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Abstract: Artificial intelligence (AI) and more specific subsets of AI such as machine learning (ML) and 

deep learning (DL) have become widely available in recent years. Open source software packages and 

languages have made it possible to implement complex AI based data analysis and modeling techniques on 

a wide range of applications. The application of these techniques can expedite existing models or reduce the 

amount of physical testing required. Two data sets were utilized to examine the effectiveness of multiple ML 

techniques to estimate experimental outcomes and to serve as a substitute for additional testing. To achieve 

this complex multi-variant regressions and neural networks were utilized to create estimating models. The 

first data sets of interest consist of a pool fire experiment that measured the flame spread rate as a function 

of initial fuel temperature for 8 different fuels, including Jet-A, JP-5, JP-8, HEFA-50, and FT-PK. The second 

data set consists of hot surface ignition data for 9 fuels including 4 alternative piston engine fuels for which 

properties were not available. When properties were not available multiple imputation by chained equations 

(MICE) was utilized to estimate fluid properties. 10 different ML techniques were implemented to analyze 

the data and R-squared values as high as 92% were achieved. 
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I. Nomenclature and Abbreviations 

AI    = artificial intelligence 

ML    = machine learning 

CFD   = computational fluid dynamics 

ANN   = artificial neural network 

GA    = genetic algorithm  

QSPR    = quantitative structure−property relationship  

MLR   = multiple linear regression 

SVM   = support vector machine 

AIT   = autoignition temperature 

RF    = random forests 

DNN   = deep neural networks 

CART   = classifier and regression tree 

CNN   = convolutional neural networks 

DADN   = deep automotive diagnostic network 

LSTM   = long short-term memory 
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LSSVM  = least squares support vector machine 

SVR   = support vector regression 

GRP   = gaussian process regression 

FT-IPK   = fischer-Tropsch IPK 

HEFA   = hydro-processed ester fatty acids 

SIP    = synthetic iso-paraffin                                   

MICE   = multiple imputation by chained equations 

RBF   = radial basis function                          

MPR   = multivariant polynomial regression  

BRR   = Bayesian Ridge Regression  
KNN   = K-Nearest Neighbor 

MLP   = Multi-Layer Perceptron 

DANN   = Distributed-Artificial-Neural-Network 

II. Introduction 

Artificial intelligence (AI) is an emerging and powerful data analysis tool that can be utilized in combustion 

modeling. Current combustion modeling methods focus on the use of either computational fluid dynamics (CFD) and 

surrogate based kinetics rate models. CFD relies heavily on access to large computing power. The cost is exacerbated 

in combustion CFD because of the range of time scales (~0.001 to ~ 1 second) and the range of length scales (1 nm to 

1 m) of interest. The thousands of chemical species must be identified, and their binary diffusion processes must be 

computed in addition to their binary and other reaction steps.  Furthermore, the boundary conditions needed to define 

a problem for use in CFD may not be readily available or accurately represent the real world.  These lacunae are 

addressed in many practical applications by empirically informing the surrogate models. The model is constructed 

using multi species kinetic theory and then incorporated into multi-physics combustion governing equations and 

solved by CFD methods.  The CFD results with empirical models are validated using laboratory combustion 

experiments.  The testing time can have both a high monetary and time cost. 

 

The application of AI can help reduce these costs greatly by utilizing existing data from the literature to fill gaps that 

would previously require either experimental testing or CFD analysis to fill. Kalogirou et al. in 2003 provided a 

summary of possible applications of artificial intelligence including boilers, furnaces, and internal combustion 

engines. Artificial neural networks (ANN), genetic algorithms (GA), fuzzy logic, and hybrid systems of these methods 

were presented as possible methods for use with combustion systems [1]. Since then, studies have used ML techniques 

to estimate fundamental properties of fuel based on other available fuel parameters or test data. Wang et al. estimated 

minimum ignition energy of 61 chemical species using two quantitative structure−property relationship (QSPR) 

models based on experimental data. One was constructed using multiple linear regression (MLR) and the other was 

constructed using a support vector machine (SVM). Both models were successful at predicting the MIE. The MLR 

model was considered easier to implement and had better internal robustness. The SVM model provided a better fit 

and external robustness [1]. Pan et al. also implemented QSPR solved via a support vector machine SVM to predict 

the auto ignition temperature of organic compounds. A GA was used to select descriptors that contribute to the 

autoignition temperature (AIT). The SVM was able to utilize the selected descriptors to solve for the AIT and returned 

results within the experimental error. This method could be used to solve for AIT of organic compounds based on the 

theoretical descriptors only and not test data [2]. Shah et al. utilized random forests (RF) and deep neural networks 

(DNN) to predict the autoignition and flame properties of multi component fuels in homogenous charge compression 

ignition engines. Both methods outperformed an empirical model which required multiple equations for different fuel 

blends and equivalence ratios. It was noted that the RF required less user tuning than the DNN [3].  

 

AIT is a fundamental fluid property defined by the ASTM standard E 659 [4]. Due to its well-defined nature and it 

extensive study in the literature it is good candidate for study when implementing ML learning techniques. Other 

studies have investigated the use of ML on more complex phenomenon that are not as well defined and are subject to 

additional physical parameters thus making them not fundamental fluid properties. Blurock et al. used machine 

learning cluster techniques utilizing the fuzzy logic to study the ignition of ethanol at varied temperatures. The 

technique was able to identify four phases of ignition for ethanol: the initiation phase, preignition phase, ignition 

phase, and the post ignition phase. The model was also capable of predicting the ignition delay time and phase structure 

for other temperatures within the range of the provided training data [5]. Similarly, Jach et al. investigated ignition 

delay time for various hydrocarbon air mixtures through the use of a DNN. Data was collected from a shock tube. The 
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results were compared with a detailed reaction mechanism and the DNN produced lower error and required less 

computational time [7]. Ulcay et al. studied hot surface ignition in a crossflow using both a Classifier and Regression 

Tree algorithm (CART) and a heat transfer based empirical model based off of experimentally determined constants. 

The CART algorithm was able to more accurately capture the effects of low air velocity on the hot surface ignition 

temperature when compared to the empirical model. Elsewhere in the range of velocities studied the two models 

performed comparably [8].  

 

AI and ML techniques have also found applications in closely related fields such as CFD analysis, early warning 

systems for engine control, and heat transfer analysis. Sotgiu et al. developed a method for modeling gas turbine blades 

using tensor representation theory and ML in combination with CFD. The turbine blades are approximated as the 

Poiseuille flow with heat transfer. ML is used to approximate the turbulent heat fluxes that would normally be solved 

via the Reynolds-averaged Navier-Stokes equation. The machine learning derived model was implemented in 

OpenFOAM and shows good agreement with Poiseuille flow at different Reynolds numbers and reference data [9]. 

Popov et al. modeled a hydrogen jet in air cross flow ignited by laser-induced optical breakdown via CFD using three 

different methods to reduce the computational cost and to predict the ignition boundary. The first method, a 

constructed criterion based on radicals near the stoichiometric surface demonstrated 90% accuracy. The other two 

methods utilized neural networks, one utilized Bayesian regularization-enhanced training the other utilized 

convolutional neural networks (CNN); both were able to predict 100% of ignitions [10].  Wolf et al. implemented a 

deep automotive diagnostic network (DADN) using four CNN and two long short-term memory (LSTM) neural 

networks. Using data from an engine control unit the DADN was able to detect preignition with 90% accuracy. The 

DADN was found to outperform CNNs, LSTMs, and traditional neural networks when applied by themselves [11]. 

Baghban et al. used three methods including multi-layer perceptron artificial neural network , adaptive neuro-fuzzy 

inference system , and least squares support vector machine (LSSVM) to model Nusselt number as a function of 

multiple test parameters for carbon nano tube and water nano fluid flows through coils. It was found that LSSVM was 

the most accurate methodology used [12]. Wei et al. used a set of trustable data to train using three different methods, 

the support vector regression (SVR), Gaussian process regression (GPR), and CNN to predict the effective thermal 

conductivity of composite materials. It was found that all three methods used outperformed the Maxwell-Eucken 

model and the Bruggeman model in terms of accuracy. The computational cost of SVR, GPR, and CNN are far smaller 

than that of solving the partial differential equations and thus can be used as a fast prediction tool and can supplement 

physic based models [13]. 

 

The available literature shows a wide range of applications for AI and ML techniques. Additionally, the literature 

shows that there is a wide range of algorithms and methodologies that can be employed. Each application may be 

suited for one type of ML and not another.  In order to understand which style of algorithm is appropriate for a data 

set it is beneficial to perform a multitude of ML techniques in order to understand which method works best. Applying 

several techniques can be easily accomplished with the mass adoption of software packages such as SciKit Learn, 

Tensor Flow, and Keras. Furthermore, processing power can now be delegated to server systems such as Google Colab 

which allow user to utilize high speed GPU’s to process and solve the algorithms at no monetary cost to the user. Due 

to the adoption and availability of these techniques and resources, it is clear that AI will continue to play a larger role 

in future data analysis as well as finding new uses for pre-existing data sets.    

III. Methodology 

The current study investigates two data sets. The first data set used training comes from Ref. [14], [15], and 

[15].These studies investigated the flame spread rates for aviation fuels as a function of fuel temperature over a large 

pool of fuel. The bulk of the data comes from Ref. [14]  in which the experiments of interest consist of 180 cm long x 

20 cm wide x 2.5cm deep rectangular pans containing Jet-A and three alternative fuels Fischer-Tropsch IPK (FT-

IPK), hydro-processed ester fatty acids (HEFA) and synthetic iso-paraffin (SIP). Each fuel was heated with a 

recirculatory heating system to maintain test fuel temperatures and ensure temperature uniformity within the test pans. 

A torch ignition method as well as a Nd:YAG laser were utilized. The transient liquid-phase and gas-phase 

temperatures and the arrival of the flame front were captured with 16 K-type thermocouples. Ref. [14]provides fuel 

composition information for the fuels including a detailed list of alkanes and aromatics with each of the fuels test. 

Similar fuel properties were gathered for the fuels used in  Ref. [15] and [15] were gathered from publicly available 

sources. The fuel properties including fuel type, AIT, cetane number, molecular weight, density, flash point, boiling 

point, and weight percentages of paraffins, cycloparaffins, and aromatics along with test parameters such as initial 
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fuel temperature and flame speed were utilized for training and testing the ML techniques used in this study. The total 

data set consist of 162 data points. 

 

 
Figure 1: Test apparatus for flame speed measurement [14]. 

 

The second set of data investigated also come from Ref. [14] and pertains to a hot surface ignition test. Test fuels 

were deposited from a varied height in single drops from a programmable syringe onto a stainless-steel plate or round 

cylinder that was electrically heated to within ±5⁰C of a target temperature. High speed and infrared photography were 

used to detect the presence of ignition kernels. The surface temperature was varied to construct logistics curves to map 

the ignition probability as a function of surface temperature. The fuels studied include n-heptane, Jet-A, JP-8, JP-5, 

Avgas 100LL, and 4 experimental fuels for which fuel properties were not available. Fuel type, density, AIT, flash 

point, relative vapor density, boiling point, surface type, injection height, probability, and surface temperature were 

used as variables for training and testing the ML models. The complete data set consists of 221 points spread over all 

the permutations of the variable of interest. For fuel properties that were not available, multiple imputation by chained 

equations (MICE) was utilized to fill the gaps in the data set. Imputation is a process by which missing data is filled 

in via statistical methods. The most basic method of which would be to utilize the mean as a stand in value. This is 

done when removing the data point would greatly diminish model accuracy. Due to the small number of available data 

points imputation is a valuable tool. MICE utilized multiple chained imputations often with a specified regression 

method to create a more complex and accurate result based on the other available variables in the data set [18].  
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Figure 2: Experimental apparatus for hot surface ignition [14], 1) fuel nozzle, 2) hot surface plate, 3) ceramic 

insulation, 4) infrared camera, 5) high-speed camera, and 6) programable syringe.   

 

 Data handling and the implementation of the ML techniques was performed using the python language. Once data 

was passed into the software it was plotted to determine if a relationship between variables exists. In figure 3. the 

relationships for the hot surface ignition data are shown. Data that shows a linear or clumped shaped indicate that the 

variables have some relation between them. If two variables are unrelated then there would be no discernable trend 

between them. In the data shown below there are clear trends that can be seen between each of the variables. This 

points to this data set being a good candidate for ML technique application. Note that the diagonal axis shows a graph 

that represents the frequency of data points. In the data set that was investigated there is a strong preference for one 

fuel type as such the frequency graphs show a large spike around the value that represents that fuel. Traditional data 

analysis techniques may struggle with a data set that is so heavily skewed to, but ML is able to utilize this data to 

extrapolate the information provided by one subset of the data to another subset. This allows the generated models to 

more accurately predict outcomes for inputs for which there is limited data available.  The significance of the ML or 

deep learning techniques lies in the fact of how well the model accurately predicts when the data is less related. The 

challenge of ML or deep learning techniques is to predict the outcomes and a clear deep learning technique winner 

can then be arrived at when high accuracies can be obtained for this case.  
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Figure 3: Plot of data relationships for hot surface ignition data with frequency plotted on the diagonal axis. 

 

Once the data sets have been investigated for anomalies and pre-processed, they are split into training and testing 

sets for model creation and validation. Both sets of data are normalized to values between -1 and 1. This normalization 

greatly assists in model accuracy as many of the techniques implemented here are sensitive to data sets that contain 

multiple orders of magnitude.  In order to have a baseline to compare with a simple and widely implemented MLR 

was used as the first method for generating an estimator model.  

 

The second set of ML methods used were SVR models. This is similar to an SVM model, but the focus is to generate 

a regression instead of classification. Both SVR and SVM utilize the creation of hyperplanes in the multi-dimensional 

data space to maximize the margin between the data points and to minimize the error. There are several different 

kernels that can be used, each of which take the input data and transforms to be used for the creation of the hyperplanes. 

The present work uses the linear, polynomial (4 degrees of freedom) , and radial basis function (RBF) kernels. The 

degrees of freedom for the polynomial kernel were varied to find the best result. The next method used was a 

multivariant polynomial regression (MPR). The number of degrees of freedom were iterated over to determine the 

best result.  

 



 

 

Subtopic: Machine Learning in Thermophysics 
 

7 

 

A Bayesian Ridge Regression (BRR) was also utilized. A BRR generates a linear fit based on probability distributors 

instead of a point estimate like a traditional linear regression would. A BRR pulls the output of the model from the 

generated probability distribution. The advantage of this method is that it allows for the fitting of models that contain 

insufficient data or poorly distributed data.  

 

The next method investigated is a regression-based decision tree classifier algorithm or CART algorithm based on 

an Iterative Dichotomiser 3 developed in 1986 [19].In CART, a binary tree is grown using features and thresholds that 

yield the largest information gain at each node. The grown tree is pruned to improve model accuracy by removing 

pre-conditions at appropriate nodes. Figure 4 shows a pruned decision tree. While the example shown only utilizes 

two variables or test parameters, 𝑋1 and 𝑋2, the method can be extended to a multitude of variables. A set of variables 

𝑋𝑖 defined by the number of test parameters of interest is utilized within a decision tree. Threshold values, 𝑡𝑖, of the 

variables, 𝑋𝑖, are rapidly iterated over with a selected optimizer to identify the regions of interest,𝑅𝑖. Once a tree has 

been constructed the branches of the tree that yield less information based on the selected optimizer are pruned away 

to leave a final decision tree that creates a decision boundary to separate the original test parameters into regions of 

interest that have unique characteristics. This final decision boundary is known as a classifier.  Applying the above 

procedures leads to complex multi-dimensional decision boundaries that imitate the underlying physical phenomena 

that would otherwise take large amounts of computations and associated computer power to simulate and resolve with 

CFD.  

 

 
Figure 4: Flow chart diagram of CART model post pruning 

 

A K-Nearest Neighbor (KNN) method was also implemented utilizing the 5 nearest neighbors. In this method the 

distance between parameters in one plane of the multi-dimensional data space is calculated. The algorithm predicts 

that neighbors in the same plane will share similar values in other intersecting planes of the data space. The model 

uses the k closest neighbors in the plane to estimate the desired out of plane value. The distance to the k nearest 

neighbors was calculated three different ways. Using the Euclidean, Manhattan, and Hammering distances. The 

algorithm automatically selects the distance that returns the lowest mean squared error.  

 

The next method used is the first neural network utilized. A Multi-Layer Perceptron (MLP) with 100 neurons and 3 

hidden layers was created. The hidden layers use the rectified linear activation function and the output layer uses 

backpropagation with no activation function. The learning rate is set to 0.001, the L2 penalty parameter is 0.001, the 

stochastic gradient-based optimizer (adam) is used for the solver, and the squared-loss is optimized for. In this method 

the data inputs are given in the input layer and the relationships between each of the parameters is investigated over 

several iterations. The activation function acts as a transform for the input of the neuron and defines the output. The 

algorithm seeks to minimize the loss of the model by taking the partial derivates with respect to the model parameters. 

The MLP model used here is contained in a software package and thus is limited in its customizability.   
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Figure 5: Flow chart of simplified MLP model 

 

To alleviate the limited customization of the MLP a Distributed-Artificial-Neural-Network (DANN) algorithm is 

used. The DANN consist of several dense layers of neurons using the rectified linear activation function. Each dense 

layer is followed by a dropout layer that removes a set percentage of the next layer inputs. This is done to regularize 

the inputs of the following layer. In effect this prevents overfitting of the model. The final output layer of the DANN 

tailored to the data set. In the case of the hot surface ignition data a sigmoid activation function greatly improved 

model result. The rectified linear activation function produced the best result for the pool fire data. The model learning 

rate is set to 0.00001 and the mean squared error is used as the loss. The model is able to stop training based on a user 

defined parameter to expedite the data analysis process.  

 
Figure 6: Flow chart of simplified DANN model 

 

The training and testing data sets were randomly selected among the grouped test conditions. For both data sets the 

spilt is 75/25 where 75 percent of the data is used for training. The accuracy of each method was assessed by evaluating 

the R-squared of each of the regressions. Where possible the training and validation values for R-squared were 

compared to ensure overfitting was not occurring. If the R-squared values between the training and testing data sets 

are significantly different this indicates that overfitting may be occurring.    
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IV. Results 

For the hot surface ignition data, the model was asked to predict the probability of ignition based on the provided 

test conditions. The results for each of the models can be seen in table 1. As expected, the MLR model struggles to 

capture the trends seen in the data. This makes intuitive sense. It is difficult to draw a straight line through a set of 

data that exists in a multivariant data space unless it is tightly clustered. The SVR model with linear kernel is similarly 

effects. The poly and RBF kernels return more accurate results and the training and test values are similar which 

indicates that the model is not over fitting. The MPR model also struggles to capture the phenomenon being 

investigated and at higher degrees of freedom the model quickly begins to greatly overfit. The BRR model is still 

creating a linear model and as such the fit is poor. It does outperform the MLR model which is the intended purpose 

of the BRR model when data is limited.  The CART model returns a 0.749 R-squared value, but the difference between 

the R-squared values of the training and data set is large (0.19) which indicates overfitting. This is a common trait of 

CART models. They produce high levels of accuracy but are prone to overfitting. The KNN model produces an R-

squared value of 0.574, but similarly to the CART model the difference between the training and test values for R-

squared is large (0.22) indicating over fitting.  The MLP model returns a result of 0.715 and the difference between 

the training and test values is 0.07 which is much smaller than the CART and KNN models. The DANN model 

produced the best result at 0.886 and the difference between the training and testing data sets was only 0.015. This 

indicates a good fit. Figure 7 shows the results decay of the training and validation loss over the epochs. The noisy 

structure of the lines shown indicates the model could use further tuning with a decrease in the learning rate. 

 

 
Table 1: Results for hot surface ignition data. 

 

 
Figure 7: Loss for the DANN model over the training period consisting of 353 epochs. 

 

Model type
R-squared with 

imputed data

R-squared without 

imputed data

MLR 0.166 0.158

SVR(linear) 0.11 0.144

SVR(poly) 0.515 0.658

SVR(RBF) 0.73 0.793

MPR 0.166 0.441

BRR 0.181 0.169

CART 0.749 0.64

KNN 0.574 0.621

MLP 0.715 0.697

DANN 0.886 0.897

Hot Surface Ignition Data
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When comparing the data that had been treated with the MICE algorithm with the alternative method of removing 

the parameters that contained missing data, in this case the AIT, relative vapor density, and flash point, there is little 

difference for the majority of the models created. The models utilizing polynomial methods saw the largest increase 

in performance from 0.515 to 0.658 for the SVR (poly) and from 0.166 to 0.411 for the MPR models. Both models 

still had a large spread in the values for the training and test data sets indicating overfitting. The CART algorithm saw 

a decrease in accuracy but maintained a large difference in the R-squared values for the training and test data sets.  All 

other models only shifted by small amounts. The MICE algorithm can be further improved via tuning which may 

demonstrate larger gains in model accuracy.  

  

For the pool fire data, the model was asked to estimate the flame spread rate for the given set of test parameters 

the results of which can be seen in table 2. For this data set the linear based models consisting of MLR, SVR (linear), 

and BRR all performed at higher levels of accuracy when compared to the hot surface ignition data. All of which had 

differences between the training and testing R-squared values less than 0.01. This indicates that the model is not over 

or underfitting and is performing as best it can. The SVR (poly) and SVR (RBF) also performed well and had 

differences between the training and testing R-squared values less than 0.01. The CART algorithm performed best of 

the non-neural network methods and had a difference between the training and testing R-squared values less than 0.03. 

This means that in this case the CART algorithm did not overfit. The MLP and DANN model preformed best overall 

with R-squared values of 0.905 and 0.92 respectively. In both cases the differences between the training and testing 

R-squared values less than 0.01.  

 

 
Table 2: Results for pool fire data. 

 

 
Figure 8: Loss for the DANN model over the training period consisting of 738 epochs. 

Model type R-squared

MLR 0.717

SVR(linear) 0.71

SVR(poly) 0.794

SVR(RBF) 0.819

MPR 0.819

BRR 0.753

CART 0.827

KNN 0.798

MLP 0.905

DANN 0.92

Pool Fire Data
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Overall, the pool fire data was a much easier data set to model. This is clear from the higher level of accuracy 

from the models, but also clear when one looks at the data. The hot surface ignition data is capturing a stochastic 

process which is statistical in nature. There are often multiple expected values for one given set of input conditions. 

This reduces the accuracy of the regression models. To combat this either more data would be needed or a more 

through data preprocessing method would be needed to eliminate these inconsistencies. For both data sets the neural 

network methods outperformed the other ML techniques. The customizability of the DANN model allowed for it to 

be more easily tailored to the data set making it a more versatile model. Both the MLP and DANN models were also 

the most computationally expensive requiring noticeable solving time to converge on a result 5-10 minutes. The 

other ML techniques solved in less than 1 second meaning that they were far less computationally expensive, but at 

the cost of accuracy.  

V. Conclusion 

 AI and ML data analysis techniques are rapidly becoming widespread tools for data analysis and modeling. The 

best methods and algorithms are often data set specific and as such need to be experimented with in order to 

determine the best set of ML techniques to provide the best result. Two data sets were investigated, a pool fire data 

set investigated the flame spread rate of 8 different fuels including alternative aviation fuels and a hot surface 

ignition data set that studies the ignition probability as a function of surface temperature for 9 fuels including 4 

experimental fuels for which fluid properties were not available. The MICE algorithm was used to fill the missing 

fluid properties and was compared with models derived from a data set where the missing properties were removed 

as variables. 10 different ML techniques were used to compare the effectiveness of different methodologies. For 

both data sets neural networks provided the highest level of accuracy (0.92) with the least amount of over and under 

fitting. This high accuracy came at a higher computation cost when compared to other ML techniques, but at a 

substantially lower cost than CFD derived results. The specific method for developing an accurate estimation model 

was shown to be data specific and the best results came from models that could be highly tailored to the data set in 

question over several repetitions. Future work for the data sets would include the application of deep multi-layer-

perceptron DMLP model to a variety of experimental combustion data.  Several databases in use today date back 

over 30 years and DANN model may offer new analysis methods for extracting additional value from these older 

data bases. 
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