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A B S T R A C T   

This paper presents a data-driven approach to solve heat conduction problems, in particular 2D 
heat conduction problems. The physical laws which govern such problems are modeled by partial 
differential equations. We examine temperature distributions of conductors that have square 
geometry subjected to various boundary conditions, both Dirichlet and Neumann. The data 
consists of images of these distributions in a semi-continuous form. Conventionally, such prob-
lems may be solved analytically or using numerical methods which can be computationally 
expensive. We attempt to use Image-Based Deep Learning algorithms such as encoder-decoders 
and variational auto-encoders which do not involve the physical laws of the problem. We also 
study the efficacy of deterministic models against probabilistic models and the feasibility of using 
image-based deep-learning methods for engineering applications.   

1. Introduction 

Heat Transfer Problems involve the study of the movement of heat between systems, it occurs through three modes conduction, 
convection and radiation. Conduction is heat transfer through vibration between particles in physical contact, while convection is a 
transport phenomenon where heat flows under moving phase. Radiation is the transfer of heat through electromagnetic radiation. In 
this paper, we focus on conduction problems, in particular 2D steady-state heat conduction. Also, we assume there is no internal heat 
generation that occurs in the body. Also, the thermal conductivity of the material is constant throughout the material. 

Δu =
∂2u
∂x2 +

∂2u
∂y2 = 0 (1)  

0 ≤ x ≤ a,

0 ≤ y ≤ a.

Under such assumptions, the physics of heat conduction equation is given by equation (1), where Δ is the Laplacian operator and u, 
the temperature. The physical state of the systems can be determined by solving the partial differential equation along with certain 
boundary conditions relevant to the problem. Analytical solutions of a steady-state heat conduction problem can be determined for 
simple geometries, however, for more complicated geometries, an analytical solution may not attainable. With the advent of the digital 
computer, numerical methods have been employed to solve partial differential equations, in such methods, the solution for the 
problem is computed at discrete points in space rather than a general solution for every point in space, in the process of discretization 
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errors are introduced which are satisfactory provided number of discretized points is sufficiently large for a given problem. 
The finite element analysis (FEA) is a numerical method that divides the domain of the solution into a number of smaller elements 

using a mesh, these elements may be of different dimensions depending on the nature of the problem. The partial differential equations 
which govern the physical situation are applied over each element in a weighted integral form, this ensures that the fundamental 
conservation laws are satisfied in the obtained numerical solution. The variables at the discrete points in space are obtained from a 
linear system formed through linearization of the weighted integrals. The solution obtained through this method has errors from 
discretization and linearization, both of which increase with increasing sizes of elements. As the complexity and the size of the 
problems increase, elements of smaller size are needed to achieve a numerical solution of sufficient accuracy. As a result, the number of 
elements increases causing an increase in the size of the linear system increasing the to compute time of the solution. Some physical 
situations may require a mesh of extremely fine resolution, for example, chaotic phenomenon such as turbulence, in such cases the 
number of variables to be solved for and the number of equations is large, such systems may take several days to be solved at a High- 
Performance Computing Facility which employs parallel computing, such simulations are beyond the capabilities of a personal 
computer [1]. 

With the availability of analytical solutions, experiments data and improvements in computational infrastructure and growth in 
graphics processing unit (GPU) deep learning is being used across various fields, fluid mechanics and engineering applications. 
Encoding-Decoding Algorithms used in this paper is one such deep learning method where encoding is the process of computer al-
gorithm where sequence of numbers are put in special format like images for training and after training images, decoding algorithms 
are used to get the final predicted result images back into orginal sequence of numbers. As discussed deep learning can be employed in 
a variety of applications, engineering, an in particular thermal engineering is no exception. Such approaches can have utility in 
problems where simulations are computationally expensive. Data from simulations can be used to train deep learning models. Deep 
learning models like Artificial Neural Network (ANN) is inspired by biological human brain that consist of up to 60 trillion neurons 
interconnected is a deep learning model used to perform series of decision making. With this idea, Artificial Neural Network (ANN) 
deep learning method is modeled as a single processor. Convolutional Neural Network (CNN), a class of Artificial Neural Network 
(ANN) is a deep learning model for processing images and the model is inspired by the organization of animal visual cortex. The pixel 
values of the image are stored as data and an optimizer kernal is used to extract the features of the image. However, engineering 
applications are unique in the sense that there can be less data available compared to other domains. As demonstrated in Ref. [2] 
physics informed neural networks are new deep learning model that are used in engineering applications and the model show help to 
overcome the limited availability of data. In this paper, we examine a non-physics informed, image-based approach [3]. Establishes 
that neural networks are universal function approximators that are capable of mapping any Borel measurable function between 
different dimensional spaces. This property of multi-layered neural networks finds utility in heat conduction problems where an 
analytical solution may not be available, yet an approximated solution for the temperature distribution can be obtained by training a 
neural network. In this paper, we attempt to teach a neural network the underlying rules and heuristics which accompany the problem 
without actually incorporating them into the algorithms. Encoder-Decoder architectures are primarily used in this paper, images of 
temperature distributions, and the corresponding boundary conditions serve as the data. Digital images are essentially stored as 
numbers in an array, these images are often stored in an efficient manner using encoding techniques to reduce the size of the Image. In 
this paper, we use encoding - decoding algorithms that try to understand the physics of heat transfer implicitly. The reconstruction 
capabilities of encoder-decoder networks are demonstrated in Refs. [4,5]. Traditionally such networks have found use in denoising and 
compression, for example in Ref. [6], where X-rays are denoised using denoising auto-encoders. In this paper, such networks are used 
to generate temperature distributions from incomplete temperature distributions which include the boundary conditions. The use of 
convolution neural networks to generate temperature distributions is demonstrated in Ref. [7], which focuses on predicting tem-
perature distributions for various geometries with identical boundary conditions. However [7] does not establish whether CNN’s are 
capable of learning the fundamental laws of heat transfer and whether CNN’s are capable of generating temperature distributions for 
arbitrary boundary conditions. In this paper, we examine the generative capabilities of image-based algorithms(CNN’s) both deter-
ministic and probabilistic for different boundary conditions. We further evaluate the feasibility of image based algorithms against 
non-image based deep learning algorithms (see schematic Fig. 1). 

2. Problem setup & description 

Here, we focus on 2D steady-state heat conduction. Also, we assume there is no internal heat generation that occurs in the body. 
Also, the thermal conductivity of the material is constant throughout the material. Under these assumptions, the heat conduction 

Fig. 1. Traditional approach, deep learning approach.  
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equation is given in equation (1). Further, a 2D square domain is considered to study the heat conduction subjected to Dirichlet and 
Neumann boundary conditions as shown in Fig. 2. We attempt to create a deep learning model that takes inputs in the form of 
boundary conditions and incomplete temperature distributions and complete the temperature distributions as shown in Fig. 2c. The 

Fig. 2. Boundary conditions and black box model.  

Fig. 3. Autoencoder and Variational Autoencoder.  
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data set consists of 20 pairs of input and output images which have been generated using data from commercial simulation software. 

3. Deep learning models 

Dimensionality reduction techniques are commonly used in applied statistics and machine learning to remove redundant features 
that add no additional information. In such techniques data is transformed from a higher dimensional to a lower-dimensional space 
having independent features as shown in (Fig. 3), sometimes referred to as the latent space. Such Transformations may be linear or 
non-linear in nature. The simplest such dimensionality reduction technique is principal component analysis (PCA), where there is a 
linear transformation to a latent space where features are independent [8]. A major drawback of PCA is its linear nature, something 
with auto-encoders with non-linear activation functions seem to overcome. This non-linearity can be exploited along with the uni-
versal function approximate ability of neural networks to learn and understand patterns seen in heat transfer. Two variants of 
encoder-decoder models are studied, a probabilistic and a deterministic, the probabilistic variant is called a variational auto-encoder 
(VAE), has its latent space variables to be stochastic as opposed to the traditional auto-encoder model which has single-valued latent 
space variables. In addition to the Image-based algorithms, a non-image based approach is also applied. A Distributed Artificial neural 
network (DANN) is trained using data in a numerical form rather than an image form [9]. The primary objective of training this model 
is to understand the efficacy of image-based deep learning approaches against non-image based approaches. 

3.1. Autoencoder 

This model uses CNN’s which have non-linear activation functions at each layer. The encoder portion of the model reduces the 
dimensionality of the input data, in the process captures crucial information about the temperature distribution while discarding 
redundant information. From the lower-dimensional space (latent space) the decoder generates images using up-sampling. Auto-en-
coders function on the principle that data concentrates and clusters around low-dimensional manifolds, which is represented in the 
latent space [10]. Auto-encoders which have noise in the input are called denoising auto-encoders, the auto-encoder in this case. This is 
demonstrated by the reconstruction capability of denoising auto-encoders studied in Ref. [11]. The architecture of the model used is 
depicted in Fig. 3b, it is an under complete All convolution layers used, have same padding, which ensures the out has the same width 
and height as the input. The max pooling layers reduce the width and height of the input to half. The input to the model is a 
three-channel image which is of size (256 × 256 X 3) and the output is an image of the same size. The reconstructed output is further 
processed using a normalization scheme to obtain a temperature distribution. 

The loss function used in this model is the mean square loss: 

MSEi =
1

W ·H ·D
∑W

j=1

∑H

k=1

∑D

l=1
|x̂i (j, k, l) − xi(j, k, l)|2  

where MSEi is the mean square loss associated with image i, (W X H) is the dimension of the image, D is the number of channels, ̂x is the 
reconstructed output, while x is the input. j and k represent the location of pixels and l represents the channel and xi(j, k, l) is the value 
of a particular pixel. The loss does not possess a regularization term. This is due to fact that the auto-encoder being used is under 
complete and the size of the bottleneck is small, making it resilient to over-fitting, this is particularly important in engineering ap-
plications where the availability of data is limited. The adadelta optimization algorithm is used. The activation function used to create 
non-linearity in the model is ReLU. 

3.2. Variational Autoencoder 

A variational auto-encoder(VAE) as the name suggests is a probabilistic version of the traditional auto-encoder, it is introduced by 
Ref. [12]. The latent space of a VAE consists of random variables that have a priori, in the model used in this paper the priori is a normal 
distribution. A normal distribution can be parameterized by a mean and variance. Using Convolutional neural networks and artificial 
neural networks the probabilistic model can be represented in a deterministic framework by sampling from a normal distribution 
whose parameters are the output of the encoder. From the sampled latent space a decoder generates the output which on further 
processing gives a temperature distribution. In Fig. (3c) z is the latent space that we wish to find, x is the data that corresponds to the 
latent space. We wish to find p(z|x), However computing p(z|x) in Eq (2) is not possible as the integral to compute p(x) might be 
intractable. Hence variational inference is used to estimate p(z|x) using a distribution q(z|x). This is done by assuming the latent space 
variables to be Gaussian, serving as a priori for the random variable z as given in Eq (3). 

Fig. (3c) highlights the architecture of the model used. Much like the auto-encoder, the VAE captures crucial information about the 
input(x) using CNN’s. The output from the CNN’s is flattened and passed through an ANN which terminates with the mean and 
variance of a parameterized normal distribution. Value for the latent space is obtained through a sampling of values from the obtained 
normal distribution which then passed through a series of transpose convolutional layers which generate the output x̂). Upon further 
processing, the output temperature distribution is obtained. Similarity between two probability distributions is given by the Kull-
back–Leibler divergence or the relative entropy denoted by KL(P‖Q), where P and Q are two probability distributions. The loss function 
as given in Eq (4) consists of two components, a reconstruction component and KL Divergence component, where Eq(z|x) is the ex-
pectancy with respect to q(z|x). While p(z) is given by Eq (3). The optimization function used is Adam(adaptive moment estimation), 
and the activation function used is ReLU. Once again a regularization term is not used as the auto-encoder is under complete and care is 
taken to limit the size of the bottle-neck to avoid memorization of features. 
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p(z|x) =
p(x|z)p(z)

p(x)
(2)  

p(z) =
1

σ
̅̅̅̅̅
2π

√ e− (z− μ)2/2σ2 (3)  

L = Eq(z|x)log p(x|z) − KL(q(z|x)‖p(z) ) (4)  

3.3. Distributed Artificial neural network 

In this model given presented [9], each spatial point of each piece of input data is trained using a single DANN, the activation 
function used is ReLU. The information doesn’t transmit within each input as the weights are calculated for each point independent of 
neighboring points. The minimization objective for the algorithm is the mean-squared loss. The model is mathematically illustrated 
below. 

DANN = ∀

⎧
⎪⎨

⎪⎩

0 ifx ≤ 0
∮

Ω

∫ m

j=1

(
hji + b2i

)
djdΩi ifx > 0

⎫
⎪⎬

⎪⎭

hj = ∀
(
W1i · hj− 1i + W2i · xj− 1i + b1i

)

MSEi =
1
m

∑m

n=1

⃒
⃒Toutput  i − TActi

⃒
⃒2 

Fig. 4. DANN Schematic.  

Fig. 5. Comparison between input during testing and output after contour colourizing.  
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where i is a spatial coordinate, x is the input data at each coordinate, h is the hidden cell state, W1i , b1i and W2i are the weight and bias 
matrices for hidden-hidden and input-hidden connections. 

∮
Ω is the integral over the engineering geometry of interest, j is the training 

sample and m is the total number of training samples. Further, xi, is called features. The boundary condition for each grid point i, for 
sample j, is denoted as b2i , see Fig. 4. 

4. Results 

The data used in this paper is in the form of images. In thermal engineering applications, the amount of data available is limited, 
hence only 20 temperature distributions are used to train the deep learning models. The temperature distributions are generated using 
commercial simulation software for both Neumann and Dirichlet boundary conditions. The obtained distributions are verified using a 
symbolic computational tool.While the algorithms are trained with reconstruction in mind, i.e. the targets and the inputs are the same 

Fig. 6. DL based Autoencoder model to predict heat conduction.  
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completed temperature distribution, while during testing the incomplete temperature distribution (Fig. 5) is used to generate 
completed temperature distributions. This is justified by the fact that denoising-encoders have the potential to recognize and 
reconstruct corrupted versions of data from a learned distribution. The incomplete consists of the boundary conditions and temper-
ature at a few randomly sampled points, this is done to aid the deep-learning model to learn the relevant features and to ensure a large 
portion of the network doesn’t become inactive due to pixels that have null values. Furthermore, the final temperature distribution 
output is obtained by the use of a normalization scheme to generate colorized images (Fig. 5). This is done by using luminance as a 
metric to detect patterns. Luminance is given by equation (5) where R, G, B refer to the values of the respective channel at a pixel on the 
image. 

Li = 0.21 ·R + 0.72 ·G + 0.07 ·B (5)  

4.1. Simulation data set generation 

A square domain of side length 2 m is subjected to boundary conditions. Fig. 6 shows the verification of results obtained using 
simulation software. The numerical solution is now found for 20 such cases for both Dirichlet and Neumann type boundary conditions. 
The obtained solution is then converted to image form programmatically and used as input. 

Only 20 data points are used to reflect the limited availability of data in a thermal engineering domain. 15 of these form the training 
data-set and 5 of these form the testing data-set. The performance metric used for the CNN models is SSIM(structural similarity index 
measure). SSIM has been a standard metric to test the quality of images against a benchmark quality, established by Ref. [13]. SSIM 
varies from 0 to 1, where 0 implies structural dissimilarity and 1 implies perfect similarity. SSIM measures structural similarity be-
tween two black and white images. SSIM is given by equation (6) where x and y are two sliding windows of the same size, μ represents 
the average, σ represents the variance/covariance and (C1,C2) are stabilising constants to ensure bounded values when the denomi-
nator is weak. 

Fig. 7. DL based Variational Autoencoder model to predict heat conduction.  
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SSIM(x, y) =
(2μxμy + C1) + (2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(6) 

SSIM is used for the auto-encoder and variational auto-encoder models as the generated temperature distribution is formed using a 
normalization scheme, hence the final output is representative of the patterns rather than the exact temperature value at a point. 
Moreover, the temperature distribution(image) will be identical for two boundary conditions which are in proportion given the nature 
of the laplace equation. Since SSIM is a metric for black and white images, the obtained processed output is converted to black and 
white. Hence the SSIM serve as a measure of the how well the image-based algorithm reconstructs patterns from the input and extracts 
features pertaining to heat transfer. 

4.2. Prediction of heat conduction using the deep learning image and non-image based models 

4.2.1. Autoencoder 
Under a Dirichlet boundary condition the output temperature distribution is as shown in Fig. 6. The processed output indicates 

primitive feature extraction with the target distribution’s shape not being perfectly reflected. The average SSIM for the reconstruction 
is 0.7797. The training MSE is 0.0185 and validation MSE is 0.0200. The model is trained for 1000 epochs, convergence is seen in 
Fig. 6. The model takes 1s/epoch to train and 85 ms/sample for a prediction. 

4.2.2. Variational Autoencoder 
Fig. 7 shows the processes output after 2000 epochs of training, while the loss has converged, the final training loss is relatively high 

as seen in Fig. 7. This is reflected in the fact that the output has a nearly constant output. The trained model has a reconstruction loss of 
41824.4668 and a kl-loss of 12.3372. An SSIM of 0.6671 is obtained. The training time per epoch is 8s and it takes around 300 ms for a 
prediction. 

4.2.3. DANN 
The DANN algorithm as presented in Ref. [9] shows maximum errors of less than 1% for both Dirichlet and Neumann boundary 

conditions under reasonable physical situations. Hence generating the temperature distributions almost perfectly. This establishes the 
superior capabilities of the DANN over the image-based models. When the DANN is supplied with data pertaining to a significantly 
smaller domain, of side length 2 mm, where temperature gradients are much larger, the DANN output provides results which may be 
closer to reality than a numerical solution to the laplacian for a set of boundary conditions. The DANN algorithm is trained for 200 

Fig. 8. DL based DANN model to predict heat conduction.  
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epochs and a loss of 10− 6 is obtained. Fig. 8 depicts the results and the output results obtained using DANN DL model is further 
discussed. While the numerical or the analytical solution to a partial differential equation may present a mathematical interpretation, 
the ground truth may be very different due to other physical effects. In the case the temperature gradients are large, it can lead to other 
effects, apart from conduction. While image based models learn features directly from the results of the partial differential equations, 
the DANN may provide more realistic output. Under Dirichlet boundary conditions in which the temperature gradients are high and 
asymmetrical, the material may not maintain its integrity, mixing and ignition may take place. In the DANN output of Fig. 8, the center 
has values which are intermediate i.e. in between the highest and lowest boundary condition values, while the outer portions have 
relatively larger temperatures. Also due to disintegration of the medium, convective effects may also be seen in addition to conductive 

Fig. 9. DL based Autoencoder and Variational Autoencoder model to predict heat conduction for Neumann Boundary condition.  
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effects courtesy of high temperature gradients. This results in a circular pattern spread over a larger region than initially, similar to the 
2D cross-section flame. This inference may be subjected to experimental verification for such asymmetrical boundary conditions. 

4.3. Prediction of heat conduction using the deep learning image and non-image based models for Neumann boundary condition 

4.3.1. Autoencoder 
The output temperature distribution under a Neumann boundary condition is given by Fig. 9. The model seems to remotely capture 

the patterns associated with the target distribution. The average SSIM for the reconstruction is 0.7786. The training MSE is 0.0058 and 
the validation MSE is 0.0068. Training is stopped at 1000 epoch, convergence is seen in Fig. 9. The model training time is 1s/epoch and 
the prediction time is 89 ms/sample. 

4.3.2. Variational Autoencoder 
The processed output after 2000 epochs is shown in Fig. 9. Similar to the Dirichlet case, the VAE model gives more or less a constant 

output. The SSIM is 0.7535, which is largely due to similarity in shapes of black and white images of the target and the output. The 
reconstruction loss is 42838.4883 and the kl-loss is 13.1811. The model takes 11s per epoch to train and 200 ms to make a prediction. 
Convergence is seen in Fig. 9, the final loss is quite high, this is representative of the fact that the model is unable to learn features from 
the data set, hence the output is nearly constant for all inputs. 

5. Summary 

In this paper the efficacy of convolutional neural networks for a data-driven approach to deep learning has been studied. Images are 
generated using numerical solutions of PDE’s and this is reflected in learning process of the image based models. The performance of 
the image based models is quantified using SSIM. The SSIMs obtained for the auto-encoder and the variational auto-encoder do not 
indicate satisfactory reconstruction. A simple examination of the outputs for the image based methods indicates that the models are 
unable to extract features accurately with the given data, especially in the case of the variation-auto-encoder. With better quality data- 
sets with a larger number of training samples greater feature extraction can be achieved, however the efficacy of such encoder-decoder 
networks for generative purposes remain limited, hence its capacity to learn complex features may be restricted. Generative adver-
serial networks may serve as better generative technique for image based modelling as demonstrated in several applications from other 
domains. As seen Image based modelling relies on the solution from partial differential equations, hence even in cases where length 
scales are small, the model will predict a similar output as when length scales are normal, discounting for effects other than conduction. 
The discrepancy is seen in the results pertaining to the DANN, which shows a significantly different output to the target for small scale 
geometries. The results obtained indicate that the non-image based provides a more realistic representation which image-based al-
gorithms may not be able to provide. A finer interpretation of these results is a matter of further experimental investigation. 
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