
Advanced RPA
Design and Development
v4.0

Lesson 16

Version Control

Exam Topics - Version Control

Use the Studio Git Integration to

1. Add a project

2. Clone a repository

3. Commit

4. Push

5. Use show changes and solve conflicts

6. Create and Manage branches

Learning Objectives

1. Define version control system (VCS) and its purpose

2. Analyze the benefits and challenges of using version control systems

3. Describe how Git works

4. Identify the difference between Git and SVN

5. Create a GitHub Repository

6. Use the Git Init option to add a project to the new local Git repository

7. Identify how to clone a repository and commit changes to a local Git Repository

8. Identify how to change the last commit

9. Identify how to undo changes and push the final changes to the remote repository

Introduction to Version Control

Version control is used to track and manage any changes in the project.

Offers smooth
collaboration between
multiple users

Allows users in different
teams & locations to
access same resources

Allows a user to check
revision history of the
project (offers traceability)

Version Control in Studio

Automation projects are connected to version control systems through the Team tab in Studio. The
version control systems are:

GIT

GIT is a distributed version-control

system for tracking changes in source

code during software development.

• Clone Repository: Clone a remote

 GIT repository

• Copy to GIT: Copy the current project to

an existing GIT repository

• GIT Init: Add the current project to a new

local GIT repository

• Disconnect: Disconnect the current

project from source control

• Change Signature: Change commit

signature

TFS

TFS is the source code management

established by Microsoft, used for the

project and release management.

• Open from TFS: Open a project from a

TFS repository

• Add to TFS: Add the current project to

TFS source control

• Manage TFS Online: Go to the web

management interface

• Disconnect: Disconnect the current

project from source control

SVN

SVN is a software versioning and

revision control system distributed as

open source.

• Open from SVN: Open a project from an

SVN repository

• Add to SVN: Add the current project to SVN

source control

• Disconnect: Disconnect the current project

from source control

• Change Credentials: Change remote

repository credentials

What are version control systems?

1. A version control system (VCS), also known as a source control system or revision control system, is a
software tool that helps developers manage changes to their source code and other files.

2. It provides a structured approach to
▪ Track
▪ Document
▪ Control different versions of files
▪ Enabling collaboration
▪ Facilitating team workflows
▪ Ensuring code integrity

3. UiPath projects are typically developed using external version control systems to manage source
code and track changes over time.

4. You can use any version control system that suits your requirements, such as Git, SVN (Subversion),
or TFS (Team Foundation Server)

5. UiPath projects are usually stored as collections of files, including workflow files (.xaml),
configuration files, and other supporting files.

What are version control systems?

Benefits of Version Control System

History and Version Tracking

Collaboration and Teamwork

Branching and Merging

Code Integrity and Backup

Traceability and Auditing

Experimentation and Rollbacks

Code Reviews and Continuous
Integration

Benefits of Version Control System

Version control systems keep a
complete history of all changes
made to files, allowing
developers to track and view
the evolution of the codebase

History and
Version Tracking

Benefits of Version Control System

Version control systems facilitate
collaboration among team members
working on the same project.

Multiple developers can work on
different branches, make changes, and
merge them back into the main
codebase

Collaboration
and Teamwork

Benefits of Version Control System

Allow developers to create branches, which
are independent lines of development.
Branches enable the isolation of new
features or experimental changes from the
main codebase, providing a safe space for
development without affecting the stability
of the main branch. Branches can be merged
back into the main branch once the changes
are tested and approved

Branching and
Merging

Benefits of Version Control System

Maintain code integrity by documenting,
reviewing, and validating changes before
integration.

They minimize the risk of errors and serve
as backups by storing the project's
complete history for easy reversion to
previous versions

Code Integrity
and Backup

Benefits of Version Control System

Provide traceability by associating each
change with relevant information, such as
the reason for the change, associated
issues or tickets, and the person
responsible.

This traceability aids in auditing,
compliance, and helps in understanding the
context behind specific modifications

Traceability and
Auditing

Benefits of Version Control System

Developers can experiment with new ideas,
features, or improvements without fear of
damaging the existing codebase.

If an experiment doesn't work out as
expected, it's easy to roll back to a previous
known good state and continue from there

Experimentation
and Rollbacks

Benefits of Version Control System

Seamlessly integrate with code review and
continuous integration/delivery tools.

They facilitate systematic code reviews, improving
code quality and knowledge sharing.

By setting up continuous integration workflows,
code changes can be automatically built, tested, and
deployed upon each commit, streamlining the
development process

Code Reviews &
Continuous
Integration

What are version control systems?

Irrespective of the version control system type, project files are stored on a server where you upload
your completed work from your local machine.
The choice between a centralized version control system like SVN and a distributed version control
system like Git impacts the process of committing changes.

❑ Git, TFS, and SVN are the version control systems that integrate with UiPath Studio. Users establish
the connection to a version control system at the project level

❑ To manage your connections, access Studio, go to the Backstage view, and click on the Team tab

❑ The Add to Source Control button in the status bar offers shortcuts to
▪ Git Init
▪ Copy to Git
▪ Add to TFS
▪ Add to SVN

Note: You cannot connect a project to Git, TFS and SVN at the same time.

Resources

Topic Link

About Version Control https://docs.uipath.com/studio/standalone/2022.10/user-guide/about-version-control

Managing Projects with Git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git

Managing Projects with SVN
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-svn

Managing Projects with TFS
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-tfs

GitHub - Official Documentation https://help.github.com/en

https://docs.uipath.com/studio/standalone/2022.10/user-guide/about-version-control
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-svn
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-tfs
https://help.github.com/en

Git Overview

Git is an open-source distributed version control system, empowers users to
efficiently and collaboratively manage source code and project files.

It actively tracks changes to files, enabling easy switching between different
versions, branch creation for experimentation, merging of changes, and seamless
collaboration.

Git facilitates both local and remote work, making it convenient for individual
developers and teams alike.

It offers numerous benefits, including version history, streamlined rollback, conflict
resolution, and seamless integration with popular development platforms.

Its flexibility, speed, and robustness have established Git as the de facto standard for
version control in the software development industry.

Additionally, Git provides excellent support for branching, merging, and repository
history rewriting, with the added advantage of the widely-used pull request feature
that facilitates efficient code review and collaboration within teams.

As the most widely adopted version control system globally, Git has solidified its
position as the modern standard in software development.

How Git works

Here is a basic overview of how Git works:

1. Create a repository (project) with a Git hosting tool (e.g. GitHub)

2. Copy or clone the repository to your local machine

3. Add a file to your local repository and commit (save) the changes locally

4. Push your changes to the remote repository

5. Pull the file to local repository and make changes, and then commit and push the file

6. Create a branch (alternative), make a change, commit the change

7. Open a pull request (propose changes to the master branch)

8. Merge your branch to the master branch

Comparing SVN and Git Side-by-Side

SVN (Subversion) and Git are both popular version control systems used in software development. While they serve similar purposes, they
differ in their underlying architecture, workflow models, and features. Here's a comparison of SVN and Git:

SVN GIT

Architecture

SVN is a centralized version control system, where a central
repository stores the entire history and versions of files.
Developers typically check out a working copy from the central
repository, make changes, and commit them back.

Git is a distributed version control system, where each developer
has a complete local copy of the repository. This allows
developers to work independently and commit changes locally
before synchronizing them with remote repositories.

Branching and
Merging

SVN supports branching and merging, but it follows a copy-
modify-merge approach. Each branch is essentially a copy of
the trunk or another branch, and developers merge changes
back to the main branch manually.

Git provides powerful branching and merging capabilities.
Branches are lightweight and can be created and merged easily.
Git allows for various branching strategies (such as feature
branches, release branches, etc.) and provides efficient merging
mechanisms.

Performance
SVN performs well for smaller repositories and projects with
fewer files. However, as the repository size grows, SVN's
centralized architecture can lead to slower operations,
especially for tasks like history traversal.

Git is designed to handle large repositories efficiently, thanks to
its distributed nature. Most operations are performed locally,
making Git faster for common tasks such as committing,
branching, merging, and switching between branches.

Offline Work
SVN requires a network connection to the central repository for
most operations. Working offline is limited, as you need
network access to commit changes or access the repository's
full history.

Git enables full offline work since each developer has a complete
local repository copy. Developers can commit changes and access
the repository's history without network connectivity.

Community and
Ecosystem

SVN has a mature user base and a well-established ecosystem.
It has been around for a longer time, and there are many tools
and integrations available for SVN.

Git has gained immense popularity and has a larger user
community. It has a vast ecosystem with a wide range of tools,
services, and integrations built around it.

Using Git in Studio – Add a Project

1. Sign-in to GitHub (www.github.com)

2. Click Create repository

3. Copy the repository URL

4. Go UiPath Studio Home tab and select Team

5. GIT Init to add the current project to a new local GIT repository

6. Choose a location for our new local GIT repository

7. The Commit Changes window is now displayed, and we're prompted to select the project files that we want to add or that have
suffered changes since our last commit. As this is our first commit, we can select all, type a commit message, and click Commit
and Push to add all the folders along with any changes made to the remote repository on GitHub as well.

8. Since we aren't adding the project and changes to just our local GIT repository, but also to the remote one, we are now
prompted to add our remote repository. Let’s type in the name and paste in the URL from GitHub.

9. Click Add and Save

http://www.github.com/

Add a Project to GIT

The GIT Init feature adds the current project to a local GIT repository.
Access the command from the Team tab, or the status bar.

1. Create or open a project in Studio. Click the Start tab > Team. The Team
tab is displayed.

2. Click the GIT Init button, and then select a path where the repository
should be initialized. The location may be the same as the project or the
parent folder. The Commit changes window opens.

3.The Modified Files section shows the project’s files that are to be added
to the Git repo. Clear the box next to the ones that you don’t want to add
or use Select All, Select None.

4. Select the Show Unversioned Files box to add unversioned files to the list.

5. Write a Commit Message.

6. Click the Commit button to commit the changes to the local Git
repository.

When a project is added to GIT, the context
menu in the Project panel includes GIT-specific
options. For more information, see Context
Menu Options for GIT.

https://docs.uipath.com/studio/standalone/2023.10/user-guide/about-automation-projects
https://docs.uipath.com/studio/standalone/2023.10/user-guide/about-automation-projects

Committing and Pushing to GIT

1. From the same Commit Changes window, click the
Commit and Push button to commit the changes and push
them to the remote repository. This Manage Remotes
window is displayed. The window is also available from the
status bar

2. In the Name section, add the name of the remote
repository

3. In the URL section, add the remote URL

If you want to make modifications to the added
repositories, simply click an entry, change the
name and URL, then click the Update button.
When you're done click Add, then Save. The
below message box opens. This means that the
local repository is not synchronized with the
remote one.

Committing and Pushing to GIT

If you want to make modifications to the added repositories, simply click an entry, change the name and URL,
then click the Update button. When you're done click Add, then Save. The below message box opens. This
means that the local repository is not synchronized with the remote one.

➢ Click the Overwrite remote content button to push the local versions of files to the remote repository and overwrite the files
there

➢ Click the Pull (rebase) button to pull the remote files and rebase the current branch
➢ Click the Cancel button to discard the whole operation

The number of unpushed changes, and newly added files are visible in the status bar. Click the icon to open the Commit
Changes window, or the icon to push changes

Note: If you edit a file from a project added to source control in an external editor, the change is visible in the Project panel
and the status bar only after you click Refresh in the Project panel

Viewing the Commit History

To view the commit history for a project or for a
specific file or folder in a project

➢ Right-click the project node, a file, or folder in
the Project panel

➢ Select Show History

This opens the History window which displays a list of
existing revisions for the selected file, folder, or
project.

For each commit, the commit hash, message, author, and
date are displayed in a table on the upper part of the
window. You can view more information about a selected
commit in the Details and Changes tabs on the lower part of
the window

Comparing Two Versions of a File

To compare two versions of the same file:

❑ If you opened the history for a file, right-click a commit in the History window, and then select
Compare with Previous, Compare with Local, or Compare with Latest

❑ If you opened the history for a folder or project, select a commit in the History window, and then,
in the Changes tab, double-click a file to compare it with its previous version.

Solving Conflicts

GIT integration with Studio comes with a
feature for solving conflicts that may occur
when performing the Rebase or Push
command, found in the Commit Changes
window.

Whenever Studio detects a conflict
between the local file and the one found in
the remote repository, the Solve conflicts
window is displayed.

The window is similar to File Diff, showing
the differences between the Remote
version of the file and the Local version.

https://docs.uipath.com/studio/standalone/2023.10/user-guide/using-file-diff

Solving Conflicts

The following table describes the options available in the Solve conflicts window.

Using Git in Studio

Once you have connected
to Git (can be just a local
repository)

These are the available
options under the
BackStage Team tab

Authenticating to GIT

Authentication methods in Studio differ in accordance with the methods used for cloning a GIT repository, either

❑ HTTPS
❑ SSH

Note:
• The GIT credentials you provide in Studio are stored in the Windows Credential Manager

• The GIT integration with Studio currently supports two-factor authentication only for GitHub if you authenticate by
signing in to the service. For other tools, use the SSO authentication method with a personal token, or the basic
access authentication method.

We detail the steps for authenticating to a GitHub repository, but the Git integration in Studio is not limited to just this
service

Authenticating to GIT over HTTPS

When cloning a remote GIT repository or copying the current project to an existing GIT repository using HTTPS for the first
time, you must provide your GIT credentials. These credentials must be entered in the Use Credentials fields:

You can authenticate using the following options:

• Sign in with GitHub - Sign in with your GitHub account.
• User/Password - Enter your user and password
• Token - Enter your user and personal access token

Follow the steps to generate a GIT token for your GitHub repository

Important: The Sign in with GitHub option is available only for repositories hosted on github.com and
requires the UiPath GitHub App to be installed in your organization or account.

https://github.com/apps/uipath

Authenticating to GIT over SSH

When cloning a repository or copying the current project to an existing GIT repository using SSH for the first time, you have
the option of using a private key:

Add the Private Key Path and the Password, and then
click Open to clone your remote GIT repository.

You will need to generate a SSH key for your GitHub
repository.

Cloning a Remote GIT Repository

1. In the Team tab, select Clone Repository. The Clone a
remote GIT repository. window is displayed.

2. Select either Use HTTPS or Use SSH

3. Type in the Repository URL, and choose an empty Check
out directory

4. Select Use Credentials / Use Key and configure
authentication (either sign in with GitHub, enter user and
password, enter user and token for HTTPS, or enter
private key path and password for SSH)

5. Click Open, Studio opens the project in the Designer panel

6. In the Open window, select a project.json file to open in
Studio

After cloning a GIT repository to a local working
directory, the .git subdirectory is created
containing the necessary GIT metadata.

The metadata includes subdirectories for objects,
refs, and template files. In addition, a HEAD file is

also created, which points to the currently checked
out commit.

Resources

Topic Link

Adding a Project to Git - UiPath Studio Guide
Learn more about adding a Studio project to Git.

https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Copying a Project to Git - UiPath Studio Guide
Learn more about copying a project to Git.

https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Disconnecting from Git - UiPath Studio Guide
Learn more about disconnecting from Git.

https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Committing and Pushing to Git - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Changing the Last Commit - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Undoing Pending Changes - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Authenticating to Git - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git

Solving Conflicts - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/user-
guide/managing-projects-git#solving-conflicts

https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git#solving-conflicts
https://docs.uipath.com/studio/standalone/2022.10/user-guide/managing-projects-git#solving-conflicts

Creating and Managing Branches

Branching allows you to work on different versions of your project simultaneously, making it
easier to collaborate with team members and experiment with new features without
affecting the main codebase.

We will be covering the following topics

1. Create Branches
2. Switch between them
3. Merge changes back into the main branch

Creating and Managing Branches

To access the add and manage branches from the Manage Branches window,
either

▪ right-click the project node or a file in the Project panel and select Manage
Branches, or

▪ use the branch menu in the status bar

Creating a Branch

Step1 : Open the Manage Branches window

In the Project panel, right-
click the project node or
contained file or use the
branch menu in the status
bar and choose the option
"Manage Branches"

Creating a Branch

Step 2 : Manage Branches Window

The Manage Branches
window displays.

Creating a Branch

Step 3 : Add a New Branch

Click on the plus button to add a branch.

Provide a name for the branch in the
Name section.

Select "Create branch for main" and then
save.

The system will add the branch to the list.

Creating a Branch

Step 4 : Display Options

When you right-click any branch, the options
for Git branches are displayed:

• The "Checkout branch" option switches
to the selected branch

• The "Rebase" option rebases the current
branch onto the selected branch

• The "Merge" option merges the selected
branch into the current branch

Classroom Exercise

Connect and manage automation projects using GIT with

GitHub

Resources

About Version Control - UiPath Studio Guide
https://docs.uipath.com/studio/standalone/2022.10/us
er-guide/about-version-control

Managing Projects with Git - UiPath Studio Guide https://docs.uipath.com/studio/standalone/2022.10/us
er-guide/managing-projects-git

Managing Projects with SVN - UiPath Studio Guide https://docs.uipath.com/studio/standalone/2022.10/us
er-guide/managing-projects-svn

Managing Projects with TFS - UiPath Studio Guide https://docs.uipath.com/studio/standalone/2022.10/us
er-guide/managing-projects-tfs

	Default Section
	Slide 1
	Slide 2

	Version Control
	Slide 3: Exam Topics - Version Control
	Slide 4: Learning Objectives
	Slide 5: Introduction to Version Control
	Slide 6: Version Control in Studio
	Slide 7: What are version control systems?
	Slide 8: What are version control systems?
	Slide 9: Benefits of Version Control System
	Slide 10: Benefits of Version Control System
	Slide 11: Benefits of Version Control System
	Slide 12: Benefits of Version Control System
	Slide 13: Benefits of Version Control System
	Slide 14: Benefits of Version Control System
	Slide 15: Benefits of Version Control System
	Slide 16: Benefits of Version Control System
	Slide 17: What are version control systems?
	Slide 18: Resources
	Slide 19: Git Overview
	Slide 20: How Git works
	Slide 21: Comparing SVN and Git Side-by-Side
	Slide 22: Using Git in Studio – Add a Project
	Slide 23: Add a Project to GIT
	Slide 24: Committing and Pushing to GIT
	Slide 25: Committing and Pushing to GIT
	Slide 26: Viewing the Commit History
	Slide 27: Comparing Two Versions of a File
	Slide 28: Solving Conflicts
	Slide 29: Solving Conflicts
	Slide 30: Using Git in Studio
	Slide 31: Authenticating to GIT
	Slide 32: Authenticating to GIT over HTTPS
	Slide 33: Authenticating to GIT over SSH
	Slide 34: Cloning a Remote GIT Repository
	Slide 35
	Slide 36: Resources
	Slide 37: Creating and Managing Branches
	Slide 38: Creating and Managing Branches
	Slide 39: Creating a Branch
	Slide 40: Creating a Branch
	Slide 41: Creating a Branch
	Slide 42: Creating a Branch
	Slide 43: Classroom Exercise
	Slide 44: Resources

