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Abstract

This paper presents a data-driven approach to solve heat conduction
problems, in particular 2D heat conduction problems. The physical laws
which govern such problems are modeled by partial differential equations.
We examine temperature distributions of conductors that have square
geometry subjected to various boundary conditions, both Dirichlet and
Neumann. The data consists of images of these distributions in a semi-
continuous form. Conventionally, such problems may be solved analyti-
cally or using numerical methods which can be computationally expen-
sive. We attempt to use Image-Based Deep Learning algorithms such
as encoder-decoders and variational auto-encoders which do not involve
the physical laws of the problem. We also study the efficacy of deter-
ministic models against probabilistic models and the feasibility of using
image-based deep-learning methods for engineering applications.

Keywords: Heat Conduction, Deep Learning, Image-Based Algo-
rithm, Convolutional Neural Networks.

1 Introduction

Heat Transfer Problems involve the study of the movement of heat between sys-
tems, it occurs through four modes advection, conduction, radiation, and con-
vection. Advection is the movement of the phase itself, a transport phenomenon
that depends on the motion of the medium. Conduction is heat transfer through
vibration between particles in physical contact, while convection is a transport
phenomenon where heat flows by virtue of a moving phase. Radiation is the
transfer of heat through electromagnetic radiation. In this paper, we focus on
conduction problems, in particular 2D steady-state heat conduction.

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (1)
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0 ≤ x ≤ a,

0 ≤ y ≤ a.

The physics of steady-state heat conduction problems are governed by an elliptic
partial differential equation(1), where ∆ is the Laplacian operator and u, the
temperature. The physical state of the systems can be determined by solving
the partial differential equation along with certain boundary conditions relevant
to the problem. Analytical solutions of a steady-state heat conduction problem
can be determined for simple geometries, however, for more complicated geome-
tries, an analytical solution may not attainable. With the advent of the digital
computer, numerical methods have been employed to solve partial differential
equations, in such methods, the solution for the problem is computed at discrete
points in space rather than a general solution for every point in space, in the
process of discretization errors are introduced which are satisfactory provided
number of discretized points is sufficiently large for a given problem.

The finite element analysis (FEA) is a numerical method that divides the
domain of the solution into a number of smaller elements using a mesh, these
elements may be of different dimensions depending on the nature of the prob-
lem. The partial differential equations which govern the physical situation are
applied over each element in a weighted integral form, this ensures that the
fundamental conservation laws are satisfied in the obtained numerical solution.
The variables at the discrete points in space are obtained from a linear system
formed through linearization of the weighted integrals. The solution obtained
through this method has errors from discretization and linearization, both of
which increase with increasing sizes of elements. As the complexity and the size
of the problems increase, elements of smaller size are needed to achieve a numer-
ical solution of sufficient accuracy. As a result, the number of elements increases
causing an increase in the size of the linear system increasing the to compute
time of the solution. Some physical situations may require a mesh of extremely
fine resolution, for example, chaotic phenomenon such as turbulence, in such
cases the number of variables to be solved for and the number of equations is
large, such systems may take several days to be solved at a High-Performance
Computing Facility which employs parallel computing, such simulations are be-
yond the capabilities of a personal computer. [1]

With improvements in computational infrastructure and growth in GPU
computing, deep learning can be employed in a variety of applications, engi-
neering, and in particular thermal engineering is no exception. Such approaches
can have utility in problems where simulations are computationally expensive.
Data from simulations can be used to train deep learning models. However,
engineering applications are unique in the sense that there can be less data
available compared to other domains. As demonstrated in [2] physics informed
neural networks help overcome the limitation posed by the limited availability of
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Figure 1: Traditional Approach, Deep Learning Approach

data. In this paper, we examine a non-physics informed, image-based approach.
[3] Establishes that neural networks are universal function approximators that
are capable of mapping any Borel measurable function between different dimen-
sional spaces. This property of multi-layered neural networks finds utility in
heat conduction problems where an analytical solution may not be available,
yet an approximated solution for the temperature distribution can be obtained
by training a neural network. In this paper, we attempt to teach a neural net-
work the underlying rules and heuristics which accompany the problem without
actually incorporating them into the algorithms. Encoder-Decoder architectures
are primarily used in this paper, 3 channel images of temperature distributions,
and the corresponding boundary conditions serve as the data. Digital images are
essentially stored as numbers in an array, these images are often stored in an ef-
ficient manner using encoding techniques to reduce the size of the Image. In this
paper, we use encoding - decoding algorithms that try to understand the physics
of heat transfer implicitly. The reconstruction capabilities of encoder-decoder
networks are demonstrated in [4],[5]. Traditionally such networks have found
use in denoising and compression, for example in [6], where X-rays are denoised
using denoising auto-encoders. In this paper, such networks are used to gener-
ate temperature distributions from incomplete temperature distributions which
include the boundary conditions. The use of convolution neural networks to gen-
erate temperature distributions is demonstrated in [7], it focuses on predicting
temperature distributions for various geometries with identical boundary condi-
tions. However [7] does not establish whether CNN’s are capable of learning the
fundamental laws of heat transfer and whether CNN’s are capable of generat-
ing temperature distributions for arbitrary boundary conditions. In this paper,
we examine the generative capabilities of image-based algorithms(CNN’s) both
deterministic and probabilistic for different boundary conditions. We further
evaluate the feasibility of image based algorithms against non-image based deep
learning algorithms (Figure 1).

Problem Setup & Description: The problem we attempt to solve in this
paper is the 2D conduction problem, 2D conduction is governed by equation(1).
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(a) (b)

(c)

Figure 2: Boundary Conditions and Black Box Model

To obtain a unique solution to this problem, boundary conditions have to speci-
fied. This problem is solved for two specific cases, Dirichlet boundary conditions
Figure(2a) and Neumann boundary conditions Figure(2b).

We attempt to create a deep learning model that takes inputs in the form
of boundary conditions and incomplete temperature distributions and complete
the temperature distributions as shown in Figure(2c). The data set consists of
20 pairs of input and output images which have been generated using data from
commercial simulation software.

2 Deep Learning Models

Dimensionality reduction techniques are commonly used in applied statistics
and machine learning to remove redundant features that add no additional in-
formation. In such techniques data is transformed from a higher dimensional to
a lower-dimensional space having independent features(Figure 3a), sometimes
referred to as the latent space. Such Transformations may be linear or non-linear
in nature.

The simplest such dimensionality reduction technique is principal compo-
nent analysis (PCA), where there is a linear transformation to a latent space
where features are independent [8]. A major drawback of PCA is its linear na-
ture, something with auto-encoders with non-linear activation functions seem
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(a) Encoder Decoder Model

(b) Autoencoder

(c) Variational Autoencoder
(d) Variational Autoencoder Architecture

Figure 3: AutoEncoder DL Models
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to overcome. This non-linearity can be exploited along with the universal func-
tion approximate ability of neural networks to learn and understand patterns
seen in heat transfer. Two variants of encoder-decoder models are studied, a
probabilistic and a deterministic, the probabilistic variant is called a variational
auto-encoder(VAE), has its latent space variables to be stochastic as opposed
to the traditional auto-encoder model which has single-valued latent space vari-
ables. In addition to the Image-based algorithms, a non-image based approach
is also applied. A Distributed Artificial neural network (DANN) is trained using
data in a numerical form rather than an image form [9]. The primary objective
of training this model is to understand the efficacy of image-based deep learning
approaches against non-image based approaches.

2.1 Autoencoder

This model uses CNN’s which have non-linear activation functions at each
layer. The encoder portion of the model reduces the dimensionality of the input
data, in the process captures crucial information about the temperature dis-
tribution while discarding redundant information. From the lower-dimensional
space (latent space) the decoder generates images using up-sampling. Auto-
encoders function on the principle that data concentrates and clusters around
low-dimensional manifolds, which is represented in the latent space [10]. Auto-
encoders which have noise in the input are called denoising auto-encoders, the
auto-encoder in this case. This is demonstrated by the reconstruction capability
of denoising auto-encoders studied in [11]. The architecture of the model used
is depicted in Figure(3b), it is an under complete All convolution layers used,
have same padding, which ensures the out has the same width and height as the
input. The max pooling layers reduce the width and height of the input to half.
The input to the model is a three-channel image which is of size (256 X 256 X 3)
and the output is an image of the same size. The reconstructed output is further
processed using a normalization scheme to obtain a temperature distribution.

The loss function used in this model is the mean square loss:

MSEi =
1

W ·H ·D

W∑
j=1

H∑
k=1

D∑
l=1

|x̂i(j, k, l)− xi(j, k, l)|2

Where MSEi is the mean square loss associated with image i, (W X H) is
the dimension of the image, D is the number of channels, x̂ is the reconstructed
output, while x is the input. j and k represent the location of pixels and l
represents the channel and xi(j, k, l) is the value of a particular pixel. The loss
does not possess a regularization term. This is due to fact that the auto-encoder
being used is under complete and the size of the bottleneck is small, making it
resilient to over-fitting, this is particularly important in engineering applications
where the availability of data is limited. The adadelta optimization algorithm
is used. The activation function used to create non -linearity in the model is
ReLU.

6



2.2 Variational Autoencoder

A variational auto-encoder(VAE) as the name suggests is a probabilistic version
of the traditional auto-encoder, it is introduced by [12]. The latent space of
a VAE consists of random variables that have a priori, in the model used in
this paper the priori is a normal distribution. A normal distribution can be
parameterized by a mean and variance. Using Convolutional neural networks
and artificial neural networks the probabilistic model can be represented in a
deterministic framework by sampling from a normal distribution whose param-
eters are the output of the encoder. From the sampled latent space a decoder
generates the output which on further processing gives a temperature distribu-
tion.

p(z|x) =
p(x|z)p(z)
p(x)

(2)

p(z) =
1

σ
√

2π
e−(z−µ)2/2σ2

(3)

L = Eq(z|x) log p (x|z)−KL (q (z|x) ||p (z)) (4)
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In Figure(3c) z is the latent space that we wish to find, x is the data that
corresponds to the latent space. We wish to find p(z|x), However computing
p(z|x)(2) is not possible as the integral to compute p(x) might be intractable.
Hence variational inference is used to estimate p(z|x) using a distribution q(z|x).
This is done by assuming the latent space variables to be Gaussian, serving as
a priori for the random variable z(3). Figure(3d) highlights the architecture of
the model used. Much like the auto-encoder, the VAE captures crucial informa-
tion about the input(x) using CNN’s. The output from the CNN’s are flattened
and passed through an ANN which terminates with the mean and variance of
a parameterized normal distribution. Value for the latent space is obtained
through a sampling of values from the obtained normal distribution which then
passed through a series of transpose convolutional layers which generate the
output x̂). Upon further processing, the output temperature distribution is
obtained. Similarity between two probability distributions is given by the Kull-
backLeibler divergence or the relative entropy denoted by KL(P ||Q), where P
and Q are two probability distributions. The loss function (equation(4)) consists
of two components, a reconstruction component and KL Divergence component,
where Eq(z|x) is the expectancy with respect to q (z|x). While p(z) is given by
equation(3). The optimization function used is Adam(adaptive moment esti-
mation), and the activation function used is ReLU. Once again a regularization
term is not used as the auto-encoder is under complete and care is taken to
limit the size of the bottle-neck to avoid memorization of features.

2.3 Distributed Artificial neural network

In this model given presented, [9], each spatial point of each piece of input
data is trained using a single DANN, the activation function used is ReLU. The
information doesn’t transmit within each input as the weights are calculated for
each point independent of neighboring points. The minimization objective for
the algorithm is the mean-squared loss. The model is mathematically illustrated
below.

DANN = ∀
{

0 if x ≤ 0∮
Ω

∫m
j=1

(hji + b2i) djdΩi if x > 0

}
hj = ∀ (W1i

· hj−1i
+W2i

· xj−1i
+ b1i

)

MSEi =
1

m

m∑
n=1

∣∣Toutput i
− TActi

∣∣2
Where i is a spatial coordinate, x is the input data at each coordinate, h

is the hidden cell state, W1i
, b1i

and W2i
, b1i

are the weight and bias matrices
for hidden-hidden and input-hidden connections.

∮
Ω

is the integral over the
engineering geometry of interest, j is the training sample and m is the total
number of training samples. Further, xi, is called features. The boundary
condition for each grid point i, for sample j, is denoted as b2i

Figure(4).
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Figure 4: DANN Schematic

3 Results

The data used in this paper is in the form of images. In thermal engineering
applications, the amount of data available is limited, hence only 20 tempera-
ture distributions are used to train the deep learning models. The temperature
distributions are generated using commercial simulation software for both Neu-
mann and Dirichlet boundary conditions. The obtained distributions are verified
using a symbolic computational tool. While the algorithms are trained with re-
construction in mind, i.e. the targets and the inputs are the same completed
temperature distribution, while during testing the incomplete temperature dis-
tribution(Figure 5) is used to generate completed temperature distributions.
This is justified by the fact that denoising-encoders have the potential to recog-
nize and reconstruct corrupted versions of data from a learned distribution. The
incomplete consists of the boundary conditions and temperature at a few ran-
domly sampled points, this is done to aid the deep-learning model to learn the
relevant features and to ensure a large portion of the network doesn’t become
inactive due to pixels that have null values. Furthermore, the final temperature
distribution output is obtained by the use of a normalization scheme to gener-
ate colorized images(Figure 5). This is done by using luminance as a metric to
detect patterns. Luminance is given by equation(5) where R, G, B refer to the
values of the respective channel at a pixel on the image.

Li = 0.21 ·R+ 0.72 ·G+ 0.07 ·B (5)

3.1 Simulation Data Set Generation

A square domain of side length 2m is subjected to boundary conditions. Figure
(6b) shows the verification of results obtained using simulation software. The
numerical solution is now found for 20 such cases for both Dirichlet and Neu-
mann type boundary conditions. The obtained solution is then converted to
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(a) Input During Testing (b) Output after Colourizing

Figure 5: Comparison between input during testing and output after contour
colourizing

image form programmatically and used as input. Only 20 data points are used
to reflect the limited availability of data in a thermal engineering domain. 15
of these form the training data-set and 5 of these form the testing data-set.

3.2 Comparison Between CNN and PPRNN

The performance metric used for the CNN models is SSIM(structural similarity
index measure). SSIM has been a standard metric to test the quality of images
against a benchmark quality. SSIM varies from 0 to 1, where 0 implies struc-
tural dissimilarity and 1 implies perfect similarity. SSIM measures structural
similarity between two black and white images .SSIM is given by equation(6)
where x and y are two sliding windows of the same size, µ represents the aver-
age, σ represents the variance/covariance and (C1 ,C2) are stabilising constants
to ensure bounded values when the denominator is weak.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

SSIM is used for the auto-encoder and variational auto-encoder models as the
generated temperature distribution is formed using a normalization scheme,
hence the final output is representative of the patterns rather than the exact
temperature value at a point. Moreover, the temperature distribution(image)
will be identical for two boundary conditions which are in proportion given the
nature of the laplace equation.Since SSIM is a metric for black and white images,
the obtained processed output is converted to black and white. Hence the SSIM
serve as a measure of the how well the image-based algorithm reconstructs
patterns from the input and extracts features pertaining to heat transfer.
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Metric Autoencoder Variational Autoencoder
SSIM 0.7797 0.6671

Table 1: Results for the Dirichlet Boundary Condition

3.3 Heat Conduction Problem and DL model image solu-
tion comparison

3.3.1 Autoencoder

Under a Dirichlet boundary condition the output temperature distribution is
as shown in Figure(6). The processed output indicates primitive feature ex-
traction with the target distribution’s shape not being perfectly reflected. The
average SSIM for the reconstruction is 0.7797. The training MSE is 0.0185 and
validation MSE is 0.0200.The model is trained for 1000 epochs, convergence is
seen in Figure(6) . The model takes 1s/epoch to train and 85ms/sample for a
prediction.

3.3.2 Variational Autoencoder

Figure(7) shows the processes output after 2000 epochs of training, while the
loss has converged Figure(7), the final training loss is relatively high.This is
reflected in the fact that the output has a nearly constant output.The trained
model has a reconstruction loss of 41824.4668 and a kl-loss of 12.3372. An SSIM
of 0.6671 is obtained. The training time per epoch is 8s and it takes around
300 ms for a prediction.
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(a) Analytical Solution (b) Numerical Solution

Comparison between Analytical and Numerical Solution of sample heat conduction problem

(c)

(d)

(e)

Figure 6: Comparison of losses
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(a)

(b)

(c)

Figure 7: Comparison of losses

13



3.3.3 DANN

The DANN algorithm as presented in [9] shows maximum errors of less than 1%
for both Dirichlet and Neumann boundary conditions under reasonable physical
situations. Hence generating the temperature distributions almost perfectly.
This establishes the superior capabilities of the DANN over the image-based
models. When the DANN is supplied with data pertaining to a significantly
smaller domain, of side length 2mm, where temperature gradients are much
larger, the DANN output provides results which may be closer to reality than a
numerical solution to the laplacian for a set of boundary conditions. The DANN
algorithm is trained for 200 epochs and a loss of 10−6 is obtained. Figure(8)
depicts the results. The obtained output in Figure(8) is further analysed. While
the numerical or the analytical solution to a partial differential equation may
present a mathematical interpretation, the ground truth may be very different
due to other physical effects. In the case the temperature gradients are large,
it can lead to other effects,apart from conduction. While image based models
learn features directly from the results of the partial differential equations, the
DANN may provide more realistic output. Under Dirichlet boundary conditions
in which the temperature gradients are high and asymmetrical, the material
may not maintain its integrity, mixing and ignition may take place. In the
DANN output of Figure(8), the center has values which are intermediate i.e.
in between the highest and lowest boundary condition values, while the outer
portions have relatively larger temperatures. Also due to disintegration of the
medium, convective effects may also be seen in addition to conductive effects
courtesy of high temperature gradients. This results in a circular pattern spread
over a larger region than initially, similar to the 2D cross-section flame. This
inference may be subjected to experimental verification for such asymmetrical
boundary conditions.

3.4 DL model image solution comparison for Neumann
Boundary Condition

3.4.1 Autoencoder

The output temperature distribution under a Neumann boundary condition is
given by Figure(9).The model seems to remotely capture the patterns associated
with the target distribution. The average SSIM for the reconstruction is 0.7786.
The training MSE is 0.0058 and the validation MSE is 0.0068. Training is
stopped at 1000 epoch, convergence is seen in Figure(9). The model training
time is 1s/epoch and the prediction time is 89ms/sample.

3.4.2 Variational Autoencoder

The processed output after 2000 epochs is given by Figure(9) . Similar to the
Dirichlet case, the VAE model gives more or less a constant output . The SSIM
is 0.7535, which is largely due to similarity in shapes of black and white images
of the target and the output. The reconstruction loss is 42838.4883 and the
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(a)

(b)

(c) (d)

Figure 8: Comparison of losses
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(a)
(b)

(c)
(d)

(e) (f)

Figure 9: Comparison of losses for Neumann Boundary conditions
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Metric Autoencoder Variational Autoencoder
SSIM 0.7786 0.7535

Table 2: Results for the Neumann Boundary Condition

kl-loss is 13.1811. The model takes 11s per epoch to train and 200 ms to make
a prediction.

4 Summary

In this paper the efficacy of convolutional neural networks for a data-driven ap-
proach to deep learning has been studied. Images are generated using numerical
solutions of PDE’s and this is reflected in learning process of the image based
models. The performance of the image based models is quantified using SSIM.
The SSIMs obtained for the auto-encoder and the variational auto-encoder do
not indicate satisfactory reconstruction. A simple examination of the outputs
for the image based methods indicates that the models are unable to extract
features accurately with the given data, especially in the case of the variation-
auto-encoder. With better quality data-sets with a larger number of training
samples greater feature extraction can be achieved, however the efficacy of such
encoder-decoder networks for generative purposes remain limited, hence its ca-
pacity to learn complex features may be restricted. Generative adverserial net-
works may serve as better generative technique for image based modelling as
demonstrated in several applications from other domains. As seen Image based
modelling relies on the solution from partial differential equations, hence even
in cases where length scales are small, the model will predict a similar output
as when length scales are normal, discounting for effects other than conduc-
tion. The discrepancy is seen in the results pertaining to the DANN, which
shows a significantly different output to the target are small length scales, the
results obtained indicate that the non-image based provides a more realistic rep-
resentation which image-based algorithms may not be able to provide. A finer
interpretation of these results is a matter of further experimental investigation.
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