Krystal Technology

Spectrosil® 2000

Material Characteristics

Spectrosil® synthetic fused silica is manufactured using a unique, environmentally friendly fusion process resulting in a glass of exceptional purity and excellent visual quality. It is a very highly transmissive fused silica glass that excels in high energy, deep UV applications.

Spectrosil® 2000 is free of bubbles and inclusions and due to its ultra-high purity, has excellent optical transmission in the deep ultraviolet and visible, with a useful range from below 180 nm through to 2000 nm.

Spectrosil® Grade	2000						
■ Striae	Class 5 in Functional Direction						
ISO 10110-4							
Birefringence / Residual Strain ¹⁾	≤ 5 nm/cm						
(Typical values)							
Bubbles							
Bubble class (DIN 58927)	0						
Maximum number of inclusions ²⁾	0						
■ Fluorescence ³⁾	Free						
(254 nm excitations)							

- 1) Stress induced birefringence is valid for 80% of the diameter of an ingot or for 90% diameter of a machined component.
- Bubbles and Inclusions with ø≤80 μm are not counted. Inclusions free down to 10 μm upon request.
- 3) Excitation by Hg-Lamp @ λ = 254 nm and UQ 5-filter; Lamp-power: 8W; Detection: adapted eye

Transmission - Typical Internal Transmission (10 mm path length)

	$_{\lambda}$ = 193.4 nm	_λ = 248 nm
Spectrosil® 2000	> 98.5 %	> 99.5 %

Krystal Technology

Typical Transmission Spectrum

Sample thickness: 10 mm

Typical Chemical Analysis

Typical trace elements in ppb	Αl	Ca	Cr	Cu	Fe	K	Li	Mg	Na	Ti	V	in ppm OH
Spectrosil® 2000	< 10	< 15	< 1	< 3	< 5	< 10	< 1	< 5	< 10	< 5	< 5	< 1350
(below limits of detection)												

Technical Properties

Other Properties

 Abbe number:
 67.8

 Density:
 2.2 g/ cm³

 Hardness:
 5.5 ... 6.5

 (Mohs scale)

Thermal Properties

Strain temperature*: 1025 °C Annealing temperature*: 1120 °C Softening temperature*: 1600 °C Coefficient of thermal expansion: $(Average, K^1 0 ... 600 °C)$

UK Krystal Technology UK Limited Neptune Road Wallsend, UK

Phone: +44 191 259 8411 sales@krystal-tech.com

^{*}Note that these values may vary, depending on the thermal history of the glass.