Global-mean and Arctic temperature trajectories for various scenarios, with and without CO2 removal (CDR*) and Solar Radiation Management (SRM) [†] Global temperatures (Arctic temperatures in blue) are relative to pre-industrial norms. * * * * * * * are projections from certain models 12 Feb 2021 Temperature trajectories diagram © Planetary Restoration Action Group (2021) Updated 20 February 2022 ^{*} CDR at 60+ GtCO2e/year including suppression of methane and black carbon. [^] July Temperature Update: Faustian Payment Comes Due, published 13 August 2021, James Hansen and Makiko Sato ## Six different choices to be made by the international community | | Description | Proponent | Claim & Assumptions | Immediate Risks | Implementation cost | Damage Costs | |------------------------|--|--|---|--|---|---| | Brown curve | Business as usual
(BAU) | Fossil Fuel
industry and
associated
lobbyists | aims to maintain the status
quo; assumes that CC is
slow, natural and inevitable | risks catastrophic impacts on
climate and sea level from
tipping points, most
immediately in the Arctic | costs nothing to implement | costs an escalating sum as damage
from CC continues to escalate for
the foreseeable future; and severely
disadvantages poorer countries | | Green curve
(solid) | Complete
decarbonisation
by 2050 | IPCC | claims to minimise the worst
effects of climate change;
assumes CC is slow and
tipping points are decades
away | risks catastrophic impacts (as
for brown) because removal of
SO2 cooling causes even
faster global heating | costs a significant percentage of
GDP over several decades for
complete decarbonisation of the
economy and transition to
renewables | costs an escalating sum as damage from CC continues to escalate for several decades – possibly into the next century; and severely disadvantages poorer countries including those which currently rely on fossil fuel imports or exports to support their economies | | Red curve
(solid) | CDR plus methane
removal to reduce
CO2e by natural
methods | CCRC, NOAC
and some
CDR/biochar
groups | aims to reduce CO2e below
1980 values and cooling the
planet; assumes CC and SLR
is slow and tipping points are
decades away | high risk of catastrophic
climate change and sea level
rise because CO2 cannot be
removed fast enough in
relation to emissions | cost estimates vary from <\$10 to
>\$30 per tCO2 removed
according to method (e.g. ocean
fertilisation or soil carbon
enhancement) | cost of damage grows for several
decades; has potential to improve
food production in poorer countries
or the seas around them | | Red curve
(dashed) | CDR uses tech
methods to reduce
CO2 to 300 ppm
by 2050 | F4CR | aims to restore the climate to
a safe state by 2050;
assumes CC is slow and
tipping points are decades
away | high risk of catastrophic
climate change and sea level
rise because CO2 cannot be
removed fast enough in
relation to emissions | cost estimates from \$100 to
\$800 per tCO2 removed; | cost of damage grows for several decades; has no obvious means to improve equitability. | | Blue curve | Cooling tech to reduce Arctic temperature | CCRC, PRAG
and AMEG | aims to prevent potential catastrophes associated with sea ice retreat, GIS disintegration, methane outburst from permafrost and AMOC disruption; assumes abrupt CC and SLR pose an extremely high risk | | annual cost estimates vary from
tens of millions of dollars for
MCB with seawater spray to tens
of billions of dollars for SAI with
SO2 | | | Purple curve | Cooling to limit
global warming.
(can include
regional cooling to
improve
equitability) | CCRC, PRAG,
NOAC, MEER
and a few
other groups | aims to keep mean
temperature below 2C this
century and limit SLR from
ocean expansion; assumes
CC is slow and tipping points
are decades away | | annual cost similar to blue above (except higher for MEER) | |