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a b s t r a c t

The integration of a microchannel with a nanochannel is known to exhibit anomalous nonlinear current–
voltage characteristics. In this paper, we perform detailed numerical simulations considering a 2-D non-
linear ion transport model, to capture and explain the underlying physics behind the limiting resistance
and the overlimiting current regions, observed predominantly in a highly ion-selective nanochannel. We
attribute the overlimiting current characteristics to the redistribution of the space charges resulting in an
anomalous enhancement in the ionic concentration of the electrolyte in the induced space charge region,
beyond a critical voltage. The overlimiting current with constant conductivity is predicted even without
considering the effects of fluidic nonlinearities. We extend our study and report anomalous rectification
effects, resulting in an enhancement of current in the non-ohmic region, under the application of com-
bined AC and DC electric fields. The necessary criteria to observe these enhancements and some useful
scaling relations are discussed.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Owing to the advancements in micro–nanomanufacturing tech-
nology, there is a significant interest to investigate the transport
phenomenon in channel sizes of the order of few hundreds of
nanometers [1–4]. Due to their large surface-area-to-volume ratio,
the thickness of the electrical double layer (EDL) in these devices
spans much of the channel height leading to the predominant
transport of counterions in the channel. This enables the channel
to be ion-selective [5], and hence can be used as an ion-exchange
membrane. The transport in these devices is typically studied by
connecting the nanochannel with two microchannels, and a
potential difference is applied between the ends of the microchan-
nel [6–9]. The integration of a micro- and a highly ion-selective
nanochannel has paved way to many complex physics at the inter-
faces leading to anomalous effects in their transport [10].

Recent experiments by Kim et al. [11] and Yossifon et al. [12,13]
revealed nonlinear current–voltage characteristics in a micro–
nanochannel integrated system. The current characteristics were
found to deviate from the classical diffusion-limited current trans-
port theory [14], which predicts a saturation of the current density
at higher applied voltages with an infinite differential resistance
[14]. Fig. 1 shows a schematic illustration of the nonlinear cur-
rent–voltage characteristics in a highly ion-selective nanochannel
ll rights reserved.
integrated with a microchannel. At low electric fields, the current
increases linearly with the applied voltage, following the Ohm’s
law. This region is typically referred to as the Ohmic region or qua-
si-equilibrium region. However, beyond the first critical voltage
(VLI), the current deviates from the Ohmic behavior, but continues
to increase with a slope smaller than that of the Ohmic region. This
region is often referred to as the limiting resistance region (LRR).
Finally, beyond a second critical voltage (VLII), the slope of the cur-
rent increases in comparison to the limiting regime, and this region
is typically referred to as the overlimiting current region.

Many plausible mechanisms are discussed to explain the
overlimiting current characteristics [15–17]. Using a 1-D ideal
ion-selective membrane model, Rubinstein [18] suggested that
the ionic concentration of the electrolyte does not saturate to zero
at the depletion membrane surface, as predicted by the diffusion-
limited theory. Further, Rubinstein et al. [19] predicted a region
of induced space charge (SCR) between the quasi-equilibrium
EDL and the electroneutral diffusion boundary layer (DBL) at the
depletion junction, resulting in a decrease in the length of the
DBL. This decrease in DBL length was believed to result in the over-
limiting current. They further proposed a possible mechanism to
select the length of the SCR, by measuring the thickness of the
vortex array, developed due to the instabilities in the space charge
region. Yossifon et al. [13] measured the vortex instability length
from their experiments and used it as a parameter in their model,
to capture the overlimiting current region in their nanoporous
membrane. However, an exact physical understanding of the large,
yet finite differential resistance in the limiting resistance region

http://dx.doi.org/10.1016/j.jcis.2012.06.004
mailto:aluru@illinois.edu
http://www.illinois.edu/~aluru
http://dx.doi.org/10.1016/j.jcis.2012.06.004
http://www.sciencedirect.com/science/journal/00219797
http://www.elsevier.com/locate/jcis


Fig. 1. Schematic illustration of nonlinear current–voltage characteristics of a
typical ion-selective nanochannel integrated with a microchannel. LRR represents
limiting resistance region.

V.V.R. Nandigana, N.R. Aluru / Journal of Colloid and Interface Science 384 (2012) 162–171 163
and the transition from the limiting to the overlimiting region is
still unclear. A comprehensive physical model to discuss all the
three I–V regions by considering the micro–nanochannel intercon-
nect system is still missing. In this paper, using a detailed 2-D non-
linear, non-ideal ion-selective model, we capture and explain all
the three regions, by analyzing the behavior of the ionic concentra-
tion, near the depletion junction of the micro–nanochannel. The
model predicts a constant conductivity in the overlimiting current
region, which is consistent with the experimental results.

With the understanding of the polarization physics at the junc-
tions of the micro–nanochannel, we investigate the influence of
small-amplitude external AC perturbations along with the DC
voltage, on the current characteristics, predominantly beyond the
Ohmic region. The necessary criteria to observe the anomalous cur-
rent rectification, resulting in an enhancement of current, under
suitable AC field is discussed. Further, some useful scaling relations
are presented. The anomalous transport characteristics may find
applications in the field of water desalination, energy storage sys-
tems, protein separation, and in the field of supercapacitors.

The rest of the paper is outlined as follows. Section 2 discusses
the nonlinear ion transport model. The necessary simulation de-
tails are elucidated in Section 3. A detailed discussion of the non-
linear current–voltage characteristics under the application of DC
electric fields and under different EDL thickness is presented in
Section 4. In Section 5, the anomalous rectification effect under
combined AC/DC electric fields is discussed. Finally, conclusions
are presented in Section 6.
Fig. 2. Simulation set-up (not drawn to scale), consisting of a nega
2. Theory

2.1. Governing equations

In this section, the complete set of equations and the necessary
boundary conditions to model the ion transport characteristics for
a typical micro–nanochannel interconnect system (see Fig. 2) are
discussed. It has been shown that an accurate description of ion
transport can be provided using the concepts of continuum theory
for dimensions larger than several nanometers [20,21,6]. Hence,
continuum theory has been used in this paper, as the smallest
dimension considered is 30 nm. In this study, we consider a sym-
metric monovalent electrolyte like KCl with bulk concentration,
c0, and assume that the concentration of Hþ and OH� is much lower
compared to the bulk concentration of the ionic species. Hence, the
water dissociation effects are not considered in the numerical
model [6]. Further, we assume that the ions inside the steric layer
are rigidly held and do not contribute to the ionic current [20,22].
We also neglect the Faradaic reactions that occur near the elec-
trode in the present study. Under these assumptions, the total flux
of the ionic species is contributed by a diffusive component result-
ing from the concentration gradient, an electrophoretic component
arising due to the potential gradient, and a convective component
originating from the fluid flow. The total flux of each species in the
solution is given by,

Ci ¼ �Dirci �XiziFcir/þ ciu ð1Þ

where Ci is the flux vector, F is Faraday’s constant, zi is the valence,
Di is the diffusion coefficient, Xi is the ionic mobility, ci is the con-
centration of the ith species, u is the velocity vector of the fluid flow,
and / is the electrical potential. Note that the ionic mobility is re-
lated to the diffusion coefficient by Einstein’s relation [14],
Xi ¼ Di

RT, where R is the ideal gas constant and T is the thermody-
namic temperature. The mass transfer of each buffer species is
given by,

@ci

@t
¼ �r � Ci ð2Þ

The individual ionic current through the channel is calculated by
integrating their respective fluxes over the cross-sectional area, i.e.,

Ii ¼
Z

S
ziFCi dS ð3Þ

and the total ionic current through the channel is calculated as,

I ¼
Z

S

X
i

ziFCi dS ð4Þ
tively charged nanochannel connected to two microchannels.
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where S is the cross-sectional area of the channel. The electrical
potential distribution is calculated by solving the Poisson equation,

r � ð�rr/Þ ¼ �qe

�0
ð5Þ

where �0 is the permittivity of free space, �r is the relative permit-
tivity of the medium, and qe is the net space charge density of the
ions defined as,

qe ¼ F
Xm

i¼1

zici

 !
ð6Þ

where m is the total number of species considered in the system. Eq.
(5), Eqs. (2), and (1) are the classical Poisson–Nernst–Planck (PNP)
equations, which describe the electrochemical transport. The
incompressible Navier–Stokes and the continuity equations are
considered, to describe the movement of the fluid flow,

q
@u
@t
þ u � ru

� �
¼ �rpþ lr2uþ qeE ð7Þ

r � u ¼ 0 ð8Þ

where p is the pressure, q and l are the density and the viscosity of
the fluid, respectively, and E ¼ �r/ is the electric field. qeE is the
electrostatic body force acting on the fluid due to the space charge
density and the applied electric field. The aforementioned set of
coupled PNP and Navier–Stokes equations are also referred to as
the space charge model [23,24].

We discuss the necessary boundary conditions for the closure of
the problem. The normal flux of each ion is assumed to be zero [25]
on all the channel walls, so that there is no leakage of current. The
fluid velocity on the wall surfaces is assumed to be subjected to
non-slip boundary condition, and the gradients of pressure are as-
sumed to be zero on the walls. Applying the charge conservation at
the walls lead to the following electrostatic boundary condition,

n � r/ ¼ r
�0�r

ð9Þ

where n denotes the unit normal vector (pointing outwards) to the
wall surface and r is the surface charge density of the walls. We
consider the microchannel on the right side as the source and is gi-
ven a positive voltage ð/DCÞ, while, the microchannel on the left is
considered as the receiver and is grounded. The boundary condi-
tions at the ends of the source (Eq. (10)) and receiver (Eq. (11))
microchannels are specified as:

/ ¼ /DC ; ci ¼ co; n � ru ¼ 0; p ¼ 0 ð10Þ

/ ¼ 0; ci ¼ co; n � ru ¼ 0; p ¼ 0 ð11Þ

All the equations are non-dimensionalized by scaling the distance
with the length of the microchannel (Lm), time with the diffusion
time scale (L2

m=D), concentration with the bulk concentration of
the electrolyte solution ðc0Þ, electric potential with /0 ¼ RT=Fz, fluid
velocity with U0 ¼ �0�rE0/0=l, where E0 is the average applied field
in the system, pressure with p0 ¼ lU0=Lm, and space charge density
with qe0

¼ Fzc0. We consider a symmetric monovalent electrolyte
ðzþ ¼ �z� ¼ zÞ like KCl in the present analysis and normalize the
diffusion coefficient of each ionic species with the characteristic dif-
fusion coefficient, D ¼ 2� 10�9 m2=s. Applying these scaling vari-
ables, the system of governing equations in the dimensionless
form can be written as:

Transport of positive ions,
@c�þ
@t�
¼ D�þr�2c�þ þ D�þr� � ðc�þr�/�Þ � Per� � c�þu�

� �
ð12Þ

Transport of negative ions,

@c��
@t�
¼ D��r�2c�� � D��r� � ðc��r�/�Þ � Per� � c��u�

� �
ð13Þ
Poisson equation for electrical potential,

r�2/� ¼ � 1
2b2 q�e ð14Þ

Conservation of mass

r� � u� ¼ 0 ð15Þ

Conservation of momentum

1
Sc
@u�

@t�
þ Reu� � r�u� ¼ �r�p� þ r�2u� þ 1

2b2 q�eE� ð16Þ

In the above equations, variables with superscript 0 � 0 are the
dimensionless variables. The various non-dimensional numbers
are given by, b ¼ kD=Lm, Peclet number, Pe ¼ LmU0=D, Reynolds
number, Re ¼ qU0Lm=l, and Schmidt number, Sc ¼ m=D is the ratio
of the kinematic viscosity (m ¼ l=q) to the ionic diffusion coeffi-
cient. The Debye length ðkDÞ, determining the thickness of the

EDL, is defined as, kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�rRT=2F2z2c0

q
. In the present study, we

understand the current–voltage characteristics for different values
of b. Typically, b varies in the range of 10�3 � 10�5 [13].

Using the aforementioned set of equations, analytical expres-
sions are derived (see Appendix for details) to calculate the magni-
tude of the normalized limiting current per unit width
(I�L ¼ jIL=FzDc0j) and the corresponding normalized first critical
voltage ðV�LI ¼ VLIFz=RTÞ. These expressions provide a quick under-
standing of the effect of the micro–nanochannel geometry and
each system parameter on the emergence of nonlinear effects, i.e.,

I�L ¼
2Hm

Lm

ĉnþ þ ĉn�

ĉnþ � ĉn�

� �
ð17Þ

V�LI ¼ �IL
Ln

FzDHnðĉnþ þ ĉn�Þ

� �
þ ln

ĉþjx¼xe�

ĉþjx¼xeþ

 !
� IL

Lm

FzDHmc0

� �

ð18Þ

where ĉnþ and ĉn� are the counter-ion and co-ion concentration in-
side the nanochannel (averaged over the height of the nanochannel,
Hn). ĉþjx¼xe�

and ĉþjx¼xeþ
are the cation concentration (averaged over

the channel height) at the left and right end of the anodic micro–
nanochannel interface, respectively (see Fig. A.1 and Appendix for
details). Ln and Hm are the nanochannel length and microchannel
height, respectively. It can be observed from Eq. (17) that, in the
case of an ideal cation-selective membrane, (ĉn� ¼ 0), we obtain
the classical asymptotic limit given by the diffusion-limited theory,
I�Ljideal ¼ 2Hm

Lm
[26], for a symmetric monovalent electrolyte.

3. Simulation details

The simulated domain consists of a rectangular nanochannel of
length 5 lm (Ln) and height 30 nm (Hn) connected to two micro-
channels of length 6 lm (Lm) and height 1 lm (Hm), on either side
of the nanochannel (see Fig. 2). A 2� D simulation study is carried
out by assuming that the depth (perpendicular to the plane of the
paper) of the micro- and nanochannel to be much larger than the
length. The operating temperature is T ¼ 300 K, the density and
the viscosity of the fluid are 1000 kg=m3 and 1:003� 10�3 Pa � s,
respectively. The diffusivities of Kþ and Cl� are 1:96� 10�9 m2=s
and 2:03� 10�9 m2=s, respectively. We assume the dielectric con-
stant of the aqueous solution to be �r ¼ 80 [27]. Further, we also
assume the surface charge on the walls of the microchannel
rm ¼ 0 and on nanochannel, rn ¼ �1 mC=m2, respectively (Ref.
[28,29] for details).

The coupled PNP and Navier–Stokes equations are numerically
solved using the finite volume method in OpenFOAM [30] (Open
Field Operation and Manipulation). The convective terms in the
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PNP equations are discretized using second-order bounded NVD
schemes [31], and all the Laplacian terms are discretized using sec-
ond-order central differencing scheme. SIMPLE algorithm is used
for pressure–velocity coupling [32]. Second-order implicit time-
differencing scheme [30] is used to discretize the variables in time.
A finer mesh is introduced near the walls, at the entrance, and exit
of the nanochannel. The model is validated with the numerical
results of Daiguji et al. [20,21] and Jin et al. [6] (refer [29] for full
details). Furthermore, the results reported here are ensured to be
independent of the grid size.
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4. Results and discussion

4.1. Nonlinear current–voltage characteristics

We initially consider low bulk ionic concentration, c0 ¼ 0:1 mM
(corresponding to a thick EDL regime, b ¼ 0:0051) to investigate
the current–voltage characteristics. As mentioned in our previous
study [28], the nanochannel ion selectivity can be modulated by
controlling the bulk ionic concentration (in other words controlling
kD) and also by controlling the nanochannel wall surface charge
density. In this study, we use the former approach to control the
ion-selectivity, and the study can easily be extended to understand
the surface charge effects. Fig. 3 shows the magnitude of the
normalized current as a function of the normalized voltage which
reveals all the three regions, namely Ohmic region, limiting resis-
tance region (LRR), and the overlimiting region. In this section,
we will briefly discuss the first two regions. In the Ohmic/quasi-
equilibrium region, the current is found to vary linearly with the
applied voltage. With increase in the voltage, the current deviates
from the Ohmic behavior as shown in the inset of Fig. 3. The nor-
malized value of IL (in magnitude) and the first critical voltage,
VLI, are found to be 0:3175 and 13:5394, respectively. The corre-
sponding analytical values (using Eq. (17) and Eq. (18)) are 0:347
and 13:8205, respectively. The analytical expressions provide a
reasonable degree of accuracy in comparison to the numerical
solutions. Fig. 3 also reveals that the current beyond the first crit-
ical voltage does not saturate as predicted by the classical diffu-
sion-limited theory, but increases with a slope smaller than that
of the Ohmic region. All these results are consistent with the
experiments of Yossifon et al. [13] and Kim et al. [11] for a
micro–nanochannel system.
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Fig. 3. Normalized current–voltage characteristics (in magnitude) of a cation-
selective nanochannel connected to two microchannels. The dashed dotted line
shows the analytical value of the limiting current. Region I corresponds to the
Ohmic region, II represents the limiting resistance region (LRR), and region III
corresponds to the overlimiting region. The inset of the figure displays the
transition from the Ohmic region to the limiting resistance region.
An exact reason for the large, yet finite differential resistance in
the limiting resistance region is yet to be understood in these sys-
tems [13]. In order to understand this, we investigate the ionic con-
centration distribution along the axial direction in the Ohmic
region and in the LRR. Fig. 4a shows that, for DC voltage
(/DCFz=RT ¼ 7:7367), corresponding to the Ohmic region, due to
the concentration polarization effects, there is a depletion of ions
in the anodic region and an enrichment of ions in the cathodic re-
gion [10]. This results in a linear concentration gradient from the
end of the microchannel (where the concentration of the ionic
solution is the bulk ionic concentration) until the regions close to
the micro–nanochannel interface. We also observe that local elec-
troneutrality is maintained in the regions of linear concentration
gradient, with no additional space charges. Typically, these regions
are referred to as the diffusion boundary layer (DBL) regions [18]. It
is also observed that the linear concentration gradient in the DBL
regions becomes steeper with the increase in the voltage. Further,
we observe a thin quasi-equilibrium EDL region at the micro/
nanochannel depletion interface (see inset of Fig. 4a). Similarly,
we also observe a thin quasi-equilibrium EDL region at the mi-
cro/nanochannel enrichment interface. Furthermore, Fig. 4 reveals
that, in the Ohmic region, the location of the minimum anion
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Fig. 4. (a) Normalized ionic concentration along the axial direction, for
/DC Fz=RT ¼ 7:7367, corresponding to the Ohmic region. The inset of the figure
shows the thin quasi-equilibrium EDL region at the depletion micro/nanochannel
interface. (b) Normalized ionic concentration along the axial direction, for
/DC Fz=RT ¼ 77:3677, corresponding to the limiting resistance region. The inset of
the figure shows the nonlinear concentration distribution due to the presence of
induced space charges near the micro–nanochannel depletion interface. In all these
cases, b ¼ 0:0051.
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concentration is inside the nanochannel. The minimum anion con-
centration along the axial direction is observed at x=Lm ¼ 1:8267.

Fig. 4b shows that, for DC voltage (/DCFz=RT ¼ 77:3677), corre-
sponding to the limiting resistance region, the ionic concentration
at the depletion micro/nanochannel interface does not saturate to
zero as predicted by the classical diffusion-limited theory. Further,
a region of space charge is induced between the quasi-equilibrium
EDL at the micro–nanochannel depletion interface and the local
electroneutral diffusion boundary layer. The induced space charge
region results in a nonlinear concentration distribution near the
depletion interface (see inset of Fig. 4b). Further, we observe that,
beyond the first critical voltage, the location of the minimum anion
concentration shifts from the nanochannel region toward the
microchannel interface region. The new location of the minimum
anion concentration along the axial direction is observed at
x=Lm ¼ 1:8375, which is outside the nanochannel. It is also found
that the new position of the minimum anion concentration does
not change beyond the first critical voltage. In spite of the changes
in the concentration near the depletion junction, we observe that a
linear concentration gradient and local electroneutrality are al-
ways maintained in the cathodic enrichment region.

Fig. 5 shows the resistance of each channel as a function of DC
voltage. The normalized resistance in each channel is numerically
determined by calculating the normalized voltage drop across each
channel and dividing it with the magnitude of the normalized cur-
rent. It can be observed that, in the Ohmic region, the nanochannel
has a constant finite conductance, and hence should be considered
in understanding the current characteristics in such interconnect
systems unlike most of the earlier theories discussed in the litera-
ture [15,18]. The large nanochannel resistance can be understood
from the fact that most of the voltage drop occurs inside the nano-
channel in the Ohmic region. Further, the inset of Fig. 5 shows that
the resistance of the depletion microchannel is relatively smaller
compared to the nanochannel resistance. This is because we ob-
serve that the microchannel is still electroneutral, even though
there is a depletion of ions. Furthermore, in the enrichment micro-
channel, as the concentration of the ionic species is greater than
the bulk ionic concentration, the resistance of this microchannel
is minimal.

In the limiting resistance region (LRR), Fig. 5 reveals that there
is a gradual increase in the resistance of the depletion microchan-
nel, and it starts becoming comparable to the nanochannel resis-
tance as the voltage increases. This is due to the formation of the
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Fig. 5. Variation of the normalized resistance as a function of the normalized DC
voltage in different regions of the system. The bold line indicates the transition to
the overlimiting region. The inset of the figure shows the variation of the
normalized resistance in the Ohmic and limiting resistance region.
induced space charges near the depletion micro/nanochannel
interface resulting in an increase in the electric field at this inter-
face. Hence, beyond the Ohmic region, the resistance of both the
nanochannel and the depletion microchannel is important. Fur-
thermore, we note that the induced space charge is accompanied
by a shift in the location of the minimum anion concentration
toward the microchannel interface. Fig. 6a and b reveal the nor-
malized ionic concentration along the axial direction for various
DC electric fields (/DCFz=RT ¼ 77:3677;/DCFz=RT ¼ 116:0516;
/DCFz=RT ¼ 232:1032;/DCFz=RT ¼ 773:6773), beyond the first crit-
ical voltage. It can be observed that, until the second critical volt-
age, the charges propagate predominantly toward the anodic end
of the microchannel. This is accompanied by a monotonic decrease
in the minimum anion concentration as shown in Fig. 7. We believe
that the predominant propagation of charges toward the micro-
channel along with the decrease in the minimum anion concentra-
tion until the second critical voltage, results in a finite differential
resistance. Hence, we observe a change in the slope of the I–V
curve, leading to the limiting resistance region. The anomalous in-
crease in the minimum anion concentration beyond the second
critical voltage (see Fig. 7) leading to the overlimiting current
would be discussed in the next section.
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Fig. 6. Normalized concentration along the axial direction of (a) cations (counte-
rions) and (b) anions (co-ions) for various DC voltages, corresponding to the
limiting resistance and overlimiting region. The solid arrow shows that the induced
space charge region, formed near the depletion source microchannel–nanochannel
interface, propagates inside the nanochannel region under a large DC voltage,
/DC Fz=RT ¼ 773:6773, corresponding to the overlimiting region.
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4.2. Overlimiting current characteristics

Fig. 3 shows that beyond a second critical voltage
(V�LII ¼ 154:7355), the slope of the I–V curve increases from that
of the limiting region leading to the overlimiting current region.
Fig. 6a and b show that, beyond the second critical voltage, the
space charges formed near the depletion junction propagate inside
the nanochannel (solid arrow indicates the propagation of charges
inside the nanochannel) along with its propagation toward the
anodic end of the microchannel. Such propagation of space charges
under large DC electric fields can be captured only by considering
the entire micro–nanochannel interconnect system. The propaga-
tion leads to a redistribution of space charge near the depletion
interface, resulting in an increase in the concentration of the ions
near this interface as shown in Fig. 6a and b. Further, we observe
that the increase in the concentration is more pronounced in the
case of anions (co-ion) compared to that of the cation (counter-
ion) concentration. Furthermore, the propagation of charges to-
ward the nanochannel interface results in a significantly higher
electric field inside the nanochannel interface beyond the second
critical voltage. These effects result in a shift in the slope of the
0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

β = λD/Lm = 0.0051 (PNP only)

β = λD/Lm = 0.0051 (PNP+NS)

β = λD/Lm = 7.2605e−04 (PNP+NS)
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overall system resistance beyond the second critical voltage (see
Fig. 5), leading to an overlimiting current region. We note that,
by investigating the behavior of the minimum anion concentration
alone, we can capture all the three regions of the I–V
characteristics.

We would also like to highlight that all the three regions of the
I–V curve can be captured and explained even without considering
the fluid flow equations in the model (see Fig. 8). This suggests that
the fluidic nonlinearities observed in the space charge region may
not necessarily contribute toward understanding the origin of the
overlimiting current. Fig. 8 also shows the current characteristics
at high concentration limit, c0 ¼ 5 mM, corresponding to thin
EDL regime (b ¼ 7:2605� 10�4). Under thin EDL limit, the ion
selectivity of the nanochannel decreases significantly and we do
not observe the space charges at the depletion region. Hence, we
observe only Ohmic region in the current–voltage characteristics.
Thus, the ion-selectivity of the nanochannel plays a prominent role
in order to observe all the three regions of the I–V curve.

5. Anomalous current rectification under combined AC/DC
electric fields

We extend our study to investigate the influence of small-
amplitude external AC perturbations along with the DC voltage
on the current characteristics. Note that the application of a large
AC amplitude leads to higher complexities in the system, which
is beyond the scope of the present work. In order to understand
the AC effects, we solve the same set of governing equations with
the necessary boundary conditions discussed in Section 3. The only
variation is the boundary condition for the potential at the source
microchannel,

/ ¼ /DC þ /ACsinðxtÞ ð19Þ

where /AC is the amplitude of the AC electric potential and x is the
angular frequency (x ¼ 2pf ; f is the applied frequency). An AC volt-
age is applied after the system reaches a steady-state with the DC
field. We consider the same system parameters as discussed before
and initially investigate the effect of combined AC/DC electric fields
under thick EDL limit (b ¼ 0:0051). We understand the frequency

effects using the dimensionless frequency (fL2
m=D) and consider

the ratio of AC amplitude to DC voltage ða ¼ /AC=/DCÞ to investigate
the amplitude effects. Further, the effect of the combined AC/DC
electric field on the current characteristics is investigated by
time-averaging the current (per unit width) measured at the end
of the source microchannel over one time period:

hIi ¼ 1
Tp

Z Tp

0
I dt ð20Þ

where Tp is the time period of one cycle. In Fig. 9, we present the
relative current rectification as a function of the dimensionless fre-
quency (fL2

m=D) for various DC voltages. To understand the fre-
quency effects, a (¼ 1:333) is kept constant. The relative current
rectification is calculated as:

DI
IDC
¼ hIi � IDC

IDC
ð21Þ

where IDC is the current (per unit width) obtained when only DC
voltage is applied and hIi is the time-averaged current (per unit
width) under combined AC/DC electric field computed using Eq.
(20). It can be observed that for a given DC voltage of
/DCFz=RT ¼ 77:3677, at a low frequency, (fL2

m=D ¼ 90), there is no
significant current rectification. However, with increase in the fre-
quency, positive rectification effects are observed with enhance-
ments in the current. A maximum positive current rectification is
observed at fL2

m=D ¼ 540, while a further increase in the frequency
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leads to a decrease in the rectification effects. Furthermore, at a very
high frequency (fL2

m=D ¼ 4500), no current rectification is observed.
Similar anomalous rectification effects were also observed in the
experiments of Rubinstein et al. [18,33] for simple cation-selective
ion-exchange membranes. Fig. 9 also shows that as the DC voltage
increases and under same a, the rectification effects increase. Fur-
thermore, we observe that, for a given system, the frequency at
which the maximum positive rectification occurs is independent
of the applied DC voltage, provided the voltage is beyond the first
critical voltage.

In order to understand the current rectification, we consider a
1-D Nernst–Planck (NP) model and investigate the current (per
unit width) in the induced space charge region using Eq. (1) and
Eq. (4). Neglecting the contributions of diffusive and convective
flux in the induced space charge region, and assuming a symmetric
monovalent electrolyte with equal diffusivities ðDþ ¼ D� ¼ DÞ, we
obtain the following expression for the total current per unit
width,

I ¼ � F2z2DHm

RT
d/̂
dx
ðĉþ þ ĉ�Þ ð22Þ

where ^ denotes the area-averaged quantity considering the width
of the system to be unity. Under the application of combined AC and
DC field, we assume, ðĉþ þ ĉ�Þ ¼ C0 þ C1 cosðxt þ h1Þ and
d/̂
dx ¼ /x0

þ /x1
cosðxt þ /1Þ, neglecting the contribution of other

higher harmonic components. C0;/x0
are the DC component of the

total ionic concentration and the field, respectively. C1;/x1
are the

respective first harmonic contributions of the ionic concentration
and field. h1 and /1 are the corresponding phase angles of the for-
mer and latter terms, respectively. Substituting the aforementioned
expressions into Eq. (22) and averaging over one time period (Tp),
the time-averaged current per unit width hIi due to the combined
AC and DC electric field is calculated as,

hIi ¼ IDC �
F2z2DHm

RT
C1/x1

2
cosðh1 � /1Þ ð23Þ

where IDC ¼ � F2z2DHm
RT ðC0/x0

Þ is the DC component of the current per
unit width. To explain the current rectification under different
excitation frequencies, the normalized first harmonic contribution
of the total concentration and field, ðC�1/

�
x1
¼ C1/x1

Lm=c0/0Þ, and their
relative phase difference ðh1 � /1Þ is numerically calculated in the
induced space charge region at x=Lm ¼ 2, for a given DC voltage of
/DCFz=RT ¼ 154:7354. The results are shown in Fig. 10. It can be
observed that for low frequency, inspite of large contribution of
the harmonic terms, we do not observe significant rectification as
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Fig. 9. Relative current rectification as a function of non-dimensional frequency
(fL2

m=D) for various DC voltages, at a constant a ¼ /AC=/DC ¼ 1:333 and b = 0.0051.
the electric field and the ionic concentration tend to be out of phase
with each other ðh1 � /1 ’ 90�Þ as shown in the inset of Fig. 10, while,
at a very high frequency (fL2

m=D ¼ 4500), we observe minimal contri-
bution from the harmonic terms ðC�1/

�
x1
’ 0Þ (see Fig. 10), and hence

observe minimal rectification. However, at moderate excitation fre-
quencies, we observe an appreciable contribution of the ionic con-
centration and the electric field. Also at these frequencies, the
relative phase difference between the concentration, C�1 and field,
/�x1

decreases, which implies that they gradually tend to become
in-phase with each other as shown in the inset of Fig. 10. The above
two effects together result in a positive current rectification, and a
maximum rectification is observed at fL2

m=D ¼ 540. These arguments
also help us to conclude that the current rectification can be under-
stood without considering the effects of fluidic nonlinearities ob-
served in the induced space charge region of micro/nanochannel as
we have neglected the convective flux contribution in the 1� D NP
model. Similar physics is also observed at other DC voltages, beyond
the first critical voltage. Furthermore, from our NP model, we would
like to comment that it is also possible to suppress the current and
achieve negative rectification under combined AC/DC electric field
when fL2

m=D 6 1, as the relative phase difference between the
concentration and field ðh1 � /1Þcan be greater than 90�.

Fig. 9 also shows that, when the DC voltage is in the Ohmic re-
gime (/DCFz=RT ¼ 7:7367), that is, when there are no induced
space charges near the depletion micro–nanochannel interface,
no change in the time-averaged current is observed at any fre-
quency, under same a. These results are observed due to the min-
imal contribution of the harmonic terms ðC1/x1Þ to the DC current.
Thus, the application of combined AC/DC electric fields offer a
means to control the current beyond the Ohmic region. Further,
the combined AC/DC electric field can also be potentially used to
understand and measure the induced space charge region devel-
oped at the depletion micro/nanochannel interface. Fig. 11 displays
the relative current rectification as a function of a. To understand
the amplitude effects, the frequency (fL2

m=D ¼ 450) and DC voltage,
/DCFz=RT ¼ 154:7354, are kept constant. It is observed that the
relative rectification shows a quadratic scaling with a.

5.1. EDL effects on AC current rectification

In this section, we understand the AC current rectification for
different EDL thickness, b ¼ kD=Lm. b is varied by changing the bulk
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Fig. 10. Numerically calculated normalized first harmonic contribution of total
ionic concentration and field, ðC�1/�x1

Þ in the induced space charge region at
x=Lm ¼ 2, as a function of non-dimensional frequency (fL2

m=D), at a constant DC
voltage /DC Fz=RT ¼ 154:7354;a ¼ 1:333 and b ¼ 0:0051. The inset of the figure
shows the relative phase angle between C�1 and /�x1

as a function of non-dimensional
frequency.
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154:7354 and a ¼ 1:333.

Table 1
Bulk concentration (c0) and corresponding dimensionless EDL thickness.

c0 ðmMÞ kD ðnmÞ b ð�10�3Þ

0.06 39.768 6.628
0.1 30.804 5.134
0.2 21.782 3.630
0.333 16.880 2.813
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ionic concentration ðc0Þ of the electrolyte. The bulk ionic concen-
trations chosen are summarized in Table 1. Note that a similar
range of low ionic concentrations are used even in experiments
on highly ion-selective nanochannels [13]. For each concentration,
different AC frequencies are applied systematically to understand
the current rectification. Fig. 12 shows the dimensionless
frequency, at which the current rectification is maximum, as a
function of b at a constant amplitude (a ¼ 1:333) and DC voltage,
/DCFz=RT ¼ 154:7354. The applied DC voltage is ensured to be
greater than the first critical voltage, VLI, for all the concentration
cases chosen. We observe that the dimensionless frequency
approximately scales inversely with b.

Fig. 13 shows the AC current rectification as a function of
dimensionless frequency, under two different EDL limits,
b ¼ 0:0051, corresponding to thick EDL region (when the nano-
channel is highly ion-selective) and b ¼ 7:2605� 10�4, corre-
sponding to thin EDL limit, that is, when the ion-selectivity of
the nanochannel is significantly reduced. Here, amplitude
(a ¼ 1:333) and DC voltage, /DCFz=RT ¼ 154:7354, are kept con-
stant. Under thin EDL limit, minimal current rectification is ob-
served, as the induced space charge region is not developed at
the depletion micro–nanochannel interface. As discussed in Sec-
tion 5, we observe only the Ohmic region in the absence of induced
space charge region (see Fig. 8). The minimal current rectification
at thin EDL limit further reveals the criteria to establish positive
current rectification phenomenon.

6. Conclusions

Using a detailed 2-D nonlinear ion transport model, the large
yet finite differential resistance in the limiting resistance region
and the transition to the overlimiting current region are explained.
The regions are distinguished by analyzing the propagation of
space charges and the behavior of the ionic concentration in the in-
duced space charge region, developed at the depletion micro–
nanochannel junction. The overlimiting current is predicted even
without considering the effects of fluidic nonlinearities near the
depletion junction. Furthermore, anomalous current rectification,
resulting in an enhancement of the current, under combined AC/
DC electric field is discussed. The necessary criteria to observe
these rectification effects and some useful scaling relations are pre-
sented. We believe the application of combined AC/DC electric field
can offer a control on the current in the limiting resistance region
and can also be potentially used to understand and measure the
space charge region, induced near the depletion micro–nanochan-
nel interface. The anomalous current characteristics may also find
applications in the field of energy storage systems, supercapacitors,
water desalination, and selective species separation.
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Appendix A. Derivation of limiting current and first critical
voltage

We use an approach similar to Yossifon et al. [13] and Manzan-
ares et al. [34], to calculate the limiting current, IL per unit width.



Fig. A.1. Schematic representation of a cation-selective nanochannel (top) illus-
trating the cation concentration (middle) and potential distribution (bottom) near
the anodic micro–nanochannel interface under the application of first critical
voltage, which results in the appearance of the limiting resistance region.
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Using a 1� D model, and assuming a symmetric monovalent elec-
trolyte, with equal diffusivities ðDþ ¼ D� ¼ DÞ and neglecting the
convective flux, the flux of each ion in the x�direction can be
calculated from Eq. (1) as,

Ĉ�ðxÞ ¼ �D
dĉ�
dx
� zFD

RT
ĉ�

d/̂
dx

ðA1Þ

where ^ denotes the area-averaged quantity considering the width
of the system to be unity. As it is observed that, until the first critical
voltage, local electroneutrality is observed near both the anodic and
the cathodic microchannel region (ĉþ ¼ ĉ� ¼ ĉ), with linear concen-
tration gradients observed at these regions, dĉþ

dx ¼
dĉ�
dx ¼ dĉ

dx, the con-
centration gradient outside the nanochannel is given as,

dĉ
dx
¼ � Ĉþ þ Ĉ�

2D
ðA2Þ

We neglect the concentration distribution in the quasi-equilibrium
EDL region near the micro–nanochannel interface and consider the
concentration of the ions to be zero at the interface of the micro–
nanochannel (similar to the analogy of Levich’s limiting-current
density). Further, it is known that the concentration at the end of
the source microchannel is equal to the bulk ionic concentration
of the solution. Under these assumptions,

Ĉþ þ Ĉ� ¼ �
2Dc0

Lm
ðA3Þ

where Lm is the length of the microchannel (can also be taken to be
equal to the length of the diffusion boundary layer). Considering
�C ¼ � Ĉþ

Ĉ�
to be the ratio of counter-ion and co-ion fluxes, we obtain

the following expression for the limiting current density,

iL ¼ Ĉþ � Ĉ�
� �

Fz,

iL ¼ �
2Dc0Fz

Lm

�Cþ 1
�C� 1

� �
ðA4Þ

It can be easily shown that, �C ¼ ĉnþ
ĉn�

[13,34], where ĉnþ and ĉn� are
the counter-ion and co-ion concentrations inside the nanochannel
(averaged over the height of the nanochannel). The individual ionic
concentrations inside the nanochannel can be approximately calcu-
lated using the Donnan equilibrium theory [35]

ĉn� ¼ �
�c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c
2

� �2

þ c2
0

s
ðA5Þ

where �c ¼ ĉnþ � ĉn� ¼ � 2rn
FzHn

, is obtained from the electroneutrality
condition inside the nanochannel. Substituting Eq. (A5) and the
aforementioned conditions into Eq. (A4), we obtain the magnitude
of the normalized limiting current (I�L ¼ jIL=FzDc0j) per unit width
at the end of the microchannel as,

I�L ¼
2Hm

Lm

ĉnþ þ ĉn�

ĉnþ � ĉn�

� �
ðA6Þ

Using the limiting current expression, we now derive an expression
to calculate the first critical voltage (VLI), by considering the resis-
tance of both nanochannel and microchannel, as both the resis-
tances play an important role when the current deviates from the
Ohmic region. We assume no significant voltage drop in the enrich-
ment receiver microchannel and consider a linear voltage drop
along the nanochannel and also along the depletion source micro-
channel. Under these assumptions, we first focus on calculating
the voltage at the end of the nanochannel. Using Eq. (A1) and Eq.
(4), and neglecting the diffusional flux, the limiting current (per unit
width) along the x�direction for a symmetric monovalent electro-
lyte with equal diffusivities can be written as,

IL ¼ �
F2z2DHn

RT
d/̂
dx
ðĉnþ þ ĉn�Þ ðA7Þ

Integrating both sides along the length of the nanochannel (from
x ¼ xs to x ¼ xe, where xs is the coordinate where the nanochannel
starts and xe is the coordinate where the nanochannel ends) and
substituting Eq. (A5), we obtain an expression for the voltage at
the end of the nanochannel (averaged over the nanochannel height)
as,

/̂N ¼ �IL
RTLn

F2z2DHnðĉnþ þ ĉn�Þ

 !
ðA8Þ

We calculate the voltage at the end of the source microchannel,
which is the desired first critical voltage (VLI), by considering a lin-
ear voltage drop in the anodic depletion microchannel. Following
the above procedure, and assuming, dĉþ

dx ¼
dĉ�
dx ¼ dĉ

dx, the limiting cur-
rent per unit width in the anodic microchannel can be written as,

IL ¼ �
F2z2DHm

RT
d/̂
dx
ðĉþ þ ĉ�Þ ðA9Þ

It is important to note that the ion concentration varies linearly in
the microchannel unlike the ionic concentration inside the nano-
channel. Upon integrating the limiting current along the anodic
microchannel and assuming the concentration of the ions to be zero
at the anodic nanochannel–microchannel interface along with the
aforementioned conditions

VLI ¼ /̂N � IL
RTLm

F2z2DHmc0

� �
ðA10Þ

where /̂N is the voltage (averaged over the nanochannel height) at
the end of the nanochannel given by Eq. (A8). Substituting the
dimensions of the geometry and all the system parameters used
in the present simulation study, the magnitude of the normalized
limiting current per unit width is 0:347, while the numerical solu-
tion is 0:3175. Further, the normalized first critical voltage
(V�LI ¼ VLIFz=RT) is 10:1225 and the numerical solution is 13:5394.
The analytical expression slightly under-predicts the first critical
voltage. This is because, we assumed that the concentration of the
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ions is zero at the anodic micro–nanochannel interface. However, it
is known from the detailed numerical simulations that there is a
non-zero ionic concentration at this interface resulting in an inter-
facial jump in the potential. This jump in the potential can be ob-
tained using the Donnan theory [35], by equating the chemical
potential at this interface, provided the ionic concentration at this
interface is known.

/̂Njx¼xeþ
� /̂N jx¼xe�

¼ RT
zF

ln
ĉþjx¼xe�

ĉþjx¼xeþ

 !
ðA11Þ

where /̂N jx¼xe�
ð¼ /̂NÞ and ĉþjx¼xe�

ð¼ ĉnþÞ are the potential and cation
concentration at the left end of the anodic micro–nanochannel
interface (see Fig. A.1), which can be obtained using Eq. (A8), and
Eq. (A5), respectively. Knowing the cation concentration at the right
end of the micro–nanochannel interface, ĉþjx¼xeþ

, we obtain a mod-
ified expression for the first critical voltage.

VLIjmodified ¼ /̂N þ
RT
zF

ln
ĉþjx¼xe�

ĉþjx¼xeþ

 !
� IL

RTLm

F2z2DHmc0

� �
ðA12Þ

Note, the interfacial potential jump can also be obtained using the
anion concentration at this interface by following the similar proce-
dure. Upon substituting for ĉþjx¼xeþ

from our numerical simulation,
the modified normalized first critical voltage is found to be 13:8205,
which compares reasonably well to the numerical simulation value.
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