://docs.uipath.com/studio/standalone/2022.10/user-guide/types-of-logs
https://docs.uipath.com/studio/standalone/2022.10/user-guide/logging-levels
https://docs.uipath.com/robot/standalone/2022.10/user-guide/robot-logs#robot-execution-logs
https://docs.uipath.com/robot/standalone/2022.10/user-guide/robot-logs#robot-execution-logs

Accessing and Reading Robot Execution Logs

There are several places where you can access Robot Execution Logs:

Logs Location Details

Output Panel in UiPath Studio In the Output Panel in UiPath Studio for the previous process execution from Studio

%localappdata%\UiPath\Logs
\<shortdate>_Execution.log
file

For all processes ran on the machine from UiPath Studio.
Logs are generated at Trace level and above or Verbose level and above depending
on whether the Verbose level is activated or not

%localappdata%\UiPath\Logs
\<shortdate>_Execution.log
file

For all processes ran on the machine from UiPath Assistant.
The logs are generated at the level defined in UiPath Assistant and above

Orchestrator in the Logs section when running processes while connected to Orchestrator.
The logs are generated at the defined level and above

Accessing Local Logs

View the logs generated by
process execution, in the
UiPath Studio Output Panel

Access local Robot Execution
log files from Debug Ribbon ->
Open Logs option

The Anatomy of a Log Entry

Structure of log entries. These entries can be very helpful when checking execution logs to analyze behavior or
figure out what caused an exception. Logs are in the form of a JSON, pretty much just a key-value pair
(“field1:value1,” “field2:value2”).

The default log fields are present in all logs:

Key Description

Message The log message

Level The log severity of the log message

Timestamp The exact date and time the action was performed

FileName The name of the .xaml file being “executed"

JobId The key of the job running the process

ProcessName The name of the process that triggered the logging

ProcessVersion The version number of the process

WindowsIdentity The name of the user that performed the action that was logged

RobotName The name of the robot (as defined in Orchestrator)

The Anatomy of a Log Entry

Aside from default fields, logs can also contain type-specific fields and user-defined fields.

❖Type-specific fields are present depending on the log type, like totalExecutionTimeInSeconds and
totalExecutionTime for Execution End.

❖User-defined fields are defined in Studio (by using the Add Log Fields Activity) and appear in all resulting
logs after the activity is generated unless they are (programmatically) removed by the activity Remove Log
Fields.

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

1

Default logs and use-defined logs

Executing a simple "Hello World" process has
generated: two default logs (Process
execution started and Process execution end)
and one user-defined log ("Hello World!")

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

2

“level”

"The level" field indicated the severity of the
log entry or log level.
In this example, all log entries are
"Information" level.
When debugging, you may want to start
analyzing logs from the most severe (Fatal) to
the least severe (Trace).

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

3

"logType“

This field lets you know if an entry is
a default log ("Default") or a user-
defined log ("User"). Based on the
type of issue you are facing, you may
want to focus on default logs or
user-defined logs.
Note that unhandled exceptions
generate default log entries.

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

4 "message“

The "message" field informs you about the content of the log entry.
Default log messages at info level for above can notify you of processes starting/ending,
transaction starting/ending or exception messages.
When investigating a process via logs, check the message to find out what the log entry
describes.

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

5

"processName“

This field indicates the name of the process which generated the log entry.
As UiPath Studio will create a single log file for all process executed in Studio
in one day, filtering entries by "processName" will let you focus on the
processes you are interested in.

The Anatomy of a Log Entry

Key log fields generated at the Trace level and above when executing a project in run mode

6

"fileName“

The "fileName" indicated the workflow file which generated the log entry.
This field is useful when your project consists of several invoked workflow files.
When debugging, check this field to identify which file generated a log entry.

The Anatomy of a Log Entry

Log entries generated at the Verbose level and their key fields. These are the types of files generated when
running a project locally in debug mode with Log Activities option enabled

The Anatomy of a Log Entry

Log entries generated at the Verbose level and their key fields. These are the types of files generated when
running a project locally in debug mode with Log Activities option enabled

1

Activity Information logs

You can notice that running the same process has generated more log entries.
These are called Activity Information logs. The new log entries provide a
detailed view of the robots' path through the project

The Anatomy of a Log Entry

Log entries generated at the Verbose level and their key fields. These are the types of files generated when
running a project locally in debug mode with Log Activities option enabled

2

"activityInfo“

This field provides the complete name for the activity which generated the
entry.You can use this field when the custom name given to the activity doesn't
specify what type of activity it is.

The Anatomy of a Log Entry

Log entries generated at the Verbose level and their key fields. These are the types of files generated when
running a project locally in debug mode with Log Activities option enabled

3
“State“

The "State" field indicates if the log entry
refers to an activity executing or closing.
This field can be especially useful when
used in conjunction with the "activityInfo"
field to identify execution start and close
points of containers.

The Anatomy of a Log Entry

Log entries generated at the Verbose level and their key fields. These are the types of files generated when
running a project locally in debug mode with Log Activities option enabled

4

"Variables" and "Arguments“

The "Variables" field is very useful for debugging a project.
Similar to the Local Panel, it lets you check the values of all
variables in the same scope at the moment of log entry
generation

Setting the log level for UiPath Assistant

Running a process from UiPath Assistant will

• send the logs to Orchestrator if connected

• generate logs in
%localappdata%\UiPath\Logs\<shortdate>_Execution.log

The log entries are generated at the level set in UiPath
Assistant and above.

For example, if the level is set to Error, it'll only generate
the logs at the Error and Fatal levels.

Critical Level

Error Level

Warn Level

Info Level

Trace Level

Verbose Level

Configure UiPath Assistant to Log Events

This example shows you how to configure the UiPath Assistant to log events at the Information level and
above for processes executed through it.

Step 1: Open UiPath Assistant
 Click the Preference icon

Configure UiPath Assistant to Log Events

Step 2: Click the Preferences button

This example shows you how to configure the UiPath Assistant to
log events at the Information level and above for processes
executed through it.

Configure UiPath Assistant to Log Events

Step 3: Click the Orchestrator Setting option

This example shows you how to configure the UiPath Assistant to
log events at the Information level and above for processes
executed through it.

Configure UiPath Assistant to Log Events

Step 4: Click the Log Level drop-down

This example shows you how to configure the UiPath Assistant to log events at the Information
level and above for processes executed through it.

Configure UiPath Assistant to Log Events

Step 5: Select the Information option

This example shows you how to configure the UiPath Assistant to log events at the Information
level and above for processes executed through it.

Configure UiPath Assistant to Log Events

Click Close, and you're done.

This example shows you how to configure the UiPath Assistant to log events at the Information
level and above for processes executed through it.

Logging Best Practices

❑ Log message activities should ideally be used in the following scenarios:

Each time an exception is caught in a Catch block (Log level = Error)

Each time a Business Rule Exception is thrown (Log Level = Error)

When data is read from external sources. For example, log a message at Information level when an

Excel file is read (Log Level = Information)

In Parallel or Pick activities, log messages on every branch, to trace the branch is taken (Log Level = Information)

In If/Flowchart Decision/Switch/Flow Switch activities

Note: There should be no more than two (maximum three) nested IF statements so it

depends from workflow to workflow if you should add or not log message activities.

Logging Best Practices

❑ When you invoke a workflow use the two properties Log Entry and Log Exit (Log level =
Information). These let you specify if you want to log entry into/ exit from an invoked workflow.
This is particularly useful for debugging without adding lots of Log Message activities

❑ Write meaningful log messages: The message should be clear enough

❑ Add context to your log message: Include values of meaningful variables in that context

Classroom Exercise

Demonstrate how to use Log Message activity of Info, Error, and Fatal level in a

workflow by creating a bank transaction process that logs the responses and

actions of the user.

• Display a message to the user about the available balance in the bank

account and log this action at the Info level

• Ask the user to enter the amount to withdraw and log the response at the Info

level

• If the requested amount is greater than the available amount, then

• Log an error message, “User does not have enough amount.”

• Display a message to the user, “You are trying to withdraw more than the

allowed amount.”

• Log a fatal error message, “Invalid amount entered. Process terminated.”,

and terminate the process

• If the requested amount is less than the available amount, then

• Display a message to the user, “Your remaining amount is $x”

• Log an Info level message, “Remaining amount displayed to the user”

Classroom Exercise

The ACME project consists of several workflow files. The project navigates to ACME

System 1, logs in, navigates to the Download Client and Support page, downloads all

the Work Item PDF documents, and logs out.

• Apply the logging recommendations and add log messages to a workflow to make

the execution easy to supervise.

Here are some hints to help you approach this exercise

• Use info level to indicate that something happened, that the process entered a certain state, for
purely informative purposes.

• Use the warn level for unexpected behavior that might occur, any information that might be useful to
know but is not preventing the process from being complete.

• Use trace level to log any important data that you need to stand out from the rest of the log
information.

• Use fatal when a key activity might not work, and the process will not be able to complete without it.

	Default Section
	Slide 1: RPA Design and Development
	Slide 2: Lesson 8 Logging
	Slide 3: Logging – Exam Topics

	Logging Types
	Slide 4: Logging
	Slide 5: Logging
	Slide 6: Logging

	Default Logs
	Slide 7: Logging – Default Logs

	User Defined Logs
	Slide 8: Logging – User Defined Logs

	Logging Levels
	Slide 9: Logging Levels
	Slide 10: How to do Logging?
	Slide 11

	Accessing Local Logs
	Slide 12
	Slide 13: Accessing and Reading Robot Execution Logs
	Slide 14: Accessing Local Logs

	Anatomy of a Log Entry
	Slide 15: The Anatomy of a Log Entry
	Slide 16: The Anatomy of a Log Entry
	Slide 17: The Anatomy of a Log Entry
	Slide 18: The Anatomy of a Log Entry
	Slide 19: The Anatomy of a Log Entry
	Slide 20: The Anatomy of a Log Entry
	Slide 21: The Anatomy of a Log Entry
	Slide 22: The Anatomy of a Log Entry
	Slide 23: The Anatomy of a Log Entry
	Slide 24: The Anatomy of a Log Entry
	Slide 25: The Anatomy of a Log Entry
	Slide 26: The Anatomy of a Log Entry
	Slide 27: The Anatomy of a Log Entry
	Slide 28: The Anatomy of a Log Entry

	Setting Log Levels
	Slide 29: Setting the log level for UiPath Assistant
	Slide 30: Configure UiPath Assistant to Log Events
	Slide 31: Configure UiPath Assistant to Log Events
	Slide 32: Configure UiPath Assistant to Log Events
	Slide 33: Configure UiPath Assistant to Log Events
	Slide 34: Configure UiPath Assistant to Log Events
	Slide 35: Configure UiPath Assistant to Log Events

	Logging best Practices
	Slide 36: Logging Best Practices
	Slide 37: Logging Best Practices
	Slide 38: Classroom Exercise
	Slide 39: Classroom Exercise

