
The Cognitive Architecture: Moving from 
Inference to Action in 2026
The technology landscape has undergone a fundamental transformation. While 2025 was dominated by the race 
for more sophisticated thinking models and generative AI capabilities, 2026 marks the emergence of something 
far more consequential: autonomous action at scale. We've moved beyond systems that merely process and 
respond to systems that perceive, decide, and execute. For the first time in computing history, the network itself 
has become an autonomous entity capable of real-time decision-making, from dynamically reconfiguring satellite 
beams mid-orbit to managing thermal loads at edge nodes without human intervention. This isn't incremental 
progress4it's a categorical shift in how we architect intelligent systems.

The distinction between inference and action may seem subtle, but its implications are seismic. Large Language 
Models revolutionized how machines understand and generate information, but they remained fundamentally 
passive, waiting for prompts, generating responses, then returning to dormancy. Large Action Models (LAMs) 
shatter this paradigm. They operate continuously, interpreting environmental data streams, forecasting system 
states, and executing multi-step interventions across physical and digital infrastructure. This is embodied 
intelligence at planetary scale, where AI agents don't just advise on optimal satellite beam configurations4they 
implement them autonomously, adjusting power allocations across hundreds of nodes in milliseconds to prevent 
thermal runaway or optimize for unexpected weather patterns.



From Thinking to Doing: The Rise of the 
Large Action Model

The term "Embodied AI" captures what makes 2026 
fundamentally different from everything that came before. While 
previous-generation LLMs excelled at pattern recognition and 
information synthesis, they lacked the capacity to interface 
directly with physical systems and execute consequential actions. 
Large Action Models represent the convergence of advanced 
reasoning, real-time sensor fusion, and direct actuator control. 
These aren't chatbots with API access, they're cognitive 
architectures deeply integrated into industrial control systems, 
satellite payloads, and network infrastructure.

Consider the complexity of modern satellite operations. A 
traditional approach required human operators to analyze 
telemetry, consult thermal models, review traffic forecasts, and 
manually adjust beam patterns and power allocations. This 
process took minutes or hours. LAMs compress this cycle to 
milliseconds, continuously ingesting data from hundreds of 
sensors, predicting thermal states across multiple time horizons, 
and dynamically reconfiguring system parameters to optimize for 
multi-objective constraints: latency, power efficiency, thermal 
safety, and quality of service.
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Perception

Real-time sensor fusion across thermal, 
RF, and telemetry
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Reasoning

Multi-objective optimization under 
uncertainty
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Planning

Multi-step execution sequences with 
contingencies

04

Action

Direct control of physical systems and 
network resources

This is precisely the "brain" that lives within the hardware platforms companies like EpsilonR are engineering. The 
silicon substrate, the thermal management architecture, the RF front-end design - all of these must now be AI-
native, purpose-built to support the computational intensity and real-time responsiveness that LAMs demand. 
We're no longer building hardware that waits for instructions from centralized control systems. We're building 
intelligent endpoints capable of autonomous operation, with the AI model residing at the edge, making mission-
critical decisions in the physical layer with sub-millisecond latency.



The Unified Fabric: Erasing the Space-Earth 
Divide
For decades, satellite networks and terrestrial cellular infrastructure operated as distinct domains, each with its 
own protocols, management systems, and operational paradigms. The handoff between space-based and ground-
based connectivity was manual, clunky, and visible to end users. 2026 marks the definitive end of this artificial 
separation. With the convergence enabled by 3GPP Release 18 and the accelerating deployment of Release 19 
capabilities, AI-driven network management now treats LEO satellites and terrestrial towers as a single, unified 
resource pool. This is what we call the "Invisible Handoff", and it's only possible because LAMs can orchestrate 
resources across this hybrid topology in real-time.

The technical achievement here cannot be overstated. Satellite networks operate with fundamentally different 
characteristics than terrestrial cells: higher latency, dynamic topology as satellites move across the sky, doppler 
effects, atmospheric interference, and power constraints. Traditionally, these differences meant that satellite 
connectivity was a fallback option, used only when terrestrial coverage was unavailable. But AI agents trained on 
massive datasets of network performance, weather patterns, user mobility, and application requirements can now 
make sophisticated decisions about resource allocation that transcend the space-earth boundary.

Terrestrial Assessment

AI evaluates ground network 
capacity and latency in real-time

Space Integration

LEO resources dynamically 
allocated based on demand 
patterns

Unified Orchestration

Seamless handoff optimizes for 
power, latency, and quality

In practice, this means your video conference might seamlessly shift from a terrestrial 5G connection to a Starlink 
beam without dropping a frame, because an AI agent predicted congestion on the ground network and 
preemptively established the satellite path. Or a fleet of autonomous vehicles traversing remote terrain might 
maintain ultra-reliable connectivity by having their traffic dynamically load-balanced across multiple LEO 
satellites as they track overhead. This level of orchestration is computationally infeasible for human operators. It 
requires AI agents that can process millions of data points per second, model network state across a hybrid 
topology, and execute configuration changes faster than network conditions change.



The Invisible Handoff: AI-Driven Network 
Orchestration

Dynamic Traffic Management

The promise of the Unified Fabric is realized through 
continuous, intelligent traffic steering. LAMs deployed 
across the network edge monitor application-layer 
requirements, predict congestion events before they 
occur, and proactively migrate flows between 
terrestrial and satellite resources. This isn't simple 
load balancing - it's anticipatory orchestration that 
accounts for satellite ephemerides, weather forecasts, 
terrain shadowing, and even predicted user mobility 
patterns.

The result is a network that feels omnipresent and 
infinitely capable. From the user's perspective, 
connectivity is simply always available, always fast, 
always reliable. But underneath, there's extraordinary 
complexity: AI agents negotiating between hundreds 
of potential paths, each with different latency profiles, 
power requirements, and availability windows. The 
agent might route your AR application through a 
terrestrial tower for ultra-low latency, while 
simultaneously routing your file backup through a 
satellite link that offers better power efficiency for 
bulk transfer.
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Through redundant path 
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This is precisely where the hardware innovations being driven by organisations become critical. To support this 
level of dynamic orchestration, both satellite payloads and terrestrial infrastructure must be capable of rapid 
reconfiguration. Software-defined radios that can switch modulation schemes in microseconds. Phased array 
antennas that can electronically steer beams without mechanical movement. Thermal management systems that 
can handle rapid power state transitions without inducing thermal stress. The AI agents orchestrating the Unified 
Fabric can only move as fast as the underlying hardware allows them to, which is why AI-native hardware design 
has become the ultimate competitive advantage in 2026.



Software-Defined Everything: The End of 
Static Hardware
The concept of software-defined systems has been discussed for years in networking and telecommunications, 
but 2026 represents its full realization across the entire stack4from the application layer down to the physical 
silicon. We're witnessing the death of static hardware architectures. Every component, from satellite RF front-ends 
to edge compute nodes, must now be dynamically reconfigurable at runtime. This isn't optional. It's the only way to 
support the autonomous operation that Large Action Models enable, and the only way to prevent catastrophic 
failures as system complexity and power density continue to escalate.

Software-Defined Satellites exemplify this transformation. Traditional satellite payloads were designed with fixed 
capabilities: predetermined frequency bands, fixed beam patterns, static power allocations. Once launched, they 
operated according to their original design for their entire operational lifetime. This approach is now obsolete. 
Modern LEO constellations face rapidly changing demand patterns, evolving interference environments, and 
unpredictable space weather. A satellite payload designed in 2024 and launched in 2025 must be capable of 
supporting applications and use cases that didn't exist when it was built. This is only possible with comprehensive 
software-defined architectures.
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2020-2023: Fixed Function

Hardware designed for predetermined use cases 
with limited reconfigurability
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2024-2025: Limited Software Control

Some parameters adjustable via software but 
within narrow constraints

3

2026: Full Software Definition

Every system parameter dynamically 
reconfigurable with AI-driven optimization

Adaptive RF Front-Ends take this further. These aren't simply software-defined radios that can switch between 
predefined configurations. They're AI-native components that can optimize their own operating parameters in real-
time based on environmental feedback. An adaptive front-end might detect the onset of atmospheric interference 
and automatically adjust its modulation scheme, error correction overhead, and transmission power to maintain 
link quality. It might predict thermal stress based on ambient temperature trends and proactively reduce power 
consumption before reaching critical thresholds. And it does all of this autonomously, without waiting for 
instructions from a central management system, because the LAM is embedded directly in the hardware.



Thermal Intelligence: Preventing Runaway 
Through AI

The thermal challenges facing 2026 systems are more 
severe than ever. As we pack more computational capability 
into smaller form factors, whether in satellite payloads 
constrained by launch mass budgets or edge nodes 
operating in harsh environmental conditions, power density 
has reached critical levels. Traditional thermal management 
relied on conservative design margins and passive cooling 
solutions. But conservative margins mean underutilized 
capability, and passive cooling can't respond to dynamic 
workload patterns. This is where AI-driven thermal 
management becomes not just advantageous, but 
existential.

Large Action Models embedded in hardware can predict 
thermal runaway events before they occur by modeling heat 
generation and dissipation across multiple time scales. They 
analyze historical patterns, current sensor readings, and 
predicted future workloads to forecast thermal states 
minutes or hours ahead. More importantly, they can 
intervene proactively: throttling non-critical workloads, 
redistributing processing across cooler nodes, adjusting RF 
transmission power, or even reconfiguring satellite beam 
patterns to reduce power consumption in thermally stressed 
components.
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3-5min

Prediction Horizon

AI forecasts thermal events before critical 
thresholds
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Prevention Rate

Thermal incidents avoided through proactive 
intervention

Consider a Software-Defined Satellite experiencing unexpectedly high traffic demand during a disaster response 
scenario. Traditional systems would simply process the traffic until thermal limits were reached, then shut down to 
prevent damage - exactly when connectivity is most critical. An AI-native thermal management system takes a 
different approach. It predicts the thermal trajectory, recognizes that current demand will exceed cooling capacity 
within four minutes, and autonomously implements a multi-faceted response: slightly reducing modulation order 
to lower RF power consumption, offloading some traffic to adjacent satellites in the constellation, and activating 
burst-mode cooling mechanisms. The result: sustained operation through the critical period without thermal failure 
or service degradation.

This is precisely the scenario that motivated the "Thermal Infrastructure" insights from previous analyses. The 
hardware platforms being developed must integrate thermal sensors, actuators, and computational capability to 
support these AI-driven interventions. Gallium Oxide substrates with superior thermal conductivity. Advanced 
cooling interfaces that can modulate heat transfer rates. Power delivery architectures that enable millisecond-
scale power state transitions. Without AI-native thermal design, the ambitious capabilities of 2026 systems simply 
aren't achievable within reasonable power and mass budgets.



The Integration Challenge: AI Meets 
Physical Reality

Computational 
Substrate

AI models require specialized 
silicon architectures optimized 
for inference at the edge, with 
power efficiency measured in 
tera-operations per watt. This 
isn't general-purpose compute, 
it's domain-specific 
acceleration for neural network 
operations.

Sensor Fusion

LAMs need comprehensive 
situational awareness, which 
means integrating data from 
thermal sensors, RF spectrum 
analyzers, accelerometers, GPS, 
and telemetry systems into 
coherent environmental models 
updated at millisecond 
intervals.

Actuation Interfaces

AI agents must be able to 
directly control hardware: 
adjusting phased array beam 
patterns, modulating RF power, 
reconfiguring signal processing 
pipelines, and managing 
thermal systems through 
standardized, low-latency 
interfaces.

The integration of AI into physical systems exposes fundamental tensions between the digital and physical 
domains. Software operates in the realm of pure logic, where state transitions are instantaneous and perfectly 
deterministic. Physical systems operate under constraints of thermodynamics, material science, and 
electromagnetic theory. When an AI agent decides to reconfigure a satellite's beam pattern, that decision must be 
translated into precise adjustments of phase shifter settings across thousands of antenna elements. When it 
decides to throttle RF power, that change induces thermal transients that propagate through substrate materials 
according to the equations of heat transfer, not the instantaneous state changes of digital logic.

Successfully bridging this gap requires a new approach to system architecture that we might call "co-design for 
embodiment." The AI model, the computational substrate it runs on, the sensors providing input, the actuators it 
controls, and the physical processes being managed must all be designed together as an integrated system. You 
cannot simply bolt an AI agent onto existing hardware and expect optimal performance. The hardware must be 
purpose-built to support the latency requirements, power budgets, and operational characteristics that AI-driven 
autonomous operation demands. This is the frontier challenge of 2026: not just making AI smarter, but making 
physical systems intelligent enough to host AI's decision-making capabilities while operating under the 
unforgiving constraints of orbital mechanics, thermal physics, and electromagnetic propagation.

Companies like EpsilonR are at the vanguard of this integration challenge, developing hardware platforms where 
AI isn't an afterthought but the central organizing principle of the entire architecture. Every design decision, from 
substrate material selection to interconnect topology to power delivery architecture, is made with the 
understanding that an AI agent will be orchestrating system operation in real-time, making thousands of decisions 
per second that directly impact physical processes at the nanosecond and microsecond time scales.



The Systems Thinking Mandate: Redefining 
Engineering Talent
The technological transformations of 2026 have exposed a critical vulnerability in the aerospace and 
telecommunications industries: a catastrophic talent gap that threatens to constrain the very innovations we've 
been discussing. Current forecasts suggest this gap will reach over one million workers by 2030, but the problem 
isn't simply quantity4it's the mismatch between traditional disciplinary silos and the integrated, cross-domain 
expertise that AI-native systems demand. We can no longer afford organizations where software engineers don't 
understand thermal physics, where RF designers are ignorant of machine learning, or where systems architects 
can't reason about how algorithmic decisions propagate through physical substrates.

The era of Large Action Models requires what we might call "Full-Stack Systems Engineers" - professionals who 
can traverse the entire vertical integration stack, from understanding how a software-based AI agent makes 
decisions, to knowing how those decisions translate into control signals, to predicting how physical systems will 
respond to those signals, all the way down to the material science of semiconductor substrates. Consider the 
thermal runaway scenario we discussed earlier. Preventing it requires expertise in machine learning model 
architecture, real-time systems software, thermal modeling and simulation, RF power amplifier design, and the 
solid-state physics of wide-bandgap semiconductors like Gallium Oxide. No single traditional engineering 
discipline covers this breadth.

This isn't a call for superhuman engineers who are experts in everything - that's neither realistic nor necessary. 
Rather, it's recognition that modern systems require teams with T-shaped expertise: deep specialization in one or 
two domains, combined with sufficient breadth across adjacent domains to understand dependencies, constraints, 
and interaction effects. The software engineer doesn't need to be able to design a GaN power amplifier from 
scratch, but they must understand that their AI model's decision to increase RF transmission power will induce 
thermal stress that propagates through the substrate at a rate determined by thermal diffusivity, and that this 
physical constraint must be accounted for in the model's planning horizon.

AI/ML Architecture

Model design and training

Real-Time Software

Low-latency control systems

Hardware Integration

Embedded systems design

Thermal Physics

Heat transfer and management

RF Engineering

Wireless system design

Material Science

Substrate properties



Building the 2026 Workforce: Education and 
Industry Partnership

Academic Evolution

Universities must fundamentally restructure 
engineering curricula to reflect the integrated nature 
of AI-native systems. This means breaking down 
departmental barriers between electrical engineering, 
computer science, mechanical engineering, and 
materials science. Students should work on projects 
that span the full stack: designing an AI agent, 
implementing it on embedded hardware, and 
validating its performance in physical systems. Co-op 
programs and industry partnerships become essential, 
giving students hands-on experience with real-world 
integration challenges.
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Cross-Domain Foundations

Core curriculum spanning software, hardware, and 
physics

02

Integration Projects

Multi-semester capstones requiring full-stack 
thinking

03

Industry Immersion

Extended co-ops with AI-native technology 
companies

Corporate Responsibility

Industry cannot simply wait for academia to produce 
the workforce of 2026. Leading firms must invest in 
internal training programs that help current engineers 
develop cross-domain expertise. This means creating 
structured learning paths that guide RF engineers into 
machine learning, software developers into thermal 
modeling, and systems architects into semiconductor 
physics. It also means rethinking organizational 
structures to break down silos and foster 
collaboration between disciplines.

The talent challenge also creates opportunities for companies like EpsilonR. By positioning themselves as 
destinations for engineers who want to work at the intersection of AI, aerospace hardware, and advanced 
telecommunications, they can attract exactly the kind of systems-thinking talent that the industry desperately 
needs. The engineers who thrive in this environment won't be those who want to specialize narrowly, but rather 
those who are energized by the challenge of understanding how decisions made in software reverberate through 
physical systems, and how the constraints of physics must inform the design of AI agents.

This is more than a workforce development challenge, it's a competitive imperative. The firms that successfully 
build teams of Full-Stack Systems Engineers will be the ones that can actually deliver on the promise of AI-native 
systems. Those that remain trapped in traditional silos will find themselves unable to integrate the technologies 
they develop, watching as their competitors ship products that seamlessly blend AI intelligence with physical 
performance. The talent gap isn't just a hiring problem; it's an existential threat to companies that fail to adapt 
their organizational models to the realities of 2026.



The Path Forward: Seizing the Cognitive 
Architecture Moment
We stand at an inflection point. The transition from inference to action, from thinking models to Large Action 
Models, represents a fundamental shift in how we architect intelligent systems. For the first time, we're building 
networks that don't just transmit data but make autonomous decisions about how to configure themselves, 
satellites that don't just relay signals but optimize their own operation in real-time, and edge systems that don't 
just compute but reason about their own thermal and power constraints. This is the Cognitive Architecture era, and 
it demands nothing less than a complete reimagining of how we design, build, and operate complex technical 
systems.

Design Imperative

Every new system must be AI-
native from inception, with 
hardware and software co-
designed to support 
autonomous operation under 
real-world physical constraints.

Integration Challenge

Success requires seamless 
integration across domains: AI 
models that understand 
physics, hardware that can 
respond at AI speed, and 
organizations structured for 
cross-functional collaboration.

Talent Priority

Building teams of Full-Stack 
Systems Engineers isn't 
optional4it's the prerequisite 
for executing on everything 
else, and the firms that solve 
this will dominate their 
markets.

The companies that will thrive in this environment are those that recognize the fundamental interconnection of 
these challenges. You cannot build AI-native hardware without understanding the requirements of the AI models 
that will run on it. You cannot deploy autonomous systems without teams that can reason across the software-
hardware-physics boundary. You cannot compete in the Unified Fabric era without the ability to integrate satellite, 
terrestrial, and edge resources through sophisticated AI orchestration. These aren't separate initiatives, they're 
facets of a single strategic imperative.

For EpsilonR, the opportunity is clear: position yourself at the center of this transformation by developing the AI-
native hardware platforms that enable Large Action Models to function in the real world. This means substrate 
materials that can handle the thermal stress of rapid power transitions. Software-defined architectures that can 
reconfigure in microseconds. Integrated sensor and actuator systems that give AI agents the situational 
awareness and control authority they need. And most importantly, it means attracting and developing the 
systems-thinking talent that can actually design, build, and operate these platforms.

The Cognitive Architecture isn't a distant future, it's the present reality of 2026. The question for every 
organization in aerospace, telecommunications, and edge computing is whether they will lead this transformation 
or be disrupted by it. The technical challenges are formidable, but they're solvable with the right combination of AI-
native hardware design, cross-domain systems thinking, and organizational structures that enable rapid 
integration across traditional boundaries. This is the moment. The firms that seize it will define the next decade of 
technological advancement.


