



# Prof. Dr. Dincer Topacık National Research Center on Membrane Technologies (MEM-TEK)

# 05.05.2022



# About MEM-TEK



- The establishment of the National Research Center on Membrane Technologies (MEM-TEK) was started in 2010 with the support of the Ministry of Development of the Republic of Turkey in order to produce membranes in Turkey,
- To develop modules and processes,
- To offer opportunities to researchers working on membrane technologies, and
- To contribute to global membrane science.
- The construction of the center was completed in 2011 and the installation of the devices was completed in 2012.
- The Center gained the status of Application and Research Center (UYG-AR) in 2014.





# Organizastions Supporting MEM-TEK ITÜ

- Republic of Turkey Ministry of Development
- Republic of Turkey Ministry of Forestry and Water Affairs
- Republic of Turkey Ministry of Science, Industry and Technology
- TUBITAK
- ITU Rectorate
- İSKİ General Directorate
- Istanbul Development Agency





Vision



## **VISION OF MEM-TEK**

To become a world-leading research center for membrane fabrication, module manufacturing and process development in water and wastewater applications.





# Mision



### **MISION of MEM-TEK**



- Research and Development: MEM-TEK will conduct research to improve existing technologies and produce new technologies.
- Support to the industry: MEM-TEK will provide all areas of the industry with the technical knowledge and infrastructure they need on membrane technologies.
- Educating researchers and scientists: The latest technologies will be presented to researchers.



## **MEMTEK Research Concept**

İTİ







# Laboratory Infrastructure



### **Membrane Characterization Infrastructure Facilities**

| <u>Equipment</u>             | Brand/Model                     |
|------------------------------|---------------------------------|
| Scanning Electron Microscopy | FEI Quanta FEG 200              |
| Contact Angle Measurement    | KSV Nima Attention              |
| Optical Profilor             | Zygo NewView 7100               |
| Nano Sizer                   | Malvern Nano-S                  |
| Porometer                    | Quantachrome Porometer 3G       |
| Gas Chromotography           | Agilent 7890A                   |
| UV Spektrophotometry         | Hach-Lange DR5000               |
| Master sizer                 | Malvern Mastersizer 2000        |
| Zeta Sizer                   | Malvern Nano-Z                  |
| GPC-HPLC                     | Schimadzu                       |
| Laktose Measurement          | Funke Gerber -LactoStar         |
| Osmometer                    | Advanced Instruments Model 3250 |
| FTIR -ATR                    | Perkin Elmer Spectrum 100       |
| Elektro Kinetik Analyser     | Anton Paar SurPaas              |
| Total Organic Carbon         | Schimadzu TOC-Vcpn              |
| Viskozimeter                 | AND SV-10                       |
| Confokal Laser Microscopy    | Nikon C2                        |
| Dynamic Mekanik Analyser     | SII DMS6100                     |









# Laboratory Infrastructure



### Membrane Processes Equipment Infrastructure

#### **Membran Processes Systems in MEM-TEK**

Pilot Scale MF/UF Treatment System

Pilot Scale NF/RO Treatment System

2 Pilot Scale MBR System

4 Lab Scale MBR Treatment System

Lab Scale Membrane Distillation System

Lab Scale Cross Flow System

7 Lab Scale Membran Treatment System (Sterlitech)

Lab Scale Cross Flow Hollow Fiber System

Pilot Scale Cross Flow Hollow Fiber System









# İTÜ 🖲

#### Turkey's first pilot scale flat sheet membrane fabrication







#### Turkey's first pilot scale hollow fiber membran fabrication











Turkey's first reinforced fiber membrane and the first completely domestic MBR module containing these membranes were produced.





#### Turkey's first domestically fabricated spiral wound modules







#### The first fully domestically fabricated hollow fiber membrane modules







#### Turkey's first flat sheet membrane modules







- Water production without the need for electricity and fossil fuels
- It can be used in natural disasters, military activities, in places like Africa with water shortages.
- Ideal for turbidity, pathogen and virus removal.
- Patent application filed









Membrane autopsy service was started to be provided for the first time in Turkey.





### **Research Center Outputs**







## **Research Center Outputs**



- MBR modules, including membrane fabrication, have been commercialized. (GENMBR® Modules)
- Pressure UF modules have been commercialized, including membrane fabrication.(GEN UF® Modules)
- **Spiral wound reverse osmosis** (RO) module, including membrane production, has been produced and its know-how has been brought to Turkey. It is in the commercialization stage.(GEN RO® Modules)
- Nanofiber fabric (N95, N99 mask filter and air filtration) is in the commercialization stage (GENFIBER)
- MBR Package purification systems have been developed. (GEN PAKET<sup>®</sup>)
- Gray Water MBR Treatment Systems have been commercialized as 100% domestic. (GEN GRi®)
- Forward osmosis membrane technology has been developed. Patent applications have been made and prototype work continues.
- The first printouts were obtained on the **membrane distillation membrane**. Prototype work continues.





Membrane autopsy service has started to be provided in Turkey.





### **Research Center Outputs**







# Industrial Wastewater Treatment Projects iTU





# Industrial Wastewater Treatment Projects







## Istanbul-Ağva MBR Plant













# THE POTENTIAL OF OSMOTIC POWER FOR TURKEY





- In Turkey, Law on The Use of Renewable Energy Resources for Electrical Energy Production was come into operation in 2005.
- To support RE, Promotion on Renewable Energy Sources Law inured in 2010.
- Under the Renewable Energy Sources Act, the law on incentives also entered into force.
- It also envisages the implementation of additional support in the case of the use of domestic production equipment and equipment in the facilities used for energy production.



## THE POTENTIAL OF OSMOTIC POWER FOR TURKEY



The renewable energy potential of Turkey is assessed by the Renewable Energy General Directorate of the Ministry of Energy and Natural Resources.

| Energy Resource                     | Potential | Unit          |
|-------------------------------------|-----------|---------------|
| Solar Power                         | 1500      | KW/year-m2    |
| Wind Power                          | 48000     | MW            |
| Geothermal (Electricity Production) | 2000      | MW            |
| Biomass                             | 8.6       | Mtoe (oil-eq) |
| Hydraulic                           | 34000     | MW            |
|                                     |           |               |

## THE POTENTIAL OF OSMOTIC POWER FOR TURKEY







## THE POTENTIAL OF OSMOTIC POWER FOR TURKEY



### Important Rivers in Turkey

| RIVER          | AVAILABLE<br>STREAM<br>FLOWRATE (Avg) | SALINITY<br>GRADIENT | INFRASTRUCTURE<br>and GEOLOGY           | PROFICIENCY                                                                                       |  |  |  |  |  |  |  |  |
|----------------|---------------------------------------|----------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Asi            | 65 m³/s                               | 0.075-39 g/L         | Suitable                                |                                                                                                   |  |  |  |  |  |  |  |  |
| Büyük Menderes | NA                                    | NA                   | Not Suitable                            | No data, not<br>suitable for<br>construction                                                      |  |  |  |  |  |  |  |  |
| Ceyhan         | 200 m <sup>3</sup> /s                 | 0.03-39 g/L          | Suitable                                | Ø                                                                                                 |  |  |  |  |  |  |  |  |
| Çoruh          |                                       | Trans                | sboundary                               |                                                                                                   |  |  |  |  |  |  |  |  |
| Dalaman        | 30 m³/s                               | 0.01-37g/L           | Suitable                                | ☑                                                                                                 |  |  |  |  |  |  |  |  |
| Dicle          | Transboundary                         |                      |                                         |                                                                                                   |  |  |  |  |  |  |  |  |
| Fırat          | Transboundary                         |                      |                                         |                                                                                                   |  |  |  |  |  |  |  |  |
| Gediz          | 30 m³/s                               | 0.04-32 g/L          | Suitable                                | Ø                                                                                                 |  |  |  |  |  |  |  |  |
| Göksu          | 80 m³/s                               | 0.01-39 g/L          | Suitable                                | Ø                                                                                                 |  |  |  |  |  |  |  |  |
| Kızılırmak     | 2.5 m³/s                              | 0.7-18 g/L           | Not Suitable                            | Insufficient Flowrate<br>(~5 m <sup>3</sup> /s) and Old<br>and Low Salinity,<br>Hard Construction |  |  |  |  |  |  |  |  |
| Küçük Menderes | 0.07 m³/s                             | 0.2 – 37 g/L         | Maybe Suitable<br>(Operations required) | Insufficient Flowrate                                                                             |  |  |  |  |  |  |  |  |
| Manavgat       | 115 m <sup>3</sup> /s                 | 0.05-39 g/L          | Suitable                                |                                                                                                   |  |  |  |  |  |  |  |  |
| Meriç          | Bo                                    | undary betwe         | en Turkey and Gree                      | ece                                                                                               |  |  |  |  |  |  |  |  |
| Sakarya        | 145 m <sup>3</sup> /s                 | 0.05-18 g/L          | Suitable                                |                                                                                                   |  |  |  |  |  |  |  |  |
| Seyhan         | 60 m <sup>3</sup> /s                  | 0.02-39 g/L          | Suitable                                |                                                                                                   |  |  |  |  |  |  |  |  |
| Yeşilırmak     | 140 m <sup>3</sup> /s                 | 0.01-18 g/L          | Suitable                                | $\mathbf{\nabla}$                                                                                 |  |  |  |  |  |  |  |  |

Ulusal Membran Teknolojileri Araşt



# Asi River



- Asi river is in southwestern Anatolia, which is draining into the Mediterranean Sea.
- River born in Lebanon and goes into mountains of Syria.
- In Syria, some part of the river has been dammed to form Lake Qațțīnah.
- Lastly it enters to Turkey, where it bends westward and empties into the sea near Samandağı.
- Water is generally used for irrigation but the amount is limited. (Encloypaedia Britannica, 2016).



Figure 8: SHW Çöğürlü Station on Asi River located at 36:4:39N - 36:0:14E (SHW, n.d.-a)











Figure 11: Temperature change with respect to months in Asi River and Mediterranean Sea







#### Table 6: Calculation sheet where all required data written month by month to calculate PRO potential.

| MONTHS    | Tsea       | Tsea   | Triver     | Triver      | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCI    | $\Delta \pi_{osm}$ | Δр    | Eosm                 | Qfreshwater      | Ppowerplant |
|-----------|------------|--------|------------|-------------|------------|-----------|------------|-----------|------------------|----------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate | Kelvin | centigrate | Kelvin      | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 17.6       | 291    | 12.2       | 285         | 39         | 0.6674    | 0.0959     | 0.0016    | 0.08314          | 58.44    | 32.19              | 16.09 | 1.6093               | 12               | 19.6        |
| FEBRUARY  | 16.4       | 290    | 12.4       | 286         | 39         | 0.6674    | 0.1071     | 0.0018    | 0.08314          | 58.44    | 32.04              | 16.02 | 1.6022               | 163              | 261.5       |
| MARCH     | 16.6       | 290    | 12.6       | 286         | 39         | 0.6674    | 0.1263     | 0.0022    | 0.08314          | 58.44    | 32.05              | 16.03 | 1.6025               | 138              | 221.8       |
| APRIL     | 17.6       | 291    | 16.2       | 289         | 39         | 0.6674    | 0.1131     | 0.0019    | 0.08314          | 58.44    | 32.17              | 16.09 | 1.6085               | 87               | 140.4       |
| MAY       | 20.9       | 294    | 18.0       | 291         | 39         | 0.6674    | 0.0628     | 0.0011    | 0.08314          | 58.44    | 32.58              | 16.29 | 1.6289               | 49               | 80.3        |
| JUNE      | 24.8       | 298    | 20.0       | 293         | 39         | 0.6674    | 0.0606     | 0.0010    | 0.08314          | 58.44    | 33.01              | 16.51 | 1.6506               | 22               | 37.0        |
| JULY      | 27.5       | 301    | 27.7       | 301         | 39         | 0.6674    | 0.0569     | 0.0010    | 0.08314          | 58.44    | 33.31              | 16.66 | 1.6657               | 6                | 10.0        |
| AUGUST    | 28.5       | 302    | 25.5       | 299         | 39         | 0.6674    | 0.0490     | 0.0008    | 0.08314          | 58.44    | 33.43              | 16.72 | 1.6716               | 0                | 0.7         |
| SEPTEMBER | 25.4       | 299    | 21.0       | 294         | 39         | 0.6674    | 0.0687     | 0.0012    | 0.08314          | 58.44    | 33.07              | 16.54 | 1.6536               | 15               | 24.3        |
| OCTOBER   | 21.5       | 295    | 20.0       | 293         | 39         | 0.6674    | 0.0632     | 0.0011    | 0.08314          | 58.44    | 32.64              | 16.32 | 1.6322               | 37               | 59.8        |
| NOVEMBER  | 14.2       | 287    | 15.8       | 289         | 39         | 0.6674    | 0.0481     | 0.0008    | 0.08314          | 58.44    | 31.85              | 15.92 | 1.5923               | 48               | 76.6        |
| DECEMBER  | 18.9       | 292    | 12.8       | 286         | 39         | 0.6674    | 0.0477     | 0.0008    | 0.08314          | 58.44    | 32.37              | 16.18 | 1.6185               | 80               | 128.7       |
| AVERAGE   | 20.8       | 294    | 17.8       | <b>29</b> 1 | 39         | 0.6674    | 0.0750     | 0.0013    | 0.08314          | 58.44    | 32.56              | 16.28 | 1.6280               | 55               | 88.4        |



# **Ceyhan River**



- One of the biggest rivers of South Anatolia is Ceyhan.
- The source location of the water is the mountains that cover Elbistan plain.
- The length of the river is 509 km and the precipitation area of the basin is 20000 km2. It collects lots of water from the other smaller rivers.
- The place of river mouth is İskenderun Bay. The flow rate of river changes with respect to seasons.
- In the summer, flow rate descends, however, after the February flow rate increases rapidly.
- The downstream of the river height of the water is about 3 meters and the length is around 100 meters. The peak flood of the river is controlled by the dams made on it ("Ceyhan Nehri," 2009).



# **Ceyhan River**





Figure 13: Ceyhan River and Mediterranean Sea temperature changes with respect to months.



# **Ceyhan River**



Table 9: Calculation sheet for the Ceyhan River, all required data written month by month and computation done automatically by Microsoft Excel ®.

| MONTHS    | T <sub>sea</sub> | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр    | Eosm                 | Qfreshwater      | Ppowerplant |
|-----------|------------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate       | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 18.0             | 291    | 11.5       | 285    | 39         | 0.6674    | 0.0263     | 0.0004    | 0.08314          | 58.44    | 32.29              | 16.14 | 1.6143               | 197              | 317.2       |
| FEBRUARY  | 16.9             | 290    | 12.5       | 286    | 39         | 0.6674    | 0.0237     | 0.0004    | 0.08314          | 58.44    | 32.17              | 16.08 | 1.6083               | 297              | 477.4       |
| MARCH     | 17.2             | 290    | 12.9       | 286    | 39         | 0.6674    | 0.0267     | 0.0005    | 0.08314          | 58.44    | 32.20              | 16.10 | 1.6099               | 314              | 505.0       |
| APRIL     | 18.0             | 291    | 15.1       | 288    | 39         | 0.6674    | 0.0240     | 0.0004    | 0.08314          | 58.44    | 32.29              | 16.14 | 1.6144               | 331              | 534.9       |
| MAY       | 21.2             | 294    | 18.0       | 291    | 39         | 0.6674    | 0.0261     | 0.0004    | 0.08314          | 58.44    | 32.64              | 16.32 | 1.6321               | 306              | 498.9       |
| JUNE      | 25.1             | 298    | 18.5       | 292    | 39         | 0.6674    | 0.0244     | 0.0004    | 0.08314          | 58.44    | 33.08              | 16.54 | 1.6538               | 161              | 265.7       |
| JULY      | 27.9             | 301    | 21.6       | 295    | 39         | 0.6674    | 0.0309     | 0.0005    | 0.08314          | 58.44    | 33.38              | 16.69 | 1.6690               | 156              | 259.8       |
| AUGUST    | 28.8             | 302    | 22.6       | 296    | 39         | 0.6674    | 0.0328     | 0.0006    | 0.08314          | 58.44    | 33.48              | 16.74 | 1.6739               | 152              | 255.0       |
| SEPTEMBER | 28.0             | 301    | 19.8       | 293    | 39         | 0.6674    | 0.0272     | 0.0005    | 0.08314          | 58.44    | 33.40              | 16.70 | 1.6698               | 147              | 245.5       |
| OCTOBER   | 25.5             | 299    | 17.8       | 291    | 39         | 0.6674    | 0.0280     | 0.0005    | 0.08314          | 58.44    | 33.12              | 16.56 | 1.6559               | 78               | 128.4       |
| NOVEMBER  | 21.7             | 295    | 15.3       | 288    | 39         | 0.6674    | 0.0240     | 0.0004    | 0.08314          | 58.44    | 32.70              | 16.35 | 1.6349               | 100              | 163.2       |
| DECEMBER  | 19.1             | 292    | 12.6       | 286    | 39         | 0.6674    | 0.0221     | 0.0004    | 0.08314          | 58.44    | 32.41              | 16.21 | 1.6206               | 149              | 241.7       |
| AVERAGE   | 22.3             | 295    | 16.5       | 290    | 39         | 0.6674    | 0.0264     | 0.0005    | 0.08314          | 58.44    | 32.76              | 16.38 | 1.6381               | 199              | 324.4       |



# **The Dalaman Brook**



- It is located between Fethiye and Marmaris, where attracts lots of tourists in all seasons.
- Brook has length of 229 km, water colour is turquoise throughout the year.
- There are small waterfalls and suitable for rafting (Ministry of Culture and Tourism, 2015).



Figure 14: Dalaman brook is a very favoured place for rafting enthusiast ("Dalaman Çayı," n.d.)





# The Dalaman Brook





Figure 16: Annual temperature change graph of Dalaman Creek and Mediterranean Sea


#### The Dalaman Brook

iт

Table 11: Calculation sheet for Dalaman Creek., all required data written month by month and computation done automatically by Microsoft Excel ®.

| MONTHS    | Tsea       | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр    | E <sub>osm</sub>     | Qfreshwater      | Ppowerplant |
|-----------|------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 17.6       | 291    | 8.2        | 281    | 39         | 0.6674    | 0.0097     | 0.0002    | 0.08314          | 58.44    | 32.26              | 16.13 | 1.6128               | 15               | 23.5        |
| FEBRUARY  | 16.6       | 290    | 11.3       | 284    | 39         | 0.6674    | 0.0098     | 0.0002    | 0.08314          | 58.44    | 32.14              | 16.07 | 1.6072               | 22               | 35.3        |
| MARCH     | 16.8       | 290    | 11.5       | 285    | 39         | 0.6674    | 0.0108     | 0.0002    | 0.08314          | 58.44    | 32.17              | 16.08 | 1.6083               | 42               | 66.9        |
| APRIL     | 17.4       | 291    | 14.8       | 288    | 39         | 0.6674    | 0.0098     | 0.0002    | 0.08314          | 58.44    | 32.23              | 16.12 | 1.6117               | 46               | 74.7        |
| MAY       | 20.2       | 293    | 18.5       | 292    | 39         | 0.6674    | 0.0100     | 0.0002    | 0.08314          | 58.44    | 32.54              | 16.27 | 1.6272               | 53               | 86.5        |
| JUNE      | 23.7       | 297    | 20.0       | 293    | 39         | 0.6674    | 0.0096     | 0.0002    | 0.08314          | 58.44    | 32.93              | 16.47 | 1.6466               | 43               | 71.5        |
| JULY      | 26.5       | 300    | 20.8       | 294    | 39         | 0.6674    | 0.0117     | 0.0002    | 0.08314          | 58.44    | 33.24              | 16.62 | 1.6621               | 40               | 67.1        |
| AUGUST    | 27.8       | 301    | 19.3       | 292    | 39         | 0.6674    | 0.0083     | 0.0001    | 0.08314          | 58.44    | 33.39              | 16.69 | 1.6694               | 27               | 44.9        |
| SEPTEMBER | 26.9       | 300    | 18.5       | 292    | 39         | 0.6674    | 0.0093     | 0.0002    | 0.08314          | 58.44    | 33.29              | 16.64 | 1.6644               | 17               | 28.5        |
| OCTOBER   | 23.9       | 297    | 17.3       | 290    | 39         | 0.6674    | 0.0392     | 0.0007    | 0.08314          | 58.44    | 32.93              | 16.47 | 1.6465               | 14               | 22.9        |
| NOVEMBER  | 20.9       | 294    | 11.8       | 285    | 39         | 0.6674    | 0.0101     | 0.0002    | 0.08314          | 58.44    | 32.62              | 16.31 | 1.6311               | 12               | 19.5        |
| DECEMBER  | 18.6       | 292    | 9.4        | 283    | 39         | 0.6674    | 0.0100     | 0.0002    | 0.08314          | 58.44    | 32.37              | 16.18 | 1.6183               | 12               | 18.8        |
| AVERAGE   | 21.4       | 295    | 15.1       | 288    | 39         | 0.6674    | 0.0124     | 0.0002    | 0.08314          | 58.44    | 32.68              | 16.34 | 1.6338               | 29               | 46.7        |



# **The Gediz River**



- Source of the Gediz River is in Kütahya city boundaries from mountains of Murat and Şaphane.
- Mouth of the river disembogue to İzmir Bay between from the Foça and Çamaltı Tuzlası.
- River basin has an area of 17.500 km2. Main stream of river has a length of 401 km with an average flowrate of 60.48 m3/s (Ministry of Forestry and Water Management, n.d.).



Figure 17: Geographical map of Gediz basin (SHW, n.d.-a).



# **The Gediz River**





Figure 19: River and sea temperatures with respect to months.



# **The Gediz River**



Table 13: Calculation sheet for Gediz River, all required data written month by month and computation done automatically by Microsoft Excel ®.

| MONTHS    | Tsea       | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр    | E <sub>osm</sub>     | Qfreshwater      | Ppowerplant |
|-----------|------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 15.8       | 289    | 8.9        | 282    | 37         | 0.6331    | 0.0408     | 0.0007    | 0.08314          | 58.44    | 30.39              | 15.19 | 1.5193               | 28               | 41.8        |
| FEBRUARY  | 15.2       | 288    | 9.3        | 282    | 37         | 0.6331    | 0.0387     | 0.0007    | 0.08314          | 58.44    | 30.33              | 15.16 | 1.5163               | 78               | 117.9       |
| MARCH     | 15.3       | 288    | 11.9       | 285    | 37         | 0.6331    | 0.0341     | 0.0006    | 0.08314          | 58.44    | 30.34              | 15.17 | 1.5170               | 61               | 92.6        |
| APRIL     | 16.0       | 289    | 15.4       | 289    | 37         | 0.6331    | 0.0334     | 0.0006    | 0.08314          | 58.44    | 30.41              | 15.21 | 1.5207               | 31               | 46.6        |
| MAY       | 18.4       | 292    | 20.6       | 294    | 37         | 0.6331    | 0.0437     | 0.0007    | 0.08314          | 58.44    | 30.66              | 15.33 | 1.5328               | 16               | 24.3        |
| JUNE      | 21.9       | 295    | 24.6       | 298    | 37         | 0.6331    | 0.0568     | 0.0010    | 0.08314          | 58.44    | 31.01              | 15.51 | 1.5507               | 18               | 27.8        |
| JULY      | 24.0       | 297    | 24.0       | 297    | 37         | 0.6331    | 0.0316     | 0.0005    | 0.08314          | 58.44    | 31.26              | 15.63 | 1.5628               | 29               | 45.5        |
| AUGUST    | 24.6       | 298    | 25.3       | 298    | 37         | 0.6331    | 0.0234     | 0.0004    | 0.08314          | 58.44    | 31.33              | 15.66 | 1.5663               | 24               | 37.2        |
| SEPTEMBER | 22.8       | 296    | 21.0       | 294    | 37         | 0.6331    | 0.0344     | 0.0006    | 0.08314          | 58.44    | 31.13              | 15.56 | 1.5564               | 11               | 17.3        |
| OCTOBER   | 20.9       | 294    | 18.0       | 291    | 37         | 0.6331    | 0.0589     | 0.0010    | 0.08314          | 58.44    | 30.91              | 15.45 | 1.5454               | 5                | 7.7         |
| NOVEMBER  | 18.0       | 291    | 12.1       | 285    | 37         | 0.6331    | 0.0596     | 0.0010    | 0.08314          | 58.44    | 30.60              | 15.30 | 1.5301               | 7                | 11.0        |
| DECEMBER  | 16.4       | 290    | 8.6        | 282    | 37         | 0.6331    | 0.0504     | 0.0009    | 0.08314          | 58.44    | 30.44              | 15.22 | 1.5221               | 13               | 19.5        |
| AVERAGE   | 19.1       | 292    | 16.6       | 290    | 37         | 0.6331    | 0.0422     | 0.0007    | 0.08314          | 58.44    | 30.73              | 15.37 | 1.5367               | 27               | 40.8        |



# The Göksu River



- The Göksu River Basin located in Mediterranean region, on the West of Adana.
- It is administratively found in the boundary of Konya, Karaman and İçel cities.
- Starting point of upper conduits of river reaches to the summit of Middle Toros Mountains.
- Stream discharges to sea near Silifke through the delta which exist by its own flow (Buldur, Pinar, and Başaran, 2015).



Figure 20: Silifke region and downstream of the Göksu River where it meets Mediterranean Sea





## The Göksu River





Figure 22: Temperature of Göksu and Mediterranean Sea with respect to months



#### The Göksu River



| MONTHS    | Tsea       | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр    | Eosm                 | Qfreshwater      | Ppowerplant |
|-----------|------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 18.9       | 292    | 11.3       | 284    | 39         | 0.6674    | 0.0124     | 0.0002    | 0.08314          | 58.44    | 32.40              | 16.20 | 1.6199               | 99               | 159.9       |
| FEBRUARY  | 16.9       | 290    | 11.3       | 284    | 39         | 0.6674    | 0.0122     | 0.0002    | 0.08314          | 58.44    | 32.18              | 16.09 | 1.6088               | 132              | 212.0       |
| MARCH     | 17.2       | 290    | 12.3       | 285    | 39         | 0.6674    | 0.0106     | 0.0002    | 0.08314          | 58.44    | 32.21              | 16.11 | 1.6105               | 154              | 247.5       |
| APRIL     | 18.0       | 291    | 13.1       | 286    | 39         | 0.6674    | 0.0100     | 0.0002    | 0.08314          | 58.44    | 32.30              | 16.15 | 1.6150               | 165              | 266.1       |
| MAY       | 21.2       | 294    | 15.5       | 289    | 39         | 0.6674    | 0.0105     | 0.0002    | 0.08314          | 58.44    | 32.65              | 16.33 | 1.6327               | 116              | 189.5       |
| JUNE      | 25.1       | 298    | 19.5       | 293    | 39         | 0.6674    | 0.0129     | 0.0002    | 0.08314          | 58.44    | 33.09              | 16.54 | 1.6543               | 46               | 75.7        |
| JULY      | 27.9       | 301    | 21.9       | 295    | 39         | 0.6674    | 0.0132     | 0.0002    | 0.08314          | 58.44    | 33.40              | 16.70 | 1.6698               | 31               | 51.8        |
| AUGUST    | 28.8       | 302    | 22.5       | 296    | 39         | 0.6674    | 0.0152     | 0.0003    | 0.08314          | 58.44    | 33.49              | 16.75 | 1.6747               | 22               | 36.1        |
| SEPTEMBER | 28.0       | 301    | 21.5       | 295    | 39         | 0.6674    | 0.0157     | 0.0003    | 0.08314          | 58.44    | 33.40              | 16.70 | 1.6702               | 24               | 39.5        |
| OCTOBER   | 25.5       | 299    | 18.3       | 291    | 39         | 0.6674    | 0.0144     | 0.0002    | 0.08314          | 58.44    | 33.13              | 16.56 | 1.6564               | 27               | 44.0        |
| NOVEMBER  | 21.7       | 295    | 15.4       | 289    | 39         | 0.6674    | 0.0135     | 0.0002    | 0.08314          | 58.44    | 32.71              | 16.35 | 1.6354               | 55               | 89.2        |
| DECEMBER  | 19.1       | 292    | 10.6       | 284    | 39         | 0.6674    | 0.0120     | 0.0002    | 0.08314          | 58.44    | 32.42              | 16.21 | 1.6210               | 83               | 133.8       |
| AVERAGE   | 22.4       | 296    | 16.1       | 289    | 39         | 0.6674    | 0.0127     | 0.0002    | 0.08314          | 58.44    | 32.78              | 16.39 | 1.6391               | 79               | 128.8       |

Table 15: Calculation sheet for Göksu River, all required data written month by month



#### **Manavgat River**



- The first waters of the Manavgat River consist of spring waters originating from the mountains south of Akdağ and Beyşehir Lake in the northwest of the Cevizli Township bounded by the Antalya-Akseki county and the waters south of the Gembos closed basin.
- The beginning of the Manavgat River, which is 1000-2000 meters above the sea level, is a small stream that dries in summer.
- Manavgat River formed by the merging of small rivers in this region.
- River disembogues to the Mediterranean Sea in Dalyan after a 90 km of journey between Manavgat district.
- Manavgat waterfall is well-known place attracting lots of tourists.
- There are lots of boats, social domain and small number of fish farms at the stream mouth (Lerzan and Ertan, 2012).



Figure 23: Manavgat waterfall on the river attracts lots of tourist every year (Kumbara Haber, 2016)





# Manavgat River





Figure 25: Monthly temperature change of Mediterranean Sea and Manavgat river .



## Manavgat River



| Table 17: Detailed Excel sh | eet of Manavaat ri | iver includina calculati | ion of mont | hlv nower output. |
|-----------------------------|--------------------|--------------------------|-------------|-------------------|
| radie 17. Detanea Excer Sh  | cee of manarguen   | ter meloung culcolul     | on of mone  | ny poniel ootpot. |

| MONTHS    | T <sub>sea</sub> | T <sub>sea</sub> | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | M <sub>NaCl</sub> | $\Delta \pi_{osm}$ | Δр    | E <sub>osm</sub>     | Qfreshwater      | Ppowerplant |
|-----------|------------------|------------------|------------|--------|------------|-----------|------------|-----------|------------------|-------------------|--------------------|-------|----------------------|------------------|-------------|
| Units     | centigrate       | Kelvin           | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol          | bar                | bar   | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 18.0             | 291              | 11.3       | 284    | 39         | 0.6674    | 0.0072     | 0.0001    | 0.08314          | 58.44             | 32.30              | 16.15 | 1.6151               | 114              | 183.7       |
| FEBRUARY  | 16.9             | 290              | 10.3       | 283    | 39         | 0.6674    | 0.0079     | 0.0001    | 0.08314          | 58.44             | 32.18              | 16.09 | 1.6090               | 108              | 174.5       |
| MARCH     | 17.3             | 290              | 10.0       | 283    | 39         | 0.6674    | 0.0069     | 0.0001    | 0.08314          | 58.44             | 32.22              | 16.11 | 1.6112               | 110              | 178.0       |
| APRIL     | 18.0             | 291              | 9.7        | 283    | 39         | 0.6674    | 0.0065     | 0.0001    | 0.08314          | 58.44             | 32.30              | 16.15 | 1.6151               | 117              | 189.7       |
| MAY       | 21.3             | 294              | 11.7       | 285    | 39         | 0.6674    | 0.0072     | 0.0001    | 0.08314          | 58.44             | 32.67              | 16.33 | 1.6334               | 95               | 155.9       |
| JUNE      | 25.3             | 298              | 9.3        | 282    | 39         | 0.6674    | 0.0065     | 0.0001    | 0.08314          | 58.44             | 33.11              | 16.56 | 1.6556               | 7                | 11.0        |
| JULY      | 28.0             | 301              | 12.5       | 286    | 39         | 0.6674    | 0.0062     | 0.0001    | 0.08314          | 58.44             | 33.41              | 16.71 | 1.6706               | 41               | 68.0        |
| AUGUST    | 29.1             | 302              | 14.0       | 287    | 39         | 0.6674    | 0.0089     | 0.0002    | 0.08314          | 58.44             | 33.53              | 16.77 | 1.6766               | 25               | 42.3        |
| SEPTEMBER | 27.7             | 301              | 11.0       | 284    | 39         | 0.6674    | 0.0098     | 0.0002    | 0.08314          | 58.44             | 33.38              | 16.69 | 1.6688               | 15               | 25.4        |
| OCTOBER   | 25.0             | 298              | 15.7       | 289    | 39         | 0.6674    | 0.0102     | 0.0002    | 0.08314          | 58.44             | 33.08              | 16.54 | 1.6538               | 14               | 22.4        |
| NOVEMBER  | 21.3             | 294              | 11.5       | 285    | 39         | 0.6674    | 0.0093     | 0.0002    | 0.08314          | 58.44             | 32.67              | 16.33 | 1.6333               | 35               | 57.8        |
| DECEMBER  | 19.0             | 292              | 10.0       | 283    | 39         | 0.6674    | 0.0075     | 0.0001    | 0.08314          | 58.44             | 32.41              | 16.21 | 1.6206               | 99               | 160.2       |
| AVERAGE   | 22.2             | 295              | 11.4       | 285    | 39         | 0.6674    | 0.0078     | 0.0001    | 0.08314          | 58.44             | 32.77              | 16.39 | 1.6386               | 65               | 105.7       |



# The Sakarya River



- The Sakarya River has 58200 km2 of drainage basin that is 7.49% of land of Turkey and total of 824 km length.
- Annual average water volume is above 4 billion meter cube (1995).
- Basin generally has small roughness topography.
- Important branches of river are mainly Porsuk and Ankara brook and smaller ones are Seydisuyu, Çarksuyu, Karasu, Girmir Brook, Göynük Brook, Mudurnu Brook and Göksu.
- Cities which involves the boundary of basin are Ankara, Eskişehir, Kütahya, Bilecik and Sakarya.
- Lots of projects have been developed in the area about irrigation, drinking and tap water and energy production.
- Water pollution problem in the area has been rapidly increasing due to industrialization and population (Şengörür B., 2001).



Figure 26: The point where Sakarya River meets the Black Sea (Öztürk, 2008).



# The Sakarya River



Figure 28: Monthly surface water temperature for Black Sea and Sakarya River.



# The Sakarya River



Table 19: Osmotic calculation sheet for the Sakarya River, where power potential is very good.

|           |                  |        | -          |        |            |           |            |           |                  |          |                    |      |                      |                  |             |
|-----------|------------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|------|----------------------|------------------|-------------|
| MONTHS    | T <sub>sea</sub> | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр   | Eosm                 | Qfreshwater      | Ppowerplant |
| Units     | centigrate       | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar  | megajoules/metercube | metercube/second | megawatt    |
| JANUARY   | 8.5              | 282    | 6.0        | 279    | 18         | 0.3080    | 0.0447     | 0.0008    | 0.08314          | 58.44    | 14.39              | 7.19 | 0.7195               | 194              | 139.6       |
| FEBRUARY  | 7.5              | 281    | 10.0       | 283    | 18         | 0.3080    | 0.0412     | 0.0007    | 0.08314          | 58.44    | 14.34              | 7.17 | 0.7170               | 238              | 170.7       |
| MARCH     | 8.1              | 281    | 11.0       | 284    | 18         | 0.3080    | 0.0369     | 0.0006    | 0.08314          | 58.44    | 14.37              | 7.19 | 0.7187               | 285              | 204.8       |
| APRIL     | 9.9              | 283    | 9.0        | 282    | 18         | 0.3080    | 0.0163     | 0.0003    | 0.08314          | 58.44    | 14.48              | 7.24 | 0.7242               | 250              | 181.0       |
| MAY       | 15.2             | 288    | 18.0       | 291    | 18         | 0.3080    | 0.0490     | 0.0008    | 0.08314          | 58.44    | 14.73              | 7.36 | 0.7364               | 139              | 102.4       |
| JUNE      | 21.4             | 295    | 25.0       | 298    | 18         | 0.3080    | 0.0490     | 0.0008    | 0.08314          | 58.44    | 15.04              | 7.52 | 0.7522               | 101              | 76.0        |
| JULY      | 25.1             | 298    | 25.0       | 298    | 18         | 0.3080    | 0.0508     | 0.0009    | 0.08314          | 58.44    | 15.23              | 7.62 | 0.7616               | 86               | 65.5        |
| AUGUST    | 25.4             | 299    | 22.0       | 295    | 18         | 0.3080    | 0.0604     | 0.0010    | 0.08314          | 58.44    | 15.24              | 7.62 | 0.7620               | 74               | 56.4        |
| SEPTEMBER | 23.3             | 296    | 21.0       | 294    | 18         | 0.3080    | 0.0566     | 0.0010    | 0.08314          | 58.44    | 15.14              | 7.57 | 0.7568               | 58               | 43.9        |
| OCTOBER   | 19.0             | 292    | 18.5       | 292    | 18         | 0.3080    | 0.0600     | 0.0010    | 0.08314          | 58.44    | 14.91              | 7.46 | 0.7456               | 60               | 44.7        |
| NOVEMBER  | 14.2             | 287    | 13.0       | 286    | 18         | 0.3080    | 0.0525     | 0.0009    | 0.08314          | 58.44    | 14.67              | 7.34 | 0.7337               | 93               | 68.2        |
| DECEMBER  | 10.8             | 284    | 8.0        | 281    | 18         | 0.3080    | 0.0435     | 0.0007    | 0.08314          | 58.44    | 14.51              | 7.25 | 0.7254               | 143              | 103.7       |
| AVERAGE   | 15.7             | 289    | 15.5       | 289    | 18         | 0.3080    | 0.0467     | 0.0008    | 0.08314          | 58.44    | 14.76              | 7.38 | 0.7378               | 143              | 104.7       |



# **The Seyhan River**



- Seyhan is an important river for Turkey having approximate length of 560 km and born in Kayseri.
- River basin consist of 20,731 km2 and end with Çukurova plain where population density is high and has effective agricultural land use (Davutluoglu, Seckin, Ersu, Yilmaz, and Sari, 2011).



Figure 29: Photography of Seyhan River flowing in Adana, one of the biggest city in Turkey (Şimşek, 2015)



#### **The Seyhan River**





Figure 31: Comparison and monthly temperature change of Mediterranean Sea and Seyhan River.





- The Yeşilırmak River has a total basin area of 2352.8 m2 519 km in length, where the large part of it lies in Tokat city.
- Stream has been polluted by industrial wastewater heavily (Tüzen, 2003).
- The River discharges to the Black Sea with an average flowrate of 140 m3/s, according to the SHW stream station.



# The Yeşilırmak River



Figure 33:Temperature change of Black Sea and Yeşilırmak River with respect to months



# The Yeşilırmak River

İ'I



|           |                  | -      |            | -      |            |           |            |           |                  |          |                    |      |                      |                  |          |
|-----------|------------------|--------|------------|--------|------------|-----------|------------|-----------|------------------|----------|--------------------|------|----------------------|------------------|----------|
| MONTHS    | T <sub>sea</sub> | Tsea   | Triver     | Triver | Ssea       | Ssea      | Sriver     | Sriver    | R                | MNaCl    | $\Delta \pi_{osm}$ | Δр   | Eosm                 | Qfreshwater      |          |
| Units     | centigrate       | Kelvin | centigrate | Kelvin | gram/liter | mol/liter | gram/liter | mol/liter | joule/mol.Kelvin | gram/mol | bar                | bar  | megajoules/metercube | metercube/second | megawatt |
| JANUARY   | 10.0             | 283    | 4.8        | 278    | 18         | 0.3080    | 0.0133     | 0.0002    | 0.08314          | 58.44    | 14.49              | 7.25 | 0.7246               | 166              | 120.2    |
| FEBRUARY  | 8.2              | 281    | 5.2        | 278    | 18         | 0.3080    | 0.0148     | 0.0003    | 0.08314          | 58.44    | 14.40              | 7.20 | 0.7199               | 185              | 133.5    |
| MARCH     | 8.4              | 282    | 6.2        | 279    | 18         | 0.3080    | 0.0147     | 0.0003    | 0.08314          | 58.44    | 14.41              | 7.20 | 0.7204               | 199              | 143.3    |
| APRIL     | 10.1             | 283    | 9.3        | 282    | 18         | 0.3080    | 0.0122     | 0.0002    | 0.08314          | 58.44    | 14.50              | 7.25 | 0.7249               | 237              | 171.9    |
| MAY       | 15.0             | 288    | 12.5       | 286    | 18         | 0.3080    | 0.0134     | 0.0002    | 0.08314          | 58.44    | 14.75              | 7.37 | 0.7373               | 182              | 134.4    |
| JUNE      | 20.6             | 294    | 16.8       | 290    | 18         | 0.3080    | 0.0138     | 0.0002    | 0.08314          | 58.44    | 15.03              | 7.52 | 0.7517               | 157              | 118.0    |
| JULY      | 24.8             | 298    | 20.7       | 294    | 18         | 0.3080    | 0.0169     | 0.0003    | 0.08314          | 58.44    | 15.25              | 7.62 | 0.7623               | 159              | 120.9    |
| AUGUST    | 25.7             | 299    | 17.5       | 291    | 18         | 0.3080    | 0.0195     | 0.0003    | 0.08314          | 58.44    | 15.29              | 7.64 | 0.7645               | 141              | 107.5    |
| SEPTEMBER | 23.7             | 297    | 16.8       | 290    | 18         | 0.3080    | 0.0181     | 0.0003    | 0.08314          | 58.44    | 15.19              | 7.59 | 0.7594               | 109              | 82.4     |
| OCTOBER   | 19.5             | 293    | 16.2       | 289    | 18         | 0.3080    | 0.0156     | 0.0003    | 0.08314          | 58.44    | 14.98              | 7.49 | 0.7488               | 97               | 72.8     |
| NOVEMBER  | 15.2             | 288    | 12.3       | 285    | 18         | 0.3080    | 0.0136     | 0.0002    | 0.08314          | 58.44    | 14.76              | 7.38 | 0.7378               | 116              | 85.7     |
| DECEMBER  | 11.7             | 285    | 6.6        | 280    | 18         | 0.3080    | 0.0136     | 0.0002    | 0.08314          | 58.44    | 14.58              | 7.29 | 0.7289               | 153              | 111.3    |
| AVERAGE   | 16.1             | 289    | 12.1       | 285    | 18         | 0.3080    | 0.0150     | 0.0003    | 0.08314          | 58.44    | 14.80              | 7.40 | 0.7400               | 158              | 116.8    |





Table: Maximum potential capacity of Turkey when the technology is suitable for variable conditions

| River      | Capital Capacity<br>(MW) | Annual Energy Production<br>(GWh) |
|------------|--------------------------|-----------------------------------|
| Ceyhan     | 325                      | 2840                              |
| Dalaman    | 45                       | 415                               |
| Gediz      | 40                       | 355                               |
| Göksu      | 130                      | 1130                              |
| Manavgat   | 105                      | 925                               |
| Sakarya    | 105                      | 915                               |
| Seyhan     | 125                      | 1090                              |
| Yeşilırmak | 115                      | 1020                              |
| TOTAL      | 990                      | 8690                              |







- Turkey is a suitable place to operate osmotic power plants.
- The country is a peninsula and there are lots of rivers discharging into coastal waters.
- These coastal waters have a variety of salinity and temperature characteristics which enables a range of possibilities for osmotic power plants. However, not all the rivers are suitable for producing energy as many of these rivers show strong seasonality such that flow rates can become less than 10 m3/s.







- In the final assessment for osmotic energy potential,
- 8 rivers were selected for potential used for PRO.
- It is found that the total potential of the osmotic capacity of Turkey is nearly 1000 MW and
- total annual production is close to 8700 GWh potentially.





- One of the main problems for site location is unstable soil conditions near areas around the river mouth.
- Moreover, there are protected areas such as Göksu where construction of a power plant may not be permitted.
- Furthermore, it is seen that the most convenient places are usually far away from both river and coastal waters. Therefore, infrastructure and construction costs may be high.



Figure 46: Membrane stack area and possible power plant place for Yeşilırmak.<sup>9</sup>







- The last important issue is legal requirements for osmotic power installation.
- Since such regulation does not exist at present, rules and regulations have to be developed for licensing and permission of building an osmotic power plant.





# Thanks for the listening

#### Production of energy and metals in an interlinked process: the CHPM2030 project

Éva Hartai, Tamás Madarász & the CHPM2030 Team

#### https://www.chpm2030.eu/



#### Content

CHPM2030 - Novel concept of combined heat, power and metal extraction from geothermal brines using ultra deep ore bodies

- 1. CHPM2030 project facts
- 2. Research concept
- 3. Main research results
- 4. Research roadmap





#### Challenge and rationale

1) Increasing demand for green energy in the EU and worldwide

> 2) EU needs critical raw materials – limited mining

Developing a new technology for combining geothermal energy production and metal mining Create a proof of concept of the technical and economic feasibility at laboratory scale





One potential means of cost reduction for geothermal resources is also the co-production of metal and nonmetallic material contained in the geothermal fluids in addition to thermal and electrical energy. (Strategic Research and Innovation Agenda, ETIP DG - 2019)



#### The research concept

- Identifying ultra deep metalliferous formations
- Establishment of EGS
- Enhancing the interconnected fracture systems within the orebody
- Leaching metals from the orebody
- Extracting metal from the geothermal brine
- Production of heat and electricity
- Financially more feasible operation/earlier return of investment



The research concept

CHPM2030 – Combined Heat, Power and Metal extraction from ultradeep ore bodies

H2020 project 2016-2019

CHPM2030 @ 10



#### Conceptualisation





#### The CHPM2030 Consortium



| _ | Partner organisation                                      | Country  |
|---|-----------------------------------------------------------|----------|
|   | University of Miskolc (UNIM), coordinator                 | Hungary  |
|   | University of Szeged (USZ)                                | Hungary  |
|   | European Federation of Geologists (EFG)                   | Belgium  |
|   | Iceland Geosurvey (ISOR)                                  | Iceland  |
|   | British Geological Survey (BGS)                           | UK       |
|   | Laboratório Nacional de Energia e Geologia                | Portugal |
|   | (LNEG)                                                    |          |
|   | Vlaamse Instelling voor Technologisch Onderzoek<br>(VITO) | Belgium  |
|   | La Palma Research Centre (LPRC)                           | Spain    |
|   | Agency for International Minerals Policy (MinPol)         | Austria  |
|   | Geological Survey of Romania (IGR)                        | Romania  |
|   | Katholieke Universiteit Leuven (KLeuv)                    | Belgium  |
|   | Geological Survey of Sweden (SGU)                         | Sweden   |



#### Main research results

EGS relevant review of ore bodies and identification of potential test sites





#### EGS relevant review of ore mineralisations





#### Most appropriate geological settings

- 1) Magmatic-hydrothermal mineralisations associated with intrusive bodies (appropriate mechanical properties of host rocks)
- 2) Basins in rift or subduction zones (relatively thin mineralised horizons, but with large lateral extension)
- Deep-rooted fault zones, with larger extension and elevated heat flow (deep-seated fertile rock body, which can have a potential for further leaching)



#### Potential test sites

#### Cornwall, SW England, BGS

Paul A. J. Lusty, plusty@bgs.ac.uk,

- SW England, Cornwall, major magmatic province, high heat production, extensive polymetallic mineralisation (Cornubian Orefield), UK HDR project, United Downs Deep Geothermal Power project, 5 km 200 Celsius.
- Geological environment, geothermal characteristics, potential for deep metal enrichment, technical, environmental, social and regulatory factors.
- 3 models: Cornubian Batholith (geothermal energy) development, fracture mapping), site scale 1: HDR project site, fracture data, hydrogeological properties, district fracture network models, potential flow paths; site scale 2: NW Carnmenellis granite, UDDGP site,







#### Cornwall report






## Potential test sites

#### Portuguese Iberian Pyrite Belt, LNEG

Elsa Cristina Ramalho, elsa.ramalho@lneg.pt

- SW IPB, Variscan metallogenic province, massive sulphides deposits, active mining region, prospect for deep mineralization, energy transition in PT, Neves-Corvo Mine (extend lifetime with CHPM?)
- Update on geoscientific data and information on SW IPB, 3D modeling, geophysical data
- Ivestigate the deeper ore deposits, 3D modeling, new upcoming deep seismics, 3D electromagnetic forward modeling, 3D inversion, → mineralization at depth. Lombador orebody at 2-3 km: extend lifetime with CHPM? cooperation with the mining company and government.



IPB report







## Potential test sites

#### Beius Basin-Bihor Mountains, Romania, IGR

Diana Persa, persa.diana@yahoo.ro

- Beius basin and Bihor Mountains, favourable geothermal (~Pannonian basin, thin crust, high heat flow/gradient) and mineral (intrusive magmatic bodies, Banatitic Magmatic and Metallogenic Belt) potential.
- Beius Basin geothermal potential (DHS up and running Mg, geothermal potential), Bihor Mountains (granodioritegranite plutonic body related, skarn (Fe, Boron, Bismuth, Moly), vein (Cu, Zn, led-Pb, sulphides), brucite deposit, borate deposit, metal skarn (W).
- 1) Geothermal models (150 Celsius), 2) refraction seismic for the plutonic body and mineral indications, 3) fracture network modeling for understanding reservoir characteristics.





#### Beius-Bihor report





## Potential test sites

#### Kristineberg, Nautanen areas, Sweden, SGU

Gerhard Schwarz, Gerhard.Schwarz@sgu.se

- 2 ore provinces: Kristineberg area (Skellefte district, volcanogenic massive sulphide deposits, Zn, Cu, Au), Nautanen area (Northern Norrbotten district, IOCG, Cu, Fe, Au).
- low geothermal gradient, limited info 5-7 km, permeability, deep-seated fluids in the crystalline bedrock is rudimentary, hydraulic conductivity,

• Geophysical studies, deep seismic, magnetotelluric measurements, cooperation with the mining industry?





Sweden report





## Potential sites (European overview)

#### European Outlook, EFG

Domenico Marchese, projects@eurogeologists.eu Anita Demény

- 1. Area selection
- 2. Basic area evaluation
- 3. CHPM characteristics

EFG's National Geological Associations CHPM information platform on prospective locations: http://bit.ly/CHPMinfoplatform

| EFG LTPs involved in                                                                                                           | Data collected by RBINS (7)                                                                                            |                                                                                                   |                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Belgium</li> <li>Czech Republic</li> <li>Finland</li> <li>France (by EFG)</li> <li>Germany</li> <li>Greece</li> </ul> | <ul> <li>Hungary</li> <li>Ireland</li> <li>Italy</li> <li>The Netherlands</li> <li>Poland</li> <li>Portugal</li> </ul> | <ul> <li>Serbia</li> <li>Slovenia</li> <li>Spain</li> <li>Switzerland</li> <li>Ukraine</li> </ul> | <ul> <li>Austria</li> <li>Croatia</li> <li>Cyprus</li> <li>Luxembourg</li> <li>Slovakia</li> <li>Sweden</li> <li>United Kingdom</li> </ul> |



EU outlook report





### Lab experiments on metal leaching





## Selected samples

| Sample ID | Sample locality                  | Geological setting                                          | Summary of bulk mineralogy as determined<br>via X-ray diffraction                                                                  |
|-----------|----------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| HTLMix    | Herodsfoot,<br>SW England        | Baked sediments with partial quartz vein                    | 87% quartz, 5% muscovite, 2% dolomite, 5% galena, minor albite, chlorite, pyrite and sphalerite                                    |
| HTL315    | South<br>Caradon,<br>SW England  | Mainstage mineralisation, associated with granite bodies    | 70% quartz, 7% schorl, 5% chlorite, 2% calcite, 10% pyrite, 5 % arseonpyrite, minor greigite and biotite                           |
| HTL319    | Cligga Head,<br>SW England       | Tin–tungsten mineralisation, associated with granite bodies | 88% quartz, 2% muscovite, 3% cassiterite,<br>3% columbite and 4% ferberite                                                         |
| HTL321    | Masca-<br>Cocovaleni,<br>Romania | Mineralised skarn country rock                              | 22% dolomite, 49% pyrite, 27% magnetite, minor quartz, calcite and barite                                                          |
| HTL322    | Rudabánya,<br>NE Hungary         | Carbonate hosted lead-zinc mineralisation                   | 8% quartz, 2% calcite, 68% magnesite, 6%<br>cerrusite, 1% sphalerite, 1% columbite, 11%<br>barite, 2% magnetite and minor dolomite |
| HTL324    | Recsk,<br>NE Hungary             | Porphyry sulphide polymetallic<br>ore                       | 74% quartz, 5% calcite, 9% pyrite, 11% magnetite, minor albite, dolomite and sphalerite                                            |



# HPHT batch and flow through experiments

#### BGS

- 5 g solid sample
- 40:1 fluid:rock ratio
- 70°C, 100°C, 150°C, 200°C
- 1 bar, 200 bar
- 600-1000 hours
- Leaching agents: deionized water, 0.1 M acetic acid, 0.013 M "aqua regia"

#### University of Szeged

-HTHP (40 MPa) system: HPLC pump, external heating and insulation;

–Flow through tests on grinded rock (250 μm) under 300 bar pressure at 300°C temperature

- -Pressure, temperature and flow rate can be controlled any time during experiments
- -Output analysis: XRF, ICP-MS







#### Leachate performance at HTHP batch experiments

- Tap-water & deionised water: poorest performing fluids (addition of CO<sub>2</sub> improved leaching, but generally restricted to base metals)
- Best performing fluids: dilute EDTA, SDS and acetic acid (organics): leached 100-1000s ppm base metals & liberate some minor or 'critical' metals
- Most fluids dissolved high loads (10s-1000s ppm) of elements derived from silicate minerals → implications for permeability of the EGS reservoir





# Report on metal leaching

- 62 pages of main report.
- Plus 305 pages of appendixes.
- Contains details of the experiments, all analytical data, plus conceptual or numerical modelling.







# HTHP metal recovery (KU Leuven)





#### Electrolitic metal recovery

- Ox/red of metal ions in solution by an electricity-driven conversion, such that they "deposit" onto an electrode: electrodeposition
- 个T个P electrodeposition from geothermal brines (100°C, 5MPa):
- Increases kinetics and mass transport
- Avoids issues like precipitation of silica
- More energetically favorable vs. ambient conditions
- Completely unexplored (no thermodynamic data)
- It only works for a limited number of metals (Cu, Ag, Ni, Pb, Sn, Fe, PGM)



# Metal recovery with GDEx (LTLP)





# Metal recovery with GDEx (LTLP)

#### Geothermal brines from Romania

#### Mass balances Sample 1





# Additional electricity production by salinity gradient power generation



- Reverse electrodialysis
- Effect of T on power generation in the stack: higher T increases power generation



Report on performance and design criteria for high-temperature, highpressure electrolysis CHPM2030 Deliverable D3.1 Version August 2018



Report on performance, mass and energy balances and design criteria for gas-diffusion electroprecipitation and electrocrystallization

CHPM2030 Deliverable D3.2 Version: August 2018



Report on performance, energy balances and design criteria for salt gradient power reverse electrodialysis

CHPM2030 Deliverable D3-3 Version: August 2018





# System integration: technological components – design parameters

Main technological components

#### Design parameters:

- Temperature
- Pressure
- Acidity/basidity
- Redox condition
- Oxygen fugacity
- Carbon dioxide
- Conductivity
- Flow rate
- Salinity
- Oxidizing compounds
- Concentrated suspended solids





## Model framework based on component level models

The different system components were integrated into a single system by a mathematical model. This model is used to develop optimisation strategies for heat, energy and metal production.





## From component model to systems dynamic



- Technology components are at different TRL
- Component models represent different levels of complexity
- The system dynamics model must handle various levels of data reliability
- Agreement on the minimum dataset of design parameters
- Move from very simple to complex
- Move from site specific scenarios toward a general CHPM plant



#### Conceptual framework for CHPM power plant

CHPM2030 Deliverable D4.1 Version: September 2018



Report on CHPM process optimisation CHPM2030 Deliverable D4.2

Version: August 2019



# CHPM schematics and blueprints

CHPM2030 Deliverable D4-3

CHPM2030

Version: August 2019





This project has received funding from the suropean Unions Heriant 2000 research and ine programme under grant agreement to 65,000

## Integrated sustainibility assessment





# The time horizon





## Research roadmap





## Research roadmap - timeline









## Conclusions

- CHPM2030 was a low TRL project, promising a proof of concept on lab scale.
- Some technology components were developed on lab scale, while other elements are readily available full scale.
- Parallel activities of technology development and a whole system dynamic modelling are special features of the project.
- Full loop concept was not achieved during the project implementation phase (was not even the purpose).



# Thank you for your attention!

www.chpm2030.eu