
Steven M. Thompson Page 1 2/11/03

Biomolecular Sequence Alignment and Analysis:

Part I — BioInformatics: A SeqLab Introduction.

A GCG¥ Wisconsin Package‘ SeqLab“ Tutorial for the Woods Hole Oceanographic Institution.

c.o. Timothy M. Shank, PhD
MS 33 Redfield

Biology Department
Woods Hole Oceanographic Institution

Woods Hole, MA 02543
Tel. 508-289-3392
Fax. 508-457-2134

http://www.whoi.edu/WHOI/SciTechDir/timothy_m_shank.html

February 21, 2003

author: Steven M. Thompson

Florida State University
School of Computational Science & Information Technology
Tallahassee, Florida 32306-4120
telephone: 850-644-1010
fax: 850-644-0098

corresponding address:

Steve Thompson
BioInfo 4U
2538 Winnwood Circle
Valdosta, Georgia, 31601-7953
telephone: 229-249-9751
stevet@bio.fsu.edu

Steven M. Thompson Page 2 2/11/03

¥GCG is the Genetics Computer Group, part of Accelrys Inc., a subsidiary of Pharmacopeia Inc.,
producer of the Wisconsin Package‰ for sequence analysis.

” 2003 BioInfo 4U

Steven M. Thompson Page 3 2/11/03

BioInformatics: A SeqLab Introduction.

It’s a brand new field in the last twenty years or so, called various, often misunderstood names, that are largely subsets of
one another — computational molecular biology, biocomputing, sequence analysis, and now “bioinformatics,”
“genomics” and “proteomics.” But what does it mean? One way to think about computational biology is the reverse
biochemistry analogy — biochemists no longer have to begin a research project by isolating and purifying massive
amounts of a protein from its native organism in order to characterize a particular gene product. Rather, now scientists
can amplify a section of some genome based on its similarity to other genomes, sequence that piece of DNA, and, using
sequence analysis tools, infer all sorts of functional, evolutionary, and, perhaps, structural insight into a gene within it,
and then, perhaps, go on to cloning that gene, expressing the gene product, and finally purifying the protein. The process
has come full circle. The computer has become an important tool to be used at the beginning and throughout a research
project in assisting experimental design, not just a number-cruncher used at the end of the process. This is only possible
because of modern computational speed and power and the tremendous growth of the molecular databases.
Biocomputing’s explosive growth is reflected in and largely a result of the increase in the level of computational
processing power available, along with a concurrent exponential growth of the molecular sequence databases. GenBank
doubles in size almost every year! The current release, version 133, December 2002, has 28,507,990,166 bases, from
22,318,883 reported sequences.

Definitions — Much confusion abounds in the area, even concerning the names of the disciplines themselves. The terms
computational biology, biocomputing, bioinformatics, sequence analysis, molecular modeling, genomics, and proteomics
are often bantered about with little regard to what they really mean. All are interdisciplinary by nature, combining
elements of computer and information science, mathematics and statistics, and chemistry and biology. Each has elements
of one another. Biocomputing and computational biology are the most encompassing terms and can be considered
synonyms. They both describe using computers and computational techniques to analyze a biological system, whether
that is a biomolecular primary sequence or tertiary structure, or a metabolic pathway, or even a complex system such as
the interactions of populations within an ecological niche.

Bioinformatics necessarily intersects with this concept in that it describes using computational techniques to access,
analyze, and interpret the biological information in databases. However, these databases can be the traditionally
considered nucleic and amino acid sequence databases as well as three-dimensional molecular structure databases, but
can even include such disparate data collections as medical records or population statistics. Therefore, bioinformatics is a
type of biocomputing but also includes topics such as medical informatics that is not usually considered a part of
computational biology.

Within bioinformatics the sub-discipline of sequence analysis has a clearly defined scope. It is the study of biological
molecular sequence data for the purpose of inferring the function, interactions, evolution, and perhaps structure of
biological molecules. Molecular modeling can also be considered a type of bioinformatics, though it often isn’t. It is
necessarily a sub-discipline of computational structural biology, but uses the methodology and techniques of that
discipline as well sequence analysis’ similarity searching and alignment algorithms. That is why it is often referred to as
“homology modeling.”

Genomics is the sub-discipline of bioinformatics that is concerned not with individual molecular sequences, but rather
with sequences on a genomic scale. That is, genomics analyzes the context of genes or complete genomes (the total DNA
content of an organism) within and across genomes. Proteomics can be considered the subdivision of genomics
concerned with analyzing the complete protein complement, i.e. the proteome, of organisms, both within and between
different organisms. Structural genomics is the acquisition and analysis of the complete set of three-dimensional
structure coordinate data for an organism’s entire proteome (or a representative set thereof). Through analyses such as

Steven M. Thompson Page 4 2/11/03

these, it may eventually be possible to predict a completely unknown protein’s structure and function just based on its
deduced molecular sequence. Obviously this could be an incredible boost to the drug-design process and could go a long
way toward curing many disease processes. We have come a long way in structural prediction but are still a long way
from this goal. The comparative method is crucial to all these methods but, perhaps most obvious and key to genomics
and proteomics.

I. Databases: Content and Organization.

The International Human Genome Sequencing Consortium announced the completion of a "Working Draft" of the human
genome in June 2000; independently that same month, the private company Celera Genomics announced that it had
completed the first assembly of the human genome. As of February 2003, 115 complete, finished genomes were publicly
available for analysis, not counting all the virus and viroid genomes, 1263 and 34 respectively. Sixteen Archae[bacteria]
and 90 [Eu]Bacteria complete, annotated genomes were present. One nucleomorph genome, from the cryptomonad
Guillardia theta, and nine complete eukaryotic genomes, Anopheles gambiae, Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Encephalitozoon cuniculi, Plasmodium falciparumnew and yoelli, Saccharomyces cerevisiae, and
Schizosaccharomyces pombe, were finished and publicly available. The animals Danio rerio, Homo sapiens, and Mus musculus,
as well as the plants Avena sativa, Glycine max, Hordeum vulgare, Oryza sativa, Triticum aestivum, and Zea mays, have been
nearly completed but were not yet entirely finished. Over half of the genes in many of these organisms have predicted
functions based on previously studied bacterial genes. The Human Genome Project and numerous smaller genome
projects have kept the data coming at alarming rates. The primary nucleotide database in the U.S.A., GenBank, has
staggering growth statistics (http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html):

Year BasePairs Sequences

1982 680338 606
1983 2274029 2427
1984 3368765 4175
1985 5204420 5700
1986 9615371 9978
1987 15514776 14584
1988 23800000 20579
1989 34762585 28791
1990 49179285 39533
1991 71947426 55627
1992 101008486 78608
1993 157152442 143492
1994 217102462 215273
1995 384939485 555694
1996 651972984 1021211
1997 1160300687 1765847
1998 2008761784 2837897
1999 3841163011 4864570
2000 11101066288 10106023
2001 15849921438 14976310
2002 28507990166 22318883

Steven M. Thompson Page 5 2/11/03

What are primary sequences?

Primary refers to one dimensional — all of the “symbol” information written in sequential order necessary to specify a
particular biological molecular entity, be it polypeptide or nucleotide. The symbols are the one letter alphabetic codes for
all of the biological nitrogenous bases and amino acid residues and their ambiguity codes. Biological carbohydrates,
lipids and structural information are not included within this sequence; however, much of this type of information is
available in the reference documentation annotation associated with primary sequences in the databases.

What are sequence databases?

These databases are an organized way to store the tremendous amount of sequence information that accumulates from
laboratories worldwide. This data is piling up at exponential rates, as seen above. Each database has its own specific
formats and access to this information is most easily handled through various software packages and interfaces, either on
the World Wide Web or otherwise. Three major database organizations worldwide are responsible for maintaining most
of this data.

In the United States the National Center for Biotechnology Information (NCBI), a division of the National Library of
Medicine (NLM), at the National Institute of Health (NIH), supports and distributes the GenBank nucleic acid sequence
database and GenPept CDS (Coding Sequence) translations database. The National Biomedical Research Foundation
(NBRF), an affiliate of Georgetown University Medical Center, maintains the Protein Identification Resource (PIR)
database of polypeptide sequences, and the NRL_3D database of the peptide sequences whose three-dimensional
structure has been solved and deposited to the Protein Data Bank (PDB). NRL_3D was initiated by the U.S. Naval
Research Labs, but is now maintained by NBRF. It is a relatively small database, quick and easy to search, and serves as a
‘bridge’ between primary and tertiary information.

The European Molecular Biology Laboratory maintains the EMBL nucleic acid sequence database and the excellently
annotated Swiss-Prot protein sequence database (also supported by the Swiss Institute of Bioinformatics, SIB, at the
ExPASy server), as well as the minimally annotated TrEMBL (Translations from EMBL — those EMBL translations not yet
in Swiss-Prot) protein sequence databases, in Cambridge, UK; Heidelberg, Germany; and Geneva, Switzerland.
Additional, lesser-known, sequence databases include sites with the military, with private industry, and in Japan (the
DNA Data Bank of Japan, DDBJ). In most cases data is openly exchanged between the databases so that many sites
‘mirror’ one another.

What information do they contain, how is it organized, and how is it accessed?

Most sequence database installations are examples of complex ASCII/Binary databases. They often contain several very
long text files containing different types of information all related to particular sequences, such as all of the sequences
themselves, versus all of the title lines, or all of the reference sections. Binary files often help ‘hold together’ all of these
other files by providing indexing functions. Software is usually required to successfully interact with these databases
although systems level commands can be used if one understands the data's structure. Nucleic acid databases (and
TrEMBL) are split into subdivisions based on taxonomy (historical). Protein databases are often split into subdivisions
based on the level of annotation that the sequences have. Reference headers include much extremely valuable
information — author and journal citations, organism and organ of origin, and the FEATURES table. The features table
annotation lists all sorts of important regulatory, transcriptional and translational (CDS coding sequence), catalytic, and
structural sites, depending on the database. Actual sequence data follows the annotation. Becoming familiar with the
general format of sequence files for the type of software you use can save a lot of grief later.

Steven M. Thompson Page 6 2/11/03

Software routines are the most convenient method with which to access these databases. However, most methods require
that you know the proper sequence name and/or database identifier and those are usually discovered with some sort of
text searching program, again either on the World Wide Web or not. This brings up two points, locus names versus
accession numbers: The LOCUS, ID, and ENTRY names category in the databases are different than the Accession
number. Each sequence is given a unique accession number upon submission. This number allows tracking of the data
when entries are merged or split; it will always be associated with its particular data. Entry names may change; accession
numbers are forever; they just pile up. NCBI additionally has another identifier, the GI number. It’s all very confusing!

What changes have occurred in the databases — history and development?

The first well recognized sequence database was Dayhoff’s Atlas of Protein Sequence and Structure begun in the late
sixties. GenBank began in 1982, EMBL in 1980. They have all been attempts at establishing an organized, reliable,
comprehensive and openly available library of genetic sequences. Databases have long-since outgrown a hardbound
atlas. They have become huge and have evolved through many changes. Changes in format over the years are a major
source of grief for software designers and program users. Each program needs to be able to recognize particular aspects
of the sequence files; whenever they change, it's liable to throw a wrench in the works. NCBI’s ASN.1 format and its
Entrez interface, available on the Web or as a dedicated client-server program, attempt to circumvent these frustrations
somewhat. EMBL’s SRS (Sequence Retrieval System) found on the World Wide Web at all EMBL OutStations, and the
Wisconsin Package’s SRS derivative LookUp, also help people perform text searches in, interact with, and browse in the
sequence databases. Both WWW SRS and Entrez provide ‘links’ to associated databases so that you can jump from, for
instance, a chromosomal map location, to a DNA sequence, to its translated protein sequence, to a corresponding
structure, and then to a MedLine reference, and so on. They are very helpful!

What other types of bioinformatics databases are used?

Specialized versions of sequence databases include sequence pattern databases such as restriction and protease cut sites,
promoter regions, and protein motifs and profiles; and organism or system specific databases such as the sequence
portion of ACeDb (A C. elegans Database), FlyBase (Drosophila dataBase), and SGD (Saccharomyces Genome Database) and
the Ribosomal Database Project.

In general two other general types of databases are also accessed in bioinformatics — reference and three-dimensional
structure. Reference databases run the gamut from OMIM (Online Mendelian Inheritance In Man) to PubMed access to
MedLine (NCBI’s access to NLM’ bibliographic database of over 4,000 biomedical journals). Other databases that could
be put in this class include things like proprietary medical records databases and population studies databases.

Finally, the Research Collaboratory for Structural Bioinformatics (RCSB, a consortium consisting of three institutions:
Rutgers University, San Diego Supercomputer Center at University of California, San Diego, and the National Institute of
Standards and Technology) supports the three-dimensional structural Protein Data Bank (PDB). Other three-dimensional
structure databases include the Nucleic Acid Databank at Rutgers (NDB) and the Cambridge small molecule
crystallographic Structural Database (CSD).

II. So how does one do bioinformatics?

A. Often bioinformatics is done on the Internet through the World Wide Web. This is possible and easy and fun, but,
beside being a bit too easy too get sidetracked upon . . . the World Wide Web can not readily handle large datasets or
large multiple sequence alignments. These type of datasets quickly becomes intractable. You’ll know you’re there
when you try. In spite of that . . .

Steven M. Thompson Page 7 2/11/03

BioInformatics and the InterNet: the World Wide Web.

Some of my favorite World Wide Web sites for molecular biology, sequence analysis, and general bioinformatics:

Site URL (Uniform Resource Locator) Content

National Center Biotech' Info' http://www.ncbi.nlm.nih.gov/ databases/analysis/software

PIR/NBRF http://www-nbrf.georgetown.edu/ protein sequence database

ProteinDataBank http://www.rcsb.org/pdb/ 3D mol' structure database

Molecules R Us http://molbio.info.nih.gov/cgi-bin/pdb/ 3D protein/nuc' visualization

IUBIO Biology Archive http://iubio.bio.indiana.edu/ database/software archive

Univ. of Montreal MegaSun http://megasun.bch.umontreal.ca/ database/software archive

Japan's GenomeNet Server http://www.genome.ad.jp/ databases/analysis/software

European Mol' Bio' Lab' http://www.embl-heidelberg.de/ databases/analysis/software

European Bioinformatics Lab' http://www.ebi.ac.uk/ databases/analysis/software

The Sanger Institute http://www.sanger.ac.uk/ databases/analysis/software

Univ. of Geneva BioWeb http://www.expasy.ch/ databases/analysis/software

The Genome DataBase http://www.gdb.org/ Human Genome Project

Stanford Genomic Resource http://genome-www.stanford.edu/ various genome projects

Inst. for Genomic Research http://www.tigr.org/ microbial genome projects

HIV Sequence Database http://hiv-web.lanl.gov/ HIV epidemeology seq' DB

The Baylor Search Launcher http://searchlauncher.bcm.tmc.edu/ sequence search launcher

Pedro's BioMol Res' Tools http://www.public.iastate.edu/~pedro/research_tools.html extensive bookmark list

Harvard Bio' Laboratories http://golgi.harvard.edu/BioLinks.html nice bookmark list

BioToolKit http://www.biosupplynet.com/cfdocs/btk/btk.cfm annotated molbio tool links

Felsenstein's PHYLIP site http://evolution.genetics.washington.edu/phylip.html phylogenetic inference

The Tree of Life http://tolweb.org/tree/ overview of all phylogeny

Ribosomal Database Project http://rdp.cme.msu.edu/html/ databases/analysis/software

WIT Metabolism http://wit.mcs.anl.gov/WIT/ metabolic reconstructions

BIOSCI/BIONET http://net.bio.net/ biologists' news groups

Access Excellence http://www.accessexcellence.org/ biology teaching and learning

CELLS alive! http://www.cellsalive.com/ animated microphotography

Genetics Computer Group http://www.accelrys.com/products/gcg_wisconsin_package/ sequence analysis package

B. So what are the alternatives . . . ?

Other client-server protocols such as Network Entrez from NCBI; use and restrictions.

Desktop software solutions — public domain programs are available, but . . . complicated to install, configure, and
maintain. User must be pretty computer savvy. So, commercial software packages are available, e.g. MacVector,
DNAsis, DNAStar, etc.,

but . . . license hassles, big expense per machine, and database access all complicate matters!

Steven M. Thompson Page 8 2/11/03

C. Therefore, server-based solutions (e.g. the Wisconsin Package) — UNIX server computers.

One license fee for an entire institution and very fast, convenient database access on local server disks. Connections
from any networked terminal or workstation anywhere!

1. Operating system: command line operation hassles; communications software — telnet/ssh, xdmcp, and terminal
emulation; X graphics; file transfer — ftp/sftp/scp, and Mac Fetch; and editors — vi, emacs, pico (or desktop word
processing followed by file transfer [save as "text only!"]). So here’s a UNIX tutorial for you that we won’t take the
time to go through today, but I encourage you to do so at some point.

UNIX and Using X guides: Basic Unix for Neophytes.

An introduction and cheat sheet graciously stolen from the Internet and modified for bioinformatics use. I am indebted to
the countless, but unnamed, contributors to this summary — I apologize for my lack of credit giving and flagrant
copyright infringement. Hundreds of users country-wide are forever grateful; thank you. Steve Thompson, July, 1995
(updated several times since then).

GENERAL INTERFACE ISSUES

UNIX is an Operating System developed in the U.S.A., originally by BELL, then licensed to AT&T and now used in
various implementations on many different brands of minicomputers and scientific workstations the world over.
Appropriate communications software connects local personal microcomputers to UNIX hosts. The software used is
usually some variation of TELNET or SSH, public domain programs used to access remote hosts via Ethernet. Follow the
appropriate instructions for your system to access the host UNIX computer at your site.

UNIX is a line-oriented system similar to the old operating systems MS-DOS and VMS. Each command to the operating
system is terminated by the ‘return’ or ‘enter’ key. UNIX uses the ASCII character set and unlike some operating systems,
it supports both upper and lower case. The disadvantage of using both upper and lower case is that commands and file
names must be typed in the correct case. Most of the UNIX commands and file names are in lower case. This is different
from VMS where everything is mapped into upper case. UNIX command options are specified by a required space and
the hyphen character (-). UNIX does not use or directly support function keys. Special functions are generally invoked
using the ‘Control’ key. For example a running command can be aborted by pressing the ‘Control’ key (sometimes
labeled “CTRL”) and the letter c. The short form for this is generally written as CTRL-C or ^C. Using control keys instead
of special function keys for special commands is sometimes difficult for users to remember; however, the advantage is
that nearly every terminal and terminal program supports the control key, allowing UNIX to be used from a wide variety
of different terminals.

UNIX FILE SYSTEM & A SHORT TUTORIAL

The UNIX user interface has often been characterized as very unfriendly compared to other operating systems. However,
in the area of file systems, UNIX is quite straightforward. UNIX is the precursor of many of the tree structured file
systems of today including MS-DOS/Windows, VMS, and Macintosh. These file systems all consist of a tree of directories
and sub-directories. Commands (or mouse clicks) exist which allow you to move about the directory structure. These
commands are generally quite similar between systems. In UNIX these commands are as follows:

cd or chdir - change directory
pwd - print working directory
mkdir - make a new directory
ls - list the contents of the directory

Steven M. Thompson Page 9 2/11/03

In any tree structured file system the concept of where you are at in the tree is very important. There are two types of file
references. You can refer to a file relative to the current directory or refer to a file by its complete ‘path’ name. When the
complete name of a file is given the current position in the directory tree is ignored. When a user logs in to the system,
they are placed into their “home directory,” a portion of the disk space reserved just for them and designated from
anywhere in the system by the character string ‘$HOME.’ Note that the password is not displayed on the screen as you
enter it.

UNIX checks the username and password you typed, and if correct, will run your shell program and return the system
prompt. On UNIX systems the prompt may appear as many different forms depending on how the system administrator
has set up the user environment. Here I will use the percent sign (%) to represent the system prompt. It should not be
typed as part of the command. The shell program is your interface to the system. It interprets and executes your
commands. The most common UNIX shell is the C-shell, although a very popular alternative C shell, ‘tcsh,’ is often
available to maintain VMS-like command history arrow key recall and command editing features. When an account is
created, the home directory is created and associated with the account. To find the complete path to your home directory
simply type ‘pwd’ after you log in. The pwd command can be used at any point to keep track of whatever current
directory you happen to occupy:

login: example
Password:

% pwd
/disk4/usr/local/people/example

To list the files in your home directory, use the ‘ls’ command. There are many options to the ls command; look at them
by typing ‘man ls’. The most useful options are the ‘-l’ option and the ‘-a’ options. The command ‘ls -l’ will list the
files and directories in your current directory in the “long” form with extended information. A UNIX convention is that
files with a period as the first character in their name are not listed by the ls command unless the ‘-a’ “all” option is
given. This convention has lead to a number of special configuration files having periods as the first character in their
name. In general you do not want to mess with these files in your account until you are very comfortable with the
operating system. Examples of these types of files in many UNIX systems include the files .login, .cshrc, and .pinerc. You
may also create files beginning with a period if you do not want them to show up in a normal ls command. The following
are several examples of the ls command:

% ls
fileone two proj1

% ls -l
-rw------- 1 example 10028 Sep 26 11:00 fileone
-rw-rw---- 1 example 281 Oct 5 14:21 two
drwx------ 2 example 638 Aug 21 17:27 proj1

% ls -a
.login .cshrc fileone two proj1

In the output from ‘ls -l’ additional information regarding the file permissions, owner of the file, size, modification
date and file name is shown. In the output from ‘ls -a’ the additional files ‘.login’ and ‘.cshrc’ are shown. Both of
these files are executed when the user is logged in, much like AUTOEXEC.BAT and CONFIG.SYS are executed in MS-DOS
and LOGIN.COM is executed in VMS when you log in on those systems. The user can place commands in these files,
which can be used to customize each user’s individual environment. Subdirectories are generally used to group files
associated with one particular project or files of a particular type. For example, a person might store all of their
memorandums in a directory called ‘memo’. The mkdir command is used to create directories and the chdir (or cd)

Steven M. Thompson Page 10 2/11/03

command is used to move into directories. The special placeholder file ‘..’ allows you to move back up the directory
tree. Note that UNIX uses forward slashes ‘/’ to differentiate between subdirectories, not backward slashes ‘\’ like MS-
DOS or brackets ‘[]’ and periods ‘.’ like VMS. Along the same lines, but regarding file names, generally do not use any
punctuation other than periods, hyphens, or underscores and do not put spaces in them.

% ls
fileone two proj1

% mkdir memo

% ls
fileone two proj1 memo

% ls -l
-rw------- 1 example 10028 Sep 26 11:00 fileone
-rw-rw---- 1 example 281 Oct 5 14:21 two
drwx------ 2 example 638 Aug 21 17:27 proj1
drwx------ 2 example 638 Aug 22 14:47 memo

% pwd
/disk4/usr/local/people/example

% cd proj1

% pwd
/disk4/usr/local/people/example/proj1

% ls
main.c sub.c a.out

% cat main.c
- contents of main.c are displayed to the screen-

% cd ..

% pwd
/disk4/usr/local/people/example

% cat /disk4/usr/local/people/example/proj1/main.c
 - contents of main.c -

% cat proj1/main.c
- contents of main.c -

% cat main.c
main.c not found.

At the end of this example, the ‘cat’ command is used to show the use of relative and absolute file names. The first cat
command displays the contents of ‘main.c’ in the sub-directory proj1 of user example’s home directory. This reference is
a relative reference because it does not start with the slash ‘/’ character. The use of the cd command with two dots to go
back up to the parent of the current directory is also shown. After the ‘cd ..’ command pwd shows that we are “back”
in the home directory. The next cat command shows the use of an absolute file name that starts with a slash. This cat
succeeds because the file name is completely specified as the complete path name and the file name. The following
command ‘cat proj1/main.c’ also succeeds because relative to the home directory, the sub-directory and file name
are correctly specified. The command ‘cat main.c’ in the home directory does not find the file stored in the sub-
directory. Other file system commands:

rm - remove a file

Steven M. Thompson Page 11 2/11/03

mv - rename, i.e. 'move,' a file or group of files
cp - copy a file to another file or a set of files into a directory

YOUR LOGIN ENVIRONMENT

Nearly all operating systems have some way to customize your login environment with editable configuration files. On
most UNIX systems there is a file which is executed for every login called ‘.login’ and another one that sets up the
‘shell’ environment called ‘.cshrc.’ Please take a look at these files; once you are comfortable with the operating system
you may choose to modify them in order to customize the manner in which your account interacts with the system. A
common customization is to automatically activate GCG upon login with the command ‘gcg’ at the bottom of your
.login file.

GENERAL COMMAND SYNTAX

The general command syntax is a command followed by some options, and then some parameters. If a command reads
input, the default input for the command will generally come from the interactive terminal. The output from a system
level command (if any) will generally be printed out on the users terminal. The command syntax allows the input and
outputs for a program to be redirected into a file or the output of one program can be passed as the input to another
program. General command syntax is as follows:

cmd
cmd -options
cmd -options parameters

To cause the command to read from a file rather than the terminal, the < sign is used on the command line; use the > sign
to cause the program to write its output to a file (for those programs that do not do this by default):

cmd -options parameters < input
cmd -options parameters > output
cmd -options parameters < input > output

To cause the output from one program to be passed to another program as input a vertical bar (|), known as the “pipe,” is
used.

cmd -options parameters | cmd2

This feature is called “piping” the output of one program into the input of another. Some useful examples of command
redirection and piping are shown below with the ls command and the more command which allows paging through
directory listings:

ls -la | more
ls -la /etc > tmpout
more tmpout

THE USE OF WILDCARDS AS FILE PARAMETERS

Generally when a UNIX command expects a file name, such as the command, ‘more filename’, it is possible to specify
a group of files using one or more wild card expressions. The special characters that cause wild card searching to be
performed are as follows:

* Matches any string of characters zero or longer
? Matches any single character

Steven M. Thompson Page 12 2/11/03

The following are some examples of commands using wild card characters:

more dat*
more d?t
more ???crs
more */*.c
more */raisememo

The second to last example will find all files ending in ‘.c’ in all subdirectories below the current directory and display
those files one page at a time to your terminal screen, pausing between each file. The last example will display all files
named ‘raisememo’ in all subdirectories below your current directory.

The grep command is very useful as it allows searching through many files for a pattern. The first parameter to grep is a
search pattern. If no files are specified, grep will scan its “standard input” for lines containing the pattern and write them
to “standard output,” i.e. your terminal screen. You may also specify a list of file names on the grep command. For
example if you had a bunch of different C programs in several sub-directories and wanted to find the one which called
the fopen subroutine, you could use the following command:

grep fopen */*.c

Wild cards are very flexible in UNIX which makes them very powerful but you must also be extremely careful when
using them in potentially destructive commands such as rm (remove file).

IMPORTANT UNIX COMMANDS AND KEYSTROKES

Important conventions used in UNIX:

< . > Current working directory.
< .. > Parent directory of current working directory.
< ~ > User’s home directory (C and T shell only, also $HOME).
< & > Execute the specified command in another process.

Commands to get information about the operating system:

man ls Gets you a manual page on the ls command.
man -k batch Gets you the title lines for every command with the word batch in the title.

Command to change your password:

passwd Change your login password

Commands for looking at the system, other users, your login sessions, jobs which you are running, and command
execution:

uptime Shows the time since the system was last rebooted. Also shows the“load average”. Load
average indicates the number of jobs in the system ready to run. The higher the load average
the slower the system will run.

who Shows who is logged on to the system.
w Shows who is logged in to the system doing what.
top Shows the most active processes on the entire machine and the portion of CPU cycles assigned

to running processes. Press “q” to quit. (Not always installed.)
finger Gets information about a user or machine.

Steven M. Thompson Page 13 2/11/03

ps Shows your current processes and their status (running, sleeping, idle, terminated, etc.); (use
man pages as options widely vary, see especially –a,-e,-l, and -f).

at Submit script to the at queue for execution later.
bg Resumes a suspended job in background mode.
fg Brings a background job back into interactive mode.

The following commands affect the file system and access files. The basic file commands:

cat file Shows the contents of a file on your screen and concatenates files, e.g: (cat file1
file2 > file3).

more file Shows the contents of your file at the terminal pausing to allow you to press space to
continue. Type a ? when the scrolling stops for viewing options (less also
sometimes available; it is more powerful than more).

pico file A text editor provided in the pine mailer; appropriate for general text editing but not
on all systems (vi also available as default UNIX text editor but it is quite difficult to
master; emacs may also be available).

head file Shows the first few lines of a file.
tail file Show the last few lines of a file.
grep ptrn file Show the lines in the file which contain the specified pattern.
wc file Counts the number of characters, words, and lines in a file.
cp file1 file2 Copies file1 to file2. Any previous contents of file2 are lost.
mv file1 file2 Renames (moves) file1 to file2. Any previous contents of file2 are lost.
mv file dir Moves the specified file into the specified directory keeping the original file name.
rm file Deletes (removes) a file. It is unrecoverable!
chmod perm Changes the permissions of a file. See man chmod for details.
lpr file Prints the specified file on the default system printer.

Directory commands:

pwd Print Working Directory. Shows you where you are at in the file system. Very useful
when you get confused.

ls Shows (lists) your files’ names.
ls -l Shows your files’ names in extended (long) format including file size, ownership, and

permissions.
ls -al Shows all files including the system files (.files) in your directory in the long format.
mkdir dir Makes a new directory in your current directory.
rmdir dir Removes a sub-directory from your current directory. Directory must be empty to

remove the directory.
rm -r dir Removes all the files, and subdirectories of a directory and then removes the

directory. Very convenient, useful and dangerous.
cd Move back into your home directory from anywhere.
cd dir Move down into a directory from your current directory.

Usually it is best to leave programs using the quit or exit commands, however, occasionally it is necessary to terminate a
running program. Here are some useful commands for doing this. Commands for bailing out of programs:

Steven M. Thompson Page 14 2/11/03

<Ctrl c> Aborts a running process (program); no option for restarting it later.
<Ctrl d> Terminates a UNIX shell, i.e. exit present control level and close the file. Use ‘logout’ to

exit from your top level login shell.
<Ctrl z> Pauses (suspends) a running process and returns the user to the system prompt. The

program can be restarted by typing ‘fg’ (foreground). If you type ‘bg’ (background) the
job will also be started again, but in background mode. Notice this is NOT the same as
VMS’s <Ctrl z> which is more like UNIX’s <Ctrl d>.

kill –9 psid Kills, using the “sure kill” option, a process with the given process ID. This number is
obtained using some variation of the ps command.

The following commands provide simple access to some of the networking capabilities of UNIX (host refers to a
computer’s fully qualified Internet name, e.g. zen.art.motorcycle.com):

ftp host File Transfer Protocol. Allows a limited set of commands (dir cd put get etc.); help gives
help

telnet host Connects to another ethernet connected host.
ssh host Secure, encrypted connection to another ethernet host.
pine E-mail access/use (not always installed; mail is default UNIX mailer).
talk user Allows you to have an on-line screen dialog with another user on the system. Talk may

also be able to talk between systems. The form ‘talk user@host’ is used in these cases.

Most commands have on-line documentation available through the man pages.

Steven M. Thompson Page 15 2/11/03

A quick reference for previous users of VMS who are trying to learn UNIX follows. Look for a task or VMS command to
choose the appropriate UNIX command.

To ... VMS UNIX

end a program <Ctrl y> <Ctrl c>
suspend a program (none available) <Ctrl z>
exit current command level <Ctrl z> <Ctrl d>
display list of files DIRECTORY ls

DIRECTORY/FULL ls -al

display contents of file TYPE cat

display file with pauses TYPE/PAGE more,
less

display first few lines of file head

display last few lines of file tail

edit a file EDT, EVE pico, vi
copy file COPY cp

compare files DIFF diff

cmp

rename file RENAME mv

delete file or directory DELETE rm

rmdir

change file protection SET FILE/PROT chmod

change file ownership SET FILE/OWNER chown

create directory CREATE/DIR mkdir

change working directory SET DEFAULT cd

display working directory SHOW DEFAULT pwd

get help HELP man

apropos

display date and time SHOW TIME date

display free disk space SHOW DEVICE df

stop process STOP kill

link program modules LINK ld

print file PRINT lpr

display print queue SHOW QUEUE lpq

display print entries SHOW ENTRY lpq

change password SET PASSWORD passwd

display logged-in users SHOW USERS who

and information finger

about them w

display processes SHOW PROCESS ps

change terminal settings SET TERMINAL stty

talk to another user PHONE talk

disable messages SET NOBROADCAST mesg n

SPECIFIC DIFFERENCES BETWEEN THE VMS AND UNIX GCG PACKAGE

This section is intended for people who are already familiar with the VMS version of the GCG Package. It explains the
differences between running the GCG Package in the VMS and UNIX environments. In both the VMS and UNIX versions
of the GCG Package, you run a GCG program by entering information on the command line — after the VMS $ prompt
and the UNIX % prompt. The command line can contain the name of a command, command qualifiers, qualified
parameters (qualifiers with values), and unqualified parameters (usually file names). The general syntax, or structure, of
a VMS command is:

COMmand /QUALifier /QUALifier=Parameter Parameter

As with all VMS commands, spaces on the command line are ignored (except the required space in front of an unqualified
parameter), characters can be typed in upper case or lower case (case insensitivity), qualifiers are indicated by a ‘/’
(slash), qualified parameters are indicated by an ‘=’ (equals sign), and the upper case typeface indicates the fewest
number of characters you can enter. An example of a GCG command using VMS syntax is:

MAPPLot /CIRcular /OUTfile=pBR322.MapPlot Gb:Synpbr322

A UNIX command varies in several ways from a VMS command. The general syntax of a UNIX command is:

command -QUALifier -QUALifier=Parameter Parameter

Steven M. Thompson Page 16 2/11/03

The main difference between the VMS and UNIX versions of GCG is that command names must be typed either in full or
with site specific aliases — generalized abbreviation does not work — and all in lower case. In addition, qualifiers are
indicated with a required space and a ‘ -’ (hyphen), instead of a ‘/’. In both versions, qualified parameters are indicated
by an ‘=’ and spaces are not accepted between a qualifier and its parameter(s). The case of unqualified parameters can
vary, as well as that of the qualifier itself, but if the unqualified parameter is a file name, you must enter the file name in
the exact case shown in your directory listing. As in VMS, qualifiers can be abbreviated down to the minimum number of
characters indicated by upper case. An example of the mapplot GCG command using UNIX syntax is:

mapplot -CIRcular -OUTfile=pbr322.mapplot Gb:Synpbr322

The GCG commands ‘up,’ ‘down,’ ‘over,’ and ‘home,’ can be used to move about your directory structure in lieu of the
UNIX command ‘cd.’

Certain printing (non-control) characters have special meaning to the UNIX shell (see man csh for more information).
Although these characters, called shell metacharacters, may have no particular meaning in a VMS environment, they do
have meaning in your UNIX environment. You rarely type shell metacharacters on the command line because they are
punctuation characters. However, if you need to use them for some reason, you must precede them with a ‘\’ (backslash)
character or enclose them in ‘'‘ (single quotes). The ‘*’ (asterisk) , ‘?’ (question mark), and ‘~’ (tilde) characters are used
for the shell file name “globbing” facility. When the shell encounters a command-line word with a leading ‘~’, ‘*’ or ‘?’
anywhere on the command line, it attempts to expand that word to a list of matching file names as follows: A leading ‘~’
expands to the home directory of a particular user. Each ‘*’ is interpreted as a specification for zero or more of any
character. Each ‘?’ is interpreted as a specification for exactly one of any character. For example, the pattern ‘dog*’ will
find matches for, among others, files named ‘dog’, ‘dogg’, and ‘doggy’. The pattern ‘dog?’ matches, among others,
‘dogg’ but not ‘dog’ or ‘doggy’. It is an error to use a globbing character in the absence of any matching files. Because ‘*’
and ‘?’ are frequently used characters for specifying families of database entries, GCG provides an alias for each GCG
command that disables globbing. Therefore, you can use these characters on your command line when invoking GCG
programs.

This document is intended to give you some perspective on the UNIX operating system and guide you toward learning
more about it. UNIX is not the easiest computer operating system to learn. Have patience, ask questions, and don’t get
down on yourself just because it doesn’t seem as easy as some other computer operating systems. The power and
flexibility of UNIX is worth the extra effort. UNIX is becoming the defacto standard operating system in more and more
computing environments today, particularly scientific computing, so the effort will not be wasted.

Using X between different UNIX computers.

These are the bare-minimum instructions necessary for connecting to a UNIX host computer from another UNIX
computer using X. Not all commands are necessary in all cases, as sometimes they are set by your account environment;
however, I’ll supply a complete set. In most cases fully qualified Internet names can be used in these procedures,
however, depending on local name servers, you may need to specify IP numbers. A fictitious example host machine,
zen.art.motorcycle.com, has the following name and number:

zen.art.motorcycle.com 999.999.99.99

You will need to know your own machine’s name and/or number as well as the host's.

Steven M. Thompson Page 17 2/11/03

Log on to your UNIX workstation account in the customary manner. Depending on the workstation, you may want to
specify an xterm terminal window. On most systems:

Optional: > /usr/bin/X11/xterm &
On Solaris: > /usr/openwin/bin/xterm &

Following UNIX X commands with an ampersand, "&," is helpful so that they are run in the background in the new
window in order to maintain control of the initial window. Some helpful options supported in most versions of xterm are
“-ls” so that your login script is read, “-sb -sl 100” to give you a 100 line scroll back capability, “-tn vt220” to
take advantage of vt220 terminal features, and “-fg Bisque -bg MidnightBlue” to give you nice light colored
characters on a dark blue background.

Then at your workstation’s UNIX prompt, authorize X access to the host with the xhost command:

> xhost +zen.art.motorcycle.com (may not be necessary)

Next connect to the host with the telnet, ssh, or rlogin command, whichever is the preferred route; e.g:

> ssh -X thompson@zen.art.motorcycle.com (-X sets the X environment for you)

This should produce a login window. Log in as usual, then, if necessary, issue the following command on the host to
setup the X environment (for the c shell and its derivatives), where your_IP_node_name represents the Internet name or
number of the workstation that you are sitting at:

Host> setenv DISPLAY your_IP_node_name:0 (again, may not be necessary)

It is probably best to run commands from an X terminal window rather than from a default console window as is often
created by a remote connection. Therefore, after setting up your environment, an option is to launch xterm by minimally
issuing the xterm command to the host (as discussed above, many options are available).

After GCG has initialized, you can run “setplot” choosing the appropriate choice to produce a colored GCG X graphics
window. Run commands from the xterm window. Graphics will be displayed in the graphics window. Another option
is to launch the Wisconsin Package Graphical User Interface by typing “seqlab &.” This graphical user interface
provides GCG functions from a point and click menu interface. More information on SeqLab is available through
GenHelp.

X server emulations — on PCs and Macs: On pre-OS X Macintoshes I have tested both MacX and eXodus. MacX is by far
the easiest of all the X servers I have tested to install and configure though eXodus seems a bit more robust. Tenon’s
Xtools is a good commercial product for getting a true X environment under Apples’ new OS X; XDarwin does it for free
with public domain software. In the PC/Windows world I have used Xwin32, eXcursion, and eXceed. In most X server
emulations the setenv command is not required as this information is usually sent by the X server software on the
personal computer upon connection. The xterm command is usually sufficient for creating an xterm window. Refer to
your own software’s documentation for more details as it is impossible to describe all situations.

2. The Genetics Computer Group — the Wisconsin Package for Sequence Analysis. Begun in 1982 in Oliver Smithies’
lab at the Genetics Department at the University of Wisconsin, Madison, then a private company for over 10 years,
then acquired by the Oxford Molecular Group, and now owned by Pharmacopeia under the new name Accelrys, Inc.,
the suite contains almost 150 programs designed to work in a "toolbox" fashion. Several simple programs used in
succession can lead to sophisticated results. Also 'internal compatibility,' i.e. once you learn to use one program, all

Steven M. Thompson Page 18 2/11/03

programs can be run similarly, and, the output from many programs can be used as input for other programs. Used
all over the world by more than 30,000 scientists at over 530 institutions in 35 countries, so learning it here will most
likely be useful anywhere else you may end up.

a. Specifying Sequences and Logical Terms! To answer the always perplexing GCG question — “What sequence(s)? . .
. .” Specifying sequences, GCG style; in order of increasing power and complexity:

i. The sequence is in a local GCG format single sequence file in your UNIX account. This sequence file can be
anywhere in your account as long as you supply an appropriate ‘path’ so that the program can find the file. The
sequence file can have any name but it is best to use extensions that tell you what type of molecule it is, e.g. .seq and
.pep (my.pep or ~user/subdir/my.seg). Use the program ‘reformat’ to convert ‘raw’ text format files to GCG
format (first use ‘chopup,’ if the sequence is one continuous line without line feeds).

This is a small example of 'raw' GCG single sequence format.
Always put some documentation on top, so in the future you
can figure out what it is you're dealing with! Two periods
always separate that documentation from the actual data.

..

ACTGACGTCACATACTGGGACTGAGATTTACCGAGTTATACAAGTATACAGATTTAATAGCATGCGATCCCATGGGA

Next the clean GCG format single sequence file after ‘reformat’:

This is a small example of GCG single sequence format.
Always put some documentation on top, so in the future
you can figure out what it is you're dealing with! The
line with the two periods is converted to the checksum line.

example.seq Length: 77 July 21, 1999 09:30 Type: N Check: 4099 ..

 1 ACTGACGTCA CATACTGGGA CTGAGATTTA CCGAGTTATA CAAGTATACA
51 GATTTAATAG CATGCGATCC CATGGGA

ii. The sequence is in a local GCG database in which case you ‘point’ to it by using any of the GCG database logical
names. These names make sense and are either the name of the database or an abbreviation thereof. Subcategory
logical names can be used for nucleotide databases, such as bacterial. Most GCG logical database names are listed on
the accompanying list. A colon, “:,” always sets the logical name apart from either an accession code or a proper
identifier name or a wildcard expression and they are case insensitive. Several examples follow: GenBank:EctufBT,
gb:x57091, SwissProt:EFTu_Ecoli, sw:p02990, PIR:EfEcTA, and p:a91475 all refer to the elongation factor Tu in E. coli.
If you know that the database uses consistent naming conventions, then you can use a wild card to specify all of a
particular type of sequence. This works particularly well in SwissProt; e.g. SW:EFTu_* specifies all of the EFTu
sequences in SwissProt. Because all the sequences are available in local GCG databases, it is seldom necessary to put
individual sequences in your account.

iii. The sequence is in a GCG format multiple sequence file, either an MSF (multiple sequence format) file or an RSF (rich
sequence format) file. The difference is that MSF files contain only the sequence names and sequence characters,
whereas RSF files contain names, annotation, and actual sequence data. As in GCG single sequence format, it is
always best to retain the suggested GCG extensions, msf or rsf, in order for you to easily recognize what type of file
they are without having to look, though it is not required and they could just as well be named Joe.Blow. To specify
sequences contained in a GCG multiple sequence file, supply the file name followed by a pair of braces, “{},”
containing the sequence specification. For example, to specify all of the sequences in an alignment of elongation 1a

and Tu factors, one may use a naming system such as the following: ef1a-tu.msf{*}. Furthermore, one can point to
individual members of the alignment or subgroups by specifying their name within the braces, e.g. EF1a-

Steven M. Thompson Page 19 2/11/03

Tu.rsf{eftu_ecoli} to point just to the E coli sequence or EF1a-Tu.rsf{eftu_*} to point at all of the EfTu’s as long as you
use a sequence naming convention that retains this convention.

iv. Finally, the most powerful method of specifying sequences is in a GCG “list” file. This file can have any name
though it is convenient to use the GCG extension “.list” to help identify them in your directory. It is merely a list of
other sequence specifications and can even contain other list files within it. The convention to use a GCG list file in a
program is to precede it with an at sign, “@.” Furthermore, one can supply attribute information within list files to
specify something special about the sequence. This is especially helpful with length attributes that can restrict an
analysis to specific portions of a sequence and can be seen in the example below:

An example GCG list file of many elongation 1a and Tu factors follows. As with all GCG data
files, two periods separate documentation from data. ..

my-special.pep begin:24 end:134
SwissProt:EfTu_Ecoli
Ef1a-Tu.msf{*}
/usr/accounts/test/another.rsf{ef1a_*}
@another.list

b. Logical terms for the Wisconsin Package.

Sequence databases, nucleic acids:

GENEMBLPLUS all of GenBank plus abridged EMBL plus EST and GSS GB all of GenBank except the EST and GSS subdivisions
GEP all of GenBank plus abridged EMBL plus EST and GSS GENBANK all of GenBank except the EST and GSS subdivisions
GENEMBL all of GenBank plus abridged EMBL except EST and GSS GB_BA GenBank bacterial subdivision
GE all of GenEMBL GB_EST GenBank EST (expressed sequence tags) subdivision
BA GenEMBL bacterial subdivisions GB_GSS GenBank GSS (genome survey sequences) subdivision
BACTERIAL GenEMBL bacterial subdivisions GB_IN GenBank invertebrate subdivision
EST GenEMBL EST (expressed sequence tags) subdivisions GB_OM GenBank other mamalian subdivision
GSS GenEMBL GSS (genome survey sequences) subdivisions GB_OV GenBank other vertebrate subdivision
IN GenEMBL invertebrate subdivisions GB_PAT GenBank patent subdivision
INVERTEBRATE GenEMBL invertebrate subdivisions GB_PH GenBank phage subdivision
OR GenEMBL organelle subdivisions GB_PL GenBank plant subdivision
ORGANELLE GenEMBL organelle subdivisions GB_PR GenBank primate subdivision
OM GenEMBL other mammalian subdivisions GB_RO GenBank rodent subdivision
OTHERMAMM GenEMBL other mammalian subdivisions GB_ST GenBank structrual RNA subdivision
OTHERMAMMAL GenEMBL other mammalian subdivisions GB_STS GenBank STS (sequence tagged sites) subdivision
OV GenEMBL other vertebrate subdivisions GB_SY GenBank synthetic subdivision
OTHERVERT GenEMBL other vertebrate subdivisions GB_TAGS GenBank Tags subdivisions
OTHERVERTEBRATE GenEMBL other vertebrate subdivisions GB_UN GenBank unannotated subdivision
PAT GenEMBL patent subdivisions GB_VI GenBank viral subdivision
PATENT GenEMBL patent subdivisions
PH GenEMBL phage subdivisions EM all of abridged EMBL except the TAGS subdivisions
PHAGE GenEMBL phage subdivisions EMBL all of abridged EMBL except the TAGS subdivisions
PL GenEMBL plant subdivisions EM_BA EMBL bacterial subdivision
PLANT GenEMBL plant subdivisions EM_EST EMBL EST (expressed sequence tags) subdivision
PR GenEMBL primate subdivisions EM_FUN EMBL fungal subdivision
PRIMATE GenEMBL primate subdivisions EM_GSS EMBL GSS subdivision
RO GenEMBL rodent subdivisions EM_IN EMBL invertebrate subdivision
RODENT GenEMBL rodent subdivisions EM_OM EMBL other mammalian subdivision
ST GenEMBL structural RNA subdivisions EM_OR EMBL organelle subdivision
STRUCTURAL GenEMBL structural RNA subdivisions EM_OV EMBL other vertebrate subdivision
STRUCTURAL_RNA GenEMBL structural RNA subdivisions EM_PAT EMBL patent subdivision
STS GenEMBL (sequence tagged sites) subdivision EM_PH EMBL phage subdivision
SY GenEMBL synthetic subdivisions EM_PL EMBL plant subdivision
SYNTHETIC GenEMBL synthetic subdivisions EM_PR EMBL primate subdivision
TAGS GenEMBL EST and GSS subdivisions EM_RO EMBL rodent subdivision
UN GenEMBL unannotated subdivisions EM_STS EMBL STS (sequence tagged sites) subdivision
UNANNOTATED GenEMBL unannotated subdivisions EM_SY EMBL synthetic subdivision
VI GenEMBL viral subdivisions EM_TAGS EMBL Tags subdivisions
VIRAL GenEMBL viral subdivisions EM_UN EMBL unannotated subdivision

EM_VI EMBL viral subdivision

Steven M. Thompson Page 20 2/11/03

Sequence databases, amino acids: General GCG logicals:

Sequence databases,
amino acids:

GENPEPT GenBank CDS translations GENMOREDATA path to GCG optional data files
GP GenBank CDS translations GENRUNDATA path to GCG default data files
SWP all of Swiss-Prot and all of SPTrEMBL TERM user’s terminal port (dev/tty)
SWISS all of Swiss-Prot and all of SPTrEMBL PRINTPORT user’s terminal print port
SWISSPROT all of Swiss-Prot (fully annotated) PLOTPORT user’s terminal graphics port
SW all of Swiss-Prot (fully annotated)
SPTREMBL Swiss-Prot preliminary EMBL translations
SPT Swiss-Prot preliminary EMBL translations
P all of PIR Protein
PIR all of PIR Protein
PROTEIN PIR fully annotated subdivision
PIR1 PIR fully annotated subdivision
PIR2 PIR preliminary subdivision
PIR3 PIR unverified subdivision
PIR4 PIR unencoded subdivision
NRL_3D PDB 3D protein sequences
NRL PDB 3D protein sequences

c. SeqLab — a brief history — Steve Smith’s GDE + GCG’s WPI.

While working on bacterial ribosomal RNA phylogenies with Walter Gilbert and Carl Woese, Steve Smith realized
the need for a comprehensive multiple sequence editor. Nothing existed at the time that satisfied him, so he invented
one. In addition to providing the vital editing function, it also served as a menuing system to external functions such
as PHYLIP routines and Clustal alignments. He called it the “Genetic Data Environment.” Many people were very
impressed and he made it freely available. Coincidentally GCG realized the need for some sort of a ‘point-and-click’
environment for their system. They were losing lots of business, only being able to provide a command line
interface. Therefore, they started trying to develop a graphical user interface (GUI) for the Wisconsin Package. They
called it the “Wisconsin Package Interface.” Nobody was impressed — it was a terrible attempt. It only provided a
menu to their programs, hardly anything more than the “-check” option they’ve always had. So they did a natural
and very smart thing. They hired Steve Smith away from Millipore, where he had newly moved, into their company,
so that he could merge his GDE with their WPI. The offspring was SeqLab, and, thank goodness, they threw away
the acronyms. As ‘they’ say “The rest is history” and once more GCG’s customers are (generally) happy.

SeqLab, an X-based GUI to the Wisconsin Package — and some illustrative examples: Glutathione Reductase, G-
protein coupled TM7 receptors, primate prions, Human Papilloma Virus L1 major coat protein, Major
Histocompatibility Class II, Vicilin seed storage proteins, and Elongation Factor 1a/Tu.

III. For more information participate in the rest of the workshop. An assignment . . .

If you still want to learn more, read the Introduction to my tutorial, section 1 for about the first twenty pages, skim
through the remainder of the material, and then work through the tutorial examples, either in the hands-on
workshop, or at your own time. The tutorial — the Elongation Factor 1a protein from ‘lower’ eukaryotes.

