Dos and Don'ts for Piano Servicing

Norman Brickman, MPT October 19, 2024

Objectives

- To offer guidelines for piano tunertechnicians on:
 - Enabling best value-add to our customers
 - Focusing on the important job requirements
- Provide guidance to the pianoowning public

Contents (1 of 3)

- 1) Tuning Pin Stability
- 2) Tuning Hammer Technique
- 3) Ambidextrous Tuning
- 4) Muting and Unisons
- 5) Aural versus Visual Tuning
- 6) Reject Non-Standard Tunings
- 7) Piano Technician Groups

Contents (2 of 3)

- 8) Get benchwork experience
- 9) Use of Hearing Aids
- 10) Loose Tuning Pins
- 11) Humidity Control
- 12) Soundboard Cracks
- 13) Pitch Raise
- 14) Use of lanolin for "zinging" strings

Contents (3 of 3)

- 15) Historic temperaments myth versus reality
- 16) Steinway Teflon Action Centers
- 17) Tight action centers. Verdigris
- 18) Use of lubricants
- 19) Piano Rebuilding

General Comments

- Plan on lots of practice
- Practical experience is important
- Aptitude is very desirable
 - Mechanical
 - Aural
 - Problem solving
 - New issues are always arising

(1) Tuning Pin Stability

- Tuning objective: stable pitch, even with loud playing
- Learn via practice to achieve:
 - Neutral pin twist and bend
 - String neutrality at friction (bearing) points
- Upon raising pitch: go sharp, ease flat
 - Opposite for pitch decrease
 - Factor in non-speaking length of string to the tuning pin
 - The longer the non-speaking length, the more pin change typically needed
- Strong key blows are NOT NECESSARY
 - Loud noises can damage your hearing or cause tinnitus
 - Learn the proper touch. Practice it

(2) Tuning Hammer Technique

- Slow tuning hammer movement ONLY
 - Remember: pin blocks are made of wood. Wood fibers (like cotton string) are more resilient under slow stress than with a fast "snap" or impact.
 - NO IMPACT TUNING, aka "jerk tuning"
 - Possible exceptions only for particular pins or sections of pins with explicit problems
- Be prepared to decrease tension first
 - If there is a hidden rust bond, such as between the string and the bearing felt.
 - When you hear an initial "zing" when first decreasing string tension
- Again, learn to stabilize and settle the tuning pins without hard blows
- Remember, for a quality piano, 40 or 50 years is only the beginning of its lifetime

(3) Tune Ambidextrously

- Tune grands right-handed (except for the upper section)
 - Tune uprights left-handed
- Angle the tuning hammer such that you are never compressing the pin block while raising pitch
 - Regardless of whether the manufacturer uses bushing sleeves or not
 - Avoids shortening the life of the pin block
- The combination of tuning ambidextrously + avoiding impact tuning:
 - There should be no significant degradation of pin tightness in the pin block of a quality piano after, say, 40 years of tuning assuming a reasonable humidity environment.
- The phrase that "time is money," is NOT appropriate here
 - Slow + ambidextrous is worth money to your customer, not the speed of the tuning
- You too can learn to tune ambidextrously.
 - Even if you are right-handed (or left-handed) for everything else
 - Just decide that you will learn to do it

(4) Muting and Unisons

- First tune only one string per note
- Traditional strip muting works fine
 - For a grand piano
 - The temperament octave
 - For an upright
 - All multi-string notes except for just above the treble break
- For grands I tune note-to-note unisons as I progress beyond the temperament octave
 - Traditional "Triple-String Unison" approach works fine
 - 1) Tune one string;
 - 2) Tune second string to the first string;
 - 3) Tune third string to the second string
 - On uprights, tune the third string to the first and second strings together
 - Consider using a two-string unison approach for problem notes

(5a) Aural vs Visual Tuning

- Both approaches can achieve good accuracy
 - Yes, visual tuning (with an Electronic Tuning Device, or ETD) is easier to learn
- Consider using aural tuning
 - Tune with your ears
 - You will tune (or at least test) unisons aurally anyway
 - Keeps your ears trained
 - Including for tuning evaluation purposes as well as for tone regulation
- Aural tuning is "enjoyable and exciting"*
- See my separate presentation on Learning Aural Piano Tuning**

Ben Gac. Steinway Technical Trainer

^{**} On my Web site. https://potomacpiano.com/tuning-articles. "Learning Aural Piano Tuning"

(5b) Aural vs Visual Tuning

- Aural tuning works well based on the principles followed throughout the twentieth century
 - Such as the John Travis approach that I use and teach
 - NO need to stress out on:
 - Learning music theory or understanding music chords
 - Keep it simple and powerful
 - Industry-standard equal temperament with pure octaves
 - Implicitly utilize native piano-based inharmonicity that averages more than 10 cents per octave!
 - Lots of aural tuning approaches are available
 - Suggestion: try to keep it simple! No counting of beats!
 - Keep with the proven quality backed by tradition as enjoyed by Rachmaninoff, Hoffman, Rubinstein, Horowitz, Hess, etc

(6a) Reject Non-Industry-Standard Tunings

- Equal Temperament (ET) was established in 1917 for a reason
 - 12 TET (Tone Equal Temperament) based on the octave
- Some piano tuners use other ET's, or non-ET's, or historic temperaments
 - Examples: perfect 4th and/or 5ths and/or 12ths (all of which yield non-perfect octaves)
 - Or adjust octave stretch, or use historic temperaments, or do other modifications.
 - Some tuners use an ET that is not the industry standard
 - Such as 7-TET based on the fifth OR 17-TET based on the twelfth
- If considering other than the industry standard piano tuning
 - First listen to an A-B comparisons, preferably blind comparisons
 - Are generally not available!
 - Ask for documentation for the non-standard temperament
 - Such as via use of Scala. Are generally not available!
 - Ask to try it beforehand
 - Using a MIDI keyboard with a MIDI controller such as Pianoteg

(6b) Reject Non-Industry-Standard Tunings

- For acoustic pianos, stick with the industry standard tuning
 - Allows modulation to any musical key
 - Matches (perfect) octave use in all classical music and by all string instruments
- If you are interested in piano playing using nonindustry-standard tunings
 - Consider the purchase of an all-digital piano
 - Such as a hybrid, or a MIDI keyboard with a MIDI controller
 - Instantly tune-able on a per-musical-piece basis via an app
 - You can match a classical composer's original historic temperament per-musical-piece

(7) Piano Technician Groups

- Consider association with groups of other tuners
- A couple good formal technician groups are:
 - Piano Technician Guild
 - Master Piano Technicians of America (MPT)
- Look for acceptance based on the quality of your work
 - Regardless of whether you tune aurally or visually
- Options include joining / following several excellent online Piano Tuner list servers
 - Best opportunity, besides with direct apprenticing, for learning benchwork
- Look for apprenticeship work in your community
- Be aware of the impact on the piano tuning profession of the recent significant decrease in acoustic piano sales

(8) Get Benchwork Experience

- Best approach: apprenticeship and/or a school
- Piano Technician Listservers. Examples:
 - Piano Technicians Guild
 - https://my.ptg.org/communities/community-home/digestviewer
 - Master Piano Technicians of America Facebook group
 - https://www.facebook.com/groups/masterpianotechs/
 - Facebook's Piano Tuner's group
 - https://www.facebook.com/groups/pianotunersgroup/
- Lots of good YouTube and other sources available online
 - Regulation example:
 - https://www.youtube.com/watch?v=pHKdPNCa4aA
 - Tone regulation example:
 - https://www.youtube.com/watch?v=NrORPqRzSN0

(9) Hearing Aids

- Not necessary to switch to visual tuning with hearing degradation
- Great progress in hearing aid technology in the past several years
 - Computer-based (in your ears) and wireless
 - Bluetooth for control and for optional audio to/from the hearing aids
 - A control app on your phone to adjust
 - Gain, frequency response, filtering, noise reduction, etc
- Potential for normal, or even better than normal, hearing*
 - Enhanced capabilities
 - Ability to real-time adapt to problem situations like
 - Background filtering for noisy environments
 - Temporary gain or frequency adjustment for unique piano issues

^{*} Ensure that any noise suppression and frequency compression are appropriately remote controllable

^{*} Ensure that safe limits for loudness are not exceeded in your control of the hearing aids

(10a) Loose Tuning Pins

- Move up one size ONLY
 - Achieves adequate tightness
 - Avoids a wedge effect on the pin block / wrest plank
 - Extends its life
 - Minimize impact on neighboring pins
- Screw the pins in/out
 - First remove and preserve the old becket / coil
 - Screw the new pin in. Estimate the height for when string is later added
 - Do not drive it in.
- New tuning pin
 - Use the best quality pins
 - With threads cut, including after any plating

(10b) Loose Tuning Pins

- Usually sufficient to only replace those tuning pins that are too loose
 - One loose pin.
 - If in the treble, I usually do both tuning pins that are on a single string
 - A section of loose pins
 - Address as torque fails.
 - Might occur multiple times over a period of multiple decades
 - Sections of 2, 4, 8, etc tuning pin replacement
 - When there is not systemic pin block failure, this approach can be very cost effective for your customer
 - I service Steinway grands where this approach has been extended over 30 to 40 years and still going strong
 - Avoids rebuilding of the piano

(11a) Humidity Control

- Humidity control is very important for musical instruments like pianos
- Humidity gauges are a desirable home device
 - Inexpensive and accurate digital versions (with memory) are readily available
- For adding moisture (in Winter), in order of preference:
 - (1) Whole home units are most preferred
 - Very common in colder areas like DC
 - Forced hot air humidifier systems use flowing water
 - (2) Room humidifiers are next best
 - Cost range \$50 to \$150
 - (3) Piano specific humidifier aftermarket systems are an undesirable last choice
 - Regular maintenance when piano is tuned
 - Check for corrosion, particularly with hard water
 - Be sure to first disconnect the electricity before any maintenance
 - Advise customers on regular use of anti-bacterial agents in the water
 - Advise on potential health issues from standing water or mold, such as Legionnaires Disease

(11b) Humidity Control

- Some topics from my paper*
 - Health issues with chemical additives
 - Whole house alternatives
 - Electrical safety
 - Cost & maintenance
 - Physical and operational complexity
 - Lack of pin block protection for grands
 - Operational Sequence

^{*} On my Web site. https://potomacpiano.com/tuning-articles. "Considerations For Piano Humidifying Systems"

(11c) Humidity Control

- For removing moisture (in Summer), in order of preference:
 - (1) Whole home units are most preferred
 - Most home air conditioning systems include moisture removal
 - (2) Piano specific dehumidifier aftermarket systems
 - Work well
 - Minimum maintenance

(12a) Soundboard Cracks

- Important to control the range of humidity and temperature of a piano
- Soundboard cracks need to be repaired when soundboard bonding to the ribs is compromised / threatened
 - Glue joint to ribs broken near the crack
 - Protect the integrity of the downbearing at the bridges
 - Protect the crown of the soundboard
- Piano rebuilding is rarely needed
 - In my experience

(12b) Soundboard Cracks

- Simplest repair approach appears to be the most desirable & effective
 - Screws to re-bond the soundboard to ribs
 - Example: #5 x 1" or #5 x 1 1/4" round-head screws
 - Tools: drill, starter bits and pass bits
 - Long drill bits sometimes required
 - Apply screws from soundboard side
 - Or from rib side if soundboard side is not accessible
 - Optional: inclusion of glue
 - Lifetime of screw bond found to be extensive / long
 - At the least, more than 30 40 years
- Rapid, inexpensive, and important repair

(13a) Pitch Raise

- Very common situation
 - You are asked to tune a piano quite low in pitch
 - Been neglected over many years
- Various options for the tuner, including
 - Double tuning
 - Use an ETD set for a pitch raise
 - Set it to estimate the amount to over-tune
 - Or do the following:

(13b) Pitch Raise

- My preference: do a "normal" tuning to proper pitch
 - Exception for drop-action spinets
 - Advise the customer ahead of time on the impact
 - Quality of this first tuning will suffer
 - Will need tuning again within 2 to 6 months
 - Piano will need several weeks to adjust to the new tension
 - Continual decrease in pitch
 - Explain that other customers have been pleased with the result
 - And that the next tuning will be better quality and will hold better
 - Make the follow-up tuning appointment

(14) Use of Lanolin

for "zinging" / string binding on grands

- Problem: piano strings create a bond to the string bearing felt in front of agraffes
 - String can break when tension is increased.
 - Under-string corrosion (rust) at the string bearing felt
 - In particularly bad cases, must first release the tension when tuning
 - Wait for the loud "zing" before re-tightening
- Lanolin rubbed into the string bearing felt
 - A permanent fix. One application
 - Restore original friction pattern
 - 100% pure anhydrous lanolin. A natural product of wool
 - Rub it into the felt by hand
 - Give it a few weeks to continue to work its way into the bearing felt under the strings. Effect will not be immediate
 - No risk when applied to the bearing felt, unlike with a liquid, of the lubricant traveling to the tuning pin
 - Available at pharmacies
 - Yes, lanolin is very sticky/messy on your fingers!

(15) Historic Temperaments

Myth versus Reality

- Historic Temperaments used by classical music masters before the 1900's
 - Octave-based Equal Temperament was established as the industry standard in 1917
 - Two different sounding keys major and minor.
 - Two sets of twelve shades of grey
 - Enabled the growth of the acoustic piano industry
- Historic temperaments convey mood and color as a function of the key chosen
- Evolution of historic temperaments were very roughly:
 - Just Intonation followed by Meantone temperaments followed by Well Temperaments
- As mentioned earlier, not practical for acoustic pianos
- Good introduction to historic temperaments by Dr. Baldwin:
 - https://www.youtube.com/watch?v=y6iwiQwVUIc
 - https://www.youtube.com/watch?v=309gNT_72Nc&t=47s

(16) Steinway Teflon Action Centers

- A Steinway invention
 - Used in Steinway pianos 1962-1982
- Excellent engineering!
- Audible "clicks" began appearing (humidity effects)
 - Steinway went through iterations
 - Enough of the piano technician community was unable to learn to properly service the instruments, so use was discontinued
- What to do if your piano, or one you want to purchase, has teflon centers
 - Hire a piano technician with engineering skills to service them
 - Not a big deal for the appropriate technician!
 - Problems rarely occur, particularly in a reasonably-controlled humidity environment

(17) Tight Felt Action Centers

- Piano action gets sluggish and tight
- Often caused by a center pin corrosion called verdigris
 - But can have other causes
- Be cautious of liquid-based quick fixes
 - Most are only a temporary fix. A year or two
- Often the main culprit is the hammer flanges
- Consider manual bushing reaming and center pin replacement for all hammer flanges
 - Approximately 3 hours work
 - Should last well more than a decade

(18) Use of Lubricants

- No established standard set of lubricants
 - Best guidance: be conservative
- Action centers
 - Liquid lubricants have a history of short-term success, long-term failures
 - Liquid lubricants usually have proprietary contents
 - Depend on word of mouth for endorsements
- Some lubricants are dependable
 - Lanolin for string bearing felt friction / zinging
 - Talcum for tight or jumpy tuning pins
 - Teflon for wippen cushions and hammer knuckles

(19) Piano Rebuilding

- Variations in quality of rebuilds
 - This is factory-level work often now done outside the factory
- Removal of plate (and soundboard repair/rebuild) is not unusual
 - Compression crowning of soundboard is commonly done
 - But approaches vary widely. None appear to be the original factory methods
 - Modern soundboard woods are not equivalent to original woods
- Some times the end result can be disappointing
- Likely that rebuilding contracts will not allow for a refund should the resulting tonal quality or timbre or power be unsatisfactory
- Pursue personal and professional recommendations before proceeding

Summary

- Presented a core set of principles for piano tuners-technicians
- Questions, suggestions, and discussions are welcome
- Happy to arrange a Zoom session

Dos and Don'ts for Piano Servicing

Norman Brickman, Master Piano Technician Potomac, Maryland

https://potomacpiano.com potomacpiano@verizon.net

