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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Richard D. Seely

The University of Southampton Multi-Biometric Tunnel is a high performance data-

capture and recognition system; designed with airports and other busy public areas in

mind. It is able to acquire a variety of non-contact biometrics in a non-intrusive manner,

requiring minimal subject cooperation. The system uses twelve cameras to record gait

and perform three-dimensional reconstruction; the use of volumetric data avoids the

problems caused by viewpoint dependence — a serious problem for many gait analysis

approaches.

The early prototype by Middleton et al. was used as the basis for creating a new and

improved system, designed for the collection of a new large dataset, containing gait,

face and ear. Extensive modifications were made, including new software for managing

the data collection experiment and processing the dataset. Rigorous procedures were

implemented to protect the privacy of participants and ensure consistency between cap-

ture sessions. Collection of the new multi-biometric dataset spanned almost one year;

resulting in over 200 subjects and 2000 samples.

Experiments performed on the newly collected dataset resulted in excellent recognition

performance, with all samples correctly classified and a 1.58% equal error rate; the

matching of subjects against previous samples was also found to be reasonably accurate.

The fusion of gait with a simple facial analysis technique found the addition of gait to

be beneficial — especially at a distance. Further experiments investigated the effect of

static and dynamic features, camera misalignment, average silhouette resolution, camera

layout, and the matching of outdoor video footage against data from the Biometric

Tunnel. The results in this theis prove significant due to the unprecedented size of the

new dataset and the excellent recognition performance achieved; providing a significant

body of evidence to support the argument that an individual’s gait is unique.

L. Middleton, D. K. Wagg, A. I. Bazin, J. N. Carter and M. S. Nixon. A smart environ-

ment for biometric capture. Automation Science and Engineering, Proceedings of IEEE

International Conference on, 57–62, 2006.
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Chapter 1

Introduction

The ability to recognise an individual and verify their identity is essential in many

areas of modern day life; from authorising financial transactions to preventing certain

individuals from travelling into a country. The most common method for a person to

prove their identity is through the use of identification documents; most people possess

a wide range of such documents; including banking cards, driving licenses, passports,

proof of age and workplace identity tags. Usually these documents will feature the name

of the associated person, a unique serial number and some means for the individual

to prove that they are the rightful holder; this could be a copy of their signature, a

photograph of their face or an electronic chip containing a secret password only known

to the owner. The use of passwords and personal identification numbers has replaced

signatures in many applications due to the convenience and improved security offered

— as the entered password is usually not seen or retained by the party requesting

proof of identity — unlike signature based authentication, where the signature must

be visually checked and is often retained after the transaction. Whilst password based

identity verification is popular, it is extremely easy for an unscrupulous individual to

impersonate another person once they have obtained the victim’s password — either

by means of trickery or covert surveillance. In applications where a greater degree

of security is required, a photograph of one’s face or a copy of their fingerprints may

be used, to facilitate either visual or automated verification of one’s identity. Facial

appearance and fingerprints are both examples of biometrics; physical attributes of a

person that exhibit some degree of variation between individuals, which can be measured

quantitatively. Unlike signatures and passwords, biometric features are generally much

harder for another party to accurately observe and impersonate.

1
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1.1 Biometrics

A wide range of biometrics exist, such as one’s DNA, fingerprints, iris patterns and fa-

cial appearance. The ideal biometric must provide various key attributes[51]: it must be

present for all people; it should provide sufficient variance to ensure no two subjects are

indistinguishable; and it should remain stable over time. If a biometric is to be useful, it

must be capable of achieving a high correct acceptance rate, able to reject false matches,

easy to measure and be deemed acceptable by the general public. Unfortunately, there

is no such thing as the perfect biometric; all have associated advantages and disadvan-

tages, which means that the best compromise must be chosen according to the specific

application.

Biometrics have long been used in the field of forensics, where the identity of a suspect

must be ascertained from evidence left at the scene of an criminal offence; such as fin-

gerprints or DNA. In surveillance and security applications, the ability to identify an

unknown subject without their knowledge or cooperation is often required; this is an

area where non-contact biometrics such as facial appearance, ear characteristics or gait

can prove extremely useful. In scenarios where recognition must be performed from a

distance whilst covering a large area, face or ear based recognition becomes impractical,

due to the insufficient resolution provided by a camera having a wide field of view. This

is where the use of a subject’s gait — the way in which they walk — is advantageous;

a much larger proportion of the subject’s body is considered for analysis, meaning that

much more of the available information is used for recognition purposes. An individual’s

gait can be observed from a distance using standard video camera equipment, whilst sub-

ject cooperation is not necessarily required — making it attractive for use in surveillance

applications.

1.2 Gait

The way in which one walks has been shown to vary between individuals; this was

first recorded by Murray et al. [74] in 1964, where it was found that amongst a small

group of participants, each exhibited their own unique movement pattern. Research into

computer-vision based gait recognition started in the early nineties, with Niyogi and

Adelson [80] and Guo et al. [42] the first to announce gait analysis techniques capable of

discriminating between individuals. Interest in gait as a biometric gradually increased

over the years, with DARPA establishing the Human Identification at a Distance pro-

gram, to encourage and support research into gait and other non-contact biometrics that

could be observed from a distance. As part of the research program, several institutions

recorded large gait datasets, each containing in excess of one-hundred unique subjects;

these new datasets facilitated the development and evaluation of new state-of-the-art

analysis techniques.



Chapter 1 Introduction 3

Figure 1.1: Schematic of a controlled environment with fixed cameras, ideal for au-
tomatic gait recognition.

Several significant limitations still remain for most gait recognition approaches; no

dataset of sufficient size exists to evaluate the applicability of gait for usage in large

population environments, and not enough is known about the covariates that affect

one’s gait; such as footwear, clothing, time, surface type and incline. Another signifi-

cant limitation is that the signature produced by many gait analysis techniques varies

with the orientation of the subject relative to the camera — this is known as viewpoint

dependence.

In controlled laboratory experiments, gait has been shown to an extremely effective

biometric for distinguishing between individuals[109]; although in real world scenarios

it has been found to be much harder to achieve good recognition accuracy[54]. Many

popular gait analysis techniques are unable to reliably match samples from differing

viewpoints and are also strongly dependant on the ability of the background segmen-

tation algorithm to accurately discriminate between the subject and the surrounding

background. Whilst the use of advanced computer vision processing algorithms can

yield some improvement, this is often at the expense of computational complexity or the

use of additional assumptions, making real-world use difficult.

The performance of any recognition system is ultimately dependant on the quality of

the original source data; therefore it is advantageous to consider the lessons learnt from

previous laboratory experiments and find ways to introduce a similar degree of control

and consistency as found in an experimental setting. By constraining the directions of

travel in the target environment using walls or other obstacles, the range of observed

subject orientations can be reduced to a small set of likely possibilities. The use of walls

as backgrounds for the cameras greatly simplifies the task of distinguishing between

subjects and their surroundings, resulting in less background segmentation errors. This

makes the walkways and corridors found in most airports ideal environments for gait

recognition, where the surroundings and the path taken by individuals is inherently

fixed. Figure 1.1 depicts an idealised constrained environment; the path taken by the
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subject is restricted to a narrow path and once inside, the subject is in an area where

lighting and other conditions can be controlled to facilitate the accurate measurement

of an individual’s gait and facial appearance.

1.3 The Biometric Tunnel

An example of a system operating within a constrained environment is the Biomet-

ric Tunnel — a prototype non-contact biometric recognition system — originally con-

structed by Middleton et al. [70] at the University of Southampton. The Biometric

Tunnel was developed with the objective of producing a system capable of automated

biometric measurement and recognition. The configuration of the environment was cho-

sen to mimic a walkway or corridor, with walls running either side of the passage to

constrain the walking direction of subjects; as shown in Figure 1.2. A network of sys-

tems could be installed throughout a large environment — such as an airport — to

facilitate the tracking an individual’s movement between areas. Alternatively, such sys-

tems could be deployed at entrance points to facilitate the accurate measurement of an

individual’s biometric characteristics at the time of their arrival; these features could

then be used for identifying subjects from standard surveillance video camera systems.

The system uses a network of time-synchronised cameras to record video footage of a

subject as they walk through the environment. The data from the cameras is processed

to separate the individual from their surroundings, which is then used to derive a three-

dimensional reconstruction of the subject. The ability to use three-dimensional gait

data facilitates new lines of enquiry into novel techniques capable of exploiting such

data. Alternatively, the data can be used to synthesise a two-dimensional image from

any chosen viewpoint, which could then be used with a standard analysis technique; this

means that the same relative viewpoint can always be used for gait analysis; avoiding

the problem of viewpoint-dependence.

Gait Gait Gait Gait

Face

GaitGaitGait Gait

Figure 1.2: Layout of the early prototype Biometric Tunnel by Middleton et al. [70]
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1.4 Contributions and Original Work

An evaluation of the original prototype Biometric Tunnel is presented in Chapter 2,

which was performed using a small dataset collected during the original system’s de-

velopment; the correct recognition rate was found to be greatly below expected. The

findings of an initial investigation are presented, where several possible factors affecting

performance are found; although no firm conclusions can be made due to the lack of

available unprocessed source data. Therefore an audit of the hardware configuration and

the system’s software was performed, which helped to identify a lack of proper time-

synchronisation between the cameras within the system. As discussed in Chapter 4,

further revisions were made to the system, to facilitate the collection of a new dataset,

which contained raw unprocessed video data from the cameras. Analysis of this dataset

identified several additional sources of data degradation; where steps were then taken

to address these problems. A large amount of software and hardware development has

taken place throughout the duration of this thesis; much of this is only discussed at a

summary level in the body of the document, although it is covered in greater detail in

the appendices.

Further extensions to the Biometric Tunnel were then performed, with the aim of prepar-

ing the system for the collection of a new non-contact multi-biometric dataset of an

unprecedented size; this is documented in Chapter 6. The collection of this new dataset

proved to be a significant undertaking; spanning in excess of a year and involving over

two-hundred unique participants. The resulting dataset is one of the largest non-contact

biometric datasets containing gait and one of the only to record gait using high quality

three-dimensional volumetric data. Analysis of the recorded dataset found that it was

possible to correctly identify every sample within the dataset, this is especially signifi-

cant considering that this is the largest gait dataset to date. The findings in this thesis

provide significant evidence in favour of the argument by Murray et al. [74], that each

person’s gait is unique.

Using the newly collected dataset, a range of additional investigations are performed

in Chapter 7, to further understand the recognition performance and limitations of

the revised Biometric Tunnel. It is found that it is possible to perform recognition of

an individual against samples collected from an earlier date, although with a signif-

icantly reduced accuracy, compared to recognition across a smaller time period. As

the Biometric Tunnel system uses video footage from multiple cameras, any change in

camera orientation since calibration will result in a distorted reconstruction; therefore

an investigation was performed to find out what impact this could have on recognition

performance. This experiment confirmed the belief that recognition performance would

be severely impacted by any change in camera alignment between samples, where no re-

calibration of the cameras had taken place. These findings demonstrate the importance
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of monitoring the alignment of the cameras and performing calibration on a regular

basis.

In Chapter 8, several recognition experiments are performed to investigate the benefits

of using both face and gait for recognition, where the signatures generated by gait

analysis are combined with an experimental face analysis technique. The results of the

experiment show that the use of both biometrics together results in a better accuracy

than either face or gait alone. This is especially useful for public environments where an

unknown individual’s face could be concealed by clothing and it would be impractical

or offensive to demand the removal of the attire. A further experiment is performed

where data collected from the Biometric Tunnel is used to compare the performance of

both gait and face at varying distances from a simulated camera. It is found that gait

recognition is still possible at distances where facial recognition proves impossible due

to insufficient resolution.

Finally, a set of experiments are conducted in Chapter 9, to investigate the feasibility of

matching three-dimensional data from the Biometric Tunnel against video footage from

a standard video camera located in an outdoor environment, where there is less control

over lighting and the background. It is found that whilst recognition is possible, the

accuracy is severely limited by poor background segmentation quality and the presence

of strong shadows in the outdoor footage. With the use of an improved background

segmentation method or a more robust gait analysis technique, it is expected that the

effect of these issues could be minimised.

The collection and analysis of this new multi-biometric dataset, along with the wide

range of associated experiments presented in this document all help to reinforce the

value of gait as a viable non-contact biometric for use in a variety of scenarios, such as

public areas, airports, large events and surveillance applications. The size of this new

dataset puts it at the forefront of gait analysis research, facilitating the development

and evaluation of cutting edge gait analysis techniques, whilst providing a significant

population size, allowing realistic conclusions about recognition performance to be made.

The ability to correctly identify every sample within the new dataset, using a simple yet

intuitive gait analysis technique demonstrates the potential for gait analysis and suggests

that future research into more sophisticated techniques using much larger datasets may

yield encouraging results.



Chapter 2

The Biometric Tunnel

2.1 Introduction

The Biometric Tunnel is a purpose built non-contact biometrics acquisition environ-

ment, located within the University of Southampton. The system was purpose built to

acquire video of a subject from multiple viewpoints, as they walked through the system’s

measurement area. The recorded video was used to reconstruct a sequence of binary-

volumetric frames, which could then be used to characterise one’s gait. This compares

favourably against most other existing gait measurement systems, which either produced

only two-dimensional measurements, or required the participant to wear several sets of

retro-reflective markers.

The initial concept system was developed by Middleton et al. [70], as discussed further

in Section 2.2. It was designed to record a subject’s gait using three-dimensional vol-

umetric data, which could be used to facilitate further research into gait recognition.

The system was also intended to demonstrate the effectiveness of gait in a non-contact

biometric recognition system. The Biometric Tunnel was constructed in an indoor lab-

oratory, which allowed the use of controlled artificial lighting, helping to reduce the

effect of shadows, resulting in better consistency between recordings. The system was

built around a pathway spanning the length of the room, which was used to constrain

the walking direction of the participants. A pair of purpose constructed walls ran the

length of the environment, surrounding the central pathway. The floor either side of

the pathway and the two walls were painted with a non-repeating pattern, which was

used to assist the camera calibration process. The pattern was comprised of three stan-

dard chroma-keying colours; often used in the broadcast industry to ease the process of

background segmentation and substitution.

Video footage was simultaneously obtained from nine cameras; where eight were config-

ured to measure the subject’s gait and the remaining camera recorded video of the their

7
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Figure 2.1: View from the entrance of the Biometric Tunnel by Middleton et al. [70]

face and upper body. Infrared break-beam sensors were located at the entrance and exit

of the measurement area to control the recording of video data. Whilst recording, the

captured video data was saved to random access memory in the connected computers,

processed and then saved to disk immediately after recording; requiring approximately

five minutes to complete and allow subsequent capture. Section 2.2 provides an in-depth

discussion of the software and hardware that formed the basis of the Biometric Tunnel.

During the development of the system by Middleton et al. [70], a small dataset was

collected; analysis of the dataset in Section 2.3 showed that the system produced unsat-

isfactory classification performance. Therefore, an investigation was performed to find

the causes of the poor classification performance. It is found that several issues were to

blame: data corruption, inconsistent gait cycle labelling and poor reconstruction quality.

By removing the affected samples from the evaluation dataset, a substantial improve-

ment in recognition performance was achieved, demonstrating that the removed samples

had a significant negative impact on performance.

2.2 The original Biometric Tunnel

The original Biometric Tunnel system was developed by Middleton et al. [70] at the

University of Southampton, as a means for demonstrating gait recognition in a controlled

environment. The system consisted of a narrow pathway surrounded by nine video

cameras; with eight having a wide field of view to record one’s gait and the other camera

having a smaller coverage for capturing video of one’s face. The pathway ran down the

centre of the tunnel, spanning from one end of the laboratory to the other, with walls
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(a) Ethernet and Firewire network topology

(b) Software for capturing and processing data

Figure 2.2: Hardware and Software Layout of Original Biometric Tunnel
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running along either side. The layout of the Biometric Tunnel is shown in Figure 2.1

and previously in Figure 1.2.

Eight PointGrey Dragonfly Colour video cameras were mounted along the tops of the

two walls, in order to obtain a wide field of view, suitable for observing a subject’s

gait. These cameras captured VGA (640 × 480 pixels) resolution video footage at a

rate of thirty frames per second, which was streamed unprocessed to the host computer

over an IEEE1394 bus. A PointGrey Flea camera was chosen for capturing front-on

facial imagery, which featured a higher SVGA (1024 × 768 pixels) resolution and also

used the IEEE1394 bus to stream video data. The system had four computers con-

figured for capturing gait video footage, with each computer connected to two of the

cameras using a IEEE1394 network. The camera networks were interconnected using

timing-synchronisation units, to ensure that the video frames from all gait cameras

were captured at the same point in time, to facilitate accurate 3D reconstruction of

the subject. The face camera was connected to its own dedicated computer, due to its

much greater bandwidth requirements. The topology of the Ethernet network and the

IEEE1394 networks are shown in Figure 2.2(a).

The various software applications running on the computers were coordinated using a

specially developed multi-agent framework[71], which provided the ability to register

and locate available resources, and route messages between them. Figure 2.2(b) shows

the interaction between the different resources running on the system. A total of seven

computers were used in the system, with five of the computers connected to cameras, as

mentioned earlier. The sixth computer acted as the controller for the system, running

the router for the agent framework, also performing 3D reconstruction and allowing the

user to control the system. The final computer was intended for file storage; holding the

recorded samples.

The acquisition process was controlled by infrared break-beam sensors, mounted at the

entry and exit points of the measurement area. As a subject entered the measurement

area, they would trigger the first infrared break-beam sensor; starting the acquisition of

video footage by the cameras. The recorded video frames were streamed as unprocessed

raw video data back to the host computers and then saved in local memory. Upon leaving

the measurement area, the subject would break the second infrared beam; stopping the

capture of any further video footage and starting the processing of the video data saved

in memory by each computer.

The first stage of processing the recorded data was to convert the captured images into

colour from their original raw Bayer format, using nearest-neighbour interpolation; as

discussed in Chapter 5.2. Background estimation and segmentation was then performed

to find the subject’s silhouette; modelling each background pixel with a single Gaussian
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distribution per colour channel. The distribution for each pixel was found using previ-

ously captured video footage, where no subject was present. The background segmen-

tation was performed by calculating the distance between a pixel and its corresponding

background distribution, where a pixel would be marked as background if its distance

was less than a global threshold; linked to the standard-deviation found by the back-

ground estimation. Shadow labelling and removal was performed to reduce the number

of pixels incorrectly marked as foreground. Binary morphological post-processing was

then performed to reduce noise levels and smooth the silhouette’s shape. Finally, all

regions except that with the greatest area were removed and any holes in the remaining

region were filled. Radial distortion caused by the camera optics was removed by the

use of a non-linear transformation. The resulting images from each camera were then

streamed from their respective computers to the central control computer; where three-

dimensional reconstruction was performed using a basic multi-resolution strategy with

a six or more camera criteria; as discussed in Section 5.4. The reconstructed volumetric

data was then saved to disk for later analysis. The processing required approximately

five minutes for every seven second sample acquired. Recording of subsequent samples

was not possible until the processing of the previous sample had completed.

2.3 Analysis of data from the original system

During the development of the system by Middleton et al. [70], a small number of

samples were acquired for testing purposes; these were used to construct a dataset for

evaluating the recognition performance of the system. For each sample, a single gait

cycle was selected by manual inspection. The dataset contained seventy-three samples,

from twenty different subjects, with on average four samples per subject; as shown in

more detail in Table A.1. The reconstructed volumetric data produced by Middleton

et al. [70] was smoothed using binary erosion and dilation morphological operators to

reduce the level of noise and reconstruction artefacts. The average silhouette was found

for each sample from three orthonormal projections; side-on, top-down and front-on.

The resulting average silhouettes were used in a leave-one-out recognition experiment,

to find the classification performance of the system by Middleton et al. [70].

The recognition performance was found to be below expected; where average silhouettes

from a side-on viewpoint were found to give the best recognition performance on the

dataset, only achieving 81.4%. The side-projection average silhouette is known to be a

very good classifier, which has been found to achieve almost perfect classification rates

on datasets containing in excess of one-hundred subjects[109]. Therefore the recognition

performance acheived by system of Middleton et al. [70] was greatly below expected.

The full results of the experiment and the system’s receiver operating characteristic plot

can be found in Appendix A.2. The use of feature-selection techniques such as analysis

of variance (ANOVA) and principal component analysis were found to provide marginal
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Figure 2.3: Sequence of reconstructed silhouettes with significant areas of the volume
missing

classification performance gains; although the performance was still fundamentally lim-

ited by the poor quality of the source data.

As a result of the system’s poor recognition performance, further investigation was

required to discover the causes of the degraded performance. The initial belief was that

the use of manual gait cycle labelling had introduced inconsistencies into the dataset,

due to human error. Therefore, an automated gait cycle labelling algorithm was devised

and implemented; as described in Chapter 5.6. Inspection of the diagnostic output from

the automatic labelling revealed that some samples had proved much more difficult to

locate gait cycles for; this lead to the discovery that many of the samples with a poor

fitting score appeared to have significant parts of the reconstructed volume missing; as

shown in Figure 2.3.

Checking the non-post-processed volumetric data confirmed that the same regions were

missing, suggesting that the artefacts had been introduced in the processing performed

by the system of Middleton et al. [70]. As only the final reconstructed data was saved

by the system, it was impossible to confirm which stage of processing had introduced

these errors. The most likely cause of the problems was segmentation errors, causing

parts of the subject’s legs to be incorrectly labelled as background; possibly due to the

subjects wearing clothes with similar colours to those used in the tunnel’s background;

such as blue denim jeans. Some attempts had been made to counter this problem in the

system, through the use of a reconstruction algorithm that allowed up to two of the eight

cameras to incorrectly label a voxel’s corresponding pixels as background. Although this

improvement in robustness came at the expense of reconstruction accuracy; resulting in

volumes that were larger than the true convex hull of the silhouettes, as discussed in

Chapter 5.4.

Many of the samples were also found to be incomplete or corrupted, as a result of

programming errors introduced during development. In order to establish whether the

aforementioned problems fully accounted for the degradation in performance, a second

recognition experiment was conducted, where samples were visually inspected and ex-

cluded if deemed of unacceptable quality. Twenty-eight of the samples were considered

to be of good quality, with very few visible artefacts and no frames where areas of the re-

constructed volume were missing. Twenty samples were deemed as acceptable; where the
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samples featured some artefacts; small parts of the volumes were missing or minor shape

distortion was present. Twenty-five of the samples were found to be bad ; where serious

artefacts were present; the shape of the subject was heavily distorted or several frames

had significant regions missing. Subjects with less than two samples were removed from

the dataset, as this would add an unfair negative bias to the recognition performance.

The resulting dataset contained 42 samples from 11 subjects, as detailed in Table A.1.

As expected, leave-one-out recognition performance on the revised dataset was signifi-

cantly improved, with a 97.6% correct classification rate for the side-on viewpoint. The

full results of the recognition expirement and receiver operating characteristic plot are

given in Appendix A.3. The improvement in recognition performance confirmed that

one or more of the outlined issues were to blame for the poor performance of the initial

system.

2.4 Discussion

Analysis of the previously collected dataset revealed that the correct classification rate

was greatly below expected, which was a clear indication that there was serious issues

with the quality of the recorded samples. Further investigation found there were many

corrupt or empty samples present in the dataset; suggesting that the reliability of the

prototype system was an issue. The quality of the reconstructed output was also found

to be poor, both visually and in terms of the attainable recognition performance —

achieving only a 81.4% correct classification rate — possibly due to the choice of recon-

struction algorithm. Many of the samples in the dataset had severe artefacts present

in the reconstructed data, where the limbs of subjects were severely distorted or com-

pletely missing. Removal of the affected samples from the analysis experiment lead to

a significant gain in recognition performance; although some samples were still incor-

rectly classified as other subjects, which indicated that there was still problems with the

quality of the remaining samples.

Investigation into the causes of the degraded reconstruction quality was made extremely

difficult, as the unprocessed data from the cameras was not saved by the system during

recording; making it impossible to re-process the data and locate the sources of the

problems. The time taken to process the acquired data after each sample also added a

delay of approximately five minutes between samples; slowing down the rate at which

participants could be recorded.



Chapter 3

Background and Literature

Review

3.1 Introduction

Gait analysis has become a popular research topic over the last ten years, with groups

at many large and prestigious institutions taking interest. Researchers from a medical

background were the first to publish studies showing how the manner in which one

walks varies amongst a population [74, 39]. At a later stage, psychology experiments

were carried out to see if humans could recognise subjects or gender from moving light

displays [52, 69].

The earliest research into computer-vision based gait analysis techniques was published

in 1994 by Niyogi and Adelson [80], which was based on spatio-temporal analysis and

model fitting. Later that year, Guo et al. [42] published an algorithm based upon a 10

stick model and neural network classification. Soon after, Little and Boyd [64] published

a gait analysis technique based upon the spatial distribution of optical flow and how it

varied over time. Murase and Sakai [72] proposed a technique that compared the eigen-

space trajectories between subjects, this concept was later extended by Huang et al. [49]

to also use canonical analysis. Cunado et al. [26] published a model based technique

that used the Hough transform to fit a model to the video frames; results were published

on a small dataset recorded indoors, which was to become the first gait dataset widely

used by others. Little and Boyd [65] published results of their previous algorithm[64]

applied to a new dataset recorded outdoors; this dataset also became very popular in

the research community. By 1998, the number of researchers working on gait analysis

had increased massively, with the pace of research increasing year after year. Other

significant milestones include the release of the Gait Challenge dataset and baseline

algorithm[84] and the University of Southampton’s HumanID dataset[93]; these are still

some of the largest publicly available datasets and are used extensively by researchers

14
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around the world. There are many literature reviews documenting the progress of the

gait analysis and human motion analysis research community, this includes [35, 78, 77,

114, 48, 76]; there is also a book[79] that provides an extensive overview of the progress

made in gait analysis and recognition. This chapter provides a comprehensive review

of the literature relevant to gait analysis, classification techniques, datasets and multi-

biometric fusion.

3.2 Gait datasets

This section introduces the various gait datasets that have been produced by members

of the computer vision and biometrics community and discusses the various advantages

and disadvantages of each. An overview of the datasets is given in Figures 3.1(a) and

3.1(b).

One of the earliest documented datasets was that of Cunado et al. [26] from the Univer-

sity of Southampton, produced in 1997. The dataset was filmed indoors with a static

background and controlled lighting; this had the effect of reducing shadows. The pres-

ence of shadows could prove problematic for early background subtraction approaches;

therefore it was desirable to try and reduce the appearance of shadows in the video data.

In order to aid analysis, subjects wore white trousers with a black stripe running down

the leg on the near-side. Subjects walked in a straight path, with the camera being

perpendicular to the subject’s walking direction. A total of ten subjects were recorded,

each walking through the field of vision four times.

In 1998, Little and Boyd [65] from the University of California, San Diego published

works using a new dataset that they had collected. It was filmed outdoors in the shade

to ensure diffuse lighting, which would reduce the effect any shadows. A large wall was

used as the background, and subjects walked in a large circular path around the camera.

The dataset contained six subjects, each walking through the field of view seven times.

The Georgia Institute of Technology also produced its own dataset[6]; containing twenty

subjects, each subject having six samples recorded indoors using a magnetic sensor

system to give ground-truth data for the subject’s joint positions. In addition to the

magnetic sensor dataset, a subset of the twenty subjects were recorded walking indoors,

with a single video camera placed in three different positions. At a later point in time,

fifteen of the original twenty subjects were recorded walking outdoors; from a single

camera position.

In the same year, Carnegie Mellon University announced their Motion of Body (MoBo)

database[40]; which was recorded indoors using a treadmill. The use of a treadmill

allowed them to record subjects walking and running at varying gradients. In some

samples, subjects held a large ball to inhibit any motion of their arms. Six cameras were
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GaTech 2001 [6] 15–20 426 Y Y N Y 3 N
CMU MoBo 2001 [40] 100 600 N N Y N 6 Y
MIT 2002 [61] 24 194 N Y N N 1 N
Gait Challenge 2002 [84, 89] 122 1870 N N N Y 2 Y
UMD 2002 [54] 44 176 N N N Y 1 -
Soton 2002 [93] 114 >2500 N Y Y Y 2 Y
CASIA 2003 [117] 20 80 N N N Y 3 N
CASIA 2006 [122] 124 1240 N Y N N 11 N

(a) Dataset composition; where the number of samples refers to independently recorded sequences;
therefore the total number of sequences is higher for samples simultaneously recorded from mul-
tiple cameras.
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UCSD 1998 [65] Minutes N N N N N N N
GaTech 2001 [6] Days N N N * N * N
CMU MoBo 2001 [40] N Y Y N N Y N N
MIT 2002 [61] Months N N N * N * Y
Gait Challenge 2002 [84, 89] Months N N Y Y Y * N
UMD 2002 [54] Days N N N * N * Y
Soton 2002 [93] Weeks/Months Y N N Y Y Y Y
CASIA 2003 [117] Days N N N * N * N
CASIA 2006 [122] Minutes N N N N Y Y N

(b) Covariate features included in various gait datasets. Clothing and footwear may vary in datasets
recorded over several days, where this is not deliberate, it is marked with a *.

Figure 3.1: Comparison of various gait datasets, information collated from [2, 6, 26,
40, 54, 65, 89, 93, 117, 122]
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positioned around the subject, allowing simultaneous multi-viewpoint video capture.

The database contained twenty five subjects, each having a total of twenty-four samples.

Lee and Grimson [62] from the Massachusetts Institute of Technology produced a dataset

consisting of 24 subjects, which was recorded indoors, with subjects walking in a straight

path perpendicular to the camera. Subjects walked in both directions, and the sequences

were flipped to result in a constant direction of travel. The number of video sequences

per subject varies between 4 and 22 sequences, with a minimum of 3 gait cycles per

sequence. Recording was performed on four separate days, spanning two months. The

dataset contained a total of 194 sequences. Unlike many of the other indoor datasets, no

specialised lighting equipment was used, instead relying on standard fluorescent overhead

office lighting, which resulted in quite strong shadows.

In 2002, The National Institute of Standards and Technology and The University of

South Florida released the Gait Challenge dataset[84], which is now one of the most

commonly used benchmark datasets for gait analysis researchers. The dataset was

filmed outdoors, using two video cameras simultaneously recording the subject from

differing viewpoints. A calibration target was included in all scenes to allow calibration

of the cameras. Subjects walked in an elliptical path around the cameras in a similar

manner to Little and Boyd [65]. Each subject was recorded walking on both grass and

concrete surfaces, with differing shoe types and partial occlusion from a briefcase. The

recording was also repeated six months later to enable the evaluation of gait’s temporal

variance. There was initially 74 subjects in the dataset, although this was later extended

to 122 subjects[89]. Each subject only walked once through the field of view for each

combination of covariate measures; this meant that in order to evaluate an algorithm’s

performance, the same data would be used for both training and evaluation. Phillips

et al. [84] also proposed a baseline algorithm, which could be used as the benchmark for

comparing a new gait analysis algorithm’s performance.

The University of Maryland produced its own database[54, 2], which was distinctly

different from the other available datasets at the time; it was designed to have a very close

resemblance to real world surveillance data. A single camera was mounted outdoors, at

a height of 4.5 metres, similar to a typical outdoor CCTV setup. Forty four subjects

were used, walking in a “T” shaped path, to give multiple orientations relative to the

camera. Each subject was sampled twice on two different days; this meant that the

clothing worn by the subjects may be different between samples.

In the same year as the release of the Gait Challenge dataset, the University of Southamp-

ton released the Human ID at a Distance (HID) dataset[93], this was one of the most

comprehensive databases, containing over one hundred subjects. The subjects were

recorded walking in a variety of scenarios; indoors along a straight path, indoors on a

treadmill and outdoors with a non-static background. The indoor video capture setup

used carefully controlled lighting and a green chroma-key background, which meant
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that subjects could be reliably extracted from the background with minimal shadow

artefacts. The outdoor setup was recorded with the cameras directed towards a busy

road, resulting in a large amount of unwanted motion; this allows the testing of algo-

rithms on “real-world” data. Multiple cameras were used to record the subjects walking

from multiple viewpoints, which were manually synchronised after recording had taken

place. Each subject walked at least eight times in both directions past the cameras.

Having such a large number of samples per subject enabled the use of different samples

for development, training and classification of gait analysis algorithms; this ensures that

over-fitting of the training data does not unfairly affect classification performance. This

is in contrast to many of the other datasets, where leave-one-out evaluation is the only

option, which means that the algorithms are trained and optimised for that specific

dataset; this means that the trained algorithm may not generalise well to new data. A

smaller database containing covariates such as shoe type, clothing, carried items and

temporal variation was also produced, containing a subset of the subjects from the main

dataset.

The National Laboratory for Pattern Recognition, part of the Institute of Automation

from the Chinese Academy of Science (CASIA) also created their own dataset for de-

veloping and evaluating gait analysis algorithms. It was filmed outdoors in a controlled

environment, with a static background. A single camera was used to film subjects walk-

ing in three different views. The dataset contained twenty subjects, each walking in

a straight path four times through the camera’s field of view. A further dataset was

recently released by CASIA[122]; which contained 124 subjects, each walking six times

without a coat or bag, then twice wearing a coat and finally twice with a bag. The

subjects were captured by eleven USB cameras placed at varying angles relative to the

subject, the video data was then saved in a compressed MJPEG format.

As discussed in this section, a variety of datasets have been produced by the computer

vision community for evaluating gait analysis techniques, recorded in a range of envi-

ronments. Most of the datasets were recorded with the subjects walking in a straight

or elliptical path on a stationary surface, although there were a few notable exceptions

that used treadmills. The use of a treadmill facilitates the capture of a subject walking

on an inclined surface or running, which would otherwise require a large area for the

subject to accelerate and for their running pattern to stabilise. Datasets have been pro-

duced in both indoor laboratories and outdoors; where an outdoor environment could

be considered a more realistic scenario, whilst the use of controlled backgrounds and

studio lighting can reduce the effect of shadows and improve the quality of background

segmentation. Many of the datasets were produced for internal use in their respec-

tive institutions and were of a modest size, typically containing less than twenty five

subjects. However, as mentioned earlier, several larger datasets have been produced by

NIST/USF[84], the University of Southampton[93] and CASIA[122]; of which all contain

in excess of one-hundred subjects and have been made available to other researchers.
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Even though these datasets are much larger than the others, they are still not sufficiently

comprehensive to prove the applicability of gait recognition in real world large population

environments[110]. None of the large datasets contained time-varying three-dimensional

volumetric data and were mostly recorded on cameras featuring no time-synchronisation

or calibration, which meant that it was extremely difficult to develop and evaluate three-

dimensional gait analysis techniques. Therefore, a dataset featuring many more subjects,

recorded from multiple time-synchronised cameras, with three-dimensional data would

be highly beneficial for further investigating the capabilities of gait recognition.

3.3 Human model-based analysis approaches

This section considers gait analysis techniques that explicitly describe a subject’s gait in

terms of a model, where the model’s parameters are used to create a set of features for

recognition. In most cases, the model’s parameters are meaningful quantities such as the

lengths of body parts, stride length, or dynamic properties such as joint angles. In most

cases, the variation of the dynamic properties can be treated as periodic over a sequence

of gait cycles; therefore Fourier coefficients are often used to characterise the variation

of these parameters. A variety of models have been utilised by the gait community, this

includes ellipse based models, stick figures or more complex models comprised of ribbons

or three-dimensional primitives.

Two of the earliest published gait analysis algorithms were those of Niyogi and Adelson

[80] and Guo et al. [42]; both using human-models as the basis for recognition, although

both varied substantially in both model design and fitting strategy. Niyogi and Adel-

son [80] took a sequence of silhouettes and stacked them along the temporal dimension,

resulting in a three-dimensional volume, where vertical slices were then taken through

the volume at differing heights, to result in a sequence of images that featured diago-

nal double-helix patterns. Two pairs of active contours were fitted to the leading and

trailing edges of the double-helix patterns, and a five-stick model was then fitted to the

double-helices. The use of active contours improved the robustness of the model fitting

process, resulting in smoother parameter variation over time. The parameters of the

stick model were then extracted and used for recognition. Guo et al. [42] employed a

more complex ten-stick model, which was fitted to a silhouette sequence by calculating

a cost field for each silhouette, then finding the set of model parameters that minimised

the cost accumulated by the model. Classification was then performed with a neural net-

work, using the model parameters’ Fourier coefficients. Whilst these two early methods

both demonstrated that gait was suitable for recognition purposes, they both utilised

relatively complex models for their time, making them computationally expensive on

the hardware of the time.
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Therefore other early researchers used less complex models to characterise one’s gait;

Cunado et al. [26] demonstrated that it was possible to perform recognition using a

simple model approximating each leg as a single line segment, joint at the hip. The

parameters of the model were found by applying the Sobel edge operator to the source

images, then using an implementation of the Hough transform[31] to locate the two lines.

The angles of the lines were found for each frame, then smoothed and interpolated by

fitting high-order polynomial splines to the time varying angular data; recognition was

then performed using the the coefficients found by a discrete Fourier transform. Cunado

et al. [25] later extended the previous approach to use a more advanced model; where

each leg was modelled by a pair of articulated pendulums. The revised model was

fitted to the edge image using a new more efficient approach; the Genetic Algorithm

Velocity Hough Transform. Cunado et al. [27] later published works claiming a correct

classification rate of 100% on a small ten subject database. Yam et al. [120, 121] then

further extended the work of Cunado et al. [25] to perform analysis of a subject whilst

both walking and running.

Bobick and Johnson [6] also used a simple model, consisting of three line segments,

representing the two limbs and the torso, all connected at the pelvis. Unlike many of

the other model-based approaches, only static parameters were used; such as the distance

between the head and pelvis, the pelvis and feet, and between both feet. The results of

the approach were validated against ground-truth data acquired from a magnetic sensor

system. BenAbdelkader et al. [3] also proposed an approach using only static features

for recognition; where the subject’s stride length and cadence were found by analysing

the variation in the subject’s bounding box width. Davis and Taylor [29] also used a

similar three stick model for gait analysis; although unlike Bobick and Johnson [6], used

basic dynamic features for recognition instead. The subject’s feet are located by finding

the principal axis of the pixels in each the leg region, then taking the furthest silhouette

pixel’s location along the principal axis as the foot position. Basic dynamic features are

then taken such as the gait cycle time, the stance to swing ratio and the double support

time.

A simple approach proposed by Lee and Grimson [62] approximated a subject’s side-on

silhouette by splitting it into seven fixed regions, where an ellipse was fitted to each

region. It was found that the ellipse parameters exhibited a very poor signal to noise

ratio, which meant that only robust features such as the mean, variance, fundamental

frequency and phase were used to describe the variation of the parameters. A significant

limitation of this approach was the use of fixed region boundaries and that the ellipses

were often not joined to neighbours; resulting in an inaccurate model. Lee [61] later

extended the ellipse fitting approach to volumetric data to achieve view invariant gait

recognition. This was achieved by recording a subject’s gait using a multiple camera

system; then performing three-dimensional reconstruction to find the convex hull. The
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trajectory of the subject was estimated and a virtual camera was then placed perpen-

dicular to the subject’s walking direction to produce side-on silhouettes of the subject.

The synthesised silhouettes were then analysed using the multiple ellipse representation

proposed by Lee and Grimson [62].

Wagg and Nixon [112] makes use of a more sophisticated model, further extending work

of Cunado et al. [27]; where the head and torso were represented by a pair of ellipses

and each leg consisted of two pairs of line segments, for the upper and lower parts of the

leg. Fitting such a model with many degrees of freedom is a computationally demanding

and difficult task; therefore Wagg and Nixon [112] attempted to solve the parameters of

the model over multiple stages of fitting, increasing in complexity with each iteration.

First the velocity of the subject was estimated, then a bounding region surrounding

the subject was established, which was then refined to consist of three primitives, then

finally the complete model was fitted using constraints determined from a clinical study

of gait. This approach achieved a correct classification rate of 84%, using the indoor

samples from the University of Southampton HID gait database[93]. An alternative

approach by Bouchrika and Nixon [8] extracted the subject’s heel-strike information

from the recorded video footage, which was then used reduce the complexity of fitting

a two-dimensional biped model to the video footage.

One of the biggest limitations of the gait analysis techniques mentioned so far in this

chapter is the assumption that subjects are walking perpendicular to the camera; whilst

practical in a controlled environment, this assumption is unlikely to be reliable in a un-

constrained environment. Spencer and Carter [99] proposed a technique that overcomes

this problem, by correcting the effects of perspective distortion and the subject’s orien-

tation. This was achieved by following several points on the subject, to construct a set

of lines that converge at a single point – known as the epipole – which was used to derive

a projective transform matrix that aligns the walking direction with the horizontal axis

and removes the effect of perspective. Finally an affine transform was calculated using

the measurements from the transformed image and those from clinical studies to result

in a new coordinate space where angular measurements can be accurately taken. The

original work by Spencer and Carter [99] demonstrated that it was possible to recon-

struct a subject’s joint angle variation with a good degree of accuracy and viewpoint

invariance, using manually annotated video footage of a single individual wearing reflec-

tive markers. This was extended by Goffredo et al. [37], where video was captured of five

subjects wearing markers, walking in six different orientations relative to the camera; it

was demonstrated that the joint angles could be accurately reconstructed from multiple

viewpoints and subjects. Goffredo et al. [36] later devised a model-based gait analysis

algorithm using the same viewpoint invariant reconstruction techniques, but without

the need for marker data. The model consisted of articulated pendulums for each leg,

which were interconnected by a rigid section representing the hips. A small dataset was

collected and analysed, containing video data from three subjects and six viewpoints. It
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was shown that the normalised angular information could be accurately reconstructed

with a low error and that the subjects could be easily distinguished using the first and

second principal components.

3.4 Non model-based analysis approaches

One of the earliest gait analysis algorithms to use a non-problem-specific approach was

that of Little and Boyd [64]; where the optical flow between frames in a sequence was

approximated by fitting ellipses to the calculated optical flow fields. The phase and

magnitude for each ellipse parameter’s temporal variation were found over the sequence

of frames, then Analysis of Variance (ANOVA) was used to remove any of derived

features having poor discriminatory abilities. Since then a wide range of non-problem-

specific techniques have been proposed by the research community; using a variety of

different approaches, such as direct silhouette comparison, pixel distribution modelling,

moments, and shape based descriptors.

One of the simplest approaches to gait recognition is to perform a direct comparison

between silhouette sequences. By comparing the silhouettes from a sequence against

themselves, BenAbdelkader et al. [4] produced a self-similarity matrix, which could be

used for recognition purposes and identifying gait cycles. Phillips et al. [84] proposed

the use of a direct silhouette comparison technique as a baseline algorithm for the Gait

Challenge database. Whilst simple to understand and implement, this approach was

extremely inefficient, due to the large number of features required to represent a single

gait cycle, resulting in large storage and computational requirements. A more efficient

approach by Collins et al. [21] compared only four silhouettes from a gait cycle, known

as key-frames, which were taken at fixed points in the gait cycle; making recognition

much more practical, due to the smaller number of features required.

Another approach to reducing the number of features required for a sample is to apply

a transformation to each silhouette, resulting in a reduced feature-set that approxi-

mates the original silhouette. Murase and Sakai [72] used principal component analysis

to approximate each silhouette, where sequences were then compared in the derived

feature-space, using time-warping to match the sequence lengths. Huang et al. [49] later

extended the approach to use both principal and canonical component analysis, result-

ing in improved separation between different subjects. A different approach was used

for measuring the similarity between samples, comparing the mean points in the derived

feature-space; this is almost equivalent to the average silhouette approach of Liu and

Sarkar [67] and Veres et al. [109]. A clustering technique was used by Tolliver and Collins

[106] to find a set of exemplar silhouettes, similar to key-frames. A similar approach

by Zhao et al. [124] characterised the exemplar silhouettes using coefficients found by

applying a discrete Fourier transform. It was shown by He and Debrunner [45] that a
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Figure 3.2: Several silhouettes from a gait cycle and the resulting average silhouette

Hidden-Markov model could be employed to describe the transition between poses in

a gait cycle; where the model was constructed using every other frame in a sequence

as a state. Kale et al. [54] used a clustering technique to greatly reduce the number

of states required in the Hidden-Markov model. Sundaresan et al. [101] also proposed

an analysis framework based upon a Hidden-Markov model, where exceptional recogni-

tion results were achieved for the Gait Challenge dataset; this was done by uniformly

partitioning a gait cycle sequence into a fixed number of clusters; where the transition

between exemplars was controlled by the Hidden-Markov model.

Many of the non-problem-specific approaches characterise a subject’s gait by finding a

set of features describing the variation of the subject’s silhouette over time. Some of

these approaches treat every pixel within the subject’s image separately; such as that

of Boyd [11], Liu and Sarkar [67], Veres et al. [109], or Han and Bhanu [43]. Boyd [11]

assumed that each pixel’s variation over the sequence of frames was part of a periodic

signal, that was parametrised using an array of phase-locked loops. One of the most

simple yet effective gait analysis techniques is the average silhouette[67, 109]; calculated

by aligning a sequence of silhouettes by their centre of mass, normalising their size, then

calculating the mean average for each pixel. An example of an average silhouette is shown

in Figure 3.2. Several extensions to the average silhouette exist; such as that of Han and

Bhanu [43], where a set of synthesised silhouettes featuring varying levels of occlusion

are added to the gallery set; or Lam et al. [59], where the static and dynamic information

are characterised separately, by calculating the mean average for the silhouettes’ edge

images and by finding the intersection of all aligned and scaled silhouettes.

Instead of treating each pixel within a silhouette sequence as an isolated time-varying

element, many researchers have chosen to use techniques that characterise the silhou-

ette sequence’s distribution in both the spatial and temporal domains; these methods

are sometimes referred to as spatio-temporal analysis techniques. Moments provide an

efficient method of describing various properties of a distribution within a discrete space

of arbitrary dimensionality; they can be calculated by accumulating the product of ev-

ery point in the space with a moment generating function, which is dependant on the

point’s location and several additional parameters. Shutler et al. [97, 96] argued that

time and space are very different and should not be treated as additional dimensions of

one another; as would occur when using basic measures such as Cartesian or Centralised-

Cartesian moments. Instead a new type of moment was proposed; the Velocity moment,

which extended the Centralised-Cartesian moment to account for the travelling velocity
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of the subject. Shutler and Nixon [94, 95] also extended Zernike moments to incorporate

velocity information, in a similar fashion. Boulgouris and Chi [9] used the Radon trans-

form to characterise silhouette images; where the Radon transform can be expressed

as a special type of moment, where the generating function contains the delta Dirac

function. A simple approach by Liu et al. [66] calculated frieze patterns by counting the

number of pixels in each row and column, for every silhouette. The column and row

counts for the sequence of silhouettes were both concatenated to result in two images,

each containing repeating patterns. Foster et al. [34] proposed a simple technique based

upon area masks, where the temporal variation of area inside a set of masked regions

was used as the basis for recognition. In the approach taken by Kobayashi and Otsu

[57], the temporal dimension was treated as if it was a third spatial dimension; from

this a set of features describing the correlation between the dimensions across the entire

volume was found.

Whilst many of the aforementioned analysis techniques make only indirect use of the

silhouette’s shape, there are a few notable exceptions that describe a silhouette in terms

of its shape. Hayfron-Acquah et al. [44] demonstrated that the essential information

within a silhouette’s shape could be found using a symmetry operator, which identified

the axes of symmetry within and surrounding the silhouette. The symmetry images

resulting from the silhouette sequence were then combined by averaging, similar to that

of Liu and Sarkar [67] and Veres et al. [109]; finally Fourier coefficients were calculated

and used for recognition. The shape of a silhouette can be completely described by its

set of boundary pixels, which can be closely approximated using a reduced set of points,

which must be selected carefully to ensure accuracy. The use of a point-distribution

model, such as an active shape model[23], can efficiently encode the typical variation

found within a silhouette’s shape using a much smaller set of features, by exploiting

the correlation between the point locations. Tassone et al. [104] demonstrated that it

was possible to adapt a point distribution model to account for the temporal variation

present in a sequence of silhouettes from a gait cycle. Wang et al. [115] uses a subset of

the boundary points from the silhouettes to calculate the Procrustes mean shape for the

gait cycle sequence. The resulting Procrustes mean shape can then be compared against

others using the Procrustes distance as a metric for similarity between samples. This

approach does not directly make use of the dynamic time-varying information contained

within a subject’s gait; therefore Wang et al. [116] later combined the Procrustes mean

shape of a subject with the parameters found using a human model based gait analysis

technique. Another approach by Wang et al. [113] that also used boundary unwrapping,

measured the distance from each boundary point to the shape’s centroid, sampling a

subset of these distances to result in a distance-signal. Principal component analysis was

then used to find a new feature-space of reduced dimensionality to encode the distance

signal, matching was then performed by comparing the trajectories taken through the

derived feature-space by the silhouette sequences.
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3.5 Analysis techniques utilising three-dimensional data

In the previous sections an overview of two-dimensional gait analysis techniques has

been given; whilst many of these approaches have a lower complexity compared to

three-dimensional approaches, most are highly viewpoint dependant; making their use

in real environments difficult. On the other hand, the use of a three-dimensional analysis

technique can overcome viewpoint dependence — at the expense of computational cost

— although with modern computing equipment this is less of an issue. In this section,

a variety of techniques are discussed, some using only a single camera, others using

multiple cameras, and several using magnetic position sensors attached to the joints of

a subject.

Tanawongsuwan and Bobick [103] acquired joint information such as 3D position and

orientation from subjects walking through a magnetic marker system, from which joint

angle information was derived. Recognition was performed using dynamic time warping

on the normalised joint angle information. The use of a magnetic marker system would

not be practical in real-world situations, although it gives an insight into the recognition

performance attainable from the use of a near-perfect source. Problems were reported

with the algorithm being very dependant on the positioning of the markers on the

subjects.

Wu et al. [119] also collected gait information from subjects using a marker based sys-

tem; this consisted of joint angle measurements and their fluctuation over time. The

variation of these measurements is likely to be non-linear, meaning that the use of Prin-

cipal Component Analysis and linear classification techniques will result in sub-optimal

performance. Therefore, a non-linear mapping function was applied to the gait data,

transforming it to a new feature space of increased dimensionality, where Principal Com-

ponent Analysis would then able to provide greater separation between subjects. This

approach is referred to as Kernel-based Principal Component Analysis (K-PCA). Finally,

a Support Vector Machine was used to classify the subjects.

Bhanu and Han [5] made use of a highly sophisticated three-dimensional model consisting

of spheres and cones to represent the legs, arms, torso and head. The model had in

excess of thirty degrees of freedom, which made fitting the model to two-dimensional

silhouette data very difficult. Therefore several assumptions were made to reduce the

dimensionality of the problem; this included the camera being stationary, the subject

travelling in a straight path, and their limbs swinging parallel to their direction of travel.

The static parameters of the model such as the size of body parts, were found using key-

frames from the silhouette sequence. Kinematic features were then found by fitting the

model to the sequence of frames, where the degrees of freedom were reduced by the use

of the previously estimated static parameters. The static and kinematic features were

then used for classification.
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The use of a single viewpoint often results in problems with self-occlusion; caused by one

limb obscuring the view of another, which can complicate the process of fitting a model.

The use of a single viewpoint also makes it difficult to fit models containing a large

number of degrees of freedom, as the data from a single viewpoint does not provide

sufficient constraining properties, which can result in multiple non-optimal solutions

being found when model fitting. Therefore, the use of multiple viewpoints can prove

beneficial when fitting complex models.

It is possible to derive three-dimensional information from just two cameras using stereo

depth reconstruction techniques, where the distance of a point from a pair of cameras

can be found from the point’s disparity. Stereo vision was used by Urtasun and Fua

[108] to aid fitting a sophisticated three-dimensional deformable model[85] to the shape

of the human subjects, and a motion model describing the deformation of the shape

model was produced from data collected using a marker based computer-vision system

to capture four subjects walking. The shape and motion models were then fitted to

three-dimensional data collected from a multi-view stereo vision system using the least

squares method.

Orrite-Uruñuela et al. [82] proposed a gait analysis technique where point distribution

models were fitted to silhouette data from multiple viewpoints. A stick-model was then

fitted to the resulting point distribution models. For gait analysis, only the hip, knee

and ankle points of the skeleton were considered, and a gait cycle was treated as four

discrete states; left support and right foot moving forwards, left support and right foot

moving backwards, and the corresponding states with the right foot as support. Linear

discriminant analysis was applied to the skeletal point data to improve the separation

between the four gait cycle states. The CMU MoBo dataset[40] was used to demonstrate

that this gait analysis technique was effective at tracking the skeletal points even with

self occlusion in some viewpoints.

A similar method of fitting a three-dimensional model was proposed by Zhao et al. [125],

where multiple views were used to improve model fitting performance. A skeletal model

was initially fitted to the first frame in a sequence, with the position, orientation, body

geometry and joint angles being manually chosen. Tracking was then performed on the

subsequent frames to find the variation in the model’s parameters, which could then be

used for recognition.

The majority of single viewpoint based gait analysis techniques rely on the orientation

of the subjects relative to the viewpoint staying relatively constant in order to provide

optimum recognition performance. In many real world applications it would prove diffi-

cult to control the direction in which subjects walk, which poses a problem for many gait

analysis techniques. Shakhnarovich et al. [91] collected video data of subjects walking

from several different viewpoints simultaneously, then reconstructed three-dimensional

volumes of the subjects. Two-dimensional silhouettes could then be synthesised from
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a virtual camera, placed perpendicular to the walking direction. This meant that the

subject’s walking direction did not affect the synthesised silhouette data. The resulting

silhouette data could then be used as the input for a viewpoint dependant gait analysis

algorithm.

3.6 Discussion

Gait has attracted much interest over the years, with early research being conducted by

the medical and psychology community[74, 52]. As computing power became more read-

ily accessible, investigation into automated gait recognition commenced[80]. The pace of

research quickly increased, with the collection of several datasets, and the development

of many analysis techniques[76]. Two of the largest and most widely known datasets

are the Gait Challenge[84] and the University of Southampton dataset[93]. Both con-

tain in excess of one-hundred unique subjects, were recorded from multiple viewpoints

and include a limited set of covariates. Consumer grade video cameras were used for

both datasets, which meant that the recording equipment was not time-synchronised,

making the recovery of three-dimensional data difficult. The use of standard video

camera equipment also meant that the process of transferring, editing and labelling

the recorded footage would have been extremely time-consuming; limiting the size of

dataset that could be collected in a reasonable period of time. Extremely good recog-

nition results have been achieved for both datasets, where Veres et al. [109] was able

to achieve 100% correct classification on the Southampton dataset, using the average

silhouette analysis technique. Similar performance was also achieved on the Gait Chal-

lenge dataset by Sundaresan et al. [101], using a more sophisticated Hidden-Markov

model based technique. Whilst excellent recognition results have been demonstrated by

several researchers, several fundamental limitations still exist. Viewpoint dependence is

a significant problem for many analysis techniques, where it proves difficult to match

between different orientations of the subject; also very few results have been published

that consider the matching of subjects against samples acquired at an earlier date. These

are both important questions that must be answered in order to fully understand the

limitations of gait and where the deployment of an automated recognition system could

prove beneficial.



Chapter 4

The Revised Biometric Tunnel

4.1 Introduction

Analysis of the development dataset from the original Biometric Tunnel[70] raised several

major issues; as discussed earlier in Chapter 2.3. Several of the acquired samples were

found to be blank; containing no volumetric frames. Most of the captured samples

featured significant noise artefacts, which had to be removed using aggressive post-

processing. Another issue that caused great concern was that quite a few samples had

sequences of frames where one or both of the subject’s legs were missing — as shown in

Figure 2.3. In order to find where the artefacts were being introduced, the output from

each stage of processing needed to be inspected; unfortunately this information was not

stored by the system. It was also impossible to repeat the processing of the collected

data, as the original raw camera data was not saved to disk. This only left one option;

collect a new dataset containing unprocessed video data. In order to do this, a range of

modifications to the original system were necessary; this included significant alterations

to the system’s software and hardware, with the aim of improving data quality and the

maintainability of the system. The capture software for the system was rewritten to

facilitate the acquisition of unprocessed video data from the cameras; this led to the

discovery that no time-synchronisation was performed between cameras in the previous

system. The software was also changed to record video footage of the background

before the capture of each sample, to minimize the time period between background

estimation and segmentation. A batch processing system was implemented to automate

the execution of the various computer-vision algorithms required to perform background

segmentation, three-dimensional reconstruction and gait analysis. The new software is

discussed further in Section 4.3. The layout of the hardware in the environment was

also changed to allow easier access to critical equipment, such as computers and time-

synchronisation units.
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(a) Original video frame (b) Silhouette

Figure 4.1: Example of poor background segmentation, where the subject’s head and
shoulders have regions missing

Once the Biometric Tunnel had been altered to enable the capture of unprocessed video

data, a small dataset was collected to enable the validation and refinement of processing

algorithms within the system. The dataset was acquired in a single day over a two

hour period. Ten different subjects participated; each walking through the Biometric

Tunnel four times; resulting in a total of 40 samples, although one sample was later

found to be invalid due to an error in the implementation of the camera synchronisation

algorithm. The composition of the dataset is shown in Appendix A. Analysis of the

dataset was performed by conducting several leave-one-out recognition experiments, us-

ing average silhouettes produced from side-on, top-down and front-on viewpoints. The

classification performance of the new dataset was found to be greatly improved over the

original system’s dataset. The receiver operating characteristic and the classification

performance for each viewpoint are both given in Appendix B. It is apparent that the

number of “bad” samples was significantly reduced using the new Biometric Tunnel con-

figuration. The improvement in recognition accuracy is most likely due to the addition

of time-synchronisation between cameras and the increased frequency of background

estimation, as discussed in Section 4.3.

Whilst the classification performance and overall reliability of the data produced by

the revised tunnel system was greatly improved, the visual quality of the reconstructed

output was still quite poor. Possible causes were the use of a visual hull reconstruction

technique with a partial intersection criteria — as discussed in Chapter 5.4 — and also

background subtraction errors. The acquisition of background data for each sample is

likely to have reduced background subtraction errors; as any drift in the camera and

lighting characteristics would have been much smaller. Although, significant background

subtraction errors were still present in the processed data; Figure 4.1 shows an example

frame and the corresponding erroneous silhouette derived from background subtraction.

It was found that the performance of the segmentation was poor when the subject

occluded grey regions in the background; this was because the hue of the subject and the
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(a) Layout of equipment (b) Photograph of equipment layout

Figure 4.2: The modified Biometric Tunnel configuration

background were often similar, causing the background subtraction to mark the region

as a shadow instead of foreground. It was decided that grey was an unsuitable colour to

use on the tunnel walls and floor, as it often does not provide sufficient separation from

the subject’s clothing. Therefore a new colour was chosen, as discussed later in Section

4.4.

With the new improvements to the Biometric Tunnel showing promising results dur-

ing testing, final modifications were made to the system to prepare for the collection

of a large multi-biometric dataset. This included the addition of a camera for record-

ing imagery of a subject’s ear, and the replacement of the face camera with a better

performing model. The batch-processing system was further developed, with additional

features added to automate the execution of recognition experiments and data archival.

Several key computers were also replaced with more modern equivalents, featuring large

disk arrays for storing the collected data.

4.2 Alterations to system configuration

The layout of the equipment in the Biometric Tunnel was significantly revised, as it had

been proving difficult to maintain and diagnose problems. The previous placement of

the system’s hardware around the environment resulted in long runs of cable between

equipment; with key components such as timing-synchronisation units located in the

suspended ceiling, making access difficult. All the computers were relocated to a single

area on one side of the tunnel; greatly simplifying the Ethernet and IEEE1394 network

cabling arrangements. This facilitated the move of the IEEE1394 hubs and synchro-

nisation units to a more accessible location, above the computers. The revised system

topology is shown in Figure 4.2(a). A monitor, keyboard, mouse and switching unit were

installed above the computers; allowing control over any of the computers. The revised

hardware layout as shown in Figure 4.2(b), made system diagnostics and maintenance

much easier.
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(a) Before (b) After

Figure 4.3: Before and after the repainting of tunnel

Due to the experimental nature of the system, the video camera mounting brackets were

fixed loosely, to facilitate adjustment of a camera’s orientation during development;

however this also meant that the slightest knock could cause the orientation of a camera

to change. Therefore, the mounting brackets holding the cameras were secured, to

reduce the likelihood of camera movement. Finally, a full recalibration of all cameras

was performed, to ensure that the cameras were correctly characterised. The original

green fabric path was replaced with a new carpet, which was firmly secured to the floor

to improve safety. An intensely coloured red carpet was chosen, as it was the only

brightly coloured carpet that was easily available and hard-wearing.

As discussed earlier, the quality of the reconstructed data was found to be poor; the most

likely cause of this was the sub-optimal performance of the background segmentation.

This was found to be due to the difficulty in separating subjects wearing pale coloured

clothing from the grey areas of the background. The analysis in Chapter 4.4 confirmed

that grey was a poor choice of colour, and found that red would be a much more

suitable colour. Using these findings, the grey regions of the background were repainted

red. Figure 4.3 shows the tunnel before and after the repainting of the grey background

regions.

The computer responsible for controlling the system and performing volumetric recon-

struction was replaced with a more modern and powerful computer, to improve the

system’s speed and ease development. Due to the substantial amount of data stor-

age capacity required to collect a dataset comparable in size to the other existing gait

datasets, a new hard-disk array was added to system. Previously, the data collected for

a single sample was spread across multiple computers, with the raw video and silhouette

data for each camera saved on the corresponding computer. This approach resulted in

extremely fast writing of the recorded data, although it made management extremely

difficult and often cumbersome. Three 750GB hard-disks were added to the main com-

puter system, with two additional 1TB disks added during the experiment described in
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Figure 4.4: Final layout of the Biometric Tunnel

Chapter 6. Caching of the captured video data was performed to improve performance;

where the data was initially saved to the local camera computers, then transferred to the

main storage system in the background. A network attached storage system was used

as a backup server for the collected data, which was located in a different building to

the main system. The backup server employed a RAID-5 array of hard-disks, to protect

the integrity of the archived data. The backup process was automated through the use

of a special task in the batch-processing system, which transferred new samples to the

backup server outside of office hours. Unfortunately, serious stability problems were

experienced with both the main and backup storage systems, due to serious technical

problems. As a result of this, the collection of the large dataset discussed in Chapter

6 was temporarily suspended until the problems were resolved and extensive reliability

testing had been completed.

Multiple biometrics can be used in automated recognition systems to improve classifi-

cation performance and make forgery attempts much more difficult. Therefore it was

desirable to include additional sensors in the system for recording other biometrics,

which could prove useful to other research projects. It was decided to add cameras for

two additional non-contact biometrics to the system: face and ear; as both could be

captured whilst the subject was walking through the measurement area. As discussed in

Chapter 4.5, the original system’s face camera was upgraded and a camera for recording

ear imagery was added.

Four additional gait cameras were added to the system, during the collection of the large

dataset described in Chapter 6. The new cameras were placed one metre from the floor

in each corner of the Biometric Tunnel area. A large multi-colour LED was also added;

located near the entrance of the Biometric Tunnel, which lit up red when the tunnel

was busy and changed to green once the tunnel was ready. This provided a simple yet
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Figure 4.5: Screen-capture showing web-based application for viewing and controlling
cameras within the Biometric Tunnel

intuitive status indicator for participants. The layout of the final system is shown in

Figure 4.4.

4.3 Software overview

New camera agent software was written to capture and save video footage, without any

processing of the data. The removal of the processing algorithms from the code-base

greatly simplified both the camera and controller applications, facilitating the discov-

ery of improper timing-synchronisation between camera agents. This issue resulted in

an average timing-synchronisation error of 60 milliseconds between camera agents. It

was also discovered that the background images for each camera were only acquired at

the beginning of each capture session, allowing any drift in the lighting conditions to

cause problems. The new camera and controller agent software rectified the timing-

synchronisation issues using the time-stamp data saved by the cameras, and also per-

formed background acquisition before each sample to minimise lighting variation. The

capture control software was re-implemented; where its key functionality was exposed

through a web-service, allowing the control of the system through a web-site. A sophis-

ticated live view web-application was also written, to allow the monitoring of cameras

in the tunnel area and the adjustment of their parameters; such as exposure and white-

balance. It was designed to allow the use of a small hand-held internet tablet device to

monitor the system’s cameras; this allowed the interactive adjustment of focus and ori-

entation. The application could also overlay a wire-frame model of the tunnel; making

it easy to check for camera misalignment; as shown in Figure 4.5.
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Figure 4.6: Screen-capture showing the data collection experiment website; which
controls the Biometric Tunnel and provides instructions for the participants

As discussed in Chapter 6, the collection of the large multi-biometric dataset was per-

formed in collaboration with Sina Samangooei[88]; who also needed to conduct a similar

large scale experiment. A common website was created that provided a front-end for

both experiments, which allowed participants to enrol into the system, perform data

capture, and complete the other experiment. A screen-capture of the website is shown

in Figure 4.6.

In order to ensure that the Biometric Tunnel could be operated by users of varying

ability, the procedure for managing the system’s software needed to be as easy as pos-

sible. Therefore the system’s website was extended to feature an administration area,

which provided simplified controls and diagnostics for the entire system. This required

the addition of remote procedure call interfaces to several of the system’s key software

applications. A simple web-service for controlling the running of programs on each com-

puter was implemented; allowing the administrator to start and stop key applications

on all the system’s computers, from a single area in the administration section of the

website. The administration interface also provided controls to allow the supervisor to

easily select and create new capture sessions and datasets. An application for batch

producing identity cards for the data collection experiments was produced, where each

card had a bar-code containing a unique identifier. This meant that large numbers of

identity cards could be produced before the experiment, reducing the time taken for

each participant.

The processing algorithms contained within the original system were removed from the

camera and controller software and then placed in their own independent executable
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programs; where image data was passed between algorithms using files. This meant

that the performance of each algorithm in the processing system could be evaluated in

isolation from the other algorithms. After the collection of the small unprocessed dataset,

many of the processing algorithms were replaced with more sophisticated versions, which

were evaluated against the new dataset. The colour interpolation method was changed

from a Bilinear algorithm to a Cok based implementation, as discussed in Section 5.2.

This resulted in colour frames with finer detail and reduced colour error along edges.

The background segmentation and shadow suppression algorithms were replaced with

a more robust background segmentation algorithm, which used a semi-normalised RGB

colour space to reduce the effect of shadows, as described in Section 5.3. The shape

from silhouette algorithm was replaced with a faster multi-resolution implementation,

using a full camera intersection criterion to improve the accuracy of the reconstructed

data; which is covered in Section 5.4. The calibration software was re-written, using

connectivity analysis to locate world points within the camera images; as described in

Section 5.5. The resulting reconstructions proved more accurate and had less problems

due to segmentation errors.

In order to process a sample, each processing algorithm would have to be executed in turn

on the sample. Manually performing this on a large set of samples would have proved

to be a very time consuming and inefficient task; therefore a system was required to

automate the execution of the processing applications. The system needed to be capable

of managing the processing of a large number of samples, whilst keeping track of what

processing stages had been performed on each sample, to avoid redundant processing

operations. A certain degree of flexibility was desired from the system, such as the

ability to prioritise the execution of certain tasks. In order to develop and troubleshoot

processing algorithms, a means for inspecting any errors raised was also required.

A new batch processing system was developed, to satisfy the above requirements. The

system was implemented using Python; a powerful yet flexible high-level scripting lan-

guage. Sample meta-data was stored using a MySQL database, providing robust and

scalable storage for the meta-data. The MySQL database engine provides many useful

features that were used in the new system to ensure data integrity and stability, such

as table locking, to avoid concurrence issues; foreign key constraints, to enforce data

integrity; and transaction level processing, to ensure that failed tasks do not cause data

corruption. Backups of the entire database and its underlying structure were performed

using off-the-shelf software on a regular basis. The processing of a sample was split

up into a set of tasks, each executing a single image processing algorithm. Each task

consisted of a simple Python script, which could either call an external program to carry

out the processing, or implement the processing directly using Python code. Upon the

completion of a task on a sample, any down-stream tasks were automatically added

to the execution queue; unless specified by the user or the task code. The database

was used to keep track of pending and failed processing operations, which meant that
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(a) Background (b) Foreground (c) Background; after repainting

Figure 4.7: Analysis of colour occurrence in segmentation regions

processing could be resumed after a software failure or system shut-down. For each

operation, a priority level and status value could be assigned to allow management of

pending tasks. Any failed operations would remain in the database until cleared and

could be easily identified by their status value. A special bootstrap task was created to

start the processing of a sample by adding all relevant tasks to the process queue. Gait

analysis techniques such as the average silhouette were also written as processing tasks.

The system made it easy to process and perform gait analysis on an individual sample

or an entire dataset with minimal effort. This approach provided much greater flexibil-

ity compared to the use of shell scripts. The batch-processing system was designed to

work safely with multiple instances running, meaning that large processing runs could

be performed using a Linux based compute cluster.

4.4 Analysis of background colours

In order to find a more suitable colour to replace the grey regions in the Biometric

Tunnel, the evaluation dataset collected from the revised system was analysed to find

the range of colours present in the foreground pixels. The post-processed silhouette data

was used to mask the original colour frames; where the masked pixels were added to a

three-dimensional luminance-normalised RGB histogram. A similar histogram was also

calculated for the background pixels from the dataset. The colour distribution for the

foreground and background pixels can be seen in Figure 4.7(a); it can be seen that the

background has four predominant colours, red, blue, green and grey; the colours used on

the walls, floor and carpet. Figure 4.7(b) shows the colour distribution in the foreground

pixels; the prevalent foreground colours are mostly centred around the monochromatic

point, this suggests that most people wear clothes with large areas of white, grey, black

or pale colours. The figures confirm that there is good separation between the typical

foreground colours and the red, green and blue colours used in the background, and also

reiterate that grey is a poor choice of colour to use in the background.
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(a) Face image from previous dataset, which features
poor lighting and high noise levels

(b) Improved face image, using additional lighting and
new camera

Figure 4.8: Images from previous and improved face camera configurations

Using the findings of the colour analysis, it was decided to repaint the grey regions of

the background in a highly saturated shade of red, similar to the carpet. Figure 4.3

shows the tunnel before and after the repainting of the grey background regions. Colour

analysis of images captured from the tunnel after repainting shows that only saturated

colours remain in the background, as shown in Figure 4.7(c)

4.5 The addition of cameras for face and ear

The original system by Middleton et al. [70] was configured to capture video of a sub-

ject’s face and upper body using an additional dedicated camera, which was separate to

the gait cameras. The recorded video data was found to be of poor quality, as shown

in Figure 4.8(a); this was partly due to insufficient frontal illumination and also the

chosen camera’s poor signal to noise ratio. As a result of this, experimentation was

carried out into improving the subject’s illumination using a variety of lighting sources,

in different positions. The best compromise between illumination quality, practicality

and the comfort of participants was achieved using using a pair of point light sources

positioned either side of the tunnel, which were pointed inwards towards the subject’s

face. The camera was replaced with an improved model; featuring an improved reso-

lution and signal to noise ratio. These measures provided a significant improvement in

the attainable image quality, as shown in Figure 4.8(b).

A high resolution camera was placed at the side of the tunnel to record imagery of

the subject’s ear; as it was decided that this data could prove useful for other research

projects. Initial experimentation found that by using the existing lighting in the tunnel,

it was impossible to achieve images of a suitable quality. This was due to the extremely
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(a) Continuous lighting; not even the
most powerful units could provide
enough illumination to permit fast shut-
ter speeds, resulting in motion blur

(b) Strobe lighting; the high intensity
burst provides sufficient illumination to
use extremely fast shutter speeds.

Figure 4.9: Cropped section of image from ear camera, using continuous and strobe
lighting.

high speed in which the subject passed through the frame of the camera, meaning that

a very fast shutter speed was required to avoid motion blur. This in turn required

an extremely high camera gain or very powerful illumination to achieve such shutter

speeds. Attempts were made using various continuous lighting systems to provide the

illumination required for the participant’s ear; although no practical solution could be

found. Figure 4.9(a) shows the best results achieved using continuous lighting, which

is unusable due to the poor signal to noise ratio and the high degree of motion blur

present. The continuous lighting systems evaluated were unable to provide sufficient

light output; with the most powerful lighting system causing participants to complain

of discomfort. Therefore it was decided to use photographic strobe units, which produce

an intense burst of light for a very short duration of time, essentially freezing any motion

present in a still image. The use of strobe units provided sufficient illumination with

minimal discomfort to the participants, as shown in Figure 4.9(b). Unfortunately, this

meant that only a single frame could be captured, instead of a video sequence. An

electronic strobe control circuit was constructed, allowing the ear camera to trigger the

flash using its strobe output. New camera agent software was written specially for the

ear camera, which initialised the camera for use with an external flash and fired the

flash upon image acquisition. The system was configured to trigger the ear camera and

strobe units when the participant crossed through the exit break-beam sensor; this also

meant that recording from the other cameras would have stopped beforehand, which

meant that the flash would not be recorded by any of the other cameras in the system.



Chapter 5

Video Processing and 3D

Reconstruction

5.1 Introduction

The Biometric Tunnel is a complex system, featuring a wide range of image-processing

algorithms, to convert the raw video footage from the cameras into three-dimensional

volumetric data, suitable for gait analysis and recognition. The processing sequence for

a typical sample recorded using the Biometric Tunnel is shown in Figure 5.1. Image

data recorded by the cameras within the Biometric Tunnel system was streamed to the

connected computers over a IEEE1394 network, in a raw unprocessed format. Upon

arrival at the computer, the digitised images were converted to colour from their native

format using Cok interpolation, discussed in Section 5.2. From the derived colour images,

the subject was identified from the background, through a process known as background

segmentation; where previously recorded video footage of the Biometric Tunnel area

was used as a reference. The acquired background imagery was modelled using a uni-

modal normal distribution for each colour channel, where the colour-space was partially

luminance normalised to reduce the effect of shadows. Binary morphological operators

were then applied to the segmented images to smooth the shape of the silhouettes and

reduce segmentation noise. The post-processed silhouette images from all gait cameras

were then combined, using the shape from silhouette three-dimensional reconstruction

technique. Finally, gait cycle analysis was performed to find the most likely gait cycle

within the recorded sample. In this chapter, a detailed review of the techniques used to

process the data acquired from the Biometric Tunnel is given.
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Figure 5.1: Execution tree for processing a sample

5.2 Recovery of colour information

Most digital video cameras use a charge-coupled device (CCD) to produce a colour image

from the observed scene, where the light falling upon each photo-site of the sensor is

converted to a charge, measured and then digitised. The photo-sites are unable to

distinguish between the different visible wavelengths of light arriving on an individual

site, which means that a CCD can only measure luminance and not colour. The most

popular solution to this problem is to apply colour sensitive filters to each photo-site,

where each is sensitive to different light wavelengths compared to its neighbours. The

most commonly used arrangement of colour filters is known as the Bayer pattern; a 2×2

pattern, with two sites sensitive to green light, one red, and the other blue. The result

of filtering the test image in Figure 5.2(a) by a Bayer array is shown in Figure 5.2(b). A

full colour image can then be reproduced by interpolation, using a variety of techniques.

The most basic form of colour interpolation is to take the nearest neighbouring colour

value for each pixel where the colour is unknown. Applying nearest-neighbour inter-

polation to the image shown in Figure 5.2(b) results in a reconstructed image with

strong colour artefacts surrounding boundary pixels, as shown in Figure 5.2(c). Nearest-

neighbour colour interpolation has the advantage of being extremely easy to implement

and requires very little computational time.

The use of bilinear interpolation results in a smoother colour image, with less colour

artefacts compared to the nearest-neighbour technique, as shown in Figure 5.2(d). More

sophisticated colour interpolation methods make use of assumptions regarding the prop-

erties of a typical colour scene; such as the colour remaining locally constant. One such

approach proposed by Cok [20], assumes that the ratios of green to red and green to

blue remain stable over the immediate neighbourhood. It can be seen in Figure 5.2(e)

that when put alongside nearest-neighbour or bilinear interpolation, Cok interpolation

results in lower levels of colour distortion artefacts. The approach by Kimmel [55] uses

improved gradient calculations, resulting in a marginal reduction of artefacts; at the cost

of computational complexity[73]. State of the art interpolation methods such as Variable

Number of Gradients[16], Pixel Grouping[53] and ADH[46] provide further improvements



Chapter 5 Video Processing and 3D Reconstruction 41

(a) Source image

G
G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B
G

G
R

B

(b) Bayer filtered (c) Nearest-neighbour

(d) Bilinear (e) Cok

Figure 5.2: Filtering of image by Bayer array and recovery of colour information by
interpolation

to reconstruction quality, but are even more demanding in terms of computational re-

quirements. It was decided to use Cok interpolation in the revised Biometric Tunnel, as

it provided a good compromise between accuracy and complexity.

5.3 Background estimation and segmentation

In order to carry out 3D reconstruction as described in the next section, it is necessary

to identify all the pixels in the camera images that are occupied by the subject. This is

achieved in two stages; background estimation, where the distribution for each pixel in

the background is modelled; and background segmentation, the labelling of pixels as to

whether they are likely or unlikely to belong to the background.

The most basic form of background estimation is to take a single snapshot of the scene

when no foreground objects are present. Segmentation can then be performed by mea-

suring the difference for each pixel between the current frame and the previously acquired

reference frame; if the distance exceeds a predefined threshold, the pixel is marked as

foreground. This approach leads to sub-optimal performance; as the acquired reference

frame is distorted by sensor noise and the use of a global threshold value does not ac-

count for the varying noise characteristics of the pixels across the sensor. By recording

a sequence of frames without any foreground objects present, it is possible to charac-

terise the statistical distribution of the background for each pixel in the image. In this

case, segmentation can be performed by calculating the distance between the test pixel
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and the mean of the background distribution; if the distance is greater than a prede-

termined threshold, the pixel is marked as foreground. The segmentation threshold is

chosen on a per-pixel basis, as a multiple of each background pixel’s standard-deviation.

For an indoor environment where the background is fixed, the only source of colour

intensity deviation will be the measurement noise from the sensor, which means that

each colour channel can be sufficiently approximated by a single Gaussian distribution.

In an outdoor scene where some fluctuation in the background is present, the use of a

single Gaussian approximation may be insufficient to accurately model the background,

resulting in reduced segmentation accuracy[118].

A more sophisticated approach is to approximate the background as a mixture of multiple

Gaussian distributions; this is ideal for scenes with fluctuating objects, where a pixel’s

colour may vary between several colours, such as the green of a tree’s leaves and blue

from the sky behind the tree[100]. By continuously updating the background model,

it is possible to track any drift in the scene’s ambient surroundings, such as lighting

variation or the addition of a parked vehicle.

Other techniques to account for background fluctuation include Kalman filtering[86] and

localised motion compensation[33]. Another notable approach utilises both colour and

depth information, which is derived from a stereo camera pair[38]. It is also possible

to identify the subject within the image by labelling pixels where movement is present,

which can be achieved by comparing the difference between subsequent frames. This

approach has minimal computational requirements, although it is unable to reliably label

slow moving or stationary objects. The use of a dense optical flow based technique[15]

provides more robust segmentation at the expense of complexity.

Many background segmentation approaches are strongly affected by shadows, resulting

in the labelling of false-positives. A luminosity normalised colour space can be used to

reduce the segmentation algorithm’s sensitivity towards shadows[47]. Another approach

is to apply a separate shadow removal algorithm to the segmented data, comparing the

colour difference between foreground pixels and the background model[19]. Whilst the

use of shadow removal processing improves the segmented output, it is very difficult to

completely remove false-positive matches caused by shadows, as the ambient reflection

of light off other nearby surfaces causes the shadow regions to have a slightly differ-

ent colour. In the Biometric Tunnel, a partially normalised colour space was used in

conjunction with a uni-modal Gaussian distribution to model the background.

5.4 Three-dimensional reconstruction

The process of approximating an object’s three-dimensional shape from two-dimensional

data, such as photographs or video, is known as three-dimensional reconstruction. A
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wide range of techniques for reconstruction exist, some building upon concepts found in

the human visual system.

The variation in depth across an observed surface can be estimated from the change in

tone over the object; this is known as Shape from Shading[123]. Unlike most other tech-

niques, only a single image from one viewpoint is required; although several assumptions

are required; the surface’s colour does not vary in tone; and also the material exhibits

Lambertian properties, meaning that no specular reflections occur.

It is also possible to estimate the shape of an object from a single camera, provided that

the object moves relative to the camera in the recorded footage; using a technique called

structure from motion[102]. This is achieved by identifying landmark points on the

object and tracking their movement throughout the sequence of frames. The movement

of the points relative to each other can be used to determine the location and trajectory

of the points in three-dimensional space. Such techniques require surfaces featuring

distinctive and non-repeating patterns, otherwise it is difficult to reliably identify and

track landmark points. By recording an object placed on a rotating platform, it is

possible to reconstruct the object with full coverage; with the assumption that the

target object is rigid[83].

The use of two cameras facilitates the calculation of stereo disparity, which can be used

to determine the depth of distinctive features in a scene[14]. Similar to depth from

motion, the presence of repetitive patterns or smooth non-detailed regions can adversely

affect the accuracy of the reconstructed output. The previously discussed single-camera

reconstruction techniques can be used to supplement the stereo techniques [41]. Stereo

camera systems are typically unable to provide a complete reconstruction of the observed

object, instead only providing information on the surface facing the cameras.

By using three or more cameras, it is possible to produce an approximation of the entire

object — instead of just the front surface. The volume occupied by the intersection of

the re-projected silhouettes is known as the convex hull[60], which can be found using

solid-geometry techniques to find a polyhedron formed by the volume-intersection of

the re-projected silhouette cones[68]. Another very popular approach is to divide the

reconstruction volume into a three-dimensional grid of equally spaced cubic elements;

known as voxels. Each element is then tested for occupancy by establishing whether the

corresponding location in all camera images is occupied. This technique is commonly

referred to as Shape from Silhouette reconstruction[19].

V (x, y, z) =

{
1 if ΣN

i=nSn (Mn (x, y, z)) = N

0 otherwise
(5.1)

Where V is the reconstructed 3D volume, k is the number of cameras required for a voxel

to be marked as valid and N is the total number of cameras. Sn is the silhouette image

from camera n where In(u, v) ∈ {0, 1}, and Mn (x, y, z : u, v) is a function that maps
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(a) Complete Intersection (b) Relaxed Criteria

Figure 5.3: Effect of relaxing shape from silhouette intersection criteria

the three-dimensional world coordinates to the coordinate system of camera n. Mn is

calculated using the calibration information derived for each camera. In a conventional

implementation of shape from silhouette, a voxel may only be considered occupied if

all cameras observe foreground pixels at the corresponding locations; this means that a

single false non-silhouette pixel will have a significant impact on the reconstruction.

Modifying the shape from silhouette algorithm to accept voxels where k or more cam-

eras observe silhouette pixels adds a certain degree of robustness against background

segmentation false-negative errors, at the expense of reconstruction accuracy, as shown

in Figure 5.3.

V (x, y, z) =

{
1 if ΣN

i=nSn (Mn (x, y, z)) ≥ k
0 otherwise

(5.2)

In order to evaluate the effect of false-negative background segmentation errors on re-

construction quality a simple experiment was conducted; where a volumetric sphere was

synthesised and projected to eight different camera viewpoints; resembling those of the

Biometric Tunnel. The derived images were distorted by non-correlated false-negative

noise and then used for Shape from Silhouette reconstruction, with the results compared

against the ground-truth sphere. This process was repeated for varying levels of noise

and using different visibility criteria for the Shape from Silhouette reconstruction. Fig-

ure 5.4 shows the effect of background segmentation error against reconstruction error,

for differing values of k. It can be seen that without any segmentation errors, the full

eight camera visibility criterion resulted in the most accurate reconstruction; although

with the introduction of segmentation error, the accuracy degraded rapidly. The use of a

more relaxed criterion resulted in a poor reconstruction accuracy when low segmentation

noise levels were present; although with greater levels of noise it proved more robust.

It can be seen that the performance for the non-strict criterion reconstructions show

improved accuracy when a certain level of segmentation noise is present; this is because

the presence of false-negative segmentation noise reduces the likelihood of false-positive

reconstruction errors. This effect is unlikely to be observed with real-world data, where

the segmentation noise is often highly correlated.
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Figure 5.4: Effect of uncorrelated false-negative segmentation errors on reconstructed
volume, with varying reconstruction criteria

Silhouette based reconstruction techniques such as Shape from Silhouette do not make

use of the colour information present in a scene, which can be used to further constrain

the shape of a reconstructed volume. If a surface does not exhibit specular reflections,

then any given point on the surface will appear on all visible cameras as the same colour;

this means that if given a particular voxel, the colour observed at the corresponding

location on each unoccluded view should be similar, otherwise the voxel can be removed.

Colour-consistency based reconstruction techniques typically provide superior quality

reconstructed output compared to Shape from Silhouette reconstruction, and are also

capable of correctly handling convex surfaces. Also, background segmentation is not

required for some methods, meaning that reconstruction artefacts due to segmentation

errors are no longer an issue.

Unfortunately the removal of inconsistent voxels is a non-trivial task, as the visibility

of a voxel must be ensured before it can evaluated; upon removal, the visibility of other

voxels must be updated. A variety of different strategies for the removal of inconsistent

voxels exist, as described in the review papers by Slabaugh et al. [98], Dyer [32]. When

reconstructing objects with no variation in colour and minimal surface detail, colour-

consistency based techniques will provide very little benefit over Shape from Silhouette

based reconstruction. As with many of the other reconstruction techniques, objects

featuring repeating patterns or fine detail beyond the resolving power of the camera’s
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(a) Initial division of volume (b) Removal of empty regions (c) Sub-division of partially oc-
cupied regions

Figure 5.5: Multi-resolution reconstruction strategy

sensor will lead to reconstruction inaccuracies. Such techniques are also extremely sensi-

tive to errors in camera calibration, where areas of detail may no longer be aligned for all

cameras; potentially resulting in the removal of valid regions. Compared to Shape from

Silhouette based reconstruction, colour consistency based approaches are much more

computationally expensive, due to the additional complexity involved in the evaluation

of voxels and visibility tracking.

In the Biometric Tunnel, shape for silhouette reconstruction is used, due to its simplicity

and robustness to camera mis-calibration. A naive shape from silhouette implementation

without any optimisation would prove to be very slow, as the calculations required to

map the three-dimensional world coordinates to image coordinates prove to be very

costly. Assuming that the position and orientation of the cameras remains constant, the

mappings from world-coordinates to image-coordinates can be pre-computed and stored

in look-up tables; this replaces the slow floating-point calculations with faster memory

access operations. The use of lookup tables achieves a significant reduction in processing

time, although further increases in efficiency are required in order to facilitate real-time

processing.

Typically in the entire reconstructed volume, only a small proportion of it is occupied;

therefore a large amount of time is spent evaluating large empty regions. To improve the

efficiency of the algorithm a multi-resolution strategy is often employed; several passes

are made of the volume at differing levels of resolution; where only regions determined to

be of interest are then processed at a finer resolution. This is shown in Figure 5.5. At a

coarse resolution, each test region will consist of many voxels; whilst at the finest level of

detail, a region will consist of a single voxel. When evaluating a region’s occupancy, there

exist three possible cases; completely empty, complete occupancy and partial occupancy.

The original Biometric Tunnel by Middleton et al. [70] used a simple dual-resolution

reconstruction approach, where a low-resolution reconstruction was performed to find a

bounding box for the volume occupied by the subject. Full-resolution reconstruction was

then performed inside the bounding box. The low-resolution reconstruction algorithm

only evaluated a single pixel location within the corresponding area for each camera,
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Optimisation Time/Frame Additional memory

None 30s -
Look-up tables 187ms 174 MB
Multi-resolution 25ms 232 MB

Table 5.1: Comparison of optimisation strategies for shape from silhouette algorithm

located at the centre of the test region. This meant that small areas of detail could be

missed; therefore the bounding box was grown by a predetermined amount to reduce the

likelihood of this happening. The full-resolution reconstruction algorithm used a six or

more camera criterion for labelling a voxel as occupied. Whilst the algorithm featured

some improvements in efficiency, it was still a comparatively simple multi-resolution

approach.

The revised Biometric Tunnel used a new multi-resolution implementation of the shape

from silhouette algorithm, which was able to establish whether regions were empty,

fully occupied or partially occupied; unlike the previous implementation that could only

establish that a region was occupied. Only partially occupied regions were evaluated at

finer levels of detail; reducing the number of redundant voxel evaluations, compared to

the previous implementation where all voxels inside the bounding box were evaluated.

The algorithm operated at three resolution levels, where the reconstruction volume was

split into ten regions along the y axis, then split into sub-regions by dividing the regions

along the x, y and z axes to result in 6 × 3 × 17 (306) sub-regions per region. Finally,

each sub-region was divided into individual voxels. For each region and sub-region, a

list of occupied pixels for each camera was pre-computed, to ensure that each pixel was

only evaluated once.

When evaluating a region, it was considered empty if any camera observed no foreground

pixels within its corresponding image regions. Alternatively, if all cameras observed

only foreground pixels within their corresponding image regions, then the test region

was marked as fully occupied. If neither of these cases was true, then the region was

considered to be partially occupied; leading to finer-grained evaluation. Each sub-region

was evaluated for occupancy in the same manner as their parent regions. If a sub-

region was classified as partially occupied, a final full-resolution Shape from Silhouette

reconstruction was performed for the sub-region; using the pre-calculated look-up tables

to improve speed.

All the data needed to perform reconstruction, such as region data, pixel occupancy

lists and lookup tables was held in a single linear forward-read only memory structure

to provide the best possible performance. The multi-resolution reconstruction algorithm

provided a significant boost in processing speed, as shown in Table 5.1.
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Figure 5.6: An object in the world-space must first be translated and rotated to
align it with the coordinate system of the target camera; before scaling and perspective

transformation can occur

5.5 The calibration of cameras

In order to perform three-dimensional reconstruction as discussed in the previous sec-

tion, each camera must be precisely characterised; such that a mapping is found that

transforms any given position in the 3D world to a position on the corresponding cam-

era’s image. To do this, an appropriate coordinate system must first be chosen for the

environment, including the units of scale, origin and alignment of the primary, secondary

and tertiary axes.

Each camera can be approximated using a pin-hole model, where there exists a mapping

from the world’s chosen coordinate system to the image plane, determined by a com-

bination of parameters that can be grouped into two categories; extrinsic and intrinsic

parameters. The first describing the translation and rotation required to align the origin

and axes of the world’s coordinate system to that of the camera; as shown in Figure

5.6. The camera’s intrinsic properties describe the scaling and translation due to the

camera’s optics and the conversion from the world’s units to the sensor’s units; pixels.

The position of a point in world space can be expressed in the camera’s coordinate

system by the transformation described by the parameters T and R; where T is the

translation of the camera relative to the world’s origin, whilst R is a 3× 3 matrix that

rotates the world-space’s axes onto those of the camera. The translation and rotation

matrices are combined into a 3×4 transformation matrix, known as the extrinsic matrix;
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where the world coordinate W is a 4D homogeneous vector.

E = [R |−RT ] (5.3)

The factor required to scale the units of the world’s coordinate system to that of the

images, is defined as the ratio of the lens’ focal-length to the camera sensor’s pixel size:

α =
f

P
(5.4)

If the pixels on the sensor are not square, then separate values of α must be used for

the x and y axes of the sensor.

The location of the lens’ principal point on the sensor is given by Px and Py, in units

of pixels. Most cameras exhibit square pixels and no skewing; thus a single value for α

will suffice, and the skew factors can be ignored; therefore, the intrinsic matrix is:

I =

 α 0 Px

0 α Py

0 0 1

 (5.5)

As both are linear, the intrinsic and extrinsic transformations may be combined into a

single transformation, described by a 3× 4 matrix:

P = IE (5.6)

Using the derived transformation matrix, any point in the world-space can be expressed

as a homogeneous pixel location within the camera image:

 Cx

Cy

Cz

 = P


Wx

Wy

Wz

1

 (5.7)

The final two-dimensional image coordinates are found by applying a perspective trans-

formation; normalising the coordinates by Cz.

Cu =
Cx
Cz

(5.8)

Cv =
Cy
Cz

(5.9)

Unfortunately camera lenses are imperfect, as they often exhibit high levels of radial

distortion; a non-linear transformation of the image centred around the principal point

of the lens. The result of radial distortion is shown in Figures 5.7(a) and 5.7(b). This
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(a) Resulting response curve (b) Effect of radial distortion on straight lines
and circles

Figure 5.7: The optics in most cameras introduce non-linear radial distortion

distortion can be modelled by converting the image coordinates to a polar coordinate

system, described by Cr and Cθ. then applying non-linear scaling S to the radial distance

Cr. Finally the coordinates are converted back to a Cartesian system. As the angular

component remains unaffected by the distortion, it is not required in the calculation:

Cr =

√
(Cu − Px)2 + (Cv − Py)2 (5.10)

S = 1 + k1C2
r + k2C4

r (5.11)

C ′u = S (Cu − Px) + Px (5.12)

C ′v = S (Cv − Py) + Py (5.13)

Finding the correct values for the camera’s extrinsic, intrinsic and radial distortion pa-

rameters is a non-trivial task. It is possible to directly measure many of these properties,

although it is often not practical. The process of estimating these parameters is known

as camera calibration; there are a wide variety of approaches, all making different as-

sumptions about the scene observed by the camera. Many utilise one or more reference

objects in the scene where their geometry is already known; this can be used to directly

solve some parameters. More sophisticated techniques can utilise the movement of rigid

objects within the scene to approximate some of the camera’s parameters[83]. Without

prior knowledge of one or more fixed points in the scene, it is impossible to define an

absolute origin or axes, instead using camera’s position as the frame of reference.

The radial distortion of the camera’s optics can be measured by finding lines within the

image that should be straight, then determining the correction parameters needed to

straighten the lines. Straight lines can also be grouped into sets travelling in the same

direction within the scene; each set of lines will converge at a separate locations within

the image, known as the vanishing points. If the direction of these lines is known in

the scene, then the rotation matrix of the camera and some of its intrinsic parameters

can be approximated. Finally, the use of ground-truth points can be used to estimate
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(b) Label corners
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Figure 5.8: The steps taken to calibrate a camera

or refine the camera’s transformation matrix; if the position for several points is known

in both the world and image coordinate systems, then the matrix P can be solved, by

treating it as an over-complete system.

In the Biometric Tunnel, the walls and floor surrounding the walkway are painted with

a three-coloured non-repeating pattern of squares. This pattern can be used to assist

the camera calibration process in several ways. The edges of the squares in the pattern
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form a set of straight lines, travelling in one of three perpendicular directions. These

lines can be used to characterise the radial distortion, calculate the intrinsic matrix and

estimate the rotation component of the extrinsic matrix. As the pattern is not repetitive,

it is possible to uniquely identify each region in the pattern, allowing for the accurate

calculation of the P matrix.

The original camera calibration algorithm used in the system by Middleton et al. [70]

performed calibration in several stages; first a colour image was acquired from the chosen

camera, a Sobel filter was then applied to produce an image containing only the edge

information. The radial distortion correction parameters were found using a Nelder-

Mead based optimisation technique, where the overall curvature of the lines in the

image was minimised. The curvature was derived using an estimate of the straightness;

found by taking the maximum value from a Hough transform of the edge image. The

output of the Hough transform was also used to identify the three sets of lines and their

respective epipoles. Using the three epipole positions, the location of the camera lens’

principal point and the focal length was calculated. In addition to this, the rotation

matrix could be partially estimated, such that the polarity for each dimension in the

matrix was unknown. A five-dimensional brute force search was performed at a low

resolution, to find the location of the camera and the correct polarity of the rotation

matrix’s axes. The estimated parameters were then used as an initial estimate for a

final Nelder-Mead optimisation of all parameters, minimising the total distance between

the projected ground-truth corners and the nearest matching candidates. This approach

required several minutes per camera; due to the use of the Hough transform for radial

distortion correction. The corner matching algorithm proved inaccurate; only requiring

corners to have the same surrounding colours, meaning that there were many matching

candidates for a given point. This meant that completely incorrect calibration results

could be chosen, as the corner matching algorithm facilitated the existence of many local

minima.

A new approach was devised to address the speed and reliability concerns of the previous

calibration algorithm; the major advancement of the new approach was that it explic-

itly identified the regions and corners within the camera image; greatly reducing the

likelihood of an incorrect solution being found due to the presence of a local minima in

the cost function. Classification was performed on the colour input image, so that each

pixel was identified as one of the three colours in the pattern. Connected component

analysis was performed on the classified image, to label regions of pixels all belonging

to the same colour.

In order to identify each labelled colour region, each region was assigned two descrip-

tor codes; a simple code describing only the region and a complex code describing the

region and its neighbourhood. The simple descriptor was constructed using the corre-

sponding region’s colour code and the number of surrounding regions for the two other

colours. By only encoding the number of regions in the descriptor and not utilising any



Chapter 5 Video Processing and 3D Reconstruction 53

positional information; the resulting descriptor was affine invariant; although not suffi-

ciently detailed to uniquely identify a region. Therefore, a more detailed descriptor was

constructed by concatenating the basic descriptor and a sorted set containing the basic

descriptors of the surrounding regions. The resulting descriptor could uniquely identify

all regions within the tunnel, whist still remaining affine invariant. An initial attempt

was made at matching the calculated complex region codes to the ground-truth codes;

although due to colour classification errors, it was likely that some regions would not

be resolved. Therefore, an iterative dependency solving algorithm was used to infer the

matches for unsolved regions. An example of the region matching is shown in Figure

5.8(a).

With the knowledge of the matched regions, it is possible to identify and label the corners

between the regions, as shown in Figure 5.8(b). Using the labelled corners, three sets

of lines were constructed; one for each direction of travel. The three line-sets were then

used to estimate the radial distortion correction parameters, by attempting to minimise

the curvature of the lines; as shown in Figure 5.8(c). The epipoles were found for the

three sets of lines, then used to produce an initial estimate of the camera’s intrinsic

parameters and the rotation matrix.

Similar to the previous approach, a brute force search was performed to find the ap-

proximate position of the camera and the correct orientation of the rotation matrix, as

shown in Figure 5.8(d). Direct optimisation of the final P matrix proved unreliable,

due to the matrix having twelve degrees of freedom. Therefore a progressive approach

was taken, where a small initial subset of the camera’s parameters was optimised, with

subsequent passes featuring an increasing number of parameters, until the final pass

where all parameters were optimised simultaneously. Optimising the rotation matrix

parameters directly proved unreliable, as the constraints of a rotation matrix were not

enforced — all axes must be perpendicular and of unit length. To ensure that these

constraints remained, the optimiser only provided two out of the three axes; which were

renormalised, before finding the third axis using the cross-product. In order to ensure

that the first and second axes were perpendicular, the second axis was recalculated using

cross-product of the first and the third axes. By enforcing the constraints of the rotation

matrix, the optimisation process proved much more robust. The final results of fitting

the ground-truth points to the image are shown in Figure 5.8(e).

5.6 Gait cycle labelling

In order to perform gait analysis, it is necessary to identify the beginning and end of a

single gait cycle within the set of captured frames. A complete gait cycle is comprised of

time periods where the left leg is transit, the right leg is in transit and two periods where

both legs are in contact with the ground; known as double-support. Figure 5.9 depicts
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Double SupportDouble Support Double SupportRight Swing Left Swing

Figure 5.9: A complete cycle is comprised of a left and right swing phase and two
double-support stances

a complete gait cycle. As previously discussed in Section 2.3, it is possible to perform

this manually by hand; however this can introduce human error and is not suitable for

a fully automated system. Therefore an automated technique for locating gait cycles

within a sequence is required.

One approach is to fit a bounding box to the subject and measure the variation in the

bounding box’s length over the sequence. This should result in a sinusoidal signal with

the maxima corresponding to the double-support stance and the minima occurring when

the travelling limb crosses the supporting limb.

It is also possible to locate a gait cycle using a measure of silhouette self-similarity, such

as that of BenAbdelkader et al. [4]. Although in order to ensure that a gait cycle always

starts from a double-support or mid-swing stance requires additional information, such

as the bounding box length data. Another technique as demonstrated by Bouchrika [7]

located a subject’s gait cycle by finding the position of their footsteps from the silhouette

data.

It was decided to use the variation in bounding box length, in order to determine the be-

ginning and end of a gait cycle. As previously stated, the distance between a person’s legs

is at its maximum when they are in a double-support stance; therefore double-support

stances can be detected by finding the instances where the length of the bounding box

encompassing a subject is maximal in the direction of travel. This is shown in Fig-

ure 5.10, and several peaks can be easily identified; although there are several small

erroneous peaks, caused by random fluctuations in the bounding box size, which are

a result of noise in the reconstructed volumes. Therefore the time-varying sequence of

distance values were low-pass filtered to minimise the effects of noise, using a linear

phase-response finite impulse response filter[30], to ensure that the relative positions of

the minima and maxima were preserved. It was decided to label gait cycles using the

local minima points of the bounding box lengths, instead of the local maxima, as it was

found that the positions of the local minima were often more stable.
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Figure 5.10: Double-support stances can be identified by finding the peaks in the
variation of their bounding box length.

A cost function was used to establish the likelihood of each local minimum being the

start of a gait cycle; the function considered factors such as the timing deviation between

minima, the length deviation between minima, the length deviation between maxima

and how close the cycle was to the centre of the tunnel. The cost value for the winning

minima selection was saved as an estimate of fitting confidence for the sample.



Chapter 6

The Large Multi-Biometric

Dataset

6.1 Introduction

Currently, there are no datasets containing three-dimensional volumetric gait data, and

the largest two-dimensional datasets only contain approximately 120 subjects — not

enough to accurately estimate the inter and intra-class variation within subjects. It

was therefore decided to collect a new dataset; with the intention of having at least

300 subjects — making it the largest dataset containing gait data in the world. This

would also be the first large dataset to contain both multi-viewpoint silhouette data and

three-dimensional reconstructed volumetric data. Finding a sufficiently large number of

participants from a wide range of backgrounds is a difficult task; in order to persuade

individuals to take part, the experiment must appear straightforward, not take much

time and ensure the privacy of participants.

As mentioned in Chapter 4, the tunnel was modified to collect data from two other

non-contact biometrics; face and ear, to allow the investigation into recognition from

multiple non-contact biometrics; without the need to repeat such an experiment. A

further four cameras were added to the system, during the collection of the dataset.

Collecting a large dataset is a substantial undertaking, therefore collection of the dataset

was a collaborative effort with Sina Samangooei[88], who also had an interest in running

a biometrics experiment, where a large number of participants were required to describe

the appearance of others featured in video footage.

56
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6.2 Experimental setup

Collecting a dataset with a large number of subjects is not an easy task; a lot of planning

is required in order to ensure that the experiment runs smoothly and that consistency

is maintained throughout the duration of the experiment. This section provides an

overview of the experiment and process undertaken by the participants.

A session check-list was created, which required the supervisor to ensure that a variety

of steps were taken at the beginning and end of a session. This included setting up the

system’s hardware and software, and ensuring that the laboratory environment was clean

and safe. An accompanying instruction sheet was also produced, to help inexperienced

supervisors start the system with minimal assistance from others. A copy of the session

check-list and instructions are given in Appendices D.3 and D.4 respectively. The use

of a check-list for each session was intended to reduce the likelihood of mistakes by the

session supervisor and ensure consistency between data capture sessions.

The ultimate goal of the experiment was to collect biometric data from in excess of three-

hundred subjects; although it was expected that obtaining a sufficiently large number

of individuals from a diverse range of backgrounds would prove extremely difficult. In

order to attract a large number of people to the experiment, an incentive was required to

persuade individuals to participate. For this reason, it was decided to offer participants

a gift voucher with a value of ten pounds sterling. Vouchers were chosen that could be

spent at a large variety of high-street retailers, to ensure that the incentive’s appeal was

as wide ranging as possible.

For both ethical and safety reasons it was necessary to ensure that a strict induction

procedure was implemented. As potential participants arrived, the supervisor would

inform them of important safety information; such as the laboratory’s evacuation pro-

cedure and the safety hazards present in the environment; such as the strobe lighting.

The supervisor then explained the experiment to the participants; covering important

aspects such as the project’s purpose, aims and the procedure to be carried out by the

participant. Participants were then reassured that the data collected was completely

anonymous and could not be traced back to them as an individual, they were also in-

formed that the data might be shared with other research institutions in the future. The

potential participants were then asked whether they would like to continue with the ex-

periment; if satisfied, they were given a consent form to read and sign. Upon completion

of the consent form, the supervisor ticked off a form on the reverse of the consent form

to verify that the induction procedure had been carried out. A copy of the consent form

is included in Appendix D.1. For financial audit reasons, participants were required to

write their name on the consent form, to ensure that all vouchers could be accounted

for. The forms contained no information related to the experiment’s collected data,

making it extremely difficult to link the individual to their captured biometric data.

The anonymity of participants was further ensured by placing the completed forms in a
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ballet box, where the order of the forms was randomised to remove any temporal link to

the collected data. Participants were asked to chose a bar-coded identity card at random

from a container holding a large number of pre-printed cards. This identity card was

used to enrol the subject and provides the only link between the individual and their

biometric data.

Upon successful induction, the participant was assigned one of four computers in the

Biometric Tunnel area, to use for the duration of the experiment. Each computer ran an

instance of the tunnel system’s website, which provided a simple graphical user interface

for carrying out the experiment. The supervisor would then log the individual into

the website by scanning their identity card using a bar-code scanner connected to the

computer.

Assuming that the Biometric Tunnel was not in use by another participant, the super-

visor would initiate the tunnel system for the participant. The supervisor would then

explain the procedure for walking through the tunnel; before letting the participant con-

duct a trial walk through the tunnel whilst being watched. The capture process was then

started, and the participant was instructed to walk through the tunnel and then wait

for the status light to turn green again before starting another walk. The participant

was asked to walk through the tunnel ten times — once the system had collected ten

valid samples, the status light would extinguish to indicate completion.

Once the participant had completed their walks through the tunnel, they were asked

to sit down and enter their personal information, which covered aspects such as their

gender, age, ethnicity and weight. The participants then took part in another experiment

on the computers, devised by Sina Samangooei; where they were shown videos of other

people walking and asked to describe the subject’s appearance. If the tunnel was already

in use before the subject arrived, they could start the second experiment and then

continue with it after walking through the tunnel. Upon completion of all aspects of

the experiments, participants were given a gift voucher, their identity card and a leaflet

summarising the experiment (included in Appendix D.2); they were then asked to tick a

box on their consent form to confirm that they had received a gift voucher, as required

for auditing purposes.

6.3 Composition of the dataset

The dataset collected with the Biometric Tunnel consisted of a total of 2705 samples from

227 subjects; including samples from when a participant returned to provide temporal

samples. Not including samples from when participants have returned; the dataset

contained 2288 samples. Thirty-six of the participants returned one or more times to

provide additional temporal samples, where there were 414 samples from the subsequent

days; making a total of 780 samples where temporal variation could be analysed. The
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Figure 6.1: Distribution of number of samples/subject/session

original target of three-hundred unique subjects was not met, due to the difficulty in

recruiting participants. For most subjects the dataset contained ten samples for each

walking session; although there were some cases where this varied due to system failure

or human error. Figure 6.1 shows the distribution of the number of samples per subject.

Of the two-hundred and twenty-seven subjects, 67% were male; the majority were aged

between 18 – 28 years old and 70% were of European origin. These biases in the demo-

graphic of the dataset were expected, as this closely represents the make-up of the stu-

dent population. Attempts were made at getting University staff to participate, although

it proved more difficult to find convenient times for the staff. The ethnic distribution of

dataset is quite reasonable, considering that the Office of National Statistics found that

over 90% of people in the United Kingdom were of a white skin colour[81]; this shows

the exceptional diversity of the staff and students at the University of Southampton.

6.4 Average silhouette based gait analysis

Two recognition experiments were initially performed on the dataset, both using only

samples from each participant’s first walking session; meaning that minimal temporal
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variation existed between samples. The first experiment performed leave-one-out recog-

nition on the complete 2288 samples, using the average silhouette to characterise one’s

gait. A three-fold experiment was also performed by splitting the dataset into three

smaller datasets, where each subject had the same number of samples in each dataset

to avoid bias. The classification results of both experiments are shown in Table 6.1.

Three different orthonormal viewpoints were evaluated; side-on, front-on and top-down;

recognition was also performed by concatenating the feature vectors from the three view-

points to result in one combined feature vector. The combination of the three viewpoints

resulted in an improved recognition rate, showing that the additional information con-

tained within the signatures was beneficial. The three-fold correct classification rate

was found to be lower than the single dataset rate, this is because the correct classifica-

tion rate is dependant on the make-up of the associated dataset, especially how many

samples each subject has in the gallery set. In the full recognition experiment each sub-

ject typically had ten samples; which meant that when a leave-one-out experiment was

performed there were nine samples available for gallery data. For the three-fold exper-

iments, the dataset was split into three subsets, giving only three samples per subject;

therefore only two samples were available in the gallery per subject.

Although the correct-classification rate is an intuitive and popular metric for measur-

ing the performance of a recognition system, it is an extremely unreliable metric for

comparing differing approaches; as shown above it is dependant on many factors apart

from the algorithm; such as the composition of the evaluation dataset. Many published

works have included other metrics[24, 105] for evaluation purposes; this includes the

Neyman-Pearson receiver operating characteristic (ROC) curve, the Equal Error Rate

and the decidability[28], which measures the separation between the in-class and inter-

class distributions. The receiver operating characteristic for each viewpoint and the

combination of all three is shown in Figure 6.3(a). The equal error rate and decidability

is presented alongside the correct-classification rate for each viewpoint in Table 6.1. The

receiver operating characteristic, equal error rate and decidability were unaffected by the

splitting of the dataset into three; therefore only one set of results are included. The

intra-class and inter-class distributions for the combination of all three viewpoints are

shown in Figure 6.3(b).

Name CCR k=1 CCR k=3 CCR k=5 CCR k=1 (3 fold) EER d

Side 97.38% 96.59% 96.15% 88.50%± 0.42% 6.28% 2.80
Front 97.81% 97.42% 97.12% 92.71%± 0.66% 5.47% 2.76
Top 94.62% 93.84% 92.57% 77.24%± 1.38% 9.21% 2.33
S+T+F 99.52% 99.52% 99.61% 97.21%± 0.42% 3.58% 3.12

Table 6.1: Recognition performance of leave-one-out experiment using average silhou-
ettes from dataset

The classification results achieved on the new dataset fell broadly in line with expecta-

tion; as the increase in the number of subjects was expected to reduce the separation

between classes, meaning that correctly classifying subjects was more difficult. The
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recognition rate for individual viewpoints falls somewhat behind that of Veres et al.

[109], where side-on average silhouettes were used to classify subjects from the Uni-

versity of Southampton HID database; the excellent recognition performance achieved

was most likely due to the use of linear-discriminant analysis to increase the separation

between subjects; therefore improving the correct classification rate. It is also possible

that the re-projected silhouettes used in the new dataset exhibited some shape distor-

tion due to the process of three-dimensional reconstruction and re-projection; resulting

in degraded recognition performance — this will have not been an issue for the other

aforementioned approaches where two-dimensional video footage was used directly.

6.5 The non-normalised average silhouette

The average silhouette is well regarded for its simplicity and excellent performance; as

demonstrated in the previous section. For a standard two-dimensional implementation,

the images resulting from background-segmentation are cropped to the subject’s silhou-

ette, rescaled to a fixed size, then finally combined by averaging the rescaled images.

The scale-normalisation is performed as the size of the subject’s silhouette varies de-

pending on their distance from the camera; although this means that one of the most

useful features for recognition — their height — is discarded.

The volumetric data from the Biometric Tunnel has the advantage that it can be re-

projected to any arbitrary camera view; including orthonormal viewpoints. The use of an

orthonormal viewpoint results in the subject’s height remaining constant, regardless of

their distance from the viewpoint’s origin. Therefore the process of scale-normalisation

is no longer required; retaining the subject’s key characteristics such as their height and

body mass.

A non-normalised average silhouette algorithm was implemented; where the centre of

mass was found for each silhouette, which was then cropped to a 200×200 voxel region,

where one voxel was one centimetre in size for each dimension. For the side-on and front-

on average silhouettes, the vertical dimension spanned from the top of the reconstruction

area to the bottom, whilst the horizontal spanned 100 voxels either side of the centre of

mass. For the top-down viewpoint, both the horizontal and vertical dimensions spanned

100 voxels either side of the centre of mass. The cropped silhouettes were then combined

by summing the individual pixel values and dividing by the number frames, to calculate

the mean. The resulting average silhouette was then down-sampled by a factor of four,

to result in a 50 × 50 pixel image. It could be argued that one of the key strengths of

this approach is that it does not just describe an individual’s gait; it also characterises

the overall appearance of their entire body over a short period of time.
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Name CCR k=1 CCR k=3 CCR k=5 CCR k=1 (3 fold) EER d

Side 99.52% 99.39% 99.26% 96.82%± 0.62% 2.18% 2.91
Front 99.65% 99.48% 99.26% 97.90%± 0.50% 2.29% 2.97
Top 90.47% 90.30% 88.55% 73.96%± 1.21% 9.14% 2.19
S+F+T 100.00% 99.96% 99.96% 99.56%± 0.24% 1.58% 3.07

Table 6.2: Recognition performance of leave-one-out experiment using non-normalised
average silhouettes from dataset

The non-normalised average silhouette was calculated for all samples in the newly col-

lected dataset, then two recognition experiments identical to those of the previous sec-

tion were performed — instead using the non-normalised silhouettes. The first was a

leave-one-out recognition experiment using the entire dataset; whilst the second was a

three-fold leave-one-out experiment, to measure the variation in recognition rates. As

shown in Table 6.2, the new technique produced excellent recognition performance and

a good degree of separation between subjects, as shown in Figure 6.4(b). The receiver

operating characteristic is also improved, as shown in Figure 6.4(a). Combining all three

viewpoints results in every sample in the dataset being classified correctly.

These new results show that the removal of the scale-normalisation stage from the

calculation of a subject’s average silhouette results in an improvement in recognition

performance and inter-class separation. This leads to the fact that static information

such as the subject’s height and build is extremely important for accurately discrim-

inating between individuals. A significant limitation of this technique is the need for

three-dimensional data in order to remove the requirement for scale-normalisation. An

experimental approach that is able to make use of two-dimensional video is presented

later in Chapter 9.5.3.

6.6 Discussion

The results of analysing this new dataset demonstrate that an individual’s gait remains

stable over short periods of time and that it is an ideal biometric for recognising individ-

uals from a distance without the need for their cooperation; whilst providing reasonable

accuracy for many scenarios. It is difficult to predict how stable one’s gait is over longer

periods of time using the aforementioned analysis, due to short period of time between

a participant’s samples. In order to further evaluate the effectiveness of gait recognition

and investigate its limitations, a much larger dataset is required; featuring much longer

periods of time between samples — although it is recognised that such an undertak-

ing would require a substantial amount of time and resources. Other factors that may

affect an individual’s gait such as their choice of clothing and footwear have not been

considered in the newly collected dataset; as all samples for a participant were collected

in a single session. The collection of additional samples featuring covariate data was
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deemed impractical given the time-frame of the project; although there is no reason why

this could not be done in the future, provided that there is sufficient time and resources

available.

An interesting finding from the analysis of the new dataset was that recognition per-

formance was improved by combining the average silhouettes from all three viewpoints.

This gain in performance suggests that there is some degree of independence between

the information contained within the three viewpoints; otherwise no improvement in

performance would have been observed. Therefore it can be suggested that the use of

three-dimensional data for gait analysis is beneficial to the overall recognition perfor-

mance.

Other researchers such as Veres et al. [109] and Sundaresan et al. [101] have previously

managed to achieve good recognition results using reasonably large gait datasets. What

makes the results in this chapter significant is that excellent recognition performance

has been achieved using only simple gait analysis and classification techniques on a

dataset much larger than any of the previous attempts by others. It is expected that

further improvements to the recognition performance and inter-subject separation could

be made through the use of more complex analysis and classification methods; although

these results serve the extremely important role of providing a baseline for evaluating

new gait analysis techniques against. Using the findings in this chapter, it has been

demonstrated that it possible to accurately distinguish between individuals using only

their gait and body shape; this helps to confirm the statement made by Murray et al.

[74] in 1964, that an individual’s gait is unique.



Chapter 7

Further Analysis of the Dataset

7.1 Introduction

In this chapter we use the large dataset collected in the previous chapter to investigate

some of the major factors that affect the performance of gait analysis using the Biometric

Tunnel system. Whilst this chapter is by no means exhaustive; it attempts to cover as

many covariates as possible using the data available. Covariates not discussed here

include fatigue; clothing and footwear; walking surface inclination and material; the

presence of music; the carrying of items or walking in groups. Whilst many of these

covariates are interesting and will almost certainly have some degree of effect on one’s

gait, they are not possible to evaluate with the existing data, and collecting a dataset

with these covariates would in most cases be impractical.

Instead, we concentrate on factors that need to be understood in order to design and

evaluate a system for real-world usage. This includes the average silhouette resolution

required; the optimal camera configuration; the effect of temporal variation and the

potency of various types of information contained within a gait signature.

7.2 Resolution of average silhouette signature

The original average silhouette algorithm by Liu and Sarkar [67] produced an average

silhouette with a 64 × 64 pixel resolution; resulting in 4096 features. Veres et al. [109]

utilised analysis of variance and principal component analysis to reduce the number of

features needed to characterise a subject’s gait; this was possible due the the source

features exhibiting a high degree of correlation. The number of source features is deter-

mined by the resolution of the calculated average silhouette; surprisingly, there is very

little information on the optimal resolution for a subject’s average silhouette.

67
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Figure 7.1: Correct classification rate vs. number of features in average silhouette
signature; using non-temporal dataset

An experiment was devised to investigate the effect of average silhouette resolution

against recognition performance, using the non-normalised variant discussed in Chapter

6. To do this, average silhouettes from the large dataset were rescaled to various sizes

and three-fold recognition experiments were performed for each resolution. The original

non-normalised average silhouettes had a resolution of 50×50, which were then rescaled

to resolutions of 40×40, 30×30, 20×20, 17×17, 15×15, 12×12, 10×10 and 7×7 pixels.

The same effect could have been achieved by reducing the resolution at which the three-

dimensional reconstruction was performed; although performing the reconstruction at

multiple resolutions would have proved extremely time consuming.

The relationship between the number of features and classification rate is shown in

Figure 7.1; where the concatenated signatures have three times the number of features

compared to a single viewpoint signature. It can be seen that modest performance is

achieved for even the smallest of signatures, with very little degradation occurring until

the number of features falls below a thousand.

The results from this experiment reveal that gait recognition can performed effectively

using average silhouettes with a resolution much lower than the original 64 × 64 pixel

average silhouette implementation. This is investigated further in Section 8.4, where

the performance of the average silhouette is compared against a basic facial analysis

technique. Whilst the concatenated average silhouette was found to provide the highest
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overall recognition performance compared to that of a single viewpoint; these results

show that for a lower number of features, the use of a single viewpoint is more ef-

ficient. This is because the three viewpoints all share a single underlying information

source, meaning that the combined signature contains a significant amount of redundant

information. It is expected that the use of principal-component or linear-discriminant

analysis would greatly reduce the amount of information redundancy, resulting in a more

compact and efficient representation.

7.3 The configuration of cameras

The Biometric Tunnel originally constructed by Middleton et al. [70] initially contained

only eight ceiling mounted cameras; four placed at the far corners of the tunnel area

and the other four mounted centrally. Very little is known about what investigation

was carried out to determine the optimal number and placement of the cameras in

the environment. Therefore four additional cameras were added to the system, located

one metre off the ground at the far corners of the tunnel. An experiment was then

performed to investigate what effect the number of cameras and their placement had

upon recognition performance. Four different camera configurations were evaluated;

the first featuring the four top far-placed cameras, the second containing all eight far-

placed cameras, the third configuration consisting of the eight top cameras, and finally

all twelve cameras. Figure 4.4 shows the layout of the tunnel and all twelve cameras.

Non-normalised average silhouettes were generated for each camera configuration on a

subset of the large dataset containing the samples recorded from all twelve cameras.

Analysis was performed on a total of 1388 samples from 137 subjects. Leave-one-out

recognition experiments were performed for each camera configuration, with the results

shown in Figure 7.2.

The results presented show that the inclusion of the four centrally mounted cameras had

a negative impact on the system’s classification performance; this was an unexpected re-

sult, as it was assumed that a greater number of cameras would result in a more accurate

three-dimensional reconstruction of the subject, leading to improved results. Inspection

of the reconstructed data found that the combination of all twelve cameras produced

the most visually pleasing reconstruction, although this did not correspond with the

recognition rate found. The most likely cause for the performance degradation was the

significant radial distortion present in the central cameras’ images, which proved diffi-

cult to accurately compensate for using radial distortion correction and calibration. It is

expected that the use of better quality optics and more sophisticated camera calibration

routines would result in an improved performance for the twelve camera configuration.

The strategy currently used to calibrate the cameras within the Biometric Tunnel only

uses points found on the two planes formed by the floor and whichever side-wall is visi-

ble; the use of a removable calibration structure and solving the intrinsic properties of
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Name CCR k=1 EER Decidability (d)

Side - 4 Cameras 99.57% 4.14% 2.73
Front - 4 Cameras 99.28% 4.86% 2.80
Top - 4 Cameras 74.35% 15.08% 1.73
S+F+T - 4 Cameras 99.42% 4.06% 2.74

Side - 8 Cameras (A) 100.00% 1.24% 3.05
Front - 8 Cameras (A) 99.42% 2.15% 2.92
Top - 8 Cameras (A) 83.93% 11.89% 1.92
S+F+T - 8 Cameras (A) 100.00% 1.34% 2.97

Side - 8 Cameras (B) 99.35% 2.19% 2.82
Front - 8 Cameras (B) 99.57% 2.92% 2.81
Top - 8 Cameras (B) 92.51% 10.28% 2.10
S+F+T - 8 Cameras (B) 100.00% 1.93% 2.90

Side - 12 Cameras 99.42% 2.22% 2.86
Front - 12 Cameras 99.28% 2.12% 2.92
Top - 12 Cameras 93.16% 9.72% 2.10
S+F+T - 12 Cameras 100.00% 1.57% 2.98

(a) Summary of classification performance, equal error rate and decidability
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Figure 7.2: The effect of camera configuration on recognition performance; using
non-temporal dataset
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the cameras separately is likely to result in a more accurate calibration. As discussed

in Section 9.5.1, global optimisation of the camera calibration matrices was found to

provide a significant improvement in the quality of the reconstructions.

7.4 The effect of camera calibration error

In a system such as the Biometric Tunnel, where three-dimensional reconstruction is

performed from an array of cameras; accurate characterisation of the cameras is essen-

tial. Poor calibration will often result in misalignment between the cameras; in turn

significantly degrading the quality of the reconstructed output. It is expected that any

deterioration in the quality of the reconstructed volumes will have an impact on the

system’s recognition performance; especially when using the average silhouette, which

is extremely sensitive to the static elements of a subject’s shape. Calibration error can

be introduced into the system by a variety of means; from initial inaccuracies caused by

the calibration algorithm to the orientation of the cameras changing over time, which

could be caused by vibration, sudden knocks or mechanical creep.

In a deployed system, it is reasonable to expect that the orientation of the cameras

will change over time; therefore it is essential to understand the system’s sensitivity to

the effects of camera misalignment. Whilst it is expected that such a system would

have a maintenance schedule and possibly some form of camera alignment tracking; it

is still important to understand the system’s tolerance levels. Therefore an experiment

was devised to measure the effect of camera misalignment on recognition performance.

Instead of physically altering the orientation of the cameras in the system and collecting

new data; existing recorded data from the large dataset was re-processed using distorted

calibration data exhibiting angular error. This was achieved by applying a random

three-axis rotation to each camera’s projection matrix; where the angular error on each

axis was determined by a separate normal distribution. The standard-deviation for all

three distributions was equal and varied for each experiment, which was then performed

multiple times. No translational error was added during the experiments, as it would

have added further complexity to the experiment and the effect of translational error is

very similar to that of rotational error at low levels.

The drop in the system’s correct classification rate against the standard deviation of

the angular error is shown in Figure 7.3. As expected, the system’s recognition rate

is severely impacted by almost any level of calibration error, which is due to average

silhouette based recognition being most sensitive to pixels around the boundary of a

subject’s silhouette[109]. These results outline the importance of accurately calibrating

the cameras within the system, ensuring that they are firmly mounted and that a regular

inspection and maintenance program is implemented. The development of a robust

online incremental calibration algorithm would be highly beneficial for such a system, or
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Figure 7.3: The impact of angular error upon recognition performance

any other permanent installation where multi-camera three-dimensional reconstruction

is employed.

7.5 Variation over time

During the collection of the large multi-biometric dataset discussed in Chapter 6, par-

ticipants were encouraged to come back again at a later date to provide subsequent

samples. Thirty-six of the original participants returned at a later date to take part in

the experiment again. For the thirty-six subjects, there were 366 samples from their

first recording sessions and 414 samples from subsequent sessions. The time duration

between a participant’s first recording session and subsequent sessions varied greatly

between subjects, as shown in Figure 7.4(a); although it was ensured that the duration

was at least one month.

A recognition experiment was performed by splitting the samples into two sets; a gallery

and a probe set, where the gallery set contained samples from each subject’s first ses-

sion, and the probe set consisted of samples from the subjects’ further sessions. Non-

normalised average silhouettes were used for characterising each subject’s body shape

and gait; classification was performed using a simple nearest-neighbour matching tech-

nique. Classification performance was found to be significantly better than expected;
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(a) Distribution of time period between a subject’s first and subsequent sessions

Name CCR k=1 EER Decidability (d)

Side 72.22% 12.90% 1.64
Front 53.86% 15.14% 1.56
Top 44.69% 23.90% 1.25
S+F+T 69.08% 11.76% 1.63

(b) Summary of recognition performance results

Figure 7.4: Results from recognition experiment matching samples against those from
an earlier date; using non-normalised average silhouette analysis technique

with the side-on average silhouette giving a correct classification rate of 72.22%; as shown

in Table 7.4(b). The use of all three viewpoints resulted in an improved separation be-

tween subjects, similar to the other recognition experiments presented in this thesis;

this is shown by Figures C.1(a) and C.1(b). One of the most interesting findings is that

the side-on viewpoint acheives the greatest recognition performance, this is unlike the

short-term analysis experiments presented in the previous sections. The movement of

the subject’s limbs is difficult to observe from the frontal and top-down views, due to self

occlusion. Therefore, these results raise the question of whether dynamic information

regarding one’s gait is more important for gait recognition over longer time periods.

The resulting recognition rate for the temporal experiment is quite reasonable, consid-

ering that one’s body shape and weight can vary considerably over such a time period.

It is also unlikely that the subjects were wearing the same clothing and footwear in
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(a) Keyframe 1 (b) Keyframe 2

Figure 7.5: The two keyframes used for gait analysis

subsequent recording sessions, meaning that their outline and gait may change as a re-

sult. As with the previous recognition experiments in this document, good classification

performance has been achieved using only simple analysis techniques. It is expected

that with the use of a larger temporal dataset, the overall recognition performance will

degrade. Unfortunately, collecting large datasets incorporating temporal variance is an

extremely challenging task; especially when attempting to maintain complete anonymity

for all subjects; as this makes it difficult to communicate with participants, requesting

further sessions.

7.6 The components of gait and their potency

It has been suggested in published works that one’s gait can be described as a com-

bination of both static and dynamic features[116, 1, 59]; where static features remain

constant over time and the dynamic features account for any variation over a gait cycle.

In a model-based analysis approach, the static features would include the subject’s up-

per and lower leg lengths and shape; whilst the angular variation of their joints would

be considered as dynamic information. For a non-model approach, static and dynamic

features are often found at the pixel level, taking the mean or intersection of a pixel

to represent the static information; whilst any motion or variation in pixel value can

be considered as the dynamic component of a subject’s gait. This categorisation of the

information contained within a subject’s gait leads to the question; what contribution

does each component make to to a system’s discriminatory performance?

7.6.1 Static features

In order to investigate the importance of static information for gait analysis a recognition

experiment was performed, where only the static information in a gait sequence was

considered. This was achieved using key-frames[21] for the feature-vectors. Two different

key-frames were evaluated; from multiple viewpoints. The first key-frame was taken

when the subject was in a double support stance, the second when their legs crossed
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Viewpoint Metric Double support Legs crossing Concatenated

Side-on
CCR
EER
Decidability (d)

82.8%
15.1%

1.97

70.4%
22.6%

1.53

85.8%
12.6%

2.13

Front-on
CCR
EER
Decidability (d)

86.2%
15.1%

2.00

88.3%
16.7%

1.93

90.9%
12.2%

2.18

Top-down
CCR
EER
Decidability (d)

65.0%
33.0%

1.01

47.6%
33.0%

0.91

64.9%
30.2%

1.13

S + F + T
CCR
EER
Decidability (d)

90.4%
18.1%

1.93

83.7%
16.4%

1.90

91.6%
12.8%

2.22

Table 7.1: Recognition performance using key-frames from differing viewpoints

over. Classification performance was also measured for the concatenation of both the

key-frames and also the three viewpoints.

As shown in Table 7.1, the recognition performance for the key-frames was found to

be insufficient for stand-alone use in a real system. The double-support stance key-

frame was found to be more effective for discriminating between subjects compared to

the other key-frame; this was unsurprising, as the double-support stance encapsulates

more information about the subject; such as their stride length and the geometry of

their legs when fully extended. Concatenation of the key-frames and viewpoints led to

a predictable improvement in recognition performance; due to the increased amount of

information available. Similar to the results shown in Figure 9.2, the front-on viewpoint

provided the best recognition performance. When compared against the results of the

average silhouette based technique used earlier in this chapter, it is clear that the static

information contained within the key-frames is not sufficient on its own, to accurately

identify individuals.

7.6.2 Time-varying dynamic information

The results given in the previous section demonstrate that the static component of one’s

gait is separable and can be used to discriminate between individuals with a limited

accuracy. This raises the question of how much useful information is contained within

the dynamic component of one’s gait. In order to answer this question, an analysis

algorithm was devised that attempted to characterise only the dynamic information

contained within an individual’s gait. This was done by considering the movement of

the subject’s legs separately, using an approach similar to optical flow; where only the

leading edges of the limbs were considered — to allow for loose clothing or skirts. The

average displacement for each leg was taken at several different heights for each volume
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(a) A,1 (b) A,2 (c) B,1 (d) B,2

Figure 7.6: Dynamic motion signatures for two different subjects (A and B), where
the horizontal axis for each signature represents time, the vertical axis corresponds to

the sampling height and the intensity represents the travelling velocity.

in a gait cycle sequence. This resulted in a two-dimensional image for each leg; with

the horizontal and vertical axes corresponding to time and position respectively. Each

pixel within the image was a measure of velocity for a specific point in time and position

along the subject’s leg. The images for each leg were concatenated to result in a single

feature vector, which was horizontally shifted to ensure that the image always started

with the right leg in a support stance. Figure 7.6 shows the signatures for two different

subjects.

A recognition experiment was conducted to evaluate the new analysis technique pro-

posed above, using the large non-temporal dataset discussed in Chapter 6. The correct

classification rate was found to be reasonable, at 84.5%; although the equal error rate

and decidability were poor, with values of 22.7% and 1.36 respectively, indicating that

there was little separation between subjects. As the technique only characterises the

motion present within the subject’s silhouette, these results demonstrate that the dy-

namic component of one’s gait does contain some information of discriminatory ability;

although techniques such as the average silhouette achieve much better performance

without distinguishing between static and dynamic information.

7.6.3 The combination of static and dynamic information

As demonstrated by the results from the two previous sections, it is possible to classify a

subject using only the static or dynamic components of their gait in isolation; although

the recognition performance for both approaches was found to be much lower than the

average silhouette.
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Metric Double Support Legs Crossing Concatenated

CCR 93.0% 89.8% 92.5%
EER 15.3% 15.0% 22.9%
Decidability (d) 2.03 1.98 2.29

Table 7.2: Recognition performance achieved by fusing motion signature with various
key-frame types

A simple fusion experiment was performed to investigate whether the two analysis tech-

niques described earlier fully encompassed all the information contained within one’s

gait. To do this, the features derived from the concatenated viewpoint key-frames were

combined with the features from the dynamic motion signature. The overall standard-

deviation for the features in the key-frame was calculated, along with the standard-

deviation for the dynamic motion signature. The two feature-vectors were then nor-

malised using the calculated standard deviation values, then concatenated to achieve

the final feature vector for classification. By normalising both feature vectors before

concatenation, this helped to ensure an equal contribution from both feature-sets to-

wards the recognition performance.

The recognition performance using the large non-temporal dataset described in Chapter

6 was marginally improved by the fusion of the two modalities, as shown in Table 7.2.

From these results, it can be seen that both dynamic and static information play their

part in gait recognition; although it is clear that the combination of the proposed static

and dynamic analysis techniques does not fully account for the information found within

the average silhouette, which is capable of achieving much better recognition rates and

separation of subjects. It is expected that the use of a more sophisticated technique

to extract dynamic information could lead to improvements in the overall recognition

performance of a static and dynamic information fusion strategy.



Chapter 8

The Fusion of Gait and Face

8.1 Overview

The use of multiple feature sources results in a greater range of information available

to use for recognition or identity verification, which leads to improved accuracy and a

higher degree of confidence in the decision outcome. The use of multiple biometrics also

makes it much harder for an unscrupulous individual to avoid recognition or imitate

another person. The use of multiple biometrics can also enable a subject to be correctly

identified when one of their biometric features is obscured or occluded. The recognition

performance of a single biometric modality can also be improved using fusion; where the

feature vectors from several different analysis techniques or sensors can be combined,

such as the fusion of 2D facial images with three-dimensional scans[17]. Examples of

multiple-biometrics include face and iris[18]; palm-print and hand-geometry[58]; or face

and gait[92, 91].

Combining information from more than one biometric can be achieved in a variety of

ways in a recognition system[51]. One of easiest methods to implement is decision-

level fusion; using the classification results from the different modalities to “vote” for

the most likely match. This approach is sometimes the only option; when proprietary

systems are used for one or more of the biometrics, the derived feature-vectors and

match-likelihood scores are often unavailable. Decision-level fusion is unlikely to provide

a substantial performance improvement over the use of a single strong biometric, as it

does not consider for any of the given biometrics the certainty of a match or the proximity

of other close matches.

It is possible to achieve improved recognition performance in most cases by combining

biometrics using their match scores; instead of final decision outcomes[56]. This is

because it is possible to consider the match likelihood for all outcomes, meaning that
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other similar candidates are also considered when determining the final decision. Match-

score fusion can also take factors such as uncertainty and conflict between biometrics

into account using techniques such as that of Shafer [90].

The features derived from the analysis of several different biometrics can also be directly

combined, which is often referred to as feature-level fusion. Directly combining the

extracted biometric features means that all possible information is used to determine

the most likely match; therefore it should be possible to obtain the greatest accuracy

fusing biometric data at the feature level. Unfortunately, feature-level fusion is not

always practical, as the resulting feature vector can be excessive in size and great care

must be taken to ensure that the features from each biometric are weighted correctly.

As mentioned earlier, many off-the-shelf biometric recognition systems do not expose

their feature-vectors, or the features are incompatible with those from other biometrics.

Comprehensive reviews of the literature associated with multiple-biometric fusion are

given by Ross and Jain [87] and Jain and Ross [50].

One of the simplest methods for combining multiple biometrics is to concatenate the

feature-vectors from the various biometrics; this is a form of feature-fusion, as discussed

above. Such an approach can potentially add bias to a particular biometric if the overall

variance of the corresponding feature-vector is much greater than the others; by normal-

ising the variance for each biometric, any bias can be compensated for. This approach

is used in the following experiments, where recognition is performed using the combina-

tion of face and gait. Whilst imagery of ears was recorded in the dataset discussed in

Chapter 6, it was primarily intended for future projects, as research into ear recognition

is currently at a relatively early stage. In this chapter, a simple algorithm is devised

for characterising one’s facial appearance, which is then combined with non-normalised

average silhouettes to evaluate the potential for a multiple-biometric recognition system

based around facial appearance and gait.

8.2 A simple descriptor for facial appearance

Biometric recognition based upon facial appearance is an extremely popular research

area, with a wide range of available analysis techniques. Some of the most popular and

widely accepted methods include the use of principal component analysis to calculate the

eigenface[107] and the active appearance model[22], which accounts for the facial shape

using an active shape model[23] and texture using the principal component analysis

— similar to the eigen-face. More sophisticated techniques using video, near-infrared

or three-dimensional facial scan data also exist, as reviewed by Zhao et al. [126] and

Bowyer et al. [10].

One of the most intuitive methods for comparing two images is to simply rescale them

to an equal size and then calculate the Euclidean distance between the images. This
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(a) Face images of varying size are found by a face-finder algorithm (b) The images are all rescaled
to 32× 32 pixels and averaged

Figure 8.1: The calculation of the average face

approach can be used for measuring the similarity between two registered face images;

although it is extremely inefficient due to the large number of features. The use of

principal component analysis to calculate the eigenface greatly reduces the number of

features, without any significant impact on recognition performance.

The recognition performance of a direct comparison or eigenface based technique would

be very sensitive to any registration error or temporary changes in facial appearance,

such as talking or blinking. This could be rectified by comparing multiple frames from

each face; although this would result in large feature vectors and would therefore not

be practical for a large-scale recognition system. An almost equivalent result can be

achieved by summing the multiple face frames together to result in an average face.

By using multiple frames, the effect of random registration error and temporary facial

appearance changes can be reduced. As the average face analysis technique is essentially

performing a direct image comparison, it will be extremely sensitive to any variation in

lighting orientation, colour cast and intensity; any changes in the subject’s orientation

are also likely to severely impact recognition performance. The use of this technique

is only possible due to the use of a highly controlled and consistent data capture en-

vironment — the Biometric Tunnel. It is therefore expected that the performance of

the average face analysis technique will quickly degrade outside of such an environment;

making its use impractical in most other scenarios. This approach was chosen due to its

simplicity and similarity to the average silhouette gait analysis technique; where neither

make use of statistical or multi-variate techniques to improve performance.

Using the video data from the face camera in the Biometric Tunnel dataset, the OpenCV

implementation[12] of the Viola Jones face detector[111] was used to locate the image

region containing the subject’s face. The background pixels were removed from the face

image and it was rescaled to a resolution of 32×32 pixels. The sequence of rescaled face

images was summed and divided by the number of frames, to result in the average face

signature; as shown in Figure 8.1.
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As an extension to the new average face technique, a three-dimensional histogram of

the red, green and blue values found within the average face image was calculated. The

intensity values for each colour channel were quantised into 16 discrete values, resulting

in the histogram having 4096 bins to describe colour. The average face histogram con-

tains information on the frequency of occurrence for different colours and is relatively

robust against facial expression. The histogram was combined with the average face by

concatenating the two corresponding feature vectors.

Using the non-temporal samples from the dataset collected in Chapter 6, a leave-one-out

recognition experiment was performed; achieving an extremely high correct-classification

rate. A similar experiment using the temporal data resulted in a reasonable correct clas-

sification rate, which was better than the performance achieved in Chapter 7.5 using gait.

The addition of the colour histogram resulted in an improvement for both experiments;

at the expense of having more features. The correct classification rate, equal error rate

and decidability, for the two experiments are given in Figures 8.2(a) and 8.3(a). The

receiver operating characteristic plots are given in Figures 8.2(b) 8.3(b), which also con-

firm that the technique is able to deliver reasonable performance when using data from

a controlled environment.

The average face provides a simple and intuitive approach for facial recognition, pro-

viding acceptable classification performance for both time-varying and non-time-varying

applications; making it an ideal baseline analysis algorithm for the data collected with

the Biometric Tunnel. Like the average silhouette, the results achieved by this new

technique demonstrate that simple techniques can often be surprisingly effective.

8.3 Evaluation of performance using large and temporal

datasets

In order to evaluation the effectiveness of the proposed gait and face fusion approach,

a leave-one-out experiment was performed using the non-temporal data collected using

the Biometric Tunnel, discussed in Chapter 6. The dataset used for analysis consisted

of 2288 samples from 227 different subjects. The non-normalised average silhouette was

found for the side-on, front-on and top-down viewpoints, which was combined with the

average face and corresponding colour histogram. The overall variance for each feature-

set across the entire dataset was calculated, and used to normalise the feature-sets before

concatenation.

Using all three gait signatures, the average face and colour histogram, every sample in

the dataset was correctly classified and a low equal error rate of 1.04% was acheived.

The classification performance was also found for gait, the average face and also the

average face fused with the colour histogram; these results are shown in Table 8.2(a).
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Name CCR k=1 EER Decidability (d)

Gait 100.00% 1.58% 3.07
Face 99.39% 3.42% 3.31
Face+Histogram 99.52% 2.89% 3.38
Face+Histogram+Gait 100.00% 1.04% 3.83

(a) Recognition performance for different combinations of features
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(b) Receiver Operating Characteristic

Figure 8.2: Results of leave-one-out multi-biometric experiment using non-temporal
dataset

As shown in Figures 8.2(b) and C.2(a), the combination of more of than one biometric

results in a greater separation between subjects and therefore improved discriminatory

ability. These results show that the combination of gait and facial appearance is ex-

tremely potent; proving ideal for applications where the identity of subjects needs to be

ascertained without close contact or subject cooperation. Whilst many attempts have

been made at fusing facial appearance with other biometrics such as fingerprint, voice

or iris; this is the first large-scale experiment to consider the combination of face and

gait; arguably the two biometrics best suited for recognition at a distance.

A similar experiment was performed using only the samples within the collected dataset

where temporal variation was present. This distribution of this temporal dataset was

discussed earlier in Chapter 7.5. As expected, the recognition performance was below

that of the non-temporal dataset discussed above. Table 8.3(a) gives the recognition
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Name CCR k=1 EER Decidability (d)

Gait 69.08% 11.76% 1.63
Face 77.54% 10.95% 1.93
Face+Histogram 79.47% 10.67% 2.04
Face+Histogram+Gait 88.65% 7.60% 1.99

(a) Recognition performance for different combinations of features
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(b) Receiver Operating Characteristic

Figure 8.3: Results of leave-one-out multi-biometric experiment using temporal
dataset

performance for gait alone; facial appearance; face fused with its corresponding colour-

histogram; and all three combined. The receiver operating characteristic for all four

different signatures is shown in Figure 8.3(b) and Figure C.2(b), located in the Appen-

dices, shows the intra and inter-class variation of the the fused signatures. Although

these results do not compare to those of the non-temporal variation dataset they are

still significant, as recognition over such a time-period is an extremely difficult task for

such biometrics.

It is interesting to note that gait provides a better performance compared to the average

face algorithm when used on the non-temporal dataset; although this is not the case

for the time-varying dataset; where the samples are matched against samples from a

previous date. This is not unexpected, as the facial analysis algorithm is extremely

basic compared against most modern approaches. This is further explained by the

average silhouette being very sensitive to any changes around the silhouette’s boundary,
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which is likely to be the case if the subject is wearing different clothing, or they have

lost or gained weight. Although the discriminatory ability of the gait signature may be

degraded by temporal deviation, its addition to the facial appearance signature results

in a significant reduction in the recognition error rate.

These results show that it is beneficial to combine face and gait in a non-contact recogni-

tion environment, especially in situations where one’s face could be obscured or hidden.

It is clear that further investigation is needed; including the use of state of the art analysis

techniques for both face and gait, along with more sophisticated fusion and classification

algorithms. Although most importantly, these results serve to demonstrate the potential

of a multi-biometric recognition system based around gait and facial appearance.

8.4 Evaluation of face and gait at varying distances

In the previous section, we demonstrated that the addition of gait to a facial recognition

system provides a worthwhile improvement in recognition performance. The fusion of

gait and face data could lead to even greater benefits when used as part of a single

camera system where a subject’s distance from the camera is not as well controlled.

Many gait analysis techniques make use of a subject’s entire body shape, whilst a facial

analysis technique only uses a small region of one’s body; the head. For example, if a

subject has a height of 100 pixels in an observed camera image, their head would be

typically twelve pixels high. This make it difficult to provide facial recognition over

a wide coverage area — unlike gait analysis, which can still function at these greater

distances. The use of a system employing fusion can provide the best aspects of both

biometrics; when the subject is close to the camera, both the subject’s face and gait can

be considered; whilst only gait is used for recognition if the subject is too far away for

accurate facial recognition.

An experiment was performed to simulate the effect that a subject’s distance from the

camera would have on the recognition performance in a multi-biometric system. The

front-on scale-normalised average silhouette was chosen to represent gait; as this is likely

to be a realistic representation of the data available from a single camera system; where

it is assumed that the subject is walking towards the camera — essential if their face

is to be fully visible. The temporal data from the dataset collected in Chapter 6 was

used in the recognition experiment; as it is of greater difficulty and is more likely to

resemble that of a realistic scenario. A virtual camera with a 7.4µm pixel size and 6mm

focal length was used to calculate the size of the observed average silhouette and average

face images. Leave-one-out recognition was performed for varying distances from the

camera, using only facial appearance, gait and the combination of both modalities. The

results shown in Figure 8.4 demonstrate that the fusion of the two biometrics always

proves beneficial and that using gait, it is possible to identify individuals at a much
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Figure 8.4: Classification performance of face and gait vs. distance using temporal
dataset; from simulated camera with 6mm focal length and 7.4µm pixel size

greater distance than facial appearance; with a better likelihood than chance alone.

The use of the frontal average-silhouette and average-face results in very little motion

being captured in the signatures, which means that such a recognition system is almost

exclusively using static information to classify the subjects.



Chapter 9

The Matching of Volumetric Data

Against a Single Viewpoint

9.1 Introduction

In a large environment such as an airport, where access monitoring and identity verifica-

tion is required, there are typically many entrances and exits, which means there will be

many areas that will require recognition systems. Whilst the Biometric Tunnel system

discussed in Chapter 2 is capable of providing excellent recognition performance as a

standalone system, it would prove impractical deploying such a system at every entrance

and exit of a large building. A more practical solution would locate the Biometric Tunnel

system at only the primary entrances to the building and use single cameras to provide

coverage for all other areas. As a subject enters the building, they would walk through

a corridor configured as a Biometric Tunnel, which would enrol them into the recogni-

tion environment using the acquired volumetric data. When an unknown subject walks

into the coverage of one of the single cameras, their gait signature would be compared

against their 3D volumetric data re-projected to the same position and orientation as

the subject.

In order for this approach to work, the re-projected silhouette of the subject must be

sufficiently accurate to calculate a matching average silhouette. This depends on the

calibration of the single camera, the quality of the background segmentation, along with

the accuracy of the three-dimensional reconstruction from the Biometric Tunnel, which

is reliant on the accurate calibration of the cameras within the system.
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9.2 Reprojection of three-dimensional data

Using three-dimensional volumetric data, it is possible to re-project the volume to any

arbitrary camera view. The resulting synthesised silhouette images can then be used

with any standard two-dimensional gait analysis techniques. By determining the walking

direction of a subject, their silhouettes can be synthesised from a viewpoint perpendic-

ular to their walking direction; this means for most gait analysis algorithms, viewpoint

dependence is no longer an issue.

The virtual camera can be characterised in the same manner as described in Chapter 5.5,

where a 3× 4 transformation matrix is used to map a three-dimensional coordinate to a

two-dimensional image coordinate, by rotation, translation, scaling and the application

of perspective. A coordinate on the target camera image (Cx, Cy) can be expressed as

a line originating from the virtual camera in the world’s three-dimensional coordinate

system:

W = RT

 Czα
−1 (Cx − Px)

Czα
−1 (Cy − Py)
Cz

 + T (9.1)

When synthesising the target image, a ray is projected from the camera for each pixel.

If one of the rays intersects an occupied voxel in the volumetric space, its corresponding

pixel is marked as occupied. This can be done efficiently by using a three-dimensional

version of Bresenham line algorithm[13], to walk along each of the rays in the volume.

Once an occupied voxel has been encountered, it is no longer necessary to continue along

the line.

9.3 Volumetric data matched against camera in Biometric

Tunnel

An initial feasibility study was performed to see whether it was possible to match a

subject using their re-projected volumetric data. To do this, a re-projection test was

performed for each camera in the Biometric Tunnel. The silhouette images from the

dataset collected in Chapter 6 were reconstructed with all cameras except the test cam-

era, then the resulting volume was re-projected to the test camera’s viewpoint. The

scale-normalised average silhouette was calculated for the test camera’s original sil-

houette data and also the re-projected silhouette data. A recognition experiment was

performed for each camera, using the average silhouettes from the re-projected data for

the gallery set, and the original camera’s average silhouettes for the probe set.

It was found that recognition was impossible using the four wide angle cameras placed

near the centre of the Biometric Tunnel, this was because of the difficulty in obtaining
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Camera Location CCR k=1 EER Decidability (d)

3f0593 Front-left 74.76% 14.53% 1.70
3f0604 Front-right 84.40% 12.36% 1.83
3f0606 Back-left 53.37% 25.45% 1.21
3f0595 Back-right 54.34% 22.93% 1.17

(a) Summary of recognition performance
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Figure 9.1: Results of recognition experiment matching average silhouettes generated
from a single camera against reprojected volumetric data

an accurate camera calibration, due to significant radial distortion from the wide-angle

lenses. A similar problem was experienced in Section 7.3, where it was found that the in-

clusion of the wide-angle cameras degraded the system’s overall recognition performance.

Therefore only the results from the four top far-mounted cameras are included in Table

9.1(a) and Figure 9.1(b). An improvement is found from using the front-on cameras,

compared to the rear-view cameras; although this could be due to minor variations in

camera calibration quality.

The recognition performance from the preliminary tests demonstrated that the concept

had sufficient potential to warrant further investigation; some degree of recognition was

possible, even when using very basic gait analysis techniques and removing cameras

from the reconstruction; resulting in significant distortion to the reconstructed volumes’

shape.
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Figure 9.2: Correct classification rate for 32× 32 average silhouette at different view-
points

9.4 The effect of viewpoint on performance

Using the large dataset collected in Chapter 6, it is possible to re-project the volumetric

data to any arbitrary viewpoint. This allows the evaluation of differing viewpoints,

which will help to identify the optimal viewpoint for the average silhouette gait analysis

technique. The non-temporal samples from the collected dataset were re-projected from

36 different viewpoints; where a virtual camera was moved around the subject in 10

degree increments. Low-resolution 32 × 32 scale-normalised average silhouettes were

produced for each viewpoint and sample; where a reduced resolution was used to reduce

the time taken to run the experiment and ease storage requirements. A leave-one-

out recognition experiment was performed for each viewpoint to find its recognition

performance. The results are shown in Figure 9.2; it can be seen that the front and rear

viewpoints provide the best recognition performance, with almost identical results due to

the symmetry about the origin. These results suggest that the static information within

the average silhouette is more important for recognition than the dynamic components.
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9.5 Volumetric data matched against outdoor camera

9.5.1 Experimental Setup

Although the results given in the previous section were encouraging, the experiment did

not represent a realistic scenario, as the silhouette data produced by cameras within the

tunnel is of extremely high quality, and do not suffer from the same degree of segmen-

tation error as realistic data captured outside of a controlled environment. Artefacts

such as shadows are also much more likely to occur in silhouette data captured from an

uncontrolled environment. In order to test the proposed concept in a more realistic man-

ner, the single viewpoint probe data must be captured in an uncontrolled environment,

outside of the Biometric Tunnel. Therefore a small dataset was recorded outdoors, on

the University of Southampton Highfield campus, as shown in Figure 9.3(a). The dataset

was recorded in a single morning and contained video data from seventeen different par-

ticipants, who were all asked to walk through the Biometric Tunnel in the afternoon.

Unfortunately, of the original participants, only eleven returned to walk through the

tunnel later that day.

The participants were recorded walking with three ProSilica GC-750E Gigabit network

attached cameras. All the cameras were mounted on tripods, with two mounted at

approximately two metres above ground level, the other approximately three metres

above ground level. Four traffic cones were placed in the area and participants were

asked to walk between the cones in a pattern. Figure 9.3(b) shows a top-down view of

the area used, where the traffic cones are labelled one, two, three and four. The subjects

were asked to walk from cone one to two, then back to cone one, and then repeat by

walking to cone two and back. Next the subjects walked diagonally across the area

from cone one to three, before returning to one and walking to cone two; then walking

diagonally to cone four, back again to two and finally leaving the recording area after

walking past cone one.

The three cameras were connected to a single computer, using a specialist Intel network

interface card, featuring four Gigabit Ethernet ports. The raw unprocessed data from

each camera was saved to a separate hard-drive to ensure minimal resource contention on

the host computer, in order to reduce the likelihood of dropped frames. After capture,

software was written to read the video data files and extract colour video frames for

viewing. A segmentation algorithm was applied to the camera data, using a normalised

RGB colour space and a per-pixel infinite impulse response (IIR) filter to estimate the

background model. Connected component analysis was applied to the segmented images,

and regions of interest were found. A viewer written for the camera data displayed the

regions of interest overlaid on top of the camera images; regions of interest containing

subjects were then labelled using their Biometric Tunnel identifiers. Gait cycles were

manually identified for each subject. The extracted silhouette data was found be of



Chapter 9 The Matching of Volumetric Data Against a Single Viewpoint 91

(a) Ariel photograph of outdoor environment; c©Copyright Geoperspectives 1999-2008, sourced
from GeoStore[63]

1

2

4

3

C46

C45

C42

(b) Plan-view of experiment’s layout, where the tripod-mounted cameras are shown in red, the
traffic cone markers in orange and the car parking bays in yellow.

Figure 9.3: Layout of the outdoor recognition experiment
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Figure 9.4: Walking direction is found by merging the silhouettes and finding the
vanishing point

extremely poor quality, due to the poor contrast present in the scene. It is expected that

the use of a better quality camera and background segmentation algorithm would have

rectified the silhouette quality issues; although this is outside of the scope of this thesis,

which has a primary focus on gait — not state of the art background segmentation.

Therefore, some of the worst silhouettes, where substantial regions of the subject were

incorrectly identified were manually corrected. Due to time constraints, data from only

cameras 45 and 46 was processed, and manual silhouette retouching was only performed

on camera 45, whilst the other camera was retained as a control, with no retouching

performed.

A partial calibration of the cameras was performed, where each camera’s intrinsic pa-

rameters were estimated using a separate scene to find the focal length, principal point

and radial distortion for the camera. The extrinsic parameters were found using the

convergence of the horizontal and vertical lines formed by the bricks in the background

of the scene; the vanishing points were used to estimate the camera’s rotation around its

principal axis. The vanishing point of the vertical lines formed by the bricks was used

to calculate the camera’s elevation angle.

For each sequence where a subject was walking in a straight line, their silhouettes were

merged by finding the union of all the images. Lines were fitted to the top and bottom

of the silhouette trails, to find a vanishing point, as shown in Figure 9.4. This vanishing

point was used to estimate the subject’s walking direction relative to the camera. Using
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Figure 9.5: Three-dimensional reconstruction after global optimisation of camera
calibration

this information, it was possible to re-project the volumetric data from the tunnel to a

similar orientation to that of the subject; allowing the corresponding average silhouette

to be calculated.

Due to the poor results encountered earlier in this chapter whilst attempting to re-

project the volumetric data, all cameras within the Biometric Tunnel were recalibrated

to ensure accuracy. Following this, it was decided to further refine the calibration of

the cameras within the system by attempting to globally optimise the calibration for

all cameras. This was achieved by refining each camera in turn, with the intent to

maximise the volume of the reconstructed target. A set of frames were used with the

target subject located at several different points in the tunnel in order to avoid local

over-fitting issues. This process proved to be computationally expensive, requiring a

substantial amount of time to complete. The global optimisation of the cameras resulted

in a significant improvement in reconstruction quality, with much finer details resolved

within the volume, as shown in Figure 9.5.

9.5.2 Average silhouette based recognition

The first experiment to test the viability of re-projection based matching was performed

by comparing subjects from the outdoor dataset against re-projected silhouettes from the

Biometric Tunnel; where the scale-normalised average silhouette was used to characterise

and classify the subjects. A leave-one-out validation experiment was performed using
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Probe Source Gallery Source CCR k=1 EER Decidability (d)

Camera 45 Camera 45 80.37% 48.05% 0.28
Camera 45 Biometric Tunnel 68.10% 27.96% 1.14
Camera 46 Camera 46 91.97% 40.12% 0.49
Camera 46 Biometric Tunnel 55.47% 31.05% 0.84

Table 9.1: Results of matching reprojected volumetric data against single camera
outdoor footage, using the average silhouette analysis technique

only the outdoor recorded data, to evaluate the quality of the collected video footage.

The recognition performance for the footage recorded by the two cameras was found to

be poor, achieving correct classification rates of only 80.37% and 91.97%; demonstrating

the difficulty of performing gait recognition using data from an outdoor environment.

In contrast, the previous results by Veres et al. [109] have shown that it is possible to

achieve extremely high correct classification rates using the average silhouette on a large

indoor dataset. The poor quality of the remaining unedited silhouettes is likely to have

had a serious impact on the recognition performance; this is outlined by the difference in

classification rates between the two cameras, where some editing of the silhouettes was

performed for the former. The results are summarised in Table 9.1, whilst the receiver

operating characteristic is shown in Figure C.3(a).

The classification performance of the experiment matching the outdoor data against

re-projected gallery data was found to be comparatively poor, where the retouching of

silhouette data for camera 45 clearly resulted in an improved performance against the

Biometric Tunnel data, indicating that the segmentation errors had a severe impact on

recognition performance. It is interesting to note that although the verification experi-

ment achieved a higher correct classification rate, the equal error rate, decidability and

the receiver operating characteristic were all significantly worse than that of the exper-

iment matching tunnel data against the outdoor data. This also suggests that the poor

background segmentation quality was having a strong influence on the degraded recogni-

tion performance, it is also possible that human error was introduced during the manual

editing of the silhouette data. The equal error rate for both cameras was substandard

compared to the rates obtained in earlier Chapters, suggesting that the average silhou-

ette was unable to provide sufficient inter-class variation to facilitate accurate matching.

The poor recognition performance of the average silhouette in this scenario reaffirms the

suggestion that the average silhouette is extremely sensitive to any error in the silhou-

ette’s shape, which can be caused by poor calibration of the cameras within the tunnel,

inaccurate estimation of the subject’s orientation or walking direction, or as mentioned

earlier; segmentation errors. Another factor that may have had a minor impact on the

results was the time delay between the probe and gallery samples; where the probe data

was recorded in the morning and the gallery data was recorded in the afternoon of the

same day — this could have lead to some variation the subjects’ gait between probe and
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gallery recordings. It is expected that the use of better quality silhouette data would

have resulted in a greatly improved recognition rate.

9.5.3 Non-normalised average silhouette based recognition

The disappointing results presented in the previous section confirmed that it was ex-

tremely difficult to match samples from a single outdoor viewpoint against those re-

projected from a three-dimensional dataset. The poor quality of the silhouettes extracted

from the outdoor data was believed to be a major cause of the degraded recognition

performance, as confirmed by the difference in performance between the two cameras.

Whilst it is expected that the use of a more carefully controlled scene or a better quality

background segmentation algorithm would result in improved performance, it is also

likely that the use of an improved gait analysis technique would yield an improvement.

As discussed in Section 6.5, it was found that the removal of the scale-normalisation

stage from the average silhouettes resulted in a significant improvement in recognition

performance. This was possible by re-projecting the three-dimensional data to one or

more orthonormal viewpoints. Unfortunately it is impractical to obtain a true orthonor-

mal view of a subject using only a single camera; as this would require a telecentric lens

with a front-element larger than the subject. Using a standard non-telecentric lens, the

magnification of the subject in the image will be dependant on their distance from the

camera; this means that the distance of the subject must be known in order to remove

the effects of perspective scaling. The distance of a person from a partially calibrated

camera can be estimated by finding the position of their feet in the image; assuming

that their feet are on the ground plane. Once a distance estimate has been obtained, the

position of the top of the subject’s head can be found and used to calculate the subject’s

height. In order to calculate the subject’s distance from the camera and their height, the

camera’s height from the ground-plane, elevation angle and intrinsic parameters must

be known. The average silhouette can then be calculated in the same manner as the

scale-normalised variant; although the resulting average silhouette is scaled the by sub-

ject’s measured height. The height for the subjects in the Biometric Tunnel gallery data

is found by simply taking the height of the three-dimensional bounding box surrounding

each subject.

The verification experiment showed some improvement for both cameras in terms of

the equal error rate and decidability d; although the classification performance was still

lower than expected, which was likely due to the segmentation errors discussed earlier.

The use of non-normalised average silhouettes resulted in a reasonable improvement in

recognition performance, where the classification rate for the new approach was much

closer to that of the corresponding verification experiment. The recognition results are

shown in Table 9.2 and Figure C.3(b). The results confirm that this new technique is
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Probe Source Gallery Source CCR k=1 EER Decidability (d)

Camera 45 Camera 45 83.44% 39.94% 0.61
Camera 45 Biometric Tunnel 79.75% 18.24% 1.66
Camera 46 Camera 46 89.78% 31.35% 1.00
Camera 46 Biometric Tunnel 70.07% 24.20% 1.32

Table 9.2: Results of matching reprojected volumetric data against single camera
outdoor footage, using the non-normalised average silhouette analysis technique

capable of recognising an individual by their gait with a reasonable degree of accuracy

in a viewpoint-invariant manner.

In this section a simple yet effective technique has been proposed to facilitate viewpoint-

invariant gait recognition, by re-projecting three-dimensional enrolment data to the same

orientation as an unknown subject in a camera image. This approach avoids the usual

problems encountered with two-dimensional gait analysis techniques, where incorrect

matching may occur if the orientation of a subject differs between their enrolment and

test samples. By re-projecting the enrolment gallery samples to the same viewpoint as

the probe samples, almost any two-dimensional gait analysis technique may be used for

recognition. It is expected that the use of a more sophisticated gait analysis technique

may lead to significantly better recognition performance; although poor quality back-

ground segmentation will always be an issue for any gait analysis technique that uses

silhouette data.



Chapter 10

Conclusion and

Recommendations

In this thesis the University of Southampton of Biometric Tunnel has undergone a sig-

nificant transformation, to result in a system capable of acquiring non-contact biometric

measurements in a fast and efficient manner. More importantly, the issues experienced

with the early prototype of Middleton et al. [70] have been investigated in a rigorous

manner and duly rectified; resulting in a system capable of achieving excellent recog-

nition performance on populations of a significant size. The system has been used to

collect the largest to date multi-biometric dataset featuring two and three-dimensional

gait data. Correct classification of all samples within the dataset can be achieved with

the use of a simple average silhouette derivative, proposed in these works. These results

provide significant weight behind the argument of Murray et al. [74], that each individ-

ual’s gait is unique. Further experiments have helped to show that the system could be

deployed in real-world scenarios, providing that good quality background segmentation

is possible and that all cameras are accurately calibrated.

The initial prototype Biometric Tunnel was designed and constructed by Middleton et al.

[70]; evaluation of data produced by this system found the recognition performance to be

significantly below expected. This prompted an in depth examination and evaluation of

the system’s underlying hardware and software. An in depth inspection of the acquisition

software revealed several issues with how captured video data was handled. A new

system was devised, using lessons learnt from the previous prototype. The hardware

configuration and layout was substantially modified, to improve access and reliability.

The underlying software was split up so that the captured video data was saved to

disk without any processing; each stage of the processing was then implemented as a

separate application. This meant that each computer-vision algorithm could be executed

and evaluated in isolation. The previous manual gait cycle labelling strategy was found

97
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to result in inconsistent and error prone labelling; therefore, an automated gait cycle

finding algorithm was devised.

A batch processing system was implemented to automate the execution of the processing

applications and other tasks, such as gait cycle labelling and sample backup. The batch

processing system was capable of managing the processing of samples and entire datasets.

A variety of tools were written for administering the batch processing system, including

a web-based interface, which facilitated live progress monitoring and the debugging of

failed processing operations.

In order to test the revised system and evaluate the underlying processing algorithms, a

small dataset was collected that contained unprocessed video data, to enable the evalua-

tion of the previous system’s processing algorithms. Analysis of the new dataset revealed

that the system’s stability had improved greatly, along with the visual quality of the

three-dimensional reconstructions; most likely as a result of the newly implemented cam-

era synchronisation algorithm. This was reflected in the significantly improved correct

classification rates achieved, which demonstrated that the revised system was capable

of producing data of a sufficient quality for gait recognition on a large population.

Evaluation of the video processing algorithms using the newly collected dataset revealed

that the background segmentation was producing erroneous results; further inspection

found that the grey regions of the background did not provide sufficient discriminatory

ability against the subjects and their clothing. Analysis of the colours present in the

video of the previously collected dataset confirmed that grey was a poor choice of back-

ground colour; therefore, these areas were repainted with an intense red colour, which

provided better separation between participants and the background. This resulted in

cleaner silhouettes with less artefacts from erroneous background segmentation.

An experimental real-time shape from silhouette reconstruction algorithm was imple-

mented, which was capable of achieving rates in excess of 30 reconstructions per second,

whilst only using one processor core. This reconstruction algorithm was later integrated

into an experimental system using graphics hardware to accelerate the processing of

the camera images, to result in a system capable of almost real-time recognition[75].

The ability to perform processing in real-time system demonstrates that it is possible

to produce a deployable system capable of low-latency identification of subjects.

The collection of a large dataset containing measurements from multiple non-contact

biometrics was carefully planned and prepared for. The dataset was primarily focused

on three-dimensional gait, although also included face and ear imagery. The Biomet-

ric Tunnel and its associated systems were prepared for the collection of this dataset,

which included the streamlining of the capture process, new storage and backup systems

and a rigorous experimental procedure to ensure consistency between participants. An

advanced web-interface was produced for collecting the participant’s personal informa-

tion; such as age, gender and ethnicity. The web-interface also featured a dedicated
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administration section for managing the system and the experiment. Collection of the

dataset commenced, with data from over one-hundred participants collected in twelve

one-day sessions. Collection of data was temporarily halted for several months due to

serious technical problems; during this period, four additional additional cameras were

added to the system, to allow the evaluation of multiple camera configurations. Once

the technical issues had been resolved and thorough testing had been performed, data

collection recommenced. The completed dataset contained in excess of two-hundred

unique participants and two-thousand samples, of which some individuals participated

in more than one capture session during the experiment.

Conducting a leave-one-out recognition experiment on the entire dataset revealed excel-

lent results, with a correct classification rate of 99.52% — meaning that almost every

sample within the dataset was correctly identified. The equal error rate for the com-

bination of all three viewpoints was found to be 3.58%, the point where both the false

rejection and false acceptance rates are equal. These results were achieved using the well

known gait analysis technique; the average silhouette. A new derivative of the average

silhouette was devised, where no scale-normalisation was used. This technique is ide-

ally suited to three-dimensional data, where artificial views can be created without the

effect of perspective. The new analysis method resulted in improved performance, with

every sample being correctly classified, and a reduced equal error rate of 1.58%. At the

previous 3.58% false reject rate, the false accept rate significantly drops to 0.4%. The

results of both experiments were acheived without the aid of feature selection or trans-

formation techniques, whilst only using nearest-neighbour classification. This proves

to be a very significant finding; demonstrating that there is a significant variation in

gait between individuals, which remains sufficiently stable over short periods of time to

facilitate accurate recognition. Another recognition experiment was conducted, where

an individual’s samples were matched against those from a previous data-capture ses-

sion; whilst recognition performance was not comparable to the short-term variation

results, it still exhibited significant discriminatory abilities, acheiving a 72.22% correct

classification rate — greatly above the rate of chance alone. The side-on viewpoint was

found to perform significantly better than the other viewpoints when matching samples

from different dates; this suggests that the motion of the subject’s limbs revealed by the

side-on viewpoint is of significant discriminatory value.

Of the many additional experiments conducted using the newly collected dataset, many

were focused on gaining a greater understanding of the system’s performance and more

importantly — its limitations. The resolution of the average silhouettes used for analysis

was shown to be appropriate, with a reduction in the number of features resulting in

a decreased recognition rate; where the decline accelerated rapidly when reducing the

number of features by 50% or more. It was also found that the simple concatenation of

the three viewpoints was a comparatively inefficient representation, compared against
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that of a single viewpoint, where on a per feature basis the single viewpoint was capa-

ble of better recognition performance. The recognition performance of the system was

found to be extremely sensitive to camera calibration errors, where the removal of the

central wide field-of-view cameras resulted in an improved performance. This was most

likely due to the difficulty in accurately calibrating the central cameras using only the

two planes formed by the corresponding visible side-wall and the floor. An investigation

into the effects of camera calibration error on the classification performance revealed

the extent of the system’s sensitivity to calibration error. This is mostly expected, as

almost all multi-viewpoint reconstruction techniques exhibit sensitivity to calibration

error, where a given point on one camera no longer correctly corresponds to the equiva-

lent projection on another. An attempt was also made at evaluating the discriminatory

abilities of the static and dynamic components of gait in isolation, whilst reasonable

recognition performance was achieved for both components, the performance of both el-

ements combined was not comparable to that achieved by the average silhouette; raising

questions as whether the two extracted signatures truly accounted for the dynamic and

static variation within one’s gait.

The practicality of using both gait and facial recognition in a single system was evaluated,

using an extremely simple facial analysis technique to characterise the appearance of

one’s face. The performance of the fused biometrics was found to be greater than either

biometric in isolation; where the equal error rate was 1.04%, meaning that the false

accept rate was less than 0.4% for the 1.58% false reject rate acheived by gait alone.

The recognition rates of both biometrics were evaluated against the distance from a

simulated camera, where it was found that gait was able to provide useful information

at distances where facial recognition had ceased to function.

Finally a set of experiments were conducted to assess the possibility of using the Biomet-

ric Tunnel in an enrolment only scenario, where matching was then performed against

video footage from single cameras placed in a less controlled environment. Initial ex-

perimentation where single cameras inside the Biometric Tunnel were used for matching

purposes proved relatively unsuccessful, due to calibration problems and the additional

inaccuracy of the three-dimensional reconstructed data when a camera was removed.

An experiment was also conducted to investigate the effect of camera position on recog-

nition performance, where the recognition performance of a large number of viewpoints

was evaluated. It was found that the best recognition performance could be achieved

using a front-on viewpoint, suggesting that the static information contained within a

subject’s gait and body shape provides some of the most important identifying features.

A small outdoor dataset was collected and then analysed. It was found that it was pos-

sible to estimate a subject’s walking direction and orientation using the vanishing point

formed by the bounding trails of their silhouette; this information combined with basic

camera calibration information facilitated the projection of the three-dimensional Bio-

metric Tunnel data to a similar pose to that of the observed sample. Serious problems
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with the quality of the background segmentation resulted in extremely poor recognition

performance. Manual retouching of the silhouette data from one of the cameras resulted

in an improvement in matching accuracy, increasing from 55.47% to 68.10%. By esti-

mating the camera’s orientation, the height of the observed subjects could be estimated;

allowing the creation of average silhouettes where the effects of scale-normalisation had

been removed. Matching the new gait signatures against the data from the Biometric

Tunnel yielded a significant increase in the accuracy of matches — achieving a 79.75%

correct classfication rate — although poor background segmentation quality still had a

substantial impact on recognition performance.

In this thesis it has been shown that it is possible to correctly identify an individual from

a population of over two-hundred others. The inevitable question from these findings is

whether the the recognition performance of gait and the Biometric Tunnel will remain

acceptably high when used in an environment with a much larger population. In Chapter

6, several different measures were used to evaluate the recognition performance of the

Biometric Tunnel; this included the correct classification rate, the equal error rate and

the decidability. As discussed in earlier chapters, the correct classification rate is strongly

dependant on the composition of the gallery set used for matching; this means that it is

difficult to accurately estimate with a larger gallery size. Although it is expected that the

error rate will increase with the number of subjects, as the increased density of subjects

within the feature space will reduce the separation between classes. Whilst the correct

classification rate is of little use for assessing the scalability of such a system, the equal

error rate and decidability are likely to prove more useful, as they are both determined

by the shape and separation of the inter and intra-class distributions. As the size of the

dataset increases, the inter and intra-class distributions will stabilise, which means that

the equal error rate and decidability will converge towards their correct values. With

a dataset containing in excess of two-hundred subjects and two-thousand samples, the

change in the the equal error rate and decidability is unlikely to be significant for a

larger dataset.

The dataset collected for the purposes of this thesis does not attempt to account for

covariates such as changes in clothing or footwear, walking surface or speed, although a

limited study of temporal variation was performed. Most of these factors are believed to

affect an individual’s gait, and therefore could have a significant impact on the ability

to recognise an individual. In order to fully evaluate the real world performance of a

recognition system, an analysis of these covariates and their effects is necessary. From the

experience gained collecting the dataset discussed in this thesis, it is believed that it will

be extremely difficult to collect a dataset of a significant size containing such covariates,

as it would substantially increase the time required of each participant, making the

recruitment of individuals much harder without much larger financial incentives. Whilst

collecting the new dataset, recruiting participants was found to be extremely difficult

and time-consuming, with very few people responding to advertisements placed around
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the University of Southampton; the most effective method of recruitment was found

to be by word of mouth and persistence. An efficient way to collect a much larger

dataset would be to organise a collaborative project involving several different research

institutions, with each recruiting from their own population of potential participants.

The development of a more thorough calibration strategy will prove greatly beneficial

to the long term practicality of the system, reducing the impact of camera registration

error. It is suggested that a system of continual monitoring and calibration refine-

ment is implemented, meaning that any change in camera orientation over time can be

tracked and compensated for. As shown in Chapter 9, the use of a volume maximisa-

tion bundle-adjustment algorithm on a recorded video sequence resulted in an improved

calibration, with results that were a significant improvement in visual quality. The use

of this calibration optimisation strategy on the entire dataset is likely to result in fur-

ther improvements to the system’s recognition performance, especially when matching

samples from different dates. Using the high quality three-dimensional data produced

by the Biometric Tunnel, it should be possible to develop a system capable of accurately

fitting a three-dimensional model to one’s gait. This could have a wide range of uses,

including biometric recognition, computer animation and medical gait analysis, where

it could be used instead of marker-based system, to help rehabilitate patients who have

difficulties walking.
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Appendix A

Evaluation of Original System by

Middleton et al.

A.1 Composition of dataset

Session Subject Initial samples Retained samples

17/08/2006–18/08/2006 0 4 4
1 4 4
2 4 0
3 4 0
4 4 3
5 4 4
6 4 4
7 4 4
8 4 4
9 4 4

31/10/2006–01/11/2006 10 5 0
11 4 4
12 2 0
13 4 0
14 5 3
15 2 0
16 3 0
17 1 0
18 4 4
19 3 0

Table A.1: Composition of dataset collected by Middleton et al. [70] and revised
version
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A.2 Analysis of initial data
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Figure A.1: Gait classification performance of average signature representation using
initial dataset

Projection k = 1 k = 3 k = 5

Top-down 60.0% 51.4% 41.4%
Front-on 75.7% 71.4% 57.1%
Side-on 81.4% 75.7% 61.4%

Table A.2: Performance of gait classification from average silhouette signature
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A.3 Analysis of rectified data
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Figure A.2: Gait classification performance of average signature representation using
revised initial dataset

Projection k = 1 k = 3 k = 5

Top-down 66.7% 57.1% 42.9%
Front-on 81.0% 69.0% 66.7%
Side-on 97.6% 88.1% 85.7%

Table A.3: Performance of gait classification using average silhouette from multiple
viewpoints; using revised dataset
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Session Subject ID Number of Samples

29/06/2007 17 4
19 4
22 4
23 4
24 4
25 4
26 4
20 4
21 4
9 3

Table B.1: Composition of testing dataset collected from revised Biometric Tunnel
configuration
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Figure B.1: Receiver Operating Characteristic, using development dataset

Projection k = 1 k = 3 k = 5

Front-on 100.0% 97.4% 87.2%
Side-on 94.9% 94.9% 74.4%
Top-down 94.9% 94.9% 84.6%

Table B.2: Correct classification rate for various viewpoints, using development
dataset
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Figure C.1: Results of leave-one-out experiment matching non-normalised average
silhouettes against those from a previous date
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Figure C.2: Intra/Inter-class variation for combination of average face, colour his-
togram and gait
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Figure C.3: Receiver Operating Characteristic curves for reprojection matching ex-
periments
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D.1 Subject Consent Form

                                                                        

 
 
Subject Consent Form 
 
Multi-biometric Recognition Database Collection 
 

 

 

 

I ________________________________ willingly take part in the database collection for evaluation of multi-
biometric recognition. I consent to the use of images taken of me for this database to be used by researchers in 
biometric technology for purposes of evaluation of biometric technologies, and that this imagery might be 
available over the World Wide Web (and will therefore be transferred to countries which may not ensure an 
adequate level of protection for the rights and freedom of data in relation to the processing of personal data). I 
understand that neither my name nor identity will be associated with this data.  I certify that I have read 
these terms of consent for this data. 

 

 I acknowledge that I have received a gift voucher 
 

 

 

Signature __________________________________  Date ______________ 

 

 

 

 

 

Witness   __________________________________  Date ______________ 

 

 

Front
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Participant Checklist 
 

 Fire evacuation procedure explained to participant 

 Participant notified of potential dangers in biometric lab area 

 Explanation of project purpose and aims given to participant 

 Explanation of experiment procedure given to participant 

  

Reverse
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D.2 Project Information Sheet

 
 
The ISIS Multi-Biometric Tunnel 
 
In the current security climate, the 
need to quickly and accurately 
identify individuals has never been 
greater. There are many 
distinguishing features that can be 
used to tell individuals apart, these 
are known as biometrics. Examples 
of biometrics include fingerprints, 
DNA, iris patterns, the face, the ear 
and the manner one walks (gait).  
Biometrics such as face, ear and 
gait can be conveniently collected 
at a distance; this makes them 
especially attractive for surveillance and non-contact security applications. In 
order to evaluate the effectiveness of identification based on these biometrics, 
large databases are needed.  
 
Humans are very good at identifying one another, in many cases better than 
existing automated techniques. Therefore, in various situations it is desirable to 
automatically identify individuals using human descriptions, or to automatically 
generate descriptions from video footage, which is understandable to a human. 
 
There is a wide range of databases containing non-contact biometrics such as 
face, ear and gait; but there is almost no associated human description data 

available. The Southampton Human ID at a 
Distance database was created in 2000-2002, and 
is still one of the largest databases available; 
containing around 115 different subjects, filmed 
walking from several different angles. The dataset 
has been requested by over thirty other research 
establishments. The University of Southampton HID 
database concentrated purely on capturing gait; this 
is like many of the other currently available 
databases, which generally only concentrate on 
capturing one type of biometric. Most databases 
containing gait only provide two-dimensional video 
data (including the previously mentioned University 
of Southampton database), limiting the scope of 
analysis to 2D techniques, which can suffer from 

Figure 1 - The Multi-Biometric Tunnel

Figure 2 - An example "e-fit" 
image created by an artist using 
human description (from 
www.kent.police.uk) 

Front
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dependence on the subject’s orientation 
relative to the camera. On the other hand, the 
use of three-dimensional data removes the 
problem of orientation dependence, and also 
simplifies the task of fitting a model to the 
subject.  
 
We intend to gather one of the largest 
databases available to the research 
community, containing over three-hundred 
subjects, with 3D gait, face and ear data 
available, and some human description data. 
In order to protect the privacy of the 

participants in the database, their identity will remain completely anonymous, 
with no way of linking any individual to their collected data. This new database 
will give a much needed insight into how useful non-contact biometric 
identification systems will be in real world large population scenarios. 
 
In past databases, the task of collecting and preparing data was a laborious task, 
often requiring many weeks to digitise video tapes and catalogue the video data, 
preparing it for analysis. The Multi-Biometric Tunnel is a state of the art research 
facility located at the University of Southampton; it is designed from the ground 
up to allow fast and efficient capture of multi-biometric data with the minimum of 
effort.  
 
The capture process is automatically controlled using a pair of break-beam 
sensors located at the entry and exit of the tunnel. This allows the automatic start 
and stop of recording. The subject’s face is captured as a video, whilst one of the 
subject’s ears is captured as a single still image. The shape of the subject’s 
entire body and how it varies over time is captured by eight synchronised video 
cameras. The resulting video data is used to reconstruct a time-varying 3D model 
of the subject. Participants are also asked to watch a small of set of videos, and 
describe various physical attributes of the subject featuring in the video. 

Figure 4 - Typical data collected from a sample 

Figure 3 - The University of 
Southampton HID Database 

Reverse
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D.3 Session Checklist

Date:

Start Time:

End Time:

Session ID:

Supervisor:

 Beginning of day
 Handed over from:

Beginning of session
 Turn on tunnel lighting
 Turn on tunnel hardware
 Start tunnel software
 Check cameras


 Check tunnel area is clear
 Ensure that fire exits are not obstructed
 Check that there are enough vouchers for participants

End of session


 Turn off tunnel hardware
 Clear up any litter or debris from the tunnel area
 Ensure that there are plenty of remaining vouchers
 Turn off tunnel lighting

Number of subjects

Last sample ID

Session checklist

Setup capture session

Shutdown tunnel software
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D.4 Instructions for Session

Turn on tunnel lighting

­ Room lighting
­ Face camera lighting
­ Ear camera lighting

Turn on tunnel hardware

Ensure that computers required for tunnel are turned on:
­ Boat

Turn on IEEE 1394 network for gait cameras
­ Plug in power for gait camera IEEE1394 hubs

­ Ensure that all IEEE1394 sync units have steady green lights
­ Unplug cameras on affected network and reconnect to fix problems

­ Also try unplugging connection from hub to sync unit

Plug in IEEE1394 cables for face and ear cameras

Start tunnel software

­ If not, try Start All again.

Check cameras

­ Check gait cameras (remaining cameras)

­ Sub0­3 and SubZ
­ Ninja, Cowboy and Warrior

­ Plug in IEEE1394 cables between sub0­3 and gait camera hubs

Start PyGAnn webserver on boat, by loading “Start PyGAnn” icon on desktop
Load PyGAnn website, log in as root

­ Admin ­> Tunnel Remote Control
­ Click Start All, and wait for 10 seconds, is everything loaded?

­ Admin ­> Tunnel Diagnostics
­ Click Check Config
­ Messages in log should confirm correct functionality

­ To fix problems, click Relock Agents, then retry Check Config

Load PyGAnn website, log in as root
­ Admin ­> Tunnel Viewer

­ Check ear and face cameras (4287be, 718788)
­ Select camera from side menu, then click Grab

­ Click Check, then click Grab, then view each camera

Front
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­ Select a dataset from list, or make a new one
­ Select a session from the second list, or make a new one

­ Refresh page; new capture settings should be at bottom of page

Turn off tunnel hardware

Unplug IEEE1394 cables for face and ear cameras
Turn off IEEE1394 network for gait cameras

­ Unplug hub power adaptors
Tunnel computers are usually left on

Setup capture session

Load PyGAnn website, log in as root
­ Admin ­> Tunnel Datasets

­ Enter the number of walks per subject, and click Set new walks
­ Click on Set as current
­ Click on Set as Annotation

Shutdown tunnel software

Load PyGAnn website, log in as root
­ Admin ­> Tunnel Remote Control

­ Click on boat, then on websrv
­ Stop the websrv process by clicking Stop

­ Unplug all IEEE1394 cables going from sub0­3 to hubs

Reverse



Appendix E

Installation of the Tunnel

Software

E.1 Introduction

In this chapter the installation of the Biometric Tunnel system is discussed; it is

assumed that the reader has a reasonable level of competency using a Linux based

system. These instructions have been written for a Redhat RPM/YUM based

distribution, although installing on Debian based distributions (such as Ubuntu)

should not prove too difficult — except that apt-get or synaptics is used instead and

package names will differ slightly. Before starting the installation of the tunnel

software, ensure the Linux distribution is correctly configured, with the correct

accelerated graphics drivers installed. It is recommended that security features such as

SELinux and any firewalls are initially disabled whilst installing the system; these can

be enabled after installation and then configured to allow correct access. A location for

the tunnel data on the computer’s filesystem should be decided upon (/data is

recommended) and prepared to allow access:

[ user@computer ˜ ] $ su −c ’ mkdir /data ’

[ user@computer ˜ ] $ chown user : user / data

[ user@computer ˜ ] $ cd / data

[ user@computer ˜ ] $ mkdir a n a l y s i s da ta s e t s misc samples s e s s i o n s

E.2 Base Packages

First we must install a range of “base” packages on the target system; these packages

are needed for compiling and running the various subsystems of the tunnel software.

132
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This is done using yum on a Fedora/Redhat system. The system used with this

document was Fedora 11 x86 64.

[ user@computer ˜ ] $ su −c ’yum i n s t a l l ipython numpy sc ipy Cyrex

mod python gcc gcc−c++ cmake z l i b−deve l l ibpng−deve l f r e e g l u t−
deve l subver s i on mysql−deve l mysql−s e r v e r mysql−query−browser

mysql−admin i s t ra to r MySQL−python ’

The MySQL server should be started for the first time and configured:

[ user@computer ˜ ] $ su −c ’/ e t c / i n i t . d/mysqld s ta r t ’

[ user@computer ˜ ] $ su −c ’ m y s q l s e c u r e i n s t a l l a t i o n ’

[ user@computer ˜ ] $ mysql−admin i s t ra to r

From the graphical user interface, create a database (schema) for the tunnel, this is

usually called tunnel. Also a user must be created for accessing the database. Grant

the user full privileges over the newly created database. We will populate the database

with tables and data later; in section E.6.

E.3 The Vis4D Package

The Vis4D code contains a C++ library for handling images and volumetric data

along with a suite of applications for 3D reconstruction, manipulation of the 3D data

and also viewing the data. The code can be either obtained from an archive on the

DVD or from the ECS subversion server.

E.3.1 Copying from DVD sources

To obtain from DVD:

[ user@computer ˜ ] $ cp −rv /mnt/cdrom/Vis4D .

E.3.2 Downloading from subversion

To obtain from subversion:

[ user@computer ˜ ] $ svn co svn+ssh :// ec suse r@forge . e c s . soton . ac . uk/

p r o j e c t s / rds06r /Vis4D
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E.3.3 Compiling/installing the base library

As many of the tools in the Vis4D suite require the library, it must be built and

installed first. The library uses the CMake system to simplify the install process. Here

we will use the ccmake tool, which provides a user interface

[ user@computer ˜ ] $ cd ˜/Vis4D/ l i b /

[ user@computer l i b ] $ mkdir bu i ld

[ user@computer l i b ] $ cd bu i ld

[ user@computer bu i ld ] $ ccmake . .

Once the ccmake program has loaded, press c to configure the make process. Hopefully

no serious errors or warnings should be displayed. Exit the messages by pressing e,

now set CMAKE BUILD TYPE to Release. Also set all entries starting with

TUNNEL to the correct values. Press c again to reconfigure and exit the messages

again. In order to get the best performance out of the library, it is recommended that

you set the advanced build settings to reflect your computer’s processor. This is

achieved by pressing t to toggle the advanced settings. Then add -march=core2 to the

CMAKE CXX FLAGS RELEASE and CMAKE C FLAGS RELEASE fields (replace

core2 with the most appropriate type for your system — see the gcc manual for more

information). Finally, press c to reconfigure, exit the info screen with e, then press g

to generate the make files. Now compile and install the library:

[ user@computer bu i ld ] $ make

[ user@computer bu i ld ] $ su −c ’make i n s t a l l ’

E.3.4 Compiling/installing the viewer

The viewer can be compiled in a similar manner to the main library; using the CMake

system.

[ user@computer ˜ ] $ cd ˜/Vis4D/ viewer

[ user@computer viewer ] $ mkdir bu i ld

[ user@computer viewer ] $ cd bu i ld

[ user@computer bu i ld ] $ ccmake . .

The CMake configuration process is the same as in section E.3.3, making sure that

CMAKE BUILD TYPE is set to Release. Generate the make files by pressing g. Now

compile and install:

[ user@computer bu i ld ] $ make
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[ user@computer bu i ld ] $ su −c ’make i n s t a l l ’

E.3.5 Compiling/installing the other tools

The Vis4D suite contains a variety of tools for processing the 3D data and performing

3D reconstruction. Most of these tools reside in the apps sub-folder, whilst the

reconstruction code is in its own folder. First we will build the small applications:

[ user@computer ˜ ] $ cd ˜/Vis4D/apps

[ user@computer viewer ] $ mkdir bu i ld

[ user@computer viewer ] $ cd bu i ld

[ user@computer bu i ld ] $ ccmake . .

Configure and generate the makefiles, ensuring that all TUNNEL variables are correct

and that the CMAKE BUILD TYPE is set to Release. Adding -march=XXX to the

compiler flag entries will also help to improve performance. Now make and install:

[ user@computer bu i ld ] $ make

[ user@computer bu i ld ] $ su −c ’make i n s t a l l ’

[ user@computer ˜ ] $ cd ˜/Vis4D/ r e c o n s t r u c t i o n

[ user@computer viewer ] $ mkdir bu i ld

[ user@computer viewer ] $ cd bu i ld

[ user@computer bu i ld ] $ ccmake . .

Configure and generate the makefiles in the same manner as above.

[ user@computer bu i ld ] $ make

[ user@computer bu i ld ] $ su −c ’make i n s t a l l ’

E.4 Installing the tunnel toolchain

The tunnel toolchain is formed by a variety of different applications, and is mostly

written in Python. It’s primary purpose is to control the capture of data from the

tunnel and to automate the processing of the data. The toolchain can either be

decompressed from the DVD, or downloaded from the ECS subversion server.
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E.4.1 Copying from DVD sources

To obtain from DVD:

[ user@computer ˜ ] $ cp −rv /mnt/cdrom/Tunnel−Toolchain .

E.4.2 Downloading from subversion

To obtain from subversion:

[ user@computer ˜ ] $ svn co svn+ssh :// ec suse r@forge . e c s . soton . ac . uk/

p r o j e c t s / rds06r /Tunnel−Toolchain

E.4.3 Building and installing the Python package

One of the toolchain’s core components is the Python Tunnel package; this contains a

variety of modules for database access, data processing, calibration and much more.

The toolchain contains a mixture of pure python modules, Cython modules and

hand-written C modules. The package can be built using the standard python distutils

setup.py file:

[ user@computer ˜ ] $ cd ˜/Tunnel−Toolchain /Python−Package

[ user@computer Python−Package ] $ . / setup . py bu i ld

Upon running the setup.py script, a variety of configuration questions will be asked,

such as the MySQL server location (localhost if on the same computer), username and

password, along with the location to save the tunnel data. Once all questions have

been answered and the build is complete, install the package:

[ user@computer Python−Package ] $ su −c ’ . / setup . py i n s t a l l ’

E.5 Installing the web-interface

The tunnel toolchain’s web-interface provides a powerful way of controlling the

processing of data, developing new processing algorithms and performing recognition

experiments. The web-interface requires an apache webserver, with the mod python

extensions loaded. It is recommended the SELinux is disabled, as it can make the
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running of the web-interface problematic. The web-interface is located in

Tunnel-Toolchain/v4/ProcessSite. Either copy the web-interface directory into

apache’s document folder, or modify the apache configuration to access the site from

its current location.

E.6 Populating the tunnel toolchain with data

The tunnel toolchain can import data from two sources; either from a CD/DVD or by

downloading the data from boat.ecs.soton.ac.uk. A special script InstallDB.py can be

used to automate the process. Firstly, the script checks whether any of the tables need

creating. Secondly, the script downloads the database skeleton file from the webserver

boat.ecs.soton.ac.uk (or off the DVD/CD). Finally, the script will copy any samples

data off the DVD/CD and install them into the toolchain. If using a DVD or CD as

the data-source, please ensure that it is mounted in a subfolder under either /mnt or

/media; the script will check these locations for the data-files.

[ user@computer ˜ ] $ cd ˜/Tunnel−Toolchain /v5/ U t i l s

[ user@computer U t i l s ] $ . / Insta l lDB . py

If you would like to download samples from the webserver boat.ecs.soton.ac.uk, this can

be achieved by adding the Sample Downloader task for the corresponding samples.

The process of running tasks in the toolchain is described in section G.
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Processing Data Using the

Toolchain

F.1 Introduction

The toolchain has the ability to automate the processing of samples — this is done by

writing tasks; small Python scripts designed to run within a special environment

provided by the toolchain. The tasks and the corresponding code is all saved in the

tunnel’s MySQL database under the tasks table. The task queue table manages the

execution of the tasks, where each row specifies a task to be run, the sample to be run

on (optional), the priority, additional data needed by the task and also the execution

status of the task. Most tasks are either written to be run on a per sample basis, or as

a standalone task. The web-interface provides extensive facilities for creating, editing

and debugging tasks. Also, the Tunnel Python package provides a module called

DummyEnvironment, which creates an environment almost identical to that of the

toolchain; this is useful for developing under IPython. Below is an example of a simple

task, which loads all the colour face images (found by the face-finder task), resizes

them to 32× 32 and calculates the average; the result is then saved as a feature.

1 # Average Face

2 import numpy

3 import Image

4

5 UpdateStatus ( ” Fetching metadata” )

6 imageFi l e s = GetFi l e s ( ” f a c e image” )

7

8 UpdateStatus ( ” Ca l cu l a t ing Average Face” )

9 I n i t P r o g r e s s ( l en ( imageF i l e s ) )

10 avgImage = numpy . z e ro s ( (32 , 32 , 4) , ’ f ’ )

11 for imageFi le in imageF i l e s :
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12 p i l im = Image . open ( imageFi l e . Locat ion )

13 p i l im = pi l im . r e s i z e ( ( 32 , 32 ) )

14 fv = numpy . f r omst r ing ( p i l im . t o s t r i n g ( ) , ’ u1 ’ ) . reshape ( 32 , 32 ,

4 ) / 255 .0

15 avgImage += fv ∗ fv [ : , : , 3 : 4 ]

16 UpdateProgress ( )

17

18 mask = avgImage [ : , : , 3 : 4 ] > 5 # t h r e s h o l d above zero to ignore no i se

19 avgImage /= avgImage [ : , : , 3 : 4 ] + 0.0000001 # add a sma l l cons tant to

avoid NaN

20 avgImage = ( avgImage ∗ mask) + ((1 − mask) ∗ numpy . array ( [ 0 , 0 , 1 ,

1 . 0 ] ) ) # add a background c o l o u r to unoccupied r e g i o n s

21 avgImage = numpy . array ( avgImage [ : , : , : 3 ] , copy=True ) # remove the

a lpha channel

22 SetFeature ( ”Average Face” , ” s e n s o r s ” , 101 , avgImage )

In order to run these tasks outside of the tunnel toolchain (such as in IPython), the

following two lines must precede any task code:

1 from Tunnel . DummyEnvironment import ∗
2 InitEnvironment ( Sample ID=1000)

The tunnel toolchain task execution environment provides a range of variables and

functions for manipulating metadata within the database, simple threading, progress

feedback and handling the execution of tasks.

F.2 Variables/Objects

TQ ID The ID of the (task,sample) pair in the task queue

Task ID The ID of the task code

Sample ID The ID of the sample being operated on

Py Args Additional parameters passed to the task; often used for analysis tasks.

Py Args is usually a dictionary of variable name, value pairs. These variables are

also imported into the name space of the task, allowing direct access to the

variables.

Version What version of the tunnel toolchain is being used

DB An object containing an open connection to the MySQL database (DB.db) and a

cursor object (DB.c). DB.db.commit() is called after successful completion of the

task
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F.3 Classes/Objects

F.3.1 Success

This is an exception class, which can be raised to stop execution of the task and mark

it as successful

1 raise Success ( ”a s u c c e s s message” )

F.3.2 Error

This is an exception class, which can be raised to stop execution of the task and mark

it as unsuccessful

1 raise Error ( ”a s u c c e s s message” )

F.3.3 File

Constructor: File(ID=None, Location=None, Type=None, Format=None,

Frame=None, Comment=None, Sensors=None )

File attributes:

ID The ID of the file as used in the database (not needed for new files)

Location The location of the file on the filesystem

Type A string giving the type of the file

Format A string giving the format of the file (ie png or jpeg)

Frame The frame number of the file (optional)

Comment (optional)

Sensors A list containing the IDs of the file’s associated sensors (optional)

F.3.4 Job

Constructor: Job(Function, arg1, arg2, ...)

1 j=Job ( s h u t i l . copy , ”/tmp/ a f i l e ” , ”/tmp/ b f i l e ” )
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Constructor: Job(Program Name, arg1, arg2, ...)

1 j=Job ( ”cp” , ”/tmp/ a f i l e ” , ”/tmp/ b f i l e ” )

The job class is used to define a single operation to be done, it is used in conjunction

with the Jobs class

F.3.5 Jobs

Constructor: Jobs(jobs list)

The Jobs class is used for executing a number of repetetive tasks, it automatically

makes use of multiple threads if the executing process client allows and also provide

progress updates whilst running. The Jobs class is a sub-class of the standard Python

list class.

F.3.5.1 Jobs functions

append(item) Appends an item to the Jobs list. The item should be an instance of

the Job class.

run() Runs all the jobs in the list, returns a list containing the return values of each

job

raise errors() Raises an exception if any of the jobs failed

F.3.5.2 Jobs example

1 jobs = Jobs ( [ Job ( s h u t i l . copy , ”/somewhere/%d” . ”/ e l s e/%d” % ( i , i ) )

for i in range (10) ] )

2 jobs . run ( )

3 jobs . r a i s e e r r o r s ( )

4

5 def a func (n) :

6 time . s l e e p (1 )

7 return n∗n + n + 1

8

9 jobs = Jobs ( [ Job ( a func , i ) for i in range (10) ] )

10 r e t s = jobs . run ( )

11 # r e t s = [ 1 , 3 , 7 , 13 , 21 , 31 , 43 , 57 , 73 , 91 ]

12 jobs . r a i s e e r r o r s ( )
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F.4 Global Functions

AddFiles(files) Adds files to database - where files is a list of File objects.

SuggestLocation(filename, filetype, sensor=None) Constructs a string

containing the correct location for a file with name filename, type filetype and

associated sensor to be stored.

GetFiles(types) Retrieves a list of File objects from the database for the current

sample, returned files will all be of types contained in list types, or a single type

given as a string.

DeleteFiles(types) Deletes files from disk and from DB, list files contains File

objects to be deleted.

GroupFilesBySensor(files) Groups the given list of File objects by sensor ID, and

returns a dictionary mapping (sensor =¿ sensor files)

GroupFilesByFrame(files) Groups the given list of File objects by frame index,

and returns a dictionary mapping (frame =¿ frame files)

SortFilesByFrame(files) Sorts the given list of File objects by frame index, returns

sorted list of File objects

GetAttribute(attr) Get the first value of the given attribute

GetAttributes(attr) Gets all values for the given attribute

UpdateStatus(status) Updates the status of the running task to the given string

InitProgress(maxsteps, reset=False) Initialises the progress counter for the

current task, if reset is True then the progress is reset to 0

UpdateProgress(nsteps=1) Increment the progress counter

SetFeature(Feature Name, Source, Source ID, Value, Feature Help=””)

Updates or creates a feature for the current sample, where Source is the name of

the source table and Source ID is the ID of the feature generator in the source

table. Value may either be a list of values (for a vector) or a string or number.

GetFeature(Feature Name, Source=None, Source ID=None, Sample ID=None)

Retrieves single or multiple features of Feature Name for Sample ID (will default

to the task’s associated Sample ID). If Source and Source ID are specified, then

the single respective value is returned if found, or None otherwise. If Source ID

or Source is not specified, then a list of dictionary objects are returned,

containing the missing source and source id data along with the value.

SetAnalysisResult(Result Name, Result Value) Saves a result for the current

analysis task - Result Value can be a number, list, or numpy array
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GetAnalysisResult(Result Name) Retrieves a previously saved result for the

current analysis task



Appendix G

The Web Interface

G.1 Introduction

The Web-interface is a powerful tool allowing the control of processing tasks, the

editing and debugging of task code, the managing of datasets, sessions and samples

and the control of recognition experiments and other similar analysis tasks. The

web-interface is written in Python and runs from Apache using the mod python

extensions. The web-interface requires the tunnel PushChannel to be active, in order

to provide real-time processing status. Without the PushChannel running, the

web-interface will still function, but no feedback will be given whilst a task is running.

The PushChannel server is located in Tunnel-Toolchain/v5/ProcessConnector/.

Finally, one or more ProcessClients should be running, so that any tasks in the queue

can be executed; the client is located in Tunnel-Toolchain/v5/ProcessClient/. The

default behaviour of the client is to quit once the task queue becomes empty, this can

be prevented with the --persist option. The main web-interface is located at

http://boat.ecs.soton.ac.uk/process/.

G.2 The processing queue

The main page of the web-interface is the processing queue, as shown in Figure G.1.

The processing queue shows all the entries in the MySQL task queue table, with

information on each entry’s status. Clicking the right-mouse button on one of the

entries displays a sub menu, allowing you to view the corresponding sample or task

code, reprocess the entry, delete it or set its priority. If the task has completed or

raised an error, the sub menu also allows you to view the task’s standard output and

exception data.
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Figure G.1: The web-interface’s processing queue

Below the queue is is set of options for clearing all completed tasks and refreshing the

queue. The table below the queue show the status of each connected processing client.

G.3 Tasks

Clicking on Tasks at the top of the page will present a menu with all the tasks, along

with options to add a new task or view the execution dependency tree. Clicking on one

of the tasks will load a new page displaying the task’s code in a powerful javascript

code editor, featuring syntax highlighting and line numbering. There is also a link

underneath the editor, which loads a version of the task queue that only shows

instances of the current task. Figure G.2 shows the task editor, with the task queue

displaying the traceback of a failed execution.

G.4 Datasets

The datasets page can be accessed from the top menu bar of the web-interface by

clicking Datasets. The datasets page display information on all the datasets

contained within the toolchain’s database. Clicking the “+” link at the left of an entry

will open it up, displaying further information on the dataset, such as it’s sessions.

Opening a session will show the subjects that feature in that session. Each subject’s

entry contains their corresponding samples. The samples are coloured according to the

“quality” of the extracted gait cycle (where green is good, and red is bad). This can

prove helpful when trying to identify problems in a dataset. Clicking the right mouse

button on a dataset, session, subject or sample will present a pop-up menu, allowing
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Figure G.2: The web-interface’s task editor

you to add a task, or hold or continue processing for all the samples in the

corresponding item. The popup menu also provides options to display the

demographics for the item or add all its corresponding samples to a chosen sampleset.

Clicking on a sample will take you to an overview of the chosen sample. The overview

features basic information such as the sample’s subject, session, dataset, along with

much more advanced information including the gait cycle finder’s diagnostics, the

average silhouettes and a video player for the sample. The sample overview also

provides links to check the camera calibration and display a processing queue filtered

by only that sample.

G.5 Subjects

The subjects page provides a convenient mechanism for viewing small thumbnails of

every subject’s face. This makes it easier to locate subjects who are returning to

provide data, and do not know their tunnel ID. Clicking on a subject’s thumbnail will

display a filtered version of the datasets page, only showing the specified subject’s

samples.
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G.6 Samplesets

The samplesets page shows a summary of the samplesets in the tunnel system.

Samplesets provide a convenient way of grouping samples in sets, which is useful for

creating gallery and probe sets for analysis. Clicking the right-mouse button in the left

table will present a pop-up menu with options for deleting, splitting or editing the

chosen sampleset, along with creating a new sampleset. The samplesets are populated

using the datasets page, by clicking the right mouse button on the

dataset/session/subject/sample of choice and selecting the Add to sampleset option.

G.7 Analysis

The analysis page provides an interface for viewing and editing analysis experiments.

Clicking the right mouse button on the left list of analysis experiments will present a

popup-menu allowing you to create a new analysis task. The right hand box allows you

to configure the task. When Start Analysis is clicked, the system adds an instance of

the chosen root task to the task queue table, with the given configuration options

placed as a pythonic dictionary in the py args field. The processing task can access

these parameters through the Py Args variable, or by directly accessing the options by

their names. The user configurable options are specified as analysis property items

in the tunnel’s MySQL attributes table. When a completed analysis experiment is

selected, the results are displayed below the two tables.
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Publications

Sina Samangooei, John D. Bustard, Richard D. Seely, Mark S. Nixon and John N.

Carter. On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and

Semantic Data. In Multibiometrics for Human Identification; upcoming book. B.

Bhanu and V. Govindaraju, eds. Cambridge University Press.

• Contributed towards areas discussing the technical aspects of the Biometric

Tunnel.

Richard D. Seely, Michela Goffredo, John N. Carter and Mark S. Nixon. View

Invariant Gait Recognition. In Handbook of Remote Biometrics: for Surveillance and

Security, Springer. ISBN 978-1-84882-384-6

• Contributed towards a comprehensive literature review of modern gait analysis

techniques and an overview of the Biometric Tunnel.

Richard D. Seely, Sina Samangooei, Lee Middleton, John N. Carter and Mark S.

Nixon. The University of Southampton Multi-Biometric Tunnel and introducing a

novel 3D gait dataset. In Proceedings of IEEE Conference on Biometrics: Theory,

Applications and Systems, BTAS 08, September 2008.

• This paper was given as an oral presentation, describing the collection of the

large multi-biometric dataset and presenting early results using the first

one-thousand samples.

Michela Goffredo, Richard D. Seely, John N. Carter and Mark S. Nixon. Markerless

view independent gait analysis with self-camera calibration. In Proceedings of the

Eighth IEEE International Conference on Automatic Face and Gesture Recognition,

September 2008.

148



Appendix H Publications 149

• Made technical contributions towards project; setting up a capture system and

assisting in the capture of a small dataset.

Richard D. Seely, John N. Carter and Mark S. Nixon. Spatio-temporal 3D Gait

Recognition. In 3D Video Analysis, Display and Applications, February 2008.

• Presented a poster outlining the Biometric Tunnel and results from the small

evaluation dataset, collected to further develop the computer-vision algorithms

within the system.
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