
Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 1

Popularized by the Star Wars saga, complex space planes which can move between planet surfaces and space with

ease, are now the staple diet of gamers worldwide. The maths is extreme, which is why we take care of this for you.

NASA would call this a Space Plane controller. It can control a "craft" like an airplane while inside a planet's

atmosphere, but can also act like a spaceship while in space.

What is Sci-Fi Ship Controller?

Sci-Fi Ship Controller is an asset that allows you to quickly and easily turn your ship models into fully-functioning,

flying ships.

How do I use it in Unity?

Currently, it consists of three main modules: The Ship Control Module, the Player Input Module, and the Ship AI

Input Module. The Ship Control Module is a script that can be added to ship models to turn them into flyable ships,

complete with all the parameters needed to tweak their behaviour to your liking. The Player Input Module is a script

that can be added to any ship with the Ship Control Module already attached to map inputs from a wide variety of

input sources to the Ship Control Module in order to let a player control the ship.

Why should I use Sci-Fi Ship Controller instead of another asset?

One of the main things we've worked really hard on with Sci-Fi Ship Controller is its ease of use. All the parameters in

the modules are arranged logically and have headers describing their functionality. In addition to this, every editable

parameter has an associated tooltip, so if you're unsure about what something does you can simply hover your

mouse over it and get a brief description. We've also tried to write Sci-Fi Ship Controller in a way that makes sense to

all game developers, not just ones that have a degree in aerodynamic engineering or physics.

One of the other strengths of Sci-Fi Ship Controller is its versatility. It isn't an asset JUST for arcade spaceships, JUST

for aircraft or JUST for hover-ships: If it flies, then there's a good chance you can make it with our asset (and if you

can't, feel free to let us know so that we have to opportunity to improve Sci-Fi Ship Controller in that regard).

Sci-Fi Ship Controller includes an extensive, documented, runtime API with many C# examples.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 2

As well as this, Sci-Fi Ship Controller is completely physics-based. All movements are driven by Unity's built-in

physics, which provides a great feel for players and ensures you won't encounter any strange behaviour caused by

our asset fighting with the physics engine.

Finally, Sci-Fi Ship Controller is designed from the ground up for performance. We've tried as much as possible to

follow best practice and avoid expensive allocations and function calls, so Sci-Fi Ship Controller should only comprise

a minimal part of your performance budget. The Combat system supports DOTS (Entities, Jobs, Burst Compiler in

Unity 2019.x and 2020.3).

What versions of Unity do we support?

We following a sliding window which roughly matches the versions supported by Unity. We currently support Unity

2019.4.32+, 2020.x, 2021.x, and 2022.1.

Table of Contents
What’s Changed .. 7

Support Policy ... 8

Getting Started .. 9

Videos and Tutorials.. 9

Demos ... 10

General Demos.. 10

AG SSC Racer ... 10

Tech Demo 2 ... 10

Tech Demo 3 ... 10

Ship Control Module ... 12

Ship Control Module – Overview .. 12

In-Scene Editing... 12

Physics Tab .. 13

Control Tab .. 14

Thrusters Tab .. 16

Aero Tab .. 19

Combat Tab ... 21

Player Input Module ... 27

Direct Keyboard .. 27

Legacy Unity .. 28

Rewired ... 28

Unity Input System .. 30

Virtual Reality (VR) Input .. 31

Unity XR - Overview .. 32

Unity XR – Levers and Joysticks with Sticky3D .. 34

Unity XR – Hands and Physics Collisions ... 34

Custom Player Input .. 35

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 3

Using Sony Dual Shock 4 with SSC on PC .. 36

Overriding Player Input Module in Code .. 36

Writing your own Player Input code ... 36

Ship Camera Module ... 36

Camera Overview .. 36

Camera Properties .. 36

Top-down Setup .. 38

Projectile Module .. 39

How to Create Projectile Prefabs .. 39

How to Setup Projectiles to use DOTS/ECS ... 40

How to Convert scene to use DOTS projectiles .. 41

Projectile Properties ... 42

How to Use Guided Projectiles ... 43

Customising Projectile Behaviour ... 43

Beam Module .. 43

How to Create Beam Prefabs .. 43

Beam Properties.. 44

Destruct Module ... 45

How to Create Destruct Prefabs ... 45

Destruct Properties ... 45

Effects Module .. 46

SSC Manager ... 47

Adding SSC Manager to a Scene ... 47

Locations and Paths - Overview .. 47

Locations and Paths - Creating .. 48

Editing Paths ... 48

Location Properties ... 49

Path Properties ... 49

Object Pool Estimation.. 50

Ship AI System ... 50

Ship AI Overview ... 50

Ship AI Input Module .. 51

AI State Interaction ... 52

Setting a Ship’s AI State .. 52

Getting a Ship’s AI State .. 52

Setting State Inputs ... 52

Getting State Inputs .. 53

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 4

State Completion Status ... 54

State Stage Index .. 55

Sample AI Scripts ... 55

Default AI States.. 56

Custom AI States ... 57

Creating and Using a Custom State ... 57

Writing a Custom State Method ... 57

State Behaviour Combiner .. 59

Default AI Behaviours ... 59

SSC Radar .. 60

General Properties .. 60

Visual Properties ... 61

Movement Properties ... 61

Surface Turret Module .. 61

Surface Turret - General Properties .. 62

Surface Turret - Weapon Settings ... 62

Surface Turret - Gravitational Properties .. 63

Surface Turret – Optional Components .. 63

Auto Targeting Module ... 64

Damage Receiver .. 65

Destructible Object Module .. 65

Ship Docking and Undocking ... 66

Ship Docking Station - Overview ... 66

Ship Docking Station - General Properties .. 67

Ship Docking Station – Docking Point Properties ... 67

Ship Docking Component .. 68

Player Docking – Non-assisted .. 71

Player AI-Assisted Docking .. 71

Ship Display Module (HUD) ... 72

Ship Display Module – Extending .. 72

Ship Display Module – General Settings ... 73

Ship Display Module – Display Reticle Settings .. 73

Ship Display Module – Altitude and Speed Settings ... 74

Ship Display Module – Display Attitude Settings .. 74

Ship Display Module – Display Flicker Settings ... 75

Ship Display Module – Display Heading Settings .. 75

Ship Display Module – Display Message Settings ... 76

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 5

Ship Display Module – Display Target Settings ... 77

Ship Display Module – Display Gauge Settings ... 78

Scriptable Render Pipelines .. 80

Proximity Component ... 80

SSC Moving Platform ... 80

SSC and Unity Physics (DOTS) ... 82

Common Issues ... 82

Common Issues – General .. 82

Common Issues – Auto Targeting Module .. 83

Common Issues – Player Input .. 83

Common Issues – Ship Behaviour ... 83

Common Issues – Ship AI Behaviour ... 84

Common Issues – Ship Camera Module ... 84

Common Issues – Destruct Module .. 85

Common Issues – Demo Scenes ... 85

Common Issues – Demo Prefabs and Scripts .. 85

Common Issues – Effects .. 85

Common Issues – Radar .. 85

Common Issues – Weapons .. 85

Common Issues – Moving Platforms .. 86

Common Issues – Paths .. 86

Common Issues – Ship Docking Station .. 86

Common Issues – Ship Display Module (HUD) ... 87

Common Issues – SSC Celestials ... 87

Common Issues – VR ... 88

Runtime and API ... 89

Runtime General Guidance ... 89

Changing Variable at Runtime .. 90

Demo Scripts ... 90

Ship Control Module Methods or Properties ... 94

Ship Control Module API Call Backs .. 96

Ship (General) Methods or Properties .. 97

Ship (Damage) Methods or Properties ... 99

Ship (Respawning) Methods or Properties ... 101

Ship (Thruster) Methods or Properties ... 101

Ship (Weapon) Methods or Properties ... 102

Ship API Call Backs .. 104

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 6

Player Input Module Properties .. 105

Player Input Module (General) API Methods.. 105

Player Input Module (AI-Assist) API Methods ... 107

Player Input Module (XR) API Methods or Properties .. 108

Ship AI Input Module API Methods or Properties .. 108

Ship AI Input Module API Call Backs ... 111

Ship Camera Module API Methods ... 112

Auto Targeting Module API Methods or Properties ... 113

Location and Path API Methods .. 114

Beam, Destruct, Projectile and Effects API Methods .. 117

Projectile API Call Backs .. 118

Destructible Object Module API Methods or Properties .. 118

Radar API Methods or Properties ... 120

Radar API Call Backs .. 124

Surface Turret Module API Methods .. 124

Surface Turret Module API Call Backs ... 125

Ship Docking Station API Methods.. 126

Ship Docking API Methods .. 128

Ship Docking API Call Backs ... 128

Ship Display Module API Properties.. 129

Ship Display Module (General) API Methods .. 129

Ship Display Module (Cursor) API Methods .. 130

Ship Display Module (Display Reticle) API Methods ... 130

Ship Display Module (Altitude and Speed) API Methods .. 131

Ship Display Module (Display Attitude) API Methods .. 131

Ship Display Module (Display Flicker) API Methods ... 132

Ship Display Module (Display Gauge) API Methods ... 132

Ship Display Module (Display Heading) API Methods... 135

Ship Display Module (Display Message) API Methods .. 136

Ship Display Module (Display Target) API Methods ... 138

Ship Display Module API Call Backs .. 140

Support.. 140

Version History .. 140

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 7

What’s Changed
Version 1.3.7

Version 1.3.6

[NEW] EnableShip API configurable from inspector event or callback method
[NEW] PlayerInputModule - Enable or Disable XR Camera and Hand APIs
[NEW] ShipDocking - Events configurable in the inspector and supporting APIs
[NEW] Thrusters - optional FX when stationary or no thruster input
[NEW] ShakeCameraDelayed and ShakeCamera API callable from inspector events
[NEW] SetThrusterThrottle API for setting individual thrusters
[NEW] SetMaxThrustNewtons API for fine-grained control with ultra-light weight ships
[NEW] Ship callbackOnWeaponFired delegate
[FIXED] Thrusters may have Throttle > 0 when Thruster Systems have not started
[IMPROVED] Disable XR camera and hands when Enable on Initialise is disabled
[IMPROVED] Shutdown[Startup]ThrusterSystems APIs callable from inspector events
[IMPROVED] Path editing - add or subtract y-axis position for multiple selected Locations

Version 1.3.5

[NEW] ProjectileModule - Shield hit effects
[NEW] DamageRegion - IsHit API
[NEW] Ship - HasActiveShield API
[NEW] Ship - Attach[Detach]Collider(s) APIs
[NEW] ShipControlModule - Ship Input Debugging in editor at runtime
[NEW] ShipControlModule - CallbackOnCollision for custom collision handling
[FIXED] Handles.FreeMoveHandle change in Unity 2022.1
[IMPROVED] Projectiles support DOTS Entities 0.51 (URP and HDRP only)
[IMPROVED] Integration with Sticky3D Controller VR flight-stick and levers

For the full change log, see Version History at the end of the manual.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 8

Support Policy

For free support we will investigate reproducible bugs in our code. We may ask you to provide a simple

scene with clear instructions on how to repro the issue. We can provide an upload area for the project files.

If this issue is critical to an announced game release date, we give it high priority. We also help with

fleshing out new features that can improve game-play and that we could add to a new version. In addition,

we offer customer support for discovering existing features and how to configure them, both in our Unity

forum or on our Discord channels.

To add "polish" to a game or general help with implementing our products (and even writing custom game-

play code) we negotiate a flexible hourly rate which can be time-boxed to fit the studio or indie budget.

We may alter this support policy from time to time without notice.

https://forum.unity.com/threads/594448/
https://forum.unity.com/threads/594448/
https://discord.gg/CjzCK4b

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 9

Getting Started
SSC comes bundled with a number of demo scenes and prefabs to get you started quickly. The demo scenes are set

up with a single player ship, with keyboard input, to allow you to simply open the scenes in the Unity editor and hit

play.

SSC has a lot of flexibility in dealing with many, many different scenarios. However, if you have a specific use-case in

mind, the demo scenes may help you select a starting Ship Control Module configuration. Most people will want to

start with one of the ship prefabs from the SCSM\SciFiShipController\Prefabs\Ships folder. Each of these prefabs has

a basic ship model attached so you can quickly test it in your scene. You can add your own space craft models later.

After dropping one of the SSC ship prefabs into the scene, optionally drop in the PlayerCamera prefab

(SCSM\SciFiShipController\Prefabs\Environment) and/or Celestials (SCSM\SciFiShipController\Demos\Prefabs). Both

of these require a small amount of configuration. You will see warnings in the Unity Console at runtime in the Unity

Editor if you forget to configure them.

Throughout this manual we refer to anything that can be flown by a player or an AI-player as a “ship”. All “ships”

need to include a Ship Control Module. It could be any of the following:

• Aircraft / airplane which flies within a planet’s atmosphere or is affected by gravity

• Hover ship / craft or land-based speed racer

• Spaceship that travels through empty space or around a planet

• Space plane (acts like an airplane while inside a planet's atmosphere, but acts like a spaceship while in space)

• Fast 1-2-seater fighter

• Large space battle cruiser which includes turret-like weapons

Videos and Tutorials

Name URL

Trailer (for the 1.3.0 release) https://youtu.be/ApzeVodi-YI

Tech Demo 2 Trailer 1 https://youtu.be/U2s6ttNDcr8

Getting Started / Setup Basics Tutorial https://youtu.be/-IvOhk_4P6k

Control Tab Basics Tutorial https://youtu.be/8mNqLeun5eQ

Damage Basics Tutorial https://youtu.be/6tfwtm9b1oU

Weapon Basics Tutorial https://youtu.be/lIpttO-UUyE

Physics-Based Tutorial https://youtu.be/EPbzfG_2Ltw

Radar Basics Tutorial https://youtu.be/1FMixzYXxuo

Docking Basics Tutorial https://youtu.be/poqPosakse0

VR Flight Setup with SSC + S3D https://youtu.be/m1OdRGvDOS0

Anti-Gravity Racer Demo https://youtu.be/reYNcztvt3I

SSC with Unity Mega City Tech Demo ** https://youtu.be/fIb8XhI_v5g

SSC Asteroids Demo https://youtu.be/zYNTHua6odY

Ship AI System (3-part series) https://forum.unity.com/threads/594448/page-2#post-5368236

** Unity Mega City assets are not included with Sci-Fi Ship Controller. This Tech Demo is only to show that SSC can

be integrated with other systems.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 10

Demos

General Demos
There are nine demo scenes available which can be found by navigating to the folder SCSM\

SciFiShipController\Demos\Scenes. With the exception of the Asteroids and Docking demos, they contain one ship

which can be controlled by the player (just run the scene to start the demo). Apart from the "Endless Flier Demo",

each demo uses the same basic control scheme from the legacy Unity input system:

• Up arrow key is forwards thrust, down arrow key is the brakes

• A/D keys are used to turn left and right

• W/S keys are used to pitch up and down

• Left and right arrow keys are used to roll clockwise and anticlockwise

• Additionally, in the "Explorer (Physics) Demo", Q/E keys are used to move up and down

If you’d like to use a game controller with the demo scenes or the new Unity Input System, see the section called

“Player Input Module” later in this manual.

The Asteroids Demo and Docking Demo scenes are entirely controlled by the Ship AI system.

In the City Demo scene, the camera can be switched between squadrons with the “Y” key. To switch ships in the

same squadron, press the “T” key.

For Demo Scripts, look in the “Runtime and API” chapter later in this manual.

AG SSC Racer
The first tech demo, AG SSC Racer, was released on PC, Xbox, and Mac. It can be found on the Microsoft Store or can

be downloaded from our website at http://scsmmedia.com/ssc.html. The game was built using the Anti-gravity

Racer Demo scene with some additional game play elements added.

Tech Demo 2
The ninth demo, can be found in the Demos\TechDemo folder. In the Unity forums this is known as Tech Demo 2 as

it is the second technical demo release. Unlike Tech Demo 1, the full game is included with Sci-Fi Ship Controller.

Before playing the scene there are a few things to do:

1. Set the Unity User Layer 27 to “Small Ships” (if you need to change the layer number because it is already in

use, in the TechDemo scene, click on the “TechDemo2 Controller” and change the “Small Ships Unity Layer”

number in the Unity Inspector.

2. In Project Settings, Player, under “Other Settings” set the Rendering Color Space to “Linear”

More information about Tech Demo 2 can be found in the following Unity forum posts:

https://forum.unity.com/threads/594448/page-6#post-6277157

https://forum.unity.com/threads/594448/page-6#post-6324246

This tech demo was also released as a game on PC and Xbox. You can read more about that here:

https://forum.unity.com/threads/977508/

To convert the Tech Demo over to using the (new) Unity Input System, see the readme in the scene folder.

Tech Demo 3
New in SSC version 1.3.0, this demo brings several features together. When used with Sticky3D Controller (our

character controller which is also available on the Asset Store), it provides an immerse experience packed with

technical examples of how to solve common problems when building Sci-Fi space sims. The action takes place while

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 11

docking a small space shuttle at a space port. To use with Sticky3D, download the package from the Beta Program or

follow the instructions at the top of the TechDemo3.cs script.

Most of the action is controlled by the TechDemo3 script which is attached to the “TechDemo3Controller”

gameobject in the scene.

The basic game play goes something like this:

1. If Sticky3D Controller is not installed, always use the Walk Thru option

2. If Sticky3D Controller is installed, use the Walk Thru option if it is enabled, otherwise use the Sticky3D

character as the player (this gives the richest interactive experience but requires Sticky3D, which is available

as a separate asset from the Unity Asset Store).

3. If in Walk Thru mode, wait for the user to press the “I” key to commence the docking procedure.

4. If using Sticky3D, sit the player down in the Shuttle cockpit seat and wait for the player to select the

“docking” button on the console.

5. Along the way, display an appropriate action message on the Heads-Up Display. E.g., “Initiate docking

procedures”, “Make you way to Space Port Services” etc.

6. The Walk Thru uses a camera “ship” which literally flies through the scene. The camera is an AI ship that

follows the appropriate path. Each path was set up in our SSCManager path editor. It takes advantage of

Door Proximity components etc to let it pass though doors. It even “knows” how to take the lift to the top

deck of the space port.

7. With Sticky3D, the user can interact with door and lift controllers in the scene. The user can toggle between

first and third person using the “V” key. Movement is the “standard” WSAD and mouse controls look. This is

for convenience in the demo. In a real game you could configure it to use whatever suited your game setup.

Also, you could use the “new” Unity input system or various other setups (even VR if you wanted too!).

8. After exiting the small shuttle and entering the space port, the player is encouraged to go into the Services

room. If Sticky3D is in play, an assistant tries to get your attention. In Walk Thru (without Sticky3D installed),

there is an empty seat behind the services desk.

9. Stuff now gets interesting and all manner of things start to happen. Getting to the top deck of the space port

is indicated and the obvious method is via the lift.

10. If Sticky3D is in play, the character should call the lift and take the lift to the top deck. In Walk Thru mode,

this happens automatically.

11. If Sticky3D is in play, you will need to put on your helmet to get out the outer doors (it’s difficult to breath in

space).

12. As the player walks across the top deck to their awaiting Hawk fighter, the enemy fighters start attacking the

space station itself. Thankfully, your friendly fighters have already started to engage the invading force.

13. The player should climb up the ladder and get into the cockpit of the Hawk (this happens automatically in

Walk Thru mode).

14. When the player gets to the top of the ladder, we switch control from either the Sticky3D character or the

camera “ship” to the Hawk fighter. We power up the ship and the rest is up to you.

15. Now the player (that’s you!) needs to destroy the enemy fighters and save the space port.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 12

If you have a low-powered device (CPU and/or GPU), the demo will
always work better in a build. However, if you want to run it in the editor,
reducing the screen resolution of the Game view can make a big
difference. Tick the “Low Resolution Aspect Ratios” can help.

Most games are render-bound. That is, drawing all the pixels on the
screen, often multiple times for the same “final” image, can be
“expensive”.

By reducing the number of pixels drawn, you can increase the in-editor
performance.

Ship Control Module

Ship Control Module – Overview
This module enables you to implement ship behaviour on the object it is attached to. It contains the core

configuration required to get your ship flying.

The module includes the following configuration categories. They appear in the logical order you’ll typically set up a

ship.

Category Purpose

Physics Where you select (realistic) Physics mode or Arcade mode. Also determines how gravity and
mass affects a ship’s behaviour.

Control Includes options for over-riding the player’s input behaviour.

Thrusters Used to control the ship by adding forces to move the ship's position and torques to rotate
the ship. Can also add Particle System effects and audio effects.

Aero Determine how your ship interacts with the air around it (its aerodynamic properties).

Combat Includes how the ship takes damage, how the ship is re-spawned, how weapons are
configured, and how a ship is identified.

In-Scene Editing
Sci-Fi Ship Controller has a number of features that support in-scene editing for more intuitive development. This

enables you to select different attributes of your ship and move them around within the scene view. The values in

the SSC module editors will automatically be updated.

In the Ship Control Module editor, whenever you see a small “G” button it indicates that the Gizmos in the scene for

that feature can be shown or hidden. Some items like Centre of Lift and Direction, and Centre of Thrust and Thrust

Direction are non-selectable. Others like Centre of Mass, Wings, Control Surfaces, Thrusters, and Weapons, are

selectable and can be manipulated in the scene view.

To edit the location, size, and/or rotation of an item associated with a ship perform the following actions:

1. In the scene Hierarchy, select the parent gameobject of the ship

2. In the Inspector, navigate to the appropriate tab in the Ship Control Module and make sure the Gizmos are

enabled. If in doubt, click the “G” button in the editor to toggle them on/off.

3. In the scene view, move your mouse of the gizmo for the item and click it to select or unselect it.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 13

4. Move, Rotate, or Resize the component with the standard Unity Editor tools. Note: Not all items have all 3

manipulation methods enabled. For example, it doesn’t make sense to be able to rotate the ship’s centre of

mass however it does for a control surface or wing.

Physics Tab
The Physics tab is usually a good place to start when setting up a ship, as it contains a lot of the basics. Here you can

specify the mass of the ship, as well as the strength and direction of gravity acting upon the ship. You can also specify

whether Unity should set the centre of mass of the ship automatically or if you want to set it manually.

Probably the most important value to start with is the one at the top: The physics model. The physics model

determines what options are available for ship control and behaviour. There are two options currently available:

Physics-based and Arcade.

Physics-based mode is best employed for games aiming to achieve a large degree of realism, or at the very least

evoke a sense of realism from players. In general, only physically realistic options are available. Ships can only be

turned using thrusters and control surfaces.

Arcade mode, on the other hand, provides a number of extra options to enhance ship feel and gameplay while

removing certain behaviours entirely in order to make ship setup and control easier. For example, pitch/roll/yaw

acceleration and turn acceleration options are only available in arcade mode. Pitch/roll/yaw acceleration values

directly determine how quickly the ship rotates on each axis - in physics-based mode rotations can only be achieved

indirectly via the use of thrusters. Turn acceleration adds force inputs to a ship based on its motion in order to make

the ship's velocity more in line with the way it is facing, which is common in a lot of flight games as it makes flight

control and movement a lot more intuitive for players.

Property Description

Initialise On Awake If enabled, the InitialiseShip() will be called as soon as Awake() runs for the ship. This
should be disabled if you are instantiating the ship through code.

Physics Model The physics model determines which options are available for ship control, as well as
how physics for certain things such as thrusters is handled. Select Physics-Based
mode to create physically realistic ships and aircraft, or select

Arcade mode to replicate the behaviour of more fictitious craft.

Mass The property of 'mass' determines how heavy the ship is (in kilograms). The point
through which all of the mass of the ship seems to act is known as the 'centre of
mass' (CoM) and is indicated by the grey sphere in the scene view. When 'Set CoM
Manually' is disabled, the centre of mass will be automatically determined by Unity
based on the position of any colliders attached to the rigidbody. Otherwise, the
centre of mass can be adjusted by modifying the value of 'Centre of Mass' in the
inspector or by selecting the grey sphere in the scene view and dragging it with the
move tool. The 'Reset Centre Of Mass' button resets the centre of mass to the
position automatically determined by Unity.

Set CoM Manually When enabled, the centre of mass (the point through which all forces on the ship
act) can be edited manually. When disabled, the centre of mass will be positioned at
the default position specified by Unity - this is determined by the ship's colliders.

Centre of Mass The position of the centre of mass in local space.

Gravity Acceleration changes the strength of gravity. Increasing it increases the pull of
gravity. Direction changes the direction in which gravity acts. This direction is
indicated by the grey arrow in the scene view, and can be adjusted by selecting the
grey sphere and using the rotation tool.

Acceleration The acceleration due to gravity in metres per second squared. Earth gravity is
approximately 9.81 m/s ^2.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 14

Property Description

Direction The direction in which gravity acts on the ship in world space.

Pitch/Roll/Yaw
Acceleration

Use Pitch/Roll/Yaw Acceleration to determine how quickly the ship can turn on each
axis.

Roll Acceleration How fast the ship accelerates when rolling left and right in degrees per second
squared. Increasing this value will increase how fast the ship can be rolled left and
right by pilot and rotational flight assist inputs.

Yaw Acceleration How fast the ship accelerates when turning left and right in degrees per second
squared. Increasing this value will increase how fast the ship can be turned left and
right by pilot and rotational flight assist inputs.

Turn Acceleration Use turn acceleration to add a more 'arcade' feel to ship movement. Flight Turn
Acceleration adds force inputs to cause the ship to move in the direction it is facing
while in the air, while Ground Turn Acceleration does the same while the ship is near
the ground.

Flight Turn Acceleration How quickly the ship accelerates in metres per second squared while in the air to
move in the direction the ship is facing.

Ground Turn Acceleration How quickly the ship accelerates in metres per second squared while near the
ground to move in the direction the ship is facing.

Control Tab
For some ships, the control setup is very simple, while in others (such as the classic hover ship) the control setup is

more complicated. Essentially, the Control tab is used for used for setting up any input control that the computer will

do instead of the player. This includes input assists (such as the rotational flight assist) which make flight easier for

players, as well as control modifiers that allow more interesting behaviour to occur (such as stick to ground surface,

which controls the pitch, roll and vertical inputs of the ship to allow it to orient itself to the ground surface and

maintain a given distance from it). The Control tab determines a lot of the behaviour of the ship related to gameplay.

Property Description

Rotational Flight Assist Rotational Flight Assist helps a pilot to control a ship by applying axial inputs to
oppose rotational velocity and slow down spinning motion when the pilot releases
the input on that axis.

RFA Strength Increasing this value will increase how quickly rotational flight assist slows down
spinning motions. Setting it to zero will disable rotational flight assist entirely.

Translational Flight Assist Translational Flight Assist helps a pilot to control a ship by applying translational
inputs to oppose movement on non-forward axes when the pilot releases the input
on those axes, which aligns the ship's velocity more with its forward direction,
making turning easier and more intuitive.

TFA Strength Increasing this value will increase how quickly translational flight assist slows down
movement in a particular direction. Setting it to zero will disable translational flight
assist entirely.

Stability Flight Assist Stability Flight Assist helps a pilot to control a ship by applying rotational inputs to
keep the ship stable at its current orientation when the pilot releases rotational
inputs.

SFA Strength Increasing this value will increase how rigidly stability flight assist keeps the ship
stable. Setting it to zero will disable stability flight assist entirely.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 15

Property Description

Brake Flight Assist Brake Flight Assist helps a pilot to slow a ship when the pilot releases the input on
the forward or backward (z) axis. At slow speeds it can bring a ship to a complete
stop. This is overridden in forwards direction when AutoCruise is enabled on
PlayerInputModule.

BFA Strength Strength of the brake flight assist. Set to zero to disable [Default = 0]. Operates on
Forward and Backward movements when there is no ship input.

Min. Speed (m/s) The effective minimum speed at which the brake flight assist will operate. [DEFAULT
-10m/s]

Max. Speed (m/s) The effective maximum speed at which the brake flight assist will operate. [DEFAULT
+10m/s]

Limit Pitch/Roll When Limit Pitch/Roll is enabled, the ship is limited to a range of pitches (as
specified by the Max Pitch) and roll is controlled by yaw input, between a small
range of roll angles (as specified by Max Turn Roll). This can either be constrained to
the world upward direction (as would be used in an arcade airplane game) or
constrained to the ground surface (as would be used in a hover-racing game) by
enabling Stick To Ground Surface.

Max Pitch The maximum pitch in degrees that the ship is allowed to attain.

Pitch Speed How fast the ship pitches in degrees per second.

Max Turn Roll The maximum roll in degrees that the ship is allowed to attain.

Turn Roll Speed How fast the ship rolls in degrees per second.

Roll Control Mode How roll is controlled. When Yaw Input is selected, roll is determined by the yaw
input (turning left will make the ship roll left and vice versa). When Strafe Input is
selected, roll is determined by the strafe input (strafing left will make the ship roll
left and vice versa).

Responsiveness (Pitch/Roll) How fast the ship pitches/rolls to match the target pitch/roll (for instance the
ground surface if Stick To Ground Surface is enabled).

Stick To Ground Surface When Stick To Ground Surface is enabled, the ship will orient itself and maintain a
relatively constant distance to the ground below it, as specified by the Target
Distance.

Orient Upwards In Air Enable this to revert to the default behaviour of Limit Pitch/Roll (constraining the
ship to a limited range of pitch and roll, facing upwards) when there isn't a
detectable ground surface below the ship (i.e., when the ship is high up in the air).

Ground Match Smoothing Whether the movement used for matching the Target Distance from the ground is
smoothed. Enable this to prevent the ship from accelerating too quickly when near
the Target Distance.

Look Ahead When Stick To Ground is enabled, whether the ground match algorithm 'looks
ahead' to detect obstacles ahead of the ship.

Target Distance When Stick To Ground is enabled, the distance the ship will attempt to maintain to
the ground surface below it.

Target Distance Above When Above Ground Surface is enabled, the distance the ship will attempt to
maintain above the ground surface below it.

Min Distance When Ground Match Smoothing is enabled, the minimum distance the ship will
attempt to maintain to the ground surface below it.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 16

Property Description

Max Distance When Ground Match Smoothing is enabled, the maximum distance the ship will
attempt to maintain to the ground surface below it.

Max Check Distance The max distance the ship will check below it to find the ground surface. When the
ship is further than this distance away from the ground surface it will either revert to
the default behaviour of Limit Pitch/Roll (if Orient Up In Air is enabled) or it will
revert to standard six-degrees-of-freedom behaviour (if Orient Up In Air is disabled).

Responsiveness (Target
Distance)

How responsive ship is to sudden changes in the distance to the ground. Increasing
this value will allow the ship to match the Target Distance more closely but may lead
to a juddering effect if increased too much.

Damping How much the up/down motion of the ship is damped when attempting to match
the Target Distance. Increasing this value will reduce overshoot but may make the
movement too rigid if increased too much.

Max Acceleration (Target
Distance)

The limit to how quickly the ship can accelerate to maintain the Target Distance to
the ground. Increasing this value will allow the ship to match the Target Distance
more closely but may look less natural.

Ground Normal Calc. How the normal direction (orientation) is determined. When Single Normal is
selected, the single normal of each face of the ground geometry is used. When
Smoothed Normal is selected, the normals on each vertex of the face of the ground
geometry are blended together to give a smoothed normal, which is used instead.
Smoothed Normal is more computationally expensive.

Ground Layer Mask Only geometry in the specified layers will be detected as being part of the ground
surface.

Ground Normal History The number of past frames (including this frame) used to average ground normals
over time. Increase this value to make pitch and roll movement smoother. Decrease
this value to make pitch and roll movement more responsive to changes in the
ground surface.

Roll Power How much power of the ship's roll thrusters is used to execute roll manoeuvres.
Increasing this value will increase the roll speed and responsiveness of the ship.

Pitch Power How much power of the ship's pitch thrusters is used to execute pitching
manoeuvres. Increasing this value will increase the pitch speed and responsiveness
of the ship.

Yaw Power How much power of the ship's yaw thrusters is used to execute yaw manoeuvres.
Increasing this value will increase the yaw speed and responsiveness of the ship.

Input Control (2.5D) Limit an input axis to achieve 2.5D-like flight behaviour. This is helpful when you
have a 3D environment but would like the ship to be constrained on one axis.

Input Control Limit The target value of the X or Y axis

Input Moving Rigidness The rate at which force is applied to limit control

Input Turning Rigidness The rate at which the ship turns to limit or correct the rotation

Input Forward Angle The forward X angle for the plane the ship will fly along. Only applies when the Input
Control Axis is X.

Thrusters Tab
The Thrusters tab is exactly what it sounds like: It's where you set up your ship's thrusters. Each thruster has a vector

direction and a force amount specified, and is linked to the various player inputs via the selection of which force

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 17

direction and (in physics-based mode) moment directions (read: rotations) the thruster is able to move the ship in

(this can be set up automatically using the auto-populate forces and moments button).

The Gizmos in the scene point in the direction that the thrust will be applied. For example, a forward thruster will

point backward as thrust is applied backwards to propel the ship forwards.

An effects object can also be specified for each thruster to link it with effects to be triggered when the thruster is in

use.

As more thrust is applied (either from a human player via the Input Player Module, or in code via an AI-player), the

Particle System effect increases. If an Audio Source is attached to the effect, the volume increases or decreased

based on the amount of thrust that is being applied.

Property Description

Thruster Systems Started Are the thruster systems online or in the process of coming online?

Startup Duration The time, in seconds, it takes for the thrusters to fully come online.

Shutdown Duration The time, in seconds, it takes for the thrusters to fully shutdown.

Central Fuel For thrusters, use a central fuel level, rather than fuel level per thruster.

Central Fuel Level The amount of fuel available to the whole ship when “Central Fuel” is enabled -
range 0.0 (empty) to 100.0 (full).

FX when Stationary When the ship is enabled, but ship movement is disabled, should thrusters fire if
they have Min FX Always On enabled?

Name The name of the thruster

Max Thrust (kN) The max thrust in kilonewtons this thruster can generate.

Throttle The amount of available power being supplied to the thruster.

Relative Position The position of the thruster in local space.

Thrust Direction The direction of thrust of the thruster in local space.

Thrust Input Which input activates this thruster. This determines what input/s are linked with this
thruster (if you don't know how to use this, the Auto-Populate Forces and Moments
button can be used to calculate this automatically).

Primary Moment Input The rotational input which is primarily used to activate this thruster. This determines
what input/s are linked with this thruster (if you don't know how to use this, the
Auto-Populate Forces and Moments button can be used to calculate this
automatically).

Secondary Moment Input The rotational input which is secondarily used to activate this thruster. This
determines what input/s are linked with this thruster (if you don't know how to use
this, the Auto-Populate Forces and Moments button can be used to calculate this
automatically).

Damage Region Which damage region this part belongs to.

Min Performance The minimum possible performance level of this thruster (i.e., what performance
level the thruster will have when its health reaches zero). The performance level
affects how much thrust this thruster generates.

Starting Health The initial health value of this part. This is the amount of damage that needs to be
done to the damage region this part is associated with for the part to reach its min
performance.

Effects Object The object which has the effects that should be enabled when the thruster is used
(e.g., sounds, particle effects, etc.) attached. Set the Volume of the AudioSource to

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 18

Property Description

represent the maximum volume at full thrust. This should typically be a child
gameobject of the ship’s parent gameobject.

Minimum Effects Rate The 0.0 to 1.0 value that indicates the minimum normalised amount of any particle
effects or audio sources that are applied when a non-zero thrust input is received
for this thruster. The default is 0 which will apply a linear particle emission rate or
audio volume based on the amount of thrust input received. If the full particle
emission rate or audio volume should be applied when any input is received, set the
value to 1.0.

Min FX Always On When Minimum Effects Rate > 0 and Throttle > 0 the effects fire when thruster input
is 0. The Limit FX On Y and Z settings are still honoured when this is true.

Limit FX on Y Axis Limit when the effects are used for this thruster based on the speed of the ship
along the local Y axis (up or down)

Min. FX on Y Axis The minimum speed in m/s on the local y-axis the ship must be travelling at before
the effects will activate.

Max. FX on Y Axis The maximum speed in m/s on the local y-axis the ship can be travelling for the
effects to be active.

Limit FX on Z Axis Limit when the effects are used for this thruster based on the speed of the ship
along the local Z axis (forward or backward)

Min. FX on Z Axis The minimum speed in m/s on the local z-axis the ship must be travelling at before
the effects will activate.

Max. FX on Z Axis The maximum speed in m/s on the local z-axis the ship can be travelling for the
effects to be active.

Throttle Up Time The length of time, in seconds, it takes the thruster to go from no thrust to
maximum thrust. [Default = 0 or instant thrust increase]. NOTE: Full thrust will be
reached before the throttle up time as the curve is flattened towards the min and
max values.

Throttle Down Time The length of time, in seconds, it takes the thruster to go from maximum thrust to
no thrust. [Default = 0 or instant thrust decrease]. NOTE: Zero thrust will be reached
before the throttle down time as the curve is flattened towards the min and max
values.

Fuel Level The amount of fuel available - range 0.0 (empty) to 100.0 (full). Only applies when
Central Fuel is disabled.

Fuel Burn Rate The rate fuel is consumed per second. If rate is 0 (the default), fuel is unlimited.

Heat Level The heat of the thruster or engine - range 0.0 (starting temp) to 100.0 (max temp).
At 100, the thruster will produce no thrust.

Heat Up Rate The rate heat is added per second. If rate is 0, the heat level never changes.

Cool Down Rate The rate heat is removed per second. This is the rate the thruster cools when not in
use. Has no effect if Heat Up Rate is 0.

Overheat Threshold The heat level that the thruster will begin to overheat and start producing less
thrust.

Burnout on Max Heat When the thruster reaches max heat level of 100, will the thruster be inoperable
until it is repaired?

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 19

Aero Tab
The Aero tab is where you determine how your ship interacts with the air around it (its aerodynamic properties).

This can be through altering environmental properties (the medium density), the drag properties (how moving

through the air slows the ship down on each axis) or by adding wings and control surfaces. Wings simulate the effect

of parts moving through the air generating lift (upwards force); their properties are controlled by changing the size

and angle of attack (inclination) of the wing, as well as the stall effect (how much the effect of stalling affects the

wings of the ship). Control surfaces are moving parts that change the aerodynamic properties of the ship in order to

let the pilot control it, such as ailerons, rudders and air brakes. Control surfaces are automatically linked to the

correct player inputs based on the type of control surface and where it is positioned relative to the centre of mass of

the ship.

The drag properties of the ship determine how the airflow around the ship affects the movement of the ship. After

making any mesh changes, click the Calculate Drag Properties to recalculate the internally stored drag properties of

the ship. Then use the Drag X/Y/Z Coefficients to alter how much drag the ship has on each axis. More streamlined

axes of the ship should have a lower drag coefficient while flatter axes should have a higher drag coefficient. In

Arcade mode, you can also use the Angular Drag Factor to alter how quickly angular drag will slow down any

spinning motion and Disable Drag Moments to prevent the ship from rotating due to moments caused by drag.

NOTE: If you had some colliders disabled, after clicking “Calculate Drag Properties”, you will need to disable them

again.

Property Description

Medium Density The medium density property defines the density of the medium (in kilograms per
cubic metre) the ship is travelling through (generally in air). In less dense
atmospheres this value should be lower and in more dense atmospheres this value
should be higher. At low altitudes in Earth's atmosphere the value is approximately
1.293 while in space (where there is virtually no air) it should be set to zero to
achieve realism. The medium density affects all aerodynamics (i.e., drag, lift, etc.).

Drag X Coefficient The coefficient of drag of the ship on the x-axis. Increasing the coefficient of the
drag will increase the effect of drag.

Drag Y Coefficient The coefficient of drag of the ship on the y-axis. Increasing the coefficient of the
drag will increase the effect of drag.

Drag Z Coefficient The coefficient of drag of the ship on the z-axis. Increasing the coefficient of the drag
will increase the effect of drag and reduce the top speed in the forwards and back
directions.

Angular Drag Factor How strong the effect of angular drag is on the ship. Setting this to 1 will make it
physically realistic.

Disable Drag Moments This will prevent drag causing the ship to rotate.

Drag X (Moment)
Multiplier

A multiplier for drag moments causing rotation along the local (pitch) x-axis.
Decreasing this will make these moments weaker.

Drag Y (Moment) Multiplier A multiplier for drag moments causing rotation along the local (yaw) y-axis.
Decreasing this will make these moments weaker.

Drag Z (Moment) Multiplier A multiplier for drag moments causing rotation along the local (roll) z-axis.
Decreasing this will make these moments weaker.

Wings

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 20

Property Description

Wing Stall Effect How much the effect of stalling affects ship flight. Setting this to zero will make the
effect of stalling very minimal.

Name Name of the wing. E.g. Front Wing, Tail Wing, Left Front Wing

Angle Of Attack The angle of attack (inclination above the x-z plane) of the wing in degrees.

Length The span (length on the z-axis) of the wing in metres.

Width The chord (width on the x-axis) of the wing in metres.

Relative Position The position of the wing in local space.

Lift Direction The direction of the lift force of the wing in local space.

Damage Region Which damage region this part belongs to.

Min Performance The minimum possible performance level of this wing (i.e. what performance level
the wing will have when its health reaches zero). The performance level affects how
much lift the wing generates.

Starting Health The initial health value of this part. This is the amount of damage that needs to be
done to the damage region this part is associated with for the part to reach its min
performance.

Control Surfaces

Control surfaces allow you to simulate the effect of moving parts changing the lift and drag properties of the ship in

order to control the movement of the ship. Control surfaces require the ship to be moving relative to air around it in

order to operate.

Property Description

Type The type of control surface this is. The type determines how the control surface
moves and what inputs control it. Ailerons control the roll of the ship, and are
generally required to be placed symmetrically on opposite sides of the ship.
Elevators control the pitch of the ship, and should generally be placed behind the
centre of mass of the ship. Rudders control the yaw of the ship and should generally
be placed in the middle of the ship (not to the left or to the right). Air brakes are
used to slow the ship down.

Length The span of the control surface in metres.

Width The chord of the control surface in metres.

Relative Position The position of the control surface in local space.

Damage Region Which damage region this part belongs to.

Min Performance The minimum possible performance level of this control surface (i.e. what
performance level the control surface will have when its health reaches zero). The
performance level affects how effective the control surface is.

Starting Health The initial health value of this part. This is the amount of damage that needs to be
done to the damage region this part is associated with for the part to reach its min
performance.

Use Brake Component Whether a brake component is used.

Brake Strength The strength of the braking force.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 21

Property Description

Ignore Medium Density Whether the strength of the brake force ignores the density of the medium the ship
is in (assuming it to be a constant value of one kilogram per cubic metre).

Min Acceleration The minimum braking acceleration (in metres per second) caused by the brake when
the brake is fully engaged. Increase this value to make the ship come to a stop more
quickly at low speeds.

Combat Tab
Includes how the ship takes damage, how the ship is re-spawned, how weapons are configured, and how it is

identified to radar and others.

Damage

There are three damage modes: simple, progressive, and localised.

Damage Model Description Damage Regions

Simple Ship has a single health value. An effects object, like
an explosion prefab, can be assigned for when the
health of the ship reaches 0. A Destruct object can be
used to explode the ship into pre-made fragments.

Only 1 with or without shielding

Progressive Allows the performance of certain ship parts (i.e.,
thrusters, wings, weapons) to decrease as the ship
takes damage. Individual parts can optionally take
Progressive Damage. They can have different Starting
Health values. A Destruct object can be used to
explode the ship into pre-made fragments.

Only 1 with or without shielding

Localised Allows 1 or more parts to be assigned to a Damage
Region of the ship. The performance of those parts in
that region are decreased as the region takes damage.
Each region can be assigned an effects object for
when its health reaches 0.

1 or more regions with or without
shielding.

Progressive or localised damage can be assigned to parts including thrusters, wings, control surfaces and weapons.

Property Description (Main Region)

Damage Model Determines how damage is calculated and applied to the ship. In Simple mode, the
ship has a single health value. The only effects of damage are "visual until the health
value reaches zero, at which point the ship is destroyed and optionally respawns. In
Progressive mode, as the ship takes damage the performance of parts is affected. In
localised mode different parts can be damaged independently of each other.

Starting Health How much 'health' the ship has initially.

Is Invincible When invincible, it will not take damage however its health can still be manually
decreased. When this main region is invincible, so is the whole ship.

Use Shielding Whether the main damage region uses shielding. Up until a point, shielding protects
the ship from damage (which can affect the performance of parts on the ship).

Recharge Rate The rate per second that a shield will recharge. When the value is 0 (the default), the
shield will never recharge.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 22

Property Description (Main Region)

Recharge Delay The delay, in seconds, between when damage occurs to a shield and it begins to
recharge.

Damage Threshold Damage below this value will not affect the shield or the ship's health while the
shield is still active (i.e., until the shield has absorbed 'amount' damage from
damage events above the damage threshold).

Amount How much damage the shield can absorb before it ceases to protect the ship from
damage.

Col. Damage Resistance Value indicating the resistance of the ship to damage caused by collisions. Increasing
this value will decrease the amount of damage caused to the ship by collisions.

Controller Rumble Whether controller rumble is applied to the ship by the ship control module.

Min Rumble Damage The minimum amount of damage that will cause controller rumble.

Max Rumble Damage The amount of damage corresponding to maximum controller rumble.

Damage Rumble Time The time (in seconds) that a controller rumble event lasts for.

Effects Object The particle and/or sound effect prefab that will be instantiated when the ship is
destroyed. See also Effects Module.

Destruct Object The destruct prefab that breaks into fragments when the ship is destroyed. When
the ship is set to respawn, care should be taken around the settings of the Destruct
Module and the Respawn timings. Consider what would happen if the user can still
see the damaged (destruct) ship when the player ship has just respawned.

Use Damage Multipliers Whether damage type multipliers are used when calculating damage from
projectiles or beams. When projectiles with different “Damage Types” hit the ship,
you can apply a relative amount of damage (based on the damage a projectile can
normally inflict). For example, if a projectile can normally do 20 health points of
damage, if that projectile had a damage type of say “Damage Type B” and your ship
is pretty resilient to Type B projectiles, you could set the Damage Type B multiple for
the ship to say 0.5 (50%). So, when the projectile hits the ship, it only does 10 health
points of damage (20 points * 0.5 = 10 points of damage).

See also “Damage Type” under Projectile Module or Beam Module.

Damage Type A-F When Use Damage Multipliers is enabled, this is the relative amount of damage a
projectile or beam with the matching Damage Type will inflict upon the ship.

Local Damage Regions can define areas of a ship that you want to receive individual damage. Examples could be

“Engines” or “Bridge” or “Forward Weapons”. It could also be a strategic area of your ship that is critical for

completing missions like “(Food) Gallery”, “Armory”, “Hangar”, “Landing Gear”, “Tractor Beam” etc.

Property Description (Localised Regions)

Name The name of the damage region

Is Invincible When invincible, it will not take damage however its health can still be manually
decreased. If the main region is invincible, no localised region will receive damage
either.

Relative Position Position of this damage region in local space relative to the pivot point of the ship.
Together with the size it determines what area the damage region encapsulates.
This is the area that damage must occur at to impact this damage region.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 23

Property Description (Localised Regions)

Size Size of this damage region (in metres cubed) in local space. Together with the
relative position it determines what area the damage region encapsulates. This is
the area that damage must occur at to impact this damage region.

Starting Health How much 'health' the damage region has initially.

Use Shielding Whether this damage region uses shielding. Up until a point, shielding protects the
ship from damage (which can affect the performance of parts on the ship).

Damage Threshold Damage below this value will not affect the shield or the damage region's health
while the shield is still active (i.e. until the shield has absorbed 'amount' damage
from damage events above the damage threshold).

Amount How much damage the shield can absorb before it ceases to protect the damage
region from damage.

Col. Damage Resistance Value indicating the resistance of the damage region to damage caused by collisions.
Increasing this value will decrease the amount of damage caused to the damage
region by collisions.

Effects Object The particle and/or sound effect prefab that will be instantiated when the damage
region is destroyed. See also Effects Module.

Effect Follows Ship The particle and/or sound effect will follow the damaged ship as it moves.

Destruct Object The destruct prefab that breaks into fragments when the damage region's health
reaches 0.

Child Transform The child transform of the ship that contains the mesh(es) for this local region. If set,
it is disabled when the region's health reaches 0. Setting this can also assist other
weapons in the scene with determining Line-of-Sight to a damage region.

Damage Type A-F When Use Damage Multipliers and Local Multipliers are enabled, this works the
same as the Main Damage Region Damage Type multipliers – except it applies to
each individual damage region.

Respawning

When a ship’s health is reduced to 0 and it is destroyed, respawning options allow you to determine what happens

next.

Property Description

Respawning Mode How respawning happens after the ship is destroyed. Options include “Don’t
respawn”, “Respawn at Original Position”, “Respawn at Last Position”, “Respawn at
Specific Position”, “Respawn on Path”

Respawn Time How long the respawn process takes (in seconds). This lets you delay the respawning
so that the ship doesn’t immediately reappear after being destroyed. You might
want to allow enough time for an effect to run (like an explosion).

Respawn Position The position in world space that the ship respawns from.

Respawn Rotation The rotation in world space that the ship respawns with.

Col. Respawn Delay The time (in seconds) between updates of the collision respawn position. Hence
when the ship is destroyed by colliding with something, the ship respawn position
will be where the ship was between this time ago and twice this time ago. Only
relevant when Respawning Mode is set to “Respawn At Last Position”.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 24

Property Description

Respawn Path The Path from SSCManager that the ship will respawn when “Respawning Mode” is
“Respawn On Path”.

Respawn Velocity The velocity in local space that the ship respawns with.

Stuck Time The amount of time that needs to elapse before a stationary ship is considered
stuck. When the value is 0, a stationary ship is never considered stuck. By default,
this is set to 0 (Never). It may be useful for AI ships that get trapped or snagged on
an obstacle. A ship will never become stuck when it has been disabled with
DisableShip(..) or while respawning. To temporarily turn this off at runtime, set the
StuckAction to “Do Nothing” in your code.

Stuck Speed Threshold The maximum speed in m/sec the ship can be moving before it can be considered
stuck. When a ship gets stuck it typically still trying to move and therefore has a non-
zero speed. The default threshold is 0.1 m/sec.

Stuck Action

Do Nothing

Invoke Callback

Respawn On Path

Same As Respawning Mode

The action to take when the ship is deemed stationary or stuck.

As the name suggests.

Create a custom method in your code that takes ShipControlModule as a parameter.

Then set the shipControlModule.callbackOnStuck = YouCustomMethodName.

The ship will be respawned on the Path, closest to where it became stuck.

Perform the action as indicated by the Respawning Mode.

Stuck Respawn Path The Path from SSCManager that the ship will respawn on when Stuck Action is
“Respawn On Path”.

Weapons

Currently we support four kinds of ship-mounted weapons: Fixed Projectile canons and Turrets that fire Projectiles.,

and Beam (Fixed or Turret) weapons that fire ray or laser-style rays. Each weapon type can have multiple

cannons/barrels/fire positions. All fire positions on the same weapon must fire in the same direction.

The first step to setup a Projectile weapon is to create a Projectile prefab. There are a few samples in

SCSM\SciFiShipController\Prefabs\Projectiles to get you started. To create your own, use one of the samples as a

template. Every Projectile requires a Projectile Module script attached to the parent gameobject. See the section

called “Projectile Module” later in this manual.

For Beam weapons, you will need to create a Beam prefab. Samples can be found in the SCSM\SciFiShipController

\Prefabs\Beam folder. To create your own, use one of the samples as a template or see the “Beam Module” section

later in the manual.

Property Description

Use Weapons when
Movement is Disabled

When the ship is enabled, but movement is disabled, weapons and damage are
updated. This can be helpful for say a capital ship that still wants to use turrets when
it is not moving.

Name Name of the weapon. E.g., Front Cannon, Front Right Turret

Type The type or style of weapon. Current we support Fixed Projectile, Fixed Beam, Turret
Projectile, or Turret Beam weapons. Turret Beam weapons are in Technical Preview.

Relative Position The position of the weapon in local space relative to the pivot point of the ship. To
visually modify this in the scene view, ensure the (G)izmo is turned on for this
weapon, click the (F)ind button and move with the standard Unity Move Tool.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 25

Property Description

Multiple Fire Positions If this weapon has multiple cannons or barrels

Fire Position Offsets The positions of the cannon or barrel relative to the position of the weapon.

Fire Direction The direction in which the weapon fires projectiles in local ship space. +ve Z is fire
forwards, -ve Z is fire backwards. To visually modify this in the scene view, ensure
the (G)izmo is turned on for this weapon, click the (F)ind button and rotate with the
standard Unity Rotate Tool. If it is a turret weapon and the turret prefab or model is
not facing forwards on the ship, the Fire Direction will need to be adjusted
accordingly. The default is forwards (0,0,1).

Beam Prefab Prefab template of the beam fired by this weapon. Beam prefabs need to have a
Beam Module script attached to them.

Projectile Prefab Prefab template of the projectiles fired by this weapon. Projectile prefabs need to
have a Projectile Module script attached to them.

Reload Time The minimum time (in seconds) between consecutive firings of projectile weapons.

Power-up Time The minimum time (in seconds) between consecutive firings of beam weapons.

Max Range The maximum distance (in metres) the beam weapon can fire.

Recharge Time The time (in seconds) it takes the fully discharged beam weapon to reach maximum
charge

Firing Button The firing button or mechanism to use for this weapon. For a Player ship, this
matches the Player Input Module. Fixed weapons can use the Primary or Secondary
fire buttons from the Player Input Module, while Turrets also have the option of
Auto-Fire.

Check Line of Sight Auto-Fire turrets only. Whether the weapon checks line of sight before firing (in
order to prevent friendly fire) each frame. Since this uses raycasts it can lead to
reduced performance and should be used sparingly.

Unlimited Ammo Can this (projectile) weapon keep firing and never run out of ammunition?

Ammunition The quantity of projectiles or ammunition available for this weapon if there isn’t
unlimited ammo.

Charge Amount The amount of charge the beam weapon has (0 = no charge, 1 = full charge)

Auto Targeting When the Auto Targeting Module is attached, use this to indicate targets should be
assigned to the weapon.

Damage Region Which damage region this part belongs to.

Turret Pivot Y For turret weapons, the transform of the pivot point around which the turret turns
or rotates on the local y-axis

Turret Pivot X For turret weapons, the transform on which the barrel(s) or cannon(s) elevate up or
down on the local x-axis

Turret Min. Y The minimum angle on the local y-axis the turret can rotate to

Turret Max. Y The maximum angle on the local y-axis the turret can rotate to

Turret Min. X The minimum angle on the local x-axis the turret can elevate to

Turret Max. X The maximum angle on the local x-axis the turret can elevate to

Turret Move Speed The rate at which the turret can rotate

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 26

Property Description

Turret Inaccuracy When inaccuracy is greater than 0, the turret may not aim at the optimum target
position. This can improve the chances of the target not being hit by the weapon. It
will have little or no effect if the weapon uses a guided projectile.

Turret Park Interval When greater than 0, the number of seconds a turret will wait, after losing a target,
to begin returning to the original orientation.

Heat Level The heat of the weapon - range 0.0 (starting temp) to 100.0 (max temp).

Heat Up Rate The rate heat is added per second for beam weapons. For projectile weapons, it is
inversely proportional to the firing interval (reload time). If rate is 0, heat level never
changes.

Cool Down Rate The rate heat is removed per second. This is the rate the weapon cools when not in
use.

Overheat Threshold The heat level that the weapon will begin to overheat and start being less efficient.
Beam weapons loose charge up to twice as fast when they are overheating.

Burnout on Max Heat When the weapon reaches max heat level of 100, will the weapon be inoperable
until it is repaired?

To create laser beam style weapons, use a Projectile Module prefab like ProjectileBasic5 which is included with SSC.

It uses a Particle System component with a Trails item. To vary the length of the laser “beams”, modify the Particle

System’s Start Speed.

Identification

Configurable in the editor or via code, identification can group ships into combat groups to help you identify them

during gameplay.

Property Description

Faction Id The faction or alliance the ship belongs to. This can be used to identify if a ship is
friend or foe. Neutral = 0.

Squadron Id The (unique) squadron this ship is a member of. Do not place friendly and enemy
ships in the same squadron.

Visible to Radar Is this ship visible to the radar system? If any ship (or Location) has this set, and the
Radar system hasn’t been added to scene, the SSC Radar system will be added
automatically at runtime.

Once the ship and the radar has been initialised, the ship will automatically begin
sending packets of data to the radar system.

Radar Blip Size The relative size of the blip for this Location on the Radar mini-map

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 27

Player Input Module
This module enables you to map inputs from input sources to the six axes of the ship:

• Horizontal Input (left/right movement)

• Vertical Input (up/down movement)

• Longitudinal Input (forwards/backwards movement)

• Pitch Input (rotation on the local x-axis)

• Yaw Input (rotation on the local y-axis)

• Roll Input (rotation on the local z-axis)

It also enables you to map:

• two fire “button” inputs for the weapon system

• a “button” input for ship docking

• custom buttons to call your own code in Custom Player Input

The Player Input Module is very flexible and can take input from multiple sources including:

• Direct Keyboard (and mouse)

• Legacy Unity (input system)

• Unity Input System

• Unity XR

• Oculus API

• Rewired

• Vive

The Player Input Module script should be added to the parent gameobject of your player “Ship” prefabs along with a

Ship Control Module script. If you are creating your own ship setup, we recommend copying the Player Input Module

component from one of the ship prefabs included and “Paste Component as New” onto your ship parent

gameobject. Modifying an existing Player Input Module component can be faster than starting from scratch.

At runtime in the Unity Editor, the Player Input Module has a Debug Mode which will help you identify what input

data is being set to the Ship Control Module based on your configuration.

Each of the six axes, allow you to independently modify the sensitivity or responsiveness of the input coming from

the various source systems. We recommend only enabling sensitivity on the required axes.

Property Description

Initialise on Awake If enabled, Initialise () will be called as soon as Awake () runs. This should be disabled
if you want to control when the Player Input Module is enabled through code.

Enable on Initialise Is input enabled when the module is first initialised? See also EnableInput() and
DisableInput().[Default: ON]

Custom Inputs Only Are only the custom player inputs enabled when the module is first initialised? This
could be useful when you want to get some menu or user options from the player
without the ship moving when the scene first loads. See also
DisableInput(allowCustomPlayerInput). [Default: OFF]

Direct Keyboard
When "Direct Keyboard" mode is selected, input can be modified by simply changing the key on the keyboard bound

to each input.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 28

Legacy Unity
When "Legacy Unity" is selected the Unity input manager will be used to receive input, requiring input axes to be set

up in the Unity input manager and then referenced in the Player Input Module to bind input. For information on how

to use the Unity input manager, see the Unity manual pages:

https://docs.unity3d.com/Manual/ConventionalGameInput.html

https://docs.unity3d.com/Manual/class-InputManager.html

Rewired
This popular 3rd party package supports a vast array of input controllers. To use Rewired with SSC you need to have

separately purchased it from the Unity Asset Store and imported it into your project.

For more information on Rewired see:

https://assetstore.unity.com/packages/tools/utilities/rewired-21676

Before configuring the Player Input Module with Rewired, you first need to setup the Rewired Input Manager in the

scene. If you are not familiar with Rewired, here are the basic steps.

1. Add Rewired Input Manager to scene

2. Open Input Manager

3. Add a Player (and note the zero-based number in the list – e.g., 1, 2, 3 etc – System is typically 0)

4. Add Action Categories

5. Add Actions to those Categories

6. Add Joystick Maps (for gamepad use [T] Gamepad Template - see below)

7. Add Keyboard Maps

8. Add Joystick Maps to a Player (ensure one is set to Start Enabled)

9. Add Keyboard Maps to a Player (ensure one is set to Start Enabled)

10. For the Player, ensure Assign Keyboard on Start is enabled

11. In the SSC Player Input Module, set the Player Number to the player “number” from step 3 (0 mean

unassigned).

IMPORTANT: Don’t forget to create a Player and assign the
“Player Number” in the Player Input Module.

https://docs.unity3d.com/Manual/ConventionalGameInput.html
https://docs.unity3d.com/Manual/class-InputManager.html
https://assetstore.unity.com/packages/tools/utilities/rewired-21676

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 29

For convenience, if you are using Unity 2019.1 with Rewired 1.25.2 or newer, we have included a quick setup prefab

in the SCSM\SciFiShipController\Demos\3rdParty folder. Make sure you check out the Rewired_Readme file in the

same folder first.

For PC with some kind of gamepad (e.g., Xbox One, Sony Dual Shock 4), we’d suggest setting up a Gamepad

Template like in the table below.

SSC Action [T] Gamepad
Template

Element
Properties

Xbox One
Controller

Xbox 360 Sony Dual
Shock 4

Yaw Left Stick X Full Left Stick X Left Stick X Left Stick X

Pitch Left Stick Y Full Left Stick Y Left Stick Y Left Stick Y

Roll Right Stick X Full Right Stick X Right Stick X Right Stick X

Vertical Right Stick Y Full Right Stick Y Right Stick Y Right Stick Y

Longitudinal +ve Right Shoulder 2 Range +ve,
Contribution +ve

Right Trigger Right Trigger Right Trigger

Longitudinal -ve Left Shoulder 2 Range +ve,
Contribution -ve

Left Trigger Left Trigger Left Trigger

Primary Fire Action Bottom Row 1 A Button X Button

Secondary Fire Action Top Row 2 Y Button Triangle Button

The Player Input Module works for both Axis and Button input. It has been tested with Keyboard Maps and Joystick

Maps in Rewired. If you see any issues, please let us know.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 30

Unity Input System
Sometimes referred to as the “New” Input System, v1.0.0 (preview) was first available in Unity 2019.1. Installed via

the Unity Package Manager, this is an easy to setup, flexible system that supports many devices out of the box. To

get started perform the following tasks:

1. Install Input System v1.0.0 or newer with the Unity
Package Manager

2. Restart the Unity Editor
3. Add the Player Input component to the player ship
4. On the Player Input component, click “Create

Actions…”
5. Give it a name and save the asset when prompted (e.g.

MyShipInput)
6. The asset editor should be displayed. If not, select the

new actions asset (e.g. MyShipInput) and click “Edit
asset”.

7. Add a new Action Map (e.g. ShipActions)
8. Save the asset from the asset editor (and/or close it

and save if prompted)
9. On the Player Input component attached to your ship

prefab, set the Default Map to the one you just added
(e.g. ShipActions) If the Actions says “None (Input
Action Asset)” drag the asset (e.g. MyShipInput) into
the slot first. Then set the Default Map. If the “Default
Maps” doesn’t appear (see image on right), try running
the scene or restarting Unity – this seems to be an
issue with some versions of Unity Input System).

10. On the Player Input Module (attached to the same
ship), change the Input Mode to “Unity Input System”

11. Resolve any configuration issues detected by the
Player Input Module (this could include changing the
default “Behaviour” on the Player Input component).

12. On the Player Input Module click “Add Actions” Now
configure the various Input Axis in the Player Input
Module like you would with any other Input Mode.

Actions in the Player input Module, map to Actions stored
in a Unity Input Action asset (e.g., MyShipInput) that are
stored in the Project. The Player Input component, not to
be confused with Sci-Fi Ship Controller’s Player Input
Module, contains a link to the Unity Input Action asset.
Double-clicking on this will open the Unity Input Action
editor. This is part of the (new) Unity Input System and is
not part of SSC.

The Default Map setting (e.g., ShipActions) in the Unity
Player Input component will determine which Actions are
visible to the SSC Player Input Module. The Unity Input
System can have multiple sets of Actions in what Unity

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 31

calls “Maps”. The SSC Player Input System will only use
one of those maps.

For more information on the Unity Input System see:

https://github.com/Unity-

Technologies/InputSystem/blob/develop/Packages/com.unity.inputsystem/Documentation~/index.md

If you wish to use on screen controls for touch-enabled
devices, we include some sample “On-Screen Controls” to
get you started. You are free to create your own UI and
touch input (see “Overriding Player Input Module in Code”
below).

Before adding the On-Screen Controls, we’d suggest
setting your Game view window to the approximate screen
ratio that you’re going to (mostly) use.

When the first On-Screen Control is added to the scene, if an EventSystem is not already in the scene, one will be

automatically added and highlighted. By default, the legacy “Standalone Input Module” script may be attached. If so,

click “Replace with InputSystemUIInputModule”.

Virtual Reality (VR) Input
The Player Input Module can be configured to take input from a wide variety of VR controllers and devices. There are

three options: Oculus API, Vive Input Module or the newer (recommended) Unity XR. The first two require some 3rd

party components which are not included with SSC.

VR System Description

Oculus API This requires the downloading and setup of the 3rd party Oculus package.

https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022

See also https://www.oculus.com/setup/

https://docs.unity3d.com/Manual/OculusControllers.html

SSC was tested with version 1.32.0.

Vive Input Module This requires the downloading and setup of the 3rd party Vive package.

https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219

SSC was tested with version v1.10.4.

Unity XR The new version of Unity XR. See the dedicated section below.

https://github.com/Unity-Technologies/InputSystem/blob/develop/Packages/com.unity.inputsystem/Documentation~/index.md
https://github.com/Unity-Technologies/InputSystem/blob/develop/Packages/com.unity.inputsystem/Documentation~/index.md
https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022
https://www.oculus.com/setup/
https://docs.unity3d.com/Manual/OculusControllers.html
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 32

If you have a newer version of the plug-ins and see any issues, please report them to us. The best place to do this is

in our Unity forum.

Once the Oculus or Vive packages have been installed and you have restarted Unity, by selecting the appropriate

“Input Mode” you should be able to see the 3rd party version number and the “Input Type” for each axis or button.

To enable the older VR support in Unity, it must be enabled in the Unity Player Settings under “XR”. XR is an

umbrella term, encompassing Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) applications. For

more information see:

https://docs.unity3d.com/Manual/XR.html

Unity XR - Overview
From Unity 2019 LTS, a new framework is available for XR - Virtual Reality (VR), Augmented Reality (AR) and Mixed

Reality (MR). SSC has added support for this in Unity 2020.3 LTS or newer. This system uses a XR Plug-in Framework

and is built on top of a Unity XR SDK.

The action-based system uses the “new” Unity Input System which is automatically installed during the basic setup

steps provided below.

Here are the basic setup steps if using the Oculus Quest 2 headset:

1) In “Build Settings” ensure you have switched to the Android platform and “Texture Compression” is ASTC

(the Oculus Quest 2 is an Android device).

2) Project Settings->XR Plugin Management

3) Install XR Plugin Management

4) Tick Open XR (Oculus, Windows Mixed Reality, Unity Mock HMD etc)

5) Click "Yes" to enable the Input System when prompted (after a few moments the editor will restart)

6) If there is a small yellow warning beside "OpenXR", click it.

7) Click "Fix" next to Lock Input to Game View. Leave the other one for now.

8) Project Settings, XR Plug-in Management->OpenXR->Android tab

https://docs.unity3d.com/Manual/XR.html

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 33

a. Interaction Profiles, "+", Oculus Touch Controller Profile.
b. Feature Groups, Oculus Quest Support
c. Play Mode OpenXR Runtime: Oculus (Standalone tab only)

9) On the player SSC ship in the scene, change the Input Mode to “Unity XR”. For testing, you might want to use

Demos\VR\Prefabs\SSCHawk2 (Arcade) VR or SSCInterceptor (Arcade) VR.

10) Using the Unity Input System, create an Input Action Asset scriptableobject in the Project pane. TIP: as a

shortcut, install the XR Interactive Toolkit and make a copy of the sample “XRI Default Input Actions”

scriptableobject which can be installed with XRI. If the XRI RightHand “Move” action doesn’t have a binding,

add one – see he XRI LeftHand “Move” as an example. If you don’t want XRI in your project, you can install it

in another Unity project and just import the single asset into your working project. You will also need to

manually copy FallbackComposite.cs from the XR Interaction Toolkit, Runtime, Inputs, Composites package

cache to your project (right-click on file and select Show in Explorer to copy the file).

11) In PlayerInputModule, assign the new Input Action Asset to the slot provided.

12) In PlayerInputModule, select “New” next to “XR Camera”

13) Do the same for Left and Right Hands.

14) On the XR Camera, find the “Tracked Pose Driver”, for “Position Action” click “+” and “Add Binding” and set

the Path to “<XRHMD>/centerEyePosition” (without the quotes)

15) On the XR Camera, find the “Tracked Pose Driver”, for “Rotation Action” click “+” and “Add Binding” and set

the Path to “<XRHMD>/centerEyeRotation” (without the quotes)

16) On the XR Left Hand “Tracked Pose Driver”, for “Position Action” click “+” and “Add Binding” and set the

Path to “<XRController>{LeftHand}/devicePosition” (without the quotes)

17) On the XR Left Hand “Tracked Pose Driver”, for “Rotation Action” click “+” and “Add Binding” and set the

Path to <XRController>{LeftHand}/deviceRotation” (without the quotes)

18) On the XR Right Hand, in a similar way, configure the “Position Action” and “Rotation Action”.

Suggested setup using the modified XRI default actions.

SSC Action Action Map Action Action Type Data Slot

Vertical

Horizontal

Longitudinal XRI RightHand Move Value Slot2

Pitch XRI LeftHand Move Value Slot2

Yaw XRI LeftHand Move Value Slot1

Roll XRI RightHand Move Value Slot1

Primary Fire XRI RightHand Activate Button Slot1

Secondary Fire XRI LeftHand Activate * Button Slot1

Docking

* Alternatively, use the XRI RightHand “Select” which is the grip trigger rather than the primary trigger on the Oculus

Quest 2.

If you want to animate your hands, and also own Sticky3D Controller, you can set that up using the Sticky3D

Interactor Bridge component. See the Sticky3D manual for details.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 34

Unity XR – Levers and Joysticks with Sticky3D
The SSC Player Input Module can be configured to handle input from interactive-enabled in-game levers and joystick

from Sticky3D Controller (S3D). This should be done AFTER following the instructions in the above (Unity XR –

Overview) chapter.

This other asset, which is available from the Unity Asset Store, includes special bridging software to allow SSC VR

hands to interact with objects from Sticky3D. These levers and joysticks can be used to provide input to fly your ship

in VR. How cool is that?

These tools come with Sticky3D Controller version 1.1.0 or newer. Be sure to check out the “Sticky Interactor Bridge”

and “SSC Input Bridge” chapters in the Sticky3D manual for all the details.

Unity XR – Hands and Physics Collisions
Typically, you don’t want your XR hands to collide with the ship itself. If the hands have colliders and rigidbodies,

they will push the ship while it’s flying. That’s not what you want.

Essentially, this is what you need to do:

1. Place your ships that you fly in VR into a separate Unity
Layer (say “Small Ships”). On the prefab, change the
“Layer” in the Unity Editor to “Small Ships” and click
“Yes, change children”.

2. If you don’t have one already, create a new Unity
“Layer” in the Unity Editor called say “VR Hands”.

3. Find “XR Hands Offset” which should be a child of the
ship, and change the Layer to “VR Hands”. Again click
“Yes, change children” when prompted.

4. Find any interactive objects under the ship that you do
want the hands to touch and use, and set those to say
the “Default” Layer. Again, click “Yes, change children”
on those objects too. For in-game levers and joysticks,
you might want to added them to your “VR Hands”
layer to avoid any false collision issues with the ship.

5. As a final step, in the Unity Editor, go to “Project
Settings…” and find “Physics”. Now uncheck the
intersection between “Small Ships” and “VR Hands”.
This will allow your XR hands to interact with

http://u3d.as/2iqg

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 35

everything in your scene, and your ship, except the
actual ship itself.

On the hand rigidbodies, assuming they are Kinematic, set the “Collision Detection” to “Continuous Speculative”. Do

the same for your interactive levers and joysticks.

Custom Player Input
Each of the supported Input Modes (Direct Keyboard, Legacy Unity, Unity Input System, Unity XR, Oculus API,

Rewired, and Vive), can take input from their various devices, and push that data to your own custom C# method.

Example of how you might use this feature include:

• Call your own code when the player presses a button on a controller

• Call your own menu code

• Perform a custom action like change the camera position

• Get the value from say a controller trigger

• Activate your own tractor beam

• Modify a ship variable or setting at runtime

To use this in your own game code:

1. Create a new C# public method in your own game code (ensure it takes a Vector3 and int parameter if you

want to get the input value and the input type) **

2. In Player Input Module Inspector, add a “Custom Player Input”

3. Select the button or controller input. If you are using Legacy Unity, Unity Input System, or Rewired you may

need to configure this in the current input system first.

4. In Player Input Module, under the new Custom Player Input, add a Callback Method event.

5. Drag the gameobject from the scene that includes your game code script onto the empty Object field.

6. Configure the event function by selecting the method you created in item #1 above which should be under

“Dynamic Vector3 int” in the popup menu.

For examples, see Demos\Scripts\SampleChangeCameraView.cs or SampleCustomPlayerInput.cs.

** You can also use “static parameters” or just call
a method that takes no parameters. For example,
you may wish to simply perform an action when
the player presses a button on a controller or the
keyboard. Or you may wish to always pass a
certain parameter to a method when the user
presses a button. Static Parameters only support a
single parameter.

On the right, is an example of setting the door
opening and closing speeds before toggling the
door(s) open or closed.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 36

Using Sony Dual Shock 4 with SSC on PC
If you don't have an Xbox One controller, but have a Sony Dual Shock 4, you are all set. You can use the legacy Unity

Input method or, if you have the excellent Rewired asset, then the Sony controller will work with the suggestion

config here.

To connect your Sony controller to a Windows 10 PC, follow these steps:

Wired

Use a micro-USB to USB cable, plug the small end into the controller and the regular USB into your PC. Your

controller is now ready! How easy is that?!

Wireless

1. Make sure the Sony Dual Shock 4 controller is fully charged

2. Turn the controller off

3. On the Windows 10 PC make sure Bluetooth is enabled

4. On Windows 10 PC type "Bluetooth and other device settings" in search bar (bottom left of screen)

5. Click "Add Bluetooth or other device"

6. Click "Bluetooth"

7. On Sony controller, press the "PlayStation" button (button between joysticks) and the "Share" button (just to

the right of left arrow pad on the top left of the controller).

8. The light bar on the front of the controller should start flashing.

9. When "Wireless Controller" or "Input" appears, click on it. Windows 10 will then automatically pair the

controller with the PC.

10. Now, you're good to go!

Overriding Player Input Module in Code
Although you can write your own version of an input module and send input to a ship with

shipControlModule.SendInput(..), you may wish to do a combination of both. For example, maybe you wish to have

the player control everything except forward and backward motion. This could be achieved by overriding the

Longitudinal axis.

In the Player Input Module’s editor, you can choose to “Override in Code” each axis. You can also set this value

yourself in code. Then in C# code, you could control the speed. This is demonstrated in the SampleInputOverride.cs

script which is included in the Demos\Scripts folder.

Writing your own Player Input code
In the chapter “Runtime and API” there is a “Demo Script” called “SampleSendShipInput” to get you started. The

sample script can be found in the Demos\Scripts folder.

Ship Camera Module

Camera Overview
This provides basic camera control. So instead of the fixed camera position you can deliver smooth camera

movement out of the box by adding this script to an empty gameobject in the scene.

For convenience, a prefab has been included SCSM\SciFiShipController\Prefabs\Environment called “PlayerCamera”.

Drag and drop it into a scene, assign the Target Ship to your Player ship from the scene, and you’re ready to test.

Camera Properties

Property Description

Start on Initialise Start the camera rendering when it is initialised. You may wish to disable this when
you are switching between multiple cameras in your scene.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 37

Property Description

Enable on Initialise Enable camera movement when it is initialised and “Start on Initialise” is on.

Target Ship The target ship for this camera to follow from the scene.

Target Offset Coords The coordinate system used to interpret the target offset.

• CameraRotation: The target offset is relative to the rotation of the camera.

• TargetRotation: The target offset is relative to the rotation of the target.

• TargetRotationFlat: The target offset is relative to the flat rotation of the target.

• World: The target offset is relative to the world coordinate system.

Lock Camera Pos If enabled, the camera will stay at the same position and rotate towards the target.
Only available when Camera Rotation Mode is set to “Aim At Target”.

Target Offset The offset from the target (in local space) for the camera to aim for.

Lock to Target Pos If enabled, the camera will stay locked to the optimal camera position.

Move Speed How quickly the camera moves towards the optimal camera position.

Offset Damping If enabled, this enables the camera to dynamically modify the Target Offset based
upon the Ship pitch and yaw inputs. It is only available if Lock to Target Pos is NOT
enabled.

Max Pitch Offset Up The damping maximum pitch Target Offset Up (y-axis)

Max Pitch Offset Down The damping maximum pitch Target Offset Down (y-axis). What is the lowest Target
Offset Y value can be?

Damping Pitch Rate The rate at which Target Offset Y is modified by ship pitch input. Higher values are
more responsive.

Damping Pitch Gravity The rate at which the Target Offset Y returns to normal when there is no ship pitch
input. Higher values are more responsive.

Max Yaw Offset Left The damping maximum yaw Target Offset left (x-axis)

Max Yaw Offset Right The damping maximum yaw Target Offset right (x-axis). What is the lowest Target
Offset X value can be?

Damping Pitch Rate The rate at which Target Offset X is modified by ship yaw input. Higher values are
more responsive.

Damping Pitch Gravity The rate at which the Target Offset X returns to normal when there is no ship yaw
input. Higher values are more responsive.

Lock Target to Rot If enabled, the camera will stay locked to the optimal camera rotation.

Turn Speed How quickly the camera turns towards the optimal camera rotation.

Camera Rotation Mode How the camera rotation is determined.

• FollowVelocity: The camera rotates to face in the direction the ship is moving in.

• FollowTargetRotation: The camera rotates to face the direction the ship is facing
in.

• AimAtTarget: The camera rotates to face towards the ship itself.

• TopDownFollowVelocity: The camera faces downwards and rotates so that the
top of the screen is in the direction the ship is moving in.

• TopDownFollowTargetRotation: The camera faces downwards and rotates so
that the top of the screen is in the direction the ship is facing in.

• Fixed: the camera rotation is fixed

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 38

Property Description

Follow Velocity Threshold Below this velocity (in metres per second) the forwards direction of the target will
be followed instead of the velocity.

Rotation The target rotation of the camera in world space. Only available when “Camera
Rotation Mode” is “Fixed”.

Orient Upwards If enabled, the camera will orient with respect to the world up direction rather than
the target's up direction. Off by default in SSC 1.2.2 or newer. This is more useful if
the ship is unlikely to be flying straight up or straight down (at which point the
camera will “flip”).

Update Type When the camera position/rotation is updated.

• FixedUpdate: The update occurs during FixedUpdate. Recommended for
rigidbodies with Interpolation set to None.

• LateUpdate: The update occurs during LateUpdate. Recommended for
rigidbodies with Interpolation set to Interpolate.

• Automatic: When the update occurs is automatically determined.

Max Shake Strength The maximum strength of the camera shake. When this is 0, the feature is disabled.
Smaller numbers are typically better. Start with something like 0.05.

Max Shake Duration The maximum duration (in seconds) the camera will shake per incident. A small
duration like 0.2 is a good starting point.

Clip Objects Adjust the camera position to attempt to avoid the camera flying through objects
between the ship and the camera. If you don’t need this, keep it turned off to avoid
unnecessary performance overhead.

Minimum Move Speed The minimum speed the camera will move to avoid flying through objects between
the ship and the camera. High values make clipping more effective. Lower values will
make it smoother. Currently this has no effect if Lock to Target Position is enabled.

Minimum Distance When Clip Objects is enabled, the minimum distance the camera can be from the
Ship (target) position. Typically, this is the spheric radius of the ship. If the ship has
colliders that do not overlay the target position or centre of the ship gameobject,
this value should be set, else set to 0 to improve performance.

Minimum Offset X The minimum offset on the x-axis, in metres, the camera can be from the Ship
(target) when object clipping. This should be less than or equal to the Target Offset X
value.

Minimum Offset Y The minimum offset on the y-axis, in metres, the camera can be from the Ship
(target) when object clipping. This should be less than or equal to the Target Offset Y
value.

Clip Object Layers Clip objects in the selected Unity Layers. It cannot be set to “Nothing”.

The Camera Shake feature will take input from the Target Ship. The actual strength and duration will depend on how

much collision or normal damage the ship receives in any one incident. If an incident happens before the current

camera shake ends, the shaking will be extended by the new duration.

Top-down Setup
SSC supports a number of popular top-down camera configurations. Although it is not a requirement, a good starting

point is to set your ship in 2.5D mode first.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 39

On your player Ship Control Module in the scene, go to the “Control” tab and set the “Input Control Axis” to “Y”.

Adjust the “Input Control Limit”, “Input Moving Rigidness”, and “Input Turning Rigidness” as required. See the “Ship

Control Module” chapter for more details.

Back on your Ship Camera Module:

1. Set the “Target Offset Coords” to “Target Rotation Flat”.

2. Set the “Target Offset”. E.g., X = 0, Y = 50, Z = 0

3. Select a “Camera Rotation Mode”. E.g., Fixed with “Rotation” set to X = 90, Y = 0, Z =0.

4. Give it a try.

5. Now change the “Camera Rotation Mode” to “Top Down Follow Velocity” and set the “Follow Velocity

Threshold” to 10.

6. Give that a try

7. Now change the “Camera Rotation Mode” to “Top Down Follow Target Rotation”

8. Try that.

Projectile Module
Every Weapon that fires a projectile requires a prefab with a Projectile Module script attached. For details on using

projectile weapons on a Ship, see the “Combat Tab” under the “Ship Control Module” section in this manual.

Projectiles are also used with the Surface Turret Module.

How to Create Projectile Prefabs
To create a new Projectile:

1. In a scene, create an empty gameobject

2. Rename the empty gameobject. E.g., MyProjectile1

3. Either add a mesh and mesh renderer directly to the gameobject, or as a child gameobject

4. Remove any colliders that may have been added in step 3 (SSC doesn’t depend on projectile colliders for

projectile collisions)

5. Add a Projectile Module script to the parent gameobject

6. Create a prefab from the gameobject by dragging the parent gameobject into a folder in the Project pane

7. Reset the prefab parent transform position and rotation to 0,0,0

8. Delete the gameobject from the scene

The Projectile Module script has three options for spawning projectiles from a weapon’s canon or fire position.

Projectile system Description

Standard The standard behaviour doesn’t have pooling or DOTS enabled. It relies on the standard
Unity object instantiation and destruction methods. It works well when there are only a few
projectiles in the scene.

Pooling An object pooling system to manage create, re-use, and destroy projectiles. This is more
efficient than the “standard” projectile system.

DOTS This is a high-performance method of creating and destroying projectiles that utilises the
new Unity Data-Orientated Technology Stack (DOTS). Projectiles are Entities rather than
GameObjects. SSC converts the projectile prefabs to entities at runtime. For games that
require high-performance, low overhead projectiles, this is the preferred choice.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 40

How to Setup Projectiles to use DOTS/ECS
NOTE: DOTS/ECS support in SSC requires Unity 2019.1.0f2 or newer. Due to the rapid changing nature of DOTS, we

don’t support ECS version 0.12 to 0.16. Either remain on Entities 0.11 and 2019.4 LTS or upgrade to 2020.3 LTS and

Entities 0.17.

Unity 2019.1.x setup

1. Open Package Manager

2. Under Advanced, ensure Show Dependencies and Show Preview Packages are selected

3. Install the following packages (or newer)

• Collections 0.0.9 preview 17

• Mathematics 1.0.0 preview 1

• Jobs 0.0.7 preview 10

• Entities 0.0.12 preview 30

• Hybrid Renderer 0.0.1-preview.10

• Burst 1.0.0-preview.12

4. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

Unity 2019.2 or newer

1. Open Package Manager

2. Under Advanced, ensure Show Dependencies and Show Preview Packages are selected

3. Install the following packages (or newer)

• Entities 0.1.1 preview

• Hybrid Renderer 0.1.1 preview

• [Unity will automatically add other dependency packages]

4. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

Unity 2019.3 or newer

1. Open Package Manager

2. Under Advanced, ensure Show Dependencies and Show Preview Packages are selected

3. Install the following packages (or newer)

• Entities 0.2.0 preview.18

• Hybrid Renderer 0.2.0 preview.18

• Burst 1.2.0 preview.9

• [Unity will automatically add other dependency packages]

4. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

Unity 2019.4 LTS

1. Open Project Settings

2. Enable Preview Packages

3. Open Package Manager

4. Install the following packages

• Hybrid Renderer 0.5.2 preview.4

• [Unity will automatically add other dependency packages including Entities 0.11.1 preview.4 and

Burst 1.3.0 preview.12.]

5. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

Unity 2020.3 LTS (Entities 0.17.0 and Hybrid Render 0.11.0. Hybrid Render 0.51 only supports URP and HDRP)

1. Open Project Settings, and select Package Manager

2. Under “Advanced Settings” turn on “Enable Preview Packages” and “Show Dependencies”

3. Close Project Settings, and open the Package Manager

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 41

4. Change to Packages to “Unity Register”

5. Install the following packages (or newer)

• Burst 1.4.6

6. "Add package from git URL..." under the + menu at the top left of the package manage.

7. Enter “com.unity.rendering.hybrid” and click “Add” (Hybrid Renderer 0.11.0-preview.42, Entities 0.17.0-

preview.41, and Jobs 0.8.0-preview.23 or should be installed)

8. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

Unity 2021.3.6+ LTS (URP and HDRP only)

1. Open Project Settings, and select Package Manager

2. Under “Advanced Settings” turn on “Enable Pre-Release Packages” and “Show Dependencies”

3. Close Project Settings, and open the Package Manager

4. Change to Packages to “Unity Register”

5. "Add package from git URL..." under the + menu at the top left of the package manage.

6. Enter “com.unity.rendering.hybrid” and click “Add” (Burst 1.6.6, Collections 1.3.1, Hybrid Renderer 0.51.0-

preview.32, Entities 0.51.0-preview.32, Mathematics 1.2.6, Platforms 0.51.0-preview.31 and Jobs 0.51.0-

preview.32 or newer should be installed)

7. On the projectile prefab, in the Projectile Module script inspector, enable “Use DOTS”

How to Convert scene to use DOTS projectiles
First setup your project to use DOTS (see steps above), ignoring the last step for the Projectile prefab.

To show how to do this, let’s take an existing demo scene and convert it. Don’t worry, the steps look worse than they

are – you will basically just be creating and modifying some prefabs.

1. Create a new folder in Project pane, under “Assets”, called “SSC_DOTS”

2. Open the “City Demo” scene (SCSM\SciFiShipController\Demos\Scenes)

3. Save the scene as “City Demo DOTS” in the “SSC_DOTS” folder

4. The next steps will be repeated for each ship or ship prefab.

5. Locate the next ship in the scene. On the Ship Control Module go to the Combat tab, and locate the

Weapons (if any).

6. For each Projectile Weapon, click on the “Projectile Prefab” to locate the prefab in the Project pane.

7. If you have already created a DOTS version for the projectile, replace the existing one with the DOTS version

in your SSC_DOTS folder and go to the next weapon or ship.

8. Drag it into the scene “Hierarchy” pane (not the scene view)

9. Rename it. E.g., ProjectileBasic4 could be renamed ProjectileBasic4_DOTS

10. On the Projectile Module, click “Use DOTS”

11. Drag the renamed Projectile into the SSC_DOTS folder in your Project pane (click “Original Prefab” when

prompted)

12. Delete the prefab from the scene “Hierarchy”

13. On the Ship Control Module, replace the projectile prefab with the DOTS version from the SSC_DOTS folder.

14. Once you have completed all the ships in your scene, you may then need to do the same steps for prefabs of

ships that get instantiated at runtime. For example, in the City Demo scene in the “Hierarchy” under “AI

Battle” there is a “DemoControlModule” which instantiates squadrons of ships. Locate that component in

the scene “Hierarchy”.

15. Under “Grey Squadron” click on the “NPC Ship Prefab” to locate the “Vector Ship NPC (Arcade)” in the

Project pane.

16. Drag the NPC ship into the scene “Hierarchy” and rename it. E.g., “Vector Ship NPC (Arcade) DOTS”

17. On the “Combat” tab, locate the projectile weapons and create/replace any projectile prefabs with DOTS

versions (you probably already have a set of DOTS projectiles in your SSC_DOTS folder).

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 42

18. From the scene “Hierarchy” drag the renamed ship into the SSC_DOTS folder (click “Original Prefab” when

prompted)

19. Delete the ship prefab from the scene

20. On the “DemoControlModule”, under the “Grey Squadron” replace the non-DOTS ship prefab with the DOTS

one from your SSC_DOTS folder.

21. Repeat the steps 15-20 for the other squadrons.

To see if projectiles are using DOTS, open the Entity Debugger (Unity editor, Windows, Analysis, Entity Debugger)

and run the scene in the editor. You should see Entities being created and destroyed.

Projectile Properties
The table below describes the properties you see in the Inspector. Projectile can also be manipulated at runtime (see

the “Runtime and API” section later in the manual). You can also check out “Common Issues – Weapons”.

Property Description

Start Speed The starting speed of the projectile when it is launched.

Use Gravity Whether gravity is applied to the projectile.

Damage Type The type of damage the projectile does when hitting a ship. The amount of damage
dealt to a ship upon collision is dependent on the ship's resistance to this damage
type. If the damage type is set to Default, the ship's damage multipliers are ignored
i.e., the damage amount is unchanged. See also Ship Control Module, Combat tab,
“Damage”.

Damage Amount The amount of damage the projectile does on collision with a ship or object. NOTE:
Non-ship objects need a DamageReceiver component.

Collision Mask The layer mask used for collision testing for this projectile. Default: Everything

Use DOTS Use Data-Oriented Technology Stack which uses the Entity Component System and
Job System to create and destroy projectiles. Has no effect if Unity 2019.1, ECS, and
Jobs is not installed.

Use Pooling Use the Pooling system to manage create, re-use, and destroy projectiles.

Min Pool Size When using the Pooling system, this is the number of projectile objects kept in
reserve for spawning and despawning.

Max Pool Size When using the Pooling system, this is the maximum number of projectiles
permitted in the scene at any one time.

Despawn Time If the projectile has not collided with something before this time (in seconds), it is
automatically despawned or removed from the scene

Guide to Target Rather than being fire and forget, is this projectile guided to a target with
kinematics? NOTE: Not currently supported by DOTS.

Guided Max Turn Speed The maximum turning speed in degrees per second for a guided projectile.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 43

Property Description

Effects Object The particle system and/or sound effect prefab that will be instantiated when the
projectile hits something and is destroyed. This does not fire when the projectile is
automatically despawned. See also Effects Module.

Shield Effects Object The particle and/or sound effect prefab that will be instantiated, instead of the
regular Effects Object, when the projectile hits a shielded ship. This does not fire
when the projectile is automatically despawned. See also Effects Module.

Muzzle FX Object The particle and/or sound effect prefab that will be instantiated when the projectile
is fired from a weapon. For muzzle FX objects to move with the weapon fire point,
the Effects Module must be poolable and have Is Reparented enabled.

Muzzle FX Offset The distance in local space that the muzzle Effects Object should be instantiated
from the weapon firing point. Typically, only the z-axis would be used when the
projectile is instantiated in front or forwards from the actual weapon.

When “Use Pooling” is enabled, the optimal Min/Max Pool Size can be determined by:

1. Running the game in the editor

2. Pausing the game, then finding SSCManager in the scene hierarchy

3. Enabling “Debug Mode”

4. Taking note of the current pool sizes for Projectile Templates

If the current pool size never approaches the Max Pool Size, then the Max Pool Size can be reduced.

Important

When modifying existing prefabs that come with SSC, we recommend creating a new prefab (i.e., a copy of the

prefab) and placing it in your own project folder outside the SciFiShipController folder. This way, when you

download an SSC update, your changes won’t be overwritten.

How to Use Guided Projectiles
Guide projectiles use a regular Projectile Module as described above. Simply create a new Prefab or create a

duplicate (Original) prefab from an existing one and store it your own folder. Ensure “Guide to Target” is enabled.

You then need something to tell the projectile what to target. If you are using a Surface Turret Module or a Turret

weapon on a ship, you could use the Auto Targeting Module. On a ship, you need to make sure “Auto Targeting”

option is enabled on the weapon.

By default, guided projectiles use Augmented Proportional Navigation to chase a target. If you don’t like our guided

projectile algorithm, in code you could tell SSC to use your amazing algorithm! Check out “Projectile API Call Backs”

in the “Runtime and API” section.

Customising Projectile Behaviour
If the current options don’t achieve what you want in your game, you can create custom projectile behaviour by

creating a custom class that inherits from the ProjectileModule class. This enables you to write custom code in

override methods. See Demos\Scripts\SamplePorjectileModule.cs for more details.

Beam Module
Every Weapon that fires a beam requires a prefab with a Beam Module script attached. For details on using beam

weapons on a Ship, see the “Combat Tab” under the “Ship Control Module” section in this manual. For Surface

Turrets, see the “Surface Turret – Weapon Settings” section of the “Surface Turret Module” chapter.

How to Create Beam Prefabs
To create a new Beam prefab:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 44

1. In a scene, create an empty gameobject

2. Rename the empty gameobject. E.g., MyBeam1

3. Add a Line Renderer directly as a child gameobject

4. On the Line Renderer, do not enable “Use World Space” or “Loop” and we recommend turning off shadows.

5. Ensure the Line Renderer has exactly 2 Positions. Leave them as their default values of 0,0,0

6. Add a Beam Module script to the parent gameobject

7. Create a prefab from the gameobject by dragging the parent gameobject into a folder in the Project pane

8. Reset the prefab parent transform position and rotation to 0,0,0

9. Delete the gameobject from the scene

The Beam Module script has two options for spawning beams from a weapon’s canon or fire position.

Projectile system Description

Standard The standard behaviour doesn’t have pooling. It relies on the standard Unity object
instantiation and destruction methods. It works well when there are only a few beams in the
scene. You may wish to use this if you have also attached your own scripts to the prefab to
run some custom code.

Pooling An object pooling system to manage create, re-use, and destroy beams. This is more
efficient than the “standard” beam system. This is enabled by default.

Beam Properties
The table below describes the properties you see in the Inspector. Beams can also be manipulated at runtime (see

the “Runtime and API” section later in the manual). You can also check out “Common Issues – Weapons”.

Property Description

Damage Type The type of damage the beam does when hitting a ship. The amount of damage
dealt to a ship when hit is dependent on the ship's resistance to this damage type. If
the damage type is set to Default, the ship's damage multipliers are ignored i.e., the
damage amount is unchanged. See also Ship Control Module, Combat Tab, Damage.

Damage Rate The amount of damage this beam does, per second, to the ship or object it hits.
NOTE: Non-ship objects need a DamageReceiver component.

Use Pooling Use the Pooling system to manage create, re-use, and destroy beams.

Min Pool Size When using the Pooling system, this is the number of beam objects kept in reserve
for spawning and despawning.

Max Pool Size When using the Pooling system, this is the maximum number of beams permitted in
the scene at any one time.

Beam Width The width (in metres) of the beam on the local x-axis.

Min Burst Duration The minimum amount of time, in seconds, the beam must be active.

Max Burst Duration The maximum amount of time, in seconds, the beam can be active in a single burst.

Discharge Duration The time (in seconds) it takes a single beam to discharge the beam weapon from full
charge.

Effects Object The particle system and/or sound effect prefab that will be instantiated when the
beam hits something. For Beam Effects, this would typically be a looping effect with
a Despawn Time greater than the Max Burst Duration of the Beam. See also Effects
Module.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 45

Property Description

Muzzle FX Object The particle and/or sound effect prefab that will be instantiated when the beam is
fired from a weapon. For muzzle FX objects to move with the weapon fire point, the
Effects Module must be poolable and have Is Reparented enabled.

Muzzle FX Offset The distance in local space that the muzzle Effects Object should be instantiated
from the weapon firing point. Typically, only the z-axis would be used when the
beam is instantiated in front or forwards from the actual weapon.

Destruct Module
The destruct module uses a pre-created prefab of mesh fragments to produce a destruction effect. It enables you to

manage how it behaves as the prefab breaks into fragments.

How to Create Destruct Prefabs
A Destruct prefab has a parent gameobject which contains the “Destruct Module” script and has a position and

rotation reset to 0, 0, 0 and a scale of 1,1,1.

Child objects should be the mesh fragments including any materials assigned to the mesh renderers. Typically, you

will make the fragments in 3D modelling software from the original model that you want to destruct. If you model

was made in a 3D modelling package like Blender, you could use the Object: Cell Fracture feature to create your

fragments.

We recommend keeping the number of fragments to a minimum to reduce the performance impact in your game.

You can either add rigidbody components and colliders to each fragment, or you can have the Destruct Module do it

for you at runtime. The rigidbody must be on the same gameobject as the mesh renderer for each fragment (that is,

it cannot be a child of the fragment within the prefab).

If you do not want to use Mesh Colliders (which have a higher performance overhead), you should add the colliders

to the fragments yourself in the prefab, and disable “Add Mesh Colliders” in the Destruct Module Inspector.

Destruct Properties
The table below describes the properties you see in the Inspector. Destruct prefabs can also be manipulated at

runtime (see the “Runtime and API” section later in the manual). You can also check out “Common Issues – Destruct

prefabs”.

Property Description

Explode on Start Should the explosion occur immediately the scene is started or the module is
instantiated? This should be disabled if used with a pooling system.

Use Pooling Use the Pooling system to manage create, re-use, and destroy destruct prefabs.

Min Pool Size When using the Pooling system, this is the number of destruct objects kept in
reserve for spawning and despawning.

Max Pool Size When using the Pooling system, this is the maximum number of destruct objects
permitted in the scene at any one time.

Start Static Start in Static mode rather than Dynamic. This is not available when “Disable
Rigidbody Mode” is set to “Destroy”.

Add Rigid Bodies Add rigidbodies to the fragments in the prefab

Add Mesh Colliders Add mesh colliders to the fragments in the prefab

Explosion Radius The default effective range, in metres, of the blast

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 46

Property Description

Explosion Power The default power of the blast

Unmoving Velocity When the speed (in metres per second) in any direction of the fragment falls below
this value, the fragment is considered to have stopped moving

Max Time Unmoving If a fragment has been unmoving for more than the maximum time, set the object as
static and “disable” the rigidbody according to the “Disable Rigidbody Mode”.

Total Mass The total mass of all fragments in the prefab

Calc Mass by Bounds This may be more accurate when there the is a lot of variation between the size of
each fragment. This method is slower during the initial configuration phase and may
affect performance of non-pooled modules.

Drag The amount of drag the fragments have. A solid block of metal would be 0.001,
while a feather would be 10.

Angular Drag The amount of angular drag the fragments have

Use Gravity Fragments are affected by gravity

Interpolation The rigidbody interpolation

Collision Detection The rigidbody collision detection mode

Disable Rigidbody Mode How the rigidbodies are disabled when they are considered to be static.

"Destroy" removes the rigidbody component and adds it back in as needed - best
performance for unmoving objects.

"Set As Kinematic" sets the rigidbody to kinematic - half/half performance

"Don't Disable" uses Unity default rigidbody behaviour where rigidbodies go into
sleep mode until something collides with them – best for objects being moved

"Destroy" is best for objects far away from each other, and "Don't Disable" is best
for objects close to each other

Despawn Condition The conditions under which this object despawns. Options include “Time” and
“Don’t Despawn”.

Despawn Time After this time (in seconds), the destruct object is automatically despawned or
removed from the scene when the “Despawn Condition” is “Time”.

Wait Until not Rendered Wait until the fragment is not being rendered by the camera before being
despawned

Wait Until Static Wait until the fragment is set to static before being despawned

Effects Module
This module enables you to implement effects behaviour on the object it is attached to. This can include multiple

child particle systems and/or an audio source attached to the parent gameobject. Create a prefab so that it can be

assigned within the Ship Control Module or Projectile Module.

When “Use Pooling” is enabled, and an Audio Source is attached to the prefab’s parent gameobject, ensure that

“Play On Awake” is not enabled on the Audio Source.

Property Description

Use Pooling Use the Pooling system to manage create, re-use, and destroy effects objects.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 47

Property Description

Min Pool Size When using the Pooling system, this is the number of effects objects kept in reserve
for spawning and despawning.

Max Pool Size When using the Pooling system, this is the maximum number of effects objects
permitted in the scene at any one time.

Despawn Time After this time (in seconds), the effects object is automatically despawned or
removed from the scene.

Is Reparented Does this object get parented to another object when activated? If so, it will be
reparented to the pool transform after use. This should be enabled on poolable
effects used for Muzzle FX on a projectile or beam weapon.

When “Use Pooling” is enabled, the optimal Min/Max Pool Size can be determined by:

1. Running the game in the editor

2. Pausing the game, then finding SSCManager in the scene hierarchy

3. Enabling “Debug Mode”

4. Taking note of the current pool sizes for Effects Templates

If the current pool size never approaches the Max Pool Size, then the Max Pool Size can be reduced.

SSC Manager
The Manager is automatically added to the scene if it doesn't already exist at runtime. It includes beam, projectile,

and effects object management for all ships along with Location and Path management. Each scene should only have

one SSC Manager.

The Manager includes the following core functionality:

• Beam, Projectile, and Effects object management

• Location and/or Path in-Editor editing

• Location and Path runtime API

• Runtime in-Editor Beam, Projectile, and/or Effects Object pool size estimation

Although Beam, Projectile, and Effects object management is mostly for internal use only, the other core

functionality of the Manager is aimed at developers like you.

Adding SSC Manager to a Scene
Some features require the SSC Manager to be present in the scene in the editor. To add it to the scene:

1. go to the scene Hierarchy

2. click “Create” or “+” depending on your Unity version

3. 3D Object->Sci-Fi Ship Controller

4. SSC Manager

Locations and Paths - Overview
Sci-Fi Ship Controller comes with its own Location and Path editor. Locations and Paths may be configured in the

Unity Editor by selecting SSC Manager in the scene Hierarchy panel and/or by using the API methods provided. A

Location is a world space position without a game object which can be used by ships in your game.

Location examples:

• Enemy Base

• Friendly Base

• Target location

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 48

• Route marker

• Ship spawn point or destination

Paths consist of zero, one, or more Location slots. The slots can be occupied by a Location or a dummy Location, the

latter being considered an unassigned Location. A Location can be part of zero, one or more Paths.

When a Location is part of a Path, the Location slot records in and out Control points or tangents. These determine

the shape and length of the Path section between Locations.

Locations and Paths can be used with your own AI system or in general gameplay. They are fully supported with our

Ship AI system.

Locations and Paths - Creating
There are a number of ways a Location can be added to the scene using the Unity Editor after the SSC Manager has

been added to the scene.

• From the Location tab, set focus to the scene, hover the mouse pointer over the desired position, and press

the “+” key (don’t click the mouse)

• From the Location tab, in the inspector click the “+” button to add a Location to the end of the list. By

default, it will be placed at 0,0,0. Type “new” in the Filter, then the (F)ind button to show it in the scene.

• From the Location tab, in the inspector, click the (I)nsert button next to an existing Location. In the scene

view move the selected duplicate Location to the desired position.

• From the Path tab, add a new Path, or (A)ctivate an existing Path. Set focus to the scene, hover the mouse

pointer over the desired position, and press the “+” key (don’t click the mouse). A new Location will be

created and appended to the Active Path.

In the scene view, there is also a context-sensitive menu which is available when the Unity Move tool is enabled and

the right-mouse button is pressed. If the Path tab in the inspector is selected, the context menu will have extra

commands relative to the active Path.

When the “+” key is pressed over the scene view to add a new Location, SSC attempts to place the Location in front

of the closest line-of-sight object. The Location will be offset along the mesh normal of that object by the distance

you set in the inspector. When adding Locations to Paths, each Path can have a different offset value. If no objects

are in the line of sight, the Location is placed in front of the scene view camera.

Editing Paths
To edit and existing Path, select the SSC Manager in the scene Hierarchy. Then on the Paths tab, press the “A” button

to active the Path.

Locations in the Path can be selected by clicking the checkbox in the inspector, or by clicking the Location in the

scene view. To multi-select Locations in the scene view hold down the SHIFT key.

The context menu in the scene view can also be used when the Unity Move or Transform tool is enabled to select,

unselect and/or delete Locations. When a Location slot is deleted using the inspector, the action Location is not

deleted.

To move multiple Locations in the same active Path at the same time, hold down the SHIFT key while moving one of

the selected Locations.

There are two Control points at each Location in the active Path. If the Unity Free Hand tool is enabled, the selected

Control point can be moved in any direction. If the Unity Move tool is enabled, a XYZ position handle is used to move

the Control point.

To change the Y-axis position of selected Locations in a Path, in the inspector, above the list of Path Locations, click

the (M)odify attribute button, set the “New Position Y-axis” or “Add Position Y-axis” , and click “Change”.

To reverse the direction of a Path, in the inspector, above the list of Path Locations, click the “<->” button.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 49

Location Properties

Property Description

Default Normal Offset The distance to place a new Location away from the line-of-sight object

Location Name Name of the location. E.g. Enemy Base, Route Marker 2, Command Post

Location Position World-space coordinates of the location

Visible to Radar Is this Location visible to the radar system? If any Location (or ship) has this set, and
the Radar system hasn’t been added to scene, the SSC Radar system will be added
automatically at runtime.

Radar Blip Size The relative size of the blip for this Location on the Radar mini-map

Faction Id The faction or alliance the Location belongs to. This can be used to identify if a
Location is friend or foe. Default (neutral) is 0.

Path Properties

Property Description

Path Name Name of the Path. Unique names are best.

Total Distance The total spline length or distance of the Path

Closed Circuit Is this Path a closed circuit or loop?

Display Number Labels Display the Location number labels in the scene view

Display Name Labels Display the Location name labels in the scene view

Display Distances Display cumulative distances in the scene view

Line Colour The colour of the Path drawn in the scene.

Default Normal Offset The distance to place a new Location on the Path away from the line of sight object.

The in-scene context menu will display different items based on which tab is selected in the SSCManager. When

Locations are selected, the “Edit Locations” context menu will appear when right-clicking in the scene. If the Path tab

is selected and a Path is being edited, the Active Path context menu will be displayed. Note, a Path must have been

Activated for Editing, before the Path context menu is displayed.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 50

Object Pool Estimation
When using pooling for Beams, Destruct objects, Projectiles and/or Effects Objects, the Manager can be used to

estimate the size of the pools required. The optimum sizes can be estimated by:

1. Running the game in the editor

2. Pausing the game, then finding SSCManager in the scene hierarchy

3. Enabling “Debug Mode”

4. Taking note of the current pool sizes for Beam, Destruct, Projectile and/or Effects Templates

For more information see the chapters on Beam Module, Destruct Module, Projectile Module, and Effects Module

earlier in this manual.

Ship AI System

Ship AI Overview
For a ship to be controlled by the AI system, it must have a Ship AI Input Module component attached to it. This

operates similarly to the player input module – it calculates inputs through the AI system and passes them to the

ship using the SendInput method.

There are three parts to the AI system: AI states, AI Behaviours and the behaviour combiner.

At any given time, an AI ship is in one (and only one) state. The AI state of a ship should be chosen by what its

current goal is. For instance, if a ship needs to move to a specific location in the game world, it should be in the

“Move To” state, whose goal is to reach a given position. The AI state is linked with a state method (a function

written in code), which converts that goal into a series of behaviours that could be used to achieve that goal. Using

the previous example, the aforementioned “Move To” state typically has two main behaviours: Obstacle avoidance

and seek. Obstacle avoidance directs ships to take preventative action to avoid collisions, while seek directs the ship

to move directly towards a given position. Together, they allow the ship to move towards a specified location (which

was the original goal).

The final part of the AI system is the behaviour combiner, which takes the behaviours outputted by the current state

and converts them into a final output behaviour. For example, if the behaviour combiner chosen was “Priority Only”,

the first behaviour with a nonzero output would be chosen. In the “Move To” example, the obstacle avoidance

behaviour can return two types of outputs. If there is an obstacle in front of the ship that it needs to take action to

avoid, it will return a nonzero output detailing what action needs to be taken. Otherwise, it will return a zero output,

indicating that this behaviour requires no action from the ship. The seek behaviour always returns a nonzero output.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 51

So, in this example, if the obstacle avoidance behaviour returns a nonzero output, the final output will be the

obstacle avoidance behaviour output; otherwise, the final output will be the seek behaviour output.

Typically, AI states are what you use to control the behaviour of an AI ship. While AI Behaviours are also

customisable, the uses cases that require such customisation are far rarer. Currently, Sci-Fi Ship Controller has five

states by default: “Idle”, “Move To”, “Dogfight”, “Docking”, and “Strafing Run”. You can also create your own custom

AI states if you need functionality different to these default states.

Ship AI Input Module
The Ship AI Input Module is used to define specific characteristics of an AI ship, such as its obstacle avoidance quality

and movement algorithm. It is also the module that is used when interacting with the AI system through code.

Property Description

Initialise on Awake If enabled, Initialise() will be called as soon as Awake() runs. This should be disabled
if you are instantiating the ShipAIInputModule through code.

Movement Algorithm The algorithm used for calculating AI movement. E.g., Planar Flight, Planar Flight
with Banking, or Full 3D Flight.

Obstacle Avoidance Quality The quality of obstacle avoidance for this AI ship. Lower quality settings will improve
performance.

Obstacle Layer Mask Layermask determining which layers will be detected as obstacles when raycasted
against. Exclude layers that you don't want the AI ship to try and avoid using
obstacle avoidance.

Raycast Start Offset If the ship has colliders that do not overlap the centre of the ship, use this with
Obstacle Avoidance. This moves the raycasts forward from the centre of the ship to
prevent it seeing its own colliders. 0 = OFF

Path Following Quality The quality of path following for this AI ship. Lower quality settings will improve
performance.

Max Speed The max speed for the ship in metres per second. The ship may not be able to attain
this speed due to things like thruster output, and drag etc. This is simply the
maximum allowable.

Ship Radius The supposed radius of the ship (approximated as a sphere) used for obstacle
avoidance.

Targeting Accuracy The accuracy of the ship at shooting at a target. A value of 1 is perfect accuracy,
while a value of 0 is the lowest accuracy.

Turn Pitch Threshold Only use pitch to steer when the ship is within the threshold (in degrees) of the
correct yaw/roll angle. Only available for Full 3D Flight.

Roll Bias When turning, will the ship favour yaw (i.e., turning using yaw then pitching) or roll
(i.e., turning using roll then pitching) to achieve the turn? Lower values will favour
yaw while higher values will favour roll. Only available for Full 3D Flight.

Max Bank Angle The maximum bank angle (in degrees) the ship should bank at while turning. Only
relevant when movementAlgorithm is set to PlanarFlightBanking.

Max Bank Turn Angle The turning angle (in degrees) to the target position at which the AI will bank at the
maxBankAngle. Lower values will result in the AI banking at a steeper angle for
lower turning angles. Only relevant when movementAlgorithm is set to
PlanarFlightBanking.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 52

Property Description

Max Pitch Angle The maximum pitch angle (in degrees) that the AI is able to use to pitch towards the
target position. Only relevant when movementAlgorithm is set to PlanarFlight or
PlanarFlightBanking.

Debug Mode Provides in-editor data that can help determine what an AI ship is doing at runtime.
It provides data like the current AIState, speed, and the assigned target (Ship / Path
/ Location / Position).

AI State Interaction

Setting a Ship’s AI State
The state an AI ship is in can be set by calling the SetState method, as shown below:

// Set the AI state of shipAIInputModule to the state with ID of newStateID
shipAIInputModule.SetState(newStateID);

To set a state, you need to know the state’s ID. If it is a default state, you can get the ID using the AIState class. For

example, if you wanted to set the state to the Idle state, you would use the following:

// Set the AI state of shipAIInputModule to the Idle state
shipAIInputModule.SetState(AIState.idleStateID);

If the state is a custom state you have created, you will have received an ID integer when you created the state (see

the Creating and Using a Custom State Section).

Getting a Ship’s AI State
You can find out what state a ship is currently in by calling the GetState method, as shown below:

// Get the current AI State ID of shipAIInputModule
int currentStateID = shipAIInputModule.GetState();

Setting State Inputs
Once you have set the AI state for a ship, you typically need to provide inputs for it. The AI state tells the AI ship

what its general goal is, but the state inputs give specifics of that goal. For instance, the “Move To” state tells an AI

ship that its goal is to move to a particular position, but the TargetPosition input can be used to tell the AI ship which

position it should move to.

Each state requires different inputs to operate correctly. To find out which inputs are required for the default states,

you can hover over the corresponding stateID variable in your code editor (for example, the AIState.moveToStateID

for the “Move To” state).

The target position input is a position in world space that the AI ship should move towards. It can be set by calling

the AssignTargetPosition method, as shown below:

// Set the target position of shipAIInputModule
shipAIInputModule.AssignTargetPosition(newTargetPosition);

The target location input is a location that the AI ship should move towards. It can be set by calling the

AssignTargetLocation method, as shown below:

// Set the target location of shipAIInputModule
shipAIInputModule.AssignTargetLocation(newTargetLocation);

The target path input is a path that the AI ship should follow. It can be set by calling the AssignTargetPath method, as

shown below:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 53

// Set the target path of shipAIInputModule
shipAIInputModule.AssignTargetPath(newTargetPath);

The target rotation input is a rotation in world space that the AI ship should rotate towards. It can be set by calling

the AssignTargetRotation method, as shown below:

// Set the target rotation of shipAIInputModule
shipAIInputModule.AssignTargetRotation(newTargetRotation);

The current target path location index input is the index of the current location in the target path that the AI ship

should move towards. It can be set by calling the SetCurrentTargetPathLocationIndex method, as shown below:

// Set the new target path location index of shipAIInputModule
shipAIInputModule.SetCurrentTargetPathLocationIndex(newTargetPathLocationIndex);

The target ship input is a ship (that the AI ship should typically attack). It can be set by calling the AssignTargetShip

method, as shown below:

// Set the target ship of shipAIInputModule
shipAIInputModule.AssignTargetPosition(newTargetPosition);

The ships to evade input is a list of ships that the AI ship should evade. It can be set by calling the

AssignShipsToEvade method, as shown below:

// Set the list of ships to evade of shipAIInputModule
shipAIInputModule.AssignShipsToEvade(newShipsToEvadeList);

The surface turrets to evade input is a list of surface turrets that the AI ship should evade. It can be set by calling the

AssignSurfaceTurretsToEvade method, as shown below:

// Set the list of surface turrets to evade of shipAIInputModule
shipAIInputModule.AssignSurfaceTurretsToEvade(newSurfaceTurretsToEvadeList);

The target radius input is a distance in metres, typically indicating the size of a target for the AI ship (although it will

vary based on the current state). It can be set by calling the AssignTargetRadius method, as shown below:

// Set the target radius of shipAIInputModule
shipAIInputModule.AssignTargetRadius(newTargetRadius);

The target distance input is a distance in metres, typically indicating the minimum or maximum distance the AI ship

should aim to reach from a particular target position. It can be set by calling the AssignTargetDistance method, as

shown below:

// Set the target distance of shipAIInputModule
shipAIInputModule.AssignTargetDistance(newTargetDistance);

The target angular distance input is an angular distance in degrees, typically indicating the minimum or maximum

angular distance the AI ship should aim to reach from a particular target rotation. It can be set by calling the

AssignTargetAngularDistance method, as shown below:

// Set the target angular distance of shipAIInputModule
shipAIInputModule.AssignTargetAngularDistance(newTargetAngularDistance);

The target velocity input is a velocity in world space that the AI ship should attempt to match. It can be set by calling

the AssignTargetVelocity method, as shown below:

// Set the target velocity of shipAIInputModule
shipAIInputModule.AssignTargetVelocity(newTargetVelocity);

Getting State Inputs
You can get the current target position by calling the GetTargetPosition method, as shown below:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 54

// Get the target position of shipAIInputModule
Vector3 currentTargetPosition = shipAIInputModule.GetTargetPosition();

You can get the current target location by calling the GetTargetLocation method, as shown below:

// Get the target location of shipAIInputModule
LocationData currentTargetLocation = shipAIInputModule.GetTargetLocation();

You can get the current target path by calling the GetTargetPath method, as shown below:

// Get the target path of shipAIInputModule
PathData currentTargetPath = shipAIInputModule.GetTargetPath();

You can get the current target path location index by calling the GetCurrentTargetPathLocationIndex method, as

shown below:

// Get the new target path location index of shipAIInputModule
int currentTargetPathLocationIndex = shipAIInputModule.GetCurrentTargetPathLocationIndex();

You can get the current target ship by calling the GetTargetShip method, as shown below:

// Get the target ship of shipAIInputModule
Ship currentTargetShip = shipAIInputModule.GetTargetShip();

You can get the current list of ships to evade by calling the GetShipsToEvade method, as shown below:

// Get the list of ships to evade of shipAIInputModule
List<Ship> currentShipsToEvadeList = shipAIInputModule.GetShipsToEvade();

You can get the current list of surface turrets to evade by calling the GetSurfaceTurretsToEvade method, as shown

below:

// Get the list of surface turrets to evade of shipAIInputModule
List<SurfaceTurretModule> currentSurfaceTurretsToEvadeList =

 shipAIInputModule.GetSurfaceTurretsToEvade();

You can get the current target radius by calling the GetTargetRadius method, as shown below:

// Get the current target radius of shipAIInputModule
float currentTargetRadius = shipAIInputModule.GetTargetRadius();

You can get the current target distance by calling the GetTargetDistance method, as shown below:

// Get the current target distance of shipAIInputModule
float currentTargetDistance = shipAIInputModule.GetTargetDistance();

You can get the current target angular distance by calling the GetTargetAngularDistance method, as shown below:

// Get the current target angular distance of shipAIInputModule
float currentTargetAngularDistance = shipAIInputModule.GetTargetAngularDistance();

You can get the current target velocity by calling the GetTargetVelocity method, as shown below:

// Get the current target velocity of shipAIInputModule
Vector3 currentTargetVelocity = shipAIInputModule.GetTargetVelocity();

State Completion Status
Certain states can provide a status on whether or not they have been completed. This can be accessed either by

checking HasCompletedStateAction or by specifying a callback method.

An example of checking HasCompletedStateAction is given below:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 55

// If the current state action has been completed...
if (shipAIInputModule.HasCompletedStateAction())
{
 // ... do something
}

An example of how to specify and declare a callback method is given below:

// Specify a callback method: This will be called
// when the current state action has been completed
shipAIInputModule.callbackCompletedStateAction = CompletedStateActionCallback;

/// <summary>
/// The method that will be called when the current state action has been completed.
/// </summary>
private static void CompletedStateActionCallback (ShipAIInputModule shipAIInputModule)
{
 // ... do something here
}

The argument of type ShipAIInputModule is required; this contains data relating to the AI ship that has just

completed its current state action.

State Stage Index
The state stage index is an integer that can be used to keep track of what “stage” has been reached in an AI state. An

example usage of this is a state that requires two sub-actions to be completed, one after the other. This could be

achieved by making the actions two different states, but if there are a large number of sub-actions this can lead to

having an excessive number of states. Instead, the two sub-actions can be made into a single state, with the state

stage index being used to store whether or not the first sub-action has been completed. When the state is first

entered, the state stage index is set to zero. When the first sub-action is completed, the state stage index could be

set to one. Then it is easy to check whether the first sub-action has been completed by checking whether the state

stage index is set to zero or one.

You can get the state stage index by calling the GetCurrentStateStageIndex method, as shown below:

// Get the current state stage index of shipAIInputModule
int currentStateStageIndex = shipAIInputModule.GetCurrentStateStageIndex();

You can set the state stage index by calling the SetCurrentStateStageIndex method, as shown below:

// Set the state stage index of shipAIInputModule
shipAIInputModule.SetCurrentStateStageIndex(newStateStageIndex);

Typically, the state stage index should only be set from within a custom state method. As mentioned previously,

when SetState is called (to enter a new state), the state stage index is set to zero.

Sample AI Scripts
Six sample AI scripts are included in Sci-Fi Ship Controller with examples of the state interaction described above in

practice. If you wish to use something similar in your own game, create a new script in your own namespace to avoid

it getting overwritten by Sci-Fi Ship Controller updates.

Script name Description

SampleAttack An example of how to call a custom method in your game that assigns a target ship
to an attacking AI-controlled ship. When a target ship is assigned, the AI ship will be
put into the Dogfighting AIState.

When no target ship is assigned, the AI ship will attempt to return to its original
spawning position (if it has been set).

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 56

Script name Description

SampleChase A simpler example of SampleAttack where a target ship is set and the AI ship is
placed in the Dogfight AIState.

SampleEvade Executes a simple state machine for determining state information for an "evade"
AI. An AI ship is assigned a target Path to follow, while attempting to evade up to 5
other ships.

SampleFlyToPosition This sample shows how you can fly an AI ship to a given position in 3D space

SamplePatrol Executes a simple state machine for determining which state a "patrol" AI should
be in. A ship will follow a given Path unless it encounters an enemy ship which it
will attempt to attack. If contact is lost with enemy ship, the AI ship will return to
patrolling the Path.

SampleRace Executes a simple state machine for determining state information for a "race" AI.
A ship is assigned a target Path, and placed in the “Move To” AIState.

There are also other scripts that us AI. For example, DemoFlyToLocation shows how to write a custom AIState and

custom AI Behaviour.

Default AI States
Sci-Fi Ship Controller comes with a number of states by default.

State Description Required Inputs Optional Inputs

Idle Brings the ship to a stop and prevents it from
moving

None None

Move To Moves towards either TargetPosition,
TargetLocation or TargetPath, depending on
which was assigned. If ShipsToEvade is
provided, moves out of the targeting regions of
(up to five) ships in the list. The state action is
set as completed when the ship is within the
ship radius of TargetPosition / TargetLocation or
it if reaches the end of TargetPath.

TargetPosition OR
TargetLocation OR
TargetPath

ShipsToEvade

Dogfight Attacks TargetShip, whilst also attempting to
evade it if TargetShip ends up behind it. The
state action is set as completed when
TargetShip is destroyed

TargetShip None

Docking Moves directly towards TargetPosition (which is
assumed to be moving with velocity
TargetVelocity). When it gets within
TargetRadius, attempts to match
TargetRotation. The state action is set as
completed once the ship is within
TargetDistance of TargetPosition and
TargetAngularDistance of TargetRotation

TargetPosition,
TargetRotation,
TargetRadius,
TargetDistance,
TargetAngularDistance
TargetVelocity

None

Strafing Run Moves directly towards TargetLocation /
TargetPosition until it gets within TargetRadius.
Then it moves past and away from
TargetLocation / TargetPosition until it escapes

TargetPosition OR
TargetLocation,
TargetRadius

SurfaceTurretsToEvade

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 57

State Description Required Inputs Optional Inputs

the TargetRadius, at which point it sets the state
action as completed.

Docking and Strafing Run States are currently in Technical Preview.

Custom AI States

Creating and Using a Custom State
All states (including the default states) are global to your scene (although they do not persist between scenes).

Hence, custom states are not stored on individual ships but as static members of the AIState class. You can create a

custom state by calling the AIState.AddState method, as shown below:

// Creates a new state named "New State Name" using NewStateMethod as the
// state method and with the PriorityOnly state combiner
int newStateID = AIState.AddState("New State Name", NewStateMethod,
 AIState.BehaviourCombiner.PriorityOnly);

The AIState.AddState method returns the state ID of the new state as an integer. You can then use this state ID for

setting the state of an AI ship by calling the SetState method. As arguments, you need to provide a name, the state

method to use (see the Writing a Custom State Method section) and the behaviour combiner (see the State

Behaviour Combiner section).

Writing a Custom State Method
All states (including the default states) must have a state method. This is the method that will be called each frame

by any AI ships in this state. The state method takes input data from a ship and converts it into a series of behaviour

inputs that the AI system will use to calculate inputs to send to the ship control module.

A typical declaration of a state method can be seen below:

/// <summary>
/// The state method that will be called for any ships in the corresponding state.
/// </summary>
/// <param name="stateMethodParameters"></param>
private static void NewStateMethod (AIStateMethodParameters stateMethodParameters)
{

}

The method is usually made static (although it doesn’t necessarily have to be) since states are global to the scene.

The argument of type AIStateMethodParameters is required; this contains data relating to the AI ship and its current

state inputs and will be passed in by the AI ship.

Property Description

AI Behaviour Inputs List The list of AI behaviour inputs. Modify these behaviour inputs to control the output
of the state.

Ship Control Module The ship control module instance of the AI ship. The ship instance can be obtained
using shipControlModule.shipInstance (which can be then be used to obtain most
relevant ship data).

Ship AI Input Module The ship AI input module instance of the AI ship. This can be used to obtain most
relevant AI data, and also has a number of useful AI helper functions.

Target Position The target position input from the AI ship.

Target Location The target location input from the AI ship.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 58

Property Description

Target Path The target path input from the AI ship.

Target Ship The target ship input from the AI ship.

Ships To Evade The ships to evade input from the AI ship.

The aim of a state method is to populate the AI behaviour inputs found in the aiBehaviourInputsList variable of the

AIStateMethodParameters object. Each behaviour input that you want to have needs to have two things set: Its

behaviour type (what type of behaviour input it is) and its inputs (what inputs will be sent to the behaviour input to

calculate its eventual output).

The behaviour type of a behaviour input is how you specify what the behaviour input will do. These correspond to

different types of behaviours a ship could have. For example, if the behaviour type is set to “Seek”, if that particular

behaviour input is selected by the behaviour combiner, the output sent to the ship will tell it to move towards a

specified position. The specified position would be given by the inputs sent to the behaviour. Each behaviour has a

set of inputs it requires. In the “Seek” example, the required inputs are the target position and the weighting. The

aforementioned specified position would be set to the target position. The weighting of a behaviour input is a

required input for all behaviour inputs, and for certain behaviour combiners tells the combiners how to combine the

behaviour with the other behaviours (for more information, see the State Behaviour Combiner section). However, no

matter the behaviour combiner, the weighting must be set to a value greater than zero for the behaviour to be used.

An example of code for a state method can be seen below:

// Sets the first behaviour to "Obstacle Avoidance". Obstacle avoidance has
// only one required input, which is weighting. You can see this for
// yourself by hovering over "ObstacleAvoidance" in your code editor, and
// the same for every other behaviour (except for custom behaviours)
stateMethodParameters.aiBehaviourInputsList[0].behaviourType =
 AIBehaviourInput.AIBehaviourType.ObstacleAvoidance;
// Sets the weighting of the first behaviour to 1. Only behaviours that have
// a weighting set to a value other than zero will be used
stateMethodParameters.aiBehaviourInputsList[0].weighting = 1f;

// Sets the second behaviour to "Evasion". Evasion has three required
// inputs: Target position, target velocity and weighting
stateMethodParameters.aiBehaviourInputsList[1].behaviourType =
 AIBehaviourInput.AIBehaviourType.Evasion;
// Sets the target position of the second behaviour to the target ship's position
stateMethodParameters.aiBehaviourInputsList[1].targetPosition =
 stateMethodParameters.targetShip.TransformPosition;
// Sets the target velocity of the second behaviour to the target ship's velocity
stateMethodParameters.aiBehaviourInputsList[1].targetVelocity =
 stateMethodParameters.targetShip.WorldVelocity;
// Sets the weighting of the second behaviour to 1
stateMethodParameters.aiBehaviourInputsList[1].weighting = 1f;

The index in the behaviour input list determines the order in which the behaviours will be considered by the

behaviour combiner, and hence their priority. In the above example, obstacle avoidance is given the first index (0)

and so has the highest priority in this state. Evasion is the given the second index (1) and so has the second-highest

(which in this example is in fact the lowest) priority in this state.

Since the new state in this example is using the “Priority Only” behaviour combiner, the effect of this new state will

be the following:

The first priority is obstacle avoidance, so the AI ship first checks whether it needs to take preventative action to

avoid an obstacle:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 59

- If it decides that it does need to take preventative action, it will use the output of the “Obstacle Avoidance”

behaviour

- Otherwise, it will use the output of the “Evasion” behaviour. The target position and target velocity are set

to the target position and velocity of the target ship, so it will move away from the target ship (using the

target ship’s velocity to predict where the target ship will be in the future)

State Behaviour Combiner
Once the state method has selected the behaviour inputs, a behaviour combiner will iterate through each of the

behaviours in turn and use them to create a final output.

Behaviour Combiner Description

Priority Only Iterates through the behaviour inputs in order, calculating the outputs of each in turn.
The first behaviour that returns a nonzero output is chosen as the final output.

Prioritised Dithering Iterates through all the behaviour inputs in order. Like “Priority Only”, any behaviour that
has a nonzero output is skipped. However, unlike “Priority Only”, each behaviour also
only has a given probability of being evaluated, which is determined by weighting. For
example, if the weighting is 0.7, the behaviour has a 70% chance of being evaluated
(otherwise it will be skipped, no matter whether it has a nonzero output).

Weighted Average Iterates through all of the behaviour inputs in order, adding outputs from all of the
behaviours based on their weighting. The final output is a weighted average of all of the
behaviour outputs.

Default AI Behaviours

Behaviour Type Description Required Inputs

Idle Comes to a complete stop. Weighting.

Seek Moves directly towards target position. Target position, weighting.

Flee Moves directly away from target position. Target position, weighting.

Pursuit Moves towards the future position of an object
currently at target position moving with a velocity of
target velocity.

Target position, target
velocity, weighting.

Evasion Moves away from the future position of an object
currently at target position moving with a velocity of
target velocity.

Target position, target
velocity, weighting.

Seek Arrival Moves directly towards target position, slowing down
when nearing target position to come to a complete
stop upon reaching it.

Target position, weighting.

Seek Moving Arrival Moves directly towards target position, changing speed
when nearing the target position to match target
velocity upon reaching it.

Target position, target
velocity, weighting.

Pursuit Arrival Moves towards the future position of an object
currently at target position moving with a velocity of
target velocity, changing speed when nearing the target
position to match target velocity upon reaching it.

Target position, target
velocity, weighting.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 60

Behaviour Type Description Required Inputs

Unblock Cylinder Moves out of an imaginary cylinder. The cylinder starts
at the target position, stretches out infinitely in the
direction of target forwards and has a radius of target
radius. If the ship is not in the cylinder, returns a zero
output.

Target position, target
forwards, target radius,
weighting.

Unblock Cone Moves out of an imaginary cone. The cone starts at the
target position, stretches out infinitely in the direction
of target forwards, and the angle between its central
axis and its edges is target FOV angle. If the ship is not
in the cone, returns a zero output.

Target position, target
forwards, target FOV angle,
weighting.

Obstacle Avoidance Takes preventative action to avoid obstacles. If the ship
does need to take preventative action, returns a zero
output.

Weighting.

Follow Path Moves onto and then follows the target path. Target path, weighting.

Dock Moves directly towards target position and (when it
gets within target radius) attempts to match orientation
of target forwards and target up. Target velocity
indicates the velocity of the target position (set it to
Vector3.zero if it is not moving).

Target position, target
forwards, target up, target
radius, target velocity,
weighting

For an example of writing a custom Behaviour, see Demos\scripts\DemoFlyToLocation.

SSC Radar
This futuristic radar system centrally collects all data from items that send data to it, much like Automatic Dependent

Surveillance – Broadcast (ADS-B) does today. At any time, items “in the system” can determine to become invisible

to other objects. This impartial system centrally manages all radar communications.

The radar system can be queried via an API in C# code. Results are returned as “blips” which can be used in our built-

in UI mini-map, or be used for whatever purpose you deem is useful to your game. Examples include weapon

targeting, friend or foe detection, or guidance systems.

IMPORTANT: There should only ever be one radar system in any scene. If you don’t need to use our built-in UI and

mini-map, the radar system will be automatically added to the scene at runtime should it be required.

To use the Radar API, see the appropriate section in “Runtime and API” later in this manual.

General Properties

Property Description

Initialise on Start If enabled, the GetOrCreateRadar() will be called as soon as Start() runs. This should
be disabled if you are instantiating the SSCRadar through code and using the
SSCRadar API methods.

Initial Pool Size The number of items that you expect to be tracked by the radar system at any point
in time. If the number exceeds this, the pool will be automatically expanded
(although this will have some performance impact).

Range (metres) The range of the radar from the centre to the edges. Can be overridden at runtime
using API methods.

3D Query Uses 3D distances to determine range when querying the radar data.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 61

Property Description

Query Sort Order The order in which query results are returned. Use None where possible as it the
fastest and has the lowest impact on performance.

Visual Properties
The built-in UI or visual components of the radar system are entirely optional and internally run radar queries and

process results just like you would with the Radar API. You can configure the UI in the scene by adding a radar

system to the scene and configuring the visuals in the radar editor.

Property Description

Screen Locale Position where radar will be displayed on the screen.

Custom Locale X,Y coordinates where radar will be displayed on the screen.

Display Width The radar display width as a proportion of the screen width.

Overlay Colour Colour of the overlay decals on the radar display

Background Colour Primary background colour on the radar display

Blip Friend Colour When the built-in UI is used, this is the colour of any blip that are considered as
friendly. Determined by the factionId when available.

Blip Foe Colour When the built-in UI is used, this is the colour of any blip that are considered as
hostile. Determined by the factionId when available.

Blip Neutral Colour When the built-in UI is used, this is the colour of any blip that are considered as
neutral. Determined by the factionId when available. Faction Id = 0

Mini-map UI Image A reference in the scene to the UI RawImage to be used to display the radar. This is
automatically set when a Mini-map is created in the scene.

Movement Properties
When the built-in on-screen visuals (UI) are in use, the radar can be configured to move around with an object or

ship or remain at a fixed position.

Property Description

Ship to Follow The centre of the radar will move with this ship.

GameObject to Follow The centre of the radar will move with this gameobject.

Centre Position The centre of the radar.

Surface Turret Module
Turret weapons on ships are very useful, however, sometimes you may wish to position weapons on a planet’s

surface. The basic steps to setup a surface turret are:

1. Create an empty gameobject (keep scale to 1,1, where possible)

2. Attach the Surface Turret Module script

3. As child objects, add your turret models

4. Your turret should have a pivot transform around which the turret rotates on the Y-axis. Added this

transform to the Turret Pivot Y slot under the Weapon Settings

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 62

5. Your turret should also have a gun or barrel pivot as a child of the Y-axis pivot transform. In the editor, this

should be added to the Turret Pivot X slot.

6. In code, assign a target for the turret. There is a sample script in Demos\Scripts called

SampleSurfaceTurretAssignTarget.cs.

NOTE: Do not attempt to place a Surface Turret on a ship, instead configure a turret weapon on the Combat tab in

the ShipControllerModule.

For your convenience, we’ve included an example prefab in Prefabs\Turrets called Turret2.

Surface Turret - General Properties

Property Description

Initialise on Start If enabled, the Initialise() will be called as soon as Start() runs. This should be
disabled if you are initialising the turret through code and using the
SurfaceTurretModule API methods.

Faction Id The faction or alliance the item belongs to. This can be used to identify if an item is
friend or foe. Default (neutral) is 0.

Squadron Id Although normally representing a squadron of ships, this can be used on a turret to
group it with other things in your scene. Default (unset) is -1.

Auto Create Location Automatically create a Location in the SSCManager when turret is initialised

Is Visible to Radar Is this turret (Location) visible to radar queries? NOTE: When health of the weapon
reaches 0, it will be removed from the radar system.

Radar Blip Size The relative size of the blip on the radar mini-map.

Effects Object The particle and / or sound effect prefab that will be instantiated when the turret is
destroyed or reaches 0 health.

Destroy on No Health Should the turret be destroyed (removed from the scene) when its health reaches
0?

Destruct Object The destruct prefab that breaks into fragments when the turret is destroyed. Only
available if “Destroy on No Health” is enabled.

Surface Turret - Weapon Settings

Property Description

Weapon Type (Turret) Projectile or Beam weapon. Beam turrets are currently in Technical Preview.

Relative Position The position of the weapon in local space relative to the pivot point of the whole
turret. To visually modify this in the scene view, ensure the (G)izmo is turned on for
this weapon, click the (F)ind button and move with the standard Unity Move Tool.

Multiple Fire Positions If this weapon has multiple cannons or barrels

Fire Position Offsets The positions of the cannon or barrel relative to the position of the weapon.

Fire Direction The direction in which the weapon fires projectiles in local space. +ve Z is fire
forwards, -ve Z is fire backwards. To visually modify this in the scene view, ensure
the (G)izmo is turned on for this weapon, click the (F)ind button and rotate with the
standard Unity Rotate Tool.

Beam Prefab Prefab template of the beam fired by this weapon. Beam prefabs need to have a
Beam Module script attached to them.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 63

Property Description

Projectile Prefab Prefab template of the projectiles fired by this turret. Projectile prefabs need to
have a Projectile Module script attached to them.

Reload Time The minimum time (in seconds) between consecutive firings of the weapon.

Power-up Time The minimum time (in seconds) between consecutive firings of beam weapons.

Max Range The maximum distance (in metres) the beam weapon can fire.

Unlimited Ammo Can this (projectile) weapon keep firing and never run out of ammunition?

Ammunition The quantity of projectiles or ammunition available for this weapon if there isn’t
unlimited ammo.

Charge Amount The amount of charge the beam weapon has (0 = no charge, 1 = full charge)

Recharge Time The time (in seconds) it takes the fully discharged beam weapon to reach maximum
charge

Starting Health The initial health value of this surface turret. This is the amount of damage that
needs to be done to the turret for it to reach its min performance.

Turret Pivot Y The transform of the pivot point around which the turret turns or rotates on the
local y-axis

Turret Pivot X The transform on which the barrel(s) or cannon(s) elevate up or down on the local x-
axis

Turret Min. Y The minimum angle on the local y-axis the turret can rotate to

Turret Max. Y The maximum angle on the local y-axis the turret can rotate to

Turret Min. X The minimum angle on the local x-axis the turret can elevate to

Turret Max. X The maximum angle on the local x-axis the turret can elevate to

Turret Move Speed The rate at which the turret can rotate

Turret Inaccuracy When inaccuracy is greater than 0, the turret may not aim at the optimum target
position. This can improve the chances of the target not being hit by the weapon. It
will have little or no effect if the weapon uses a guided projectile.

Surface Turret - Gravitational Properties
Gravitational acceleration and direction can affect how a projectile behaves after it has been fired from the weapon.

Property Description

Acceleration The acceleration due to gravity in metres per second squared. Earth gravity is
approximately 9.81 m/s per second.

Direction The direction in which gravity acts on the ship in world space.

Surface Turret – Optional Components
The Surface Turret Module also supports the addition of one or more of the following components:

Component Description / Benefit

Auto Targeting Module When attached, this component will automatically assign targets to the Surface
Turret’s weapon.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 64

Component Description / Benefit

Damage Receiver When attached, this component will automatically transmit damage to the Surface
Turret’s weapon if a collider (on the same gameobject) is hit by a projectile.

Auto Targeting Module
The Auto Targeting Module is designed to be attached to either a ship (Ship Control Module) or a Surface Turret

Module.

For ships, the weapons need to be:

• Turrets with any projectile type

• Turrets with beam weapons

• Fixed Projectile weapons with guided projectiles

• A mixture of both

The module uses the Radar system to automatically allocate targets to the weapons. When allocating targets, it will

take into consideration the maximum range of each weapon and optional line-of-sight (LoS) settings.

For weapons on a ship, the “Auto Targeting” option must be enabled for the weapon(s) on that ship you want Auto

Targeting to apply to. Not all weapons on a ship need to have “Auto Targeting” enabled.

Some features of the Auto Targeting Module can be configured at runtime. See the “Runtime and API” chapter for

more information.

Property Description

Initialise on Start If enabled, the Initialise() will be called as soon as Start() runs. This should be
disabled if you are initialising the module through code.

Module Mode The module can operate in two different modes, Ship Control Module or Surface
Turret Module mode. The Mode should be set to match the type of module it is
attached to.

Ship Display Module If configured, targeting information can be set to this heads-up display in the scene

Show Targets on HUD Show the Targets on the heads-up display

Check LoS (New Target) When acquiring a new target, when enabled, this will verify there is a direct Line of
Sight between the weapon and the target.

Update Target Periodically Whether the target should be reassigned periodically (after a fixed period of time).

Update Target Time The time to wait (in seconds) before assigning a new target.

Can Lose Target Whether the current target can be 'lost' through either loss of line of sight or (for a
turret) an inability to lock on to the target.

Target Lost Time How long (in seconds) a target must be invalid for it to be lost (prompting a new
target to be assigned).

Require LoS Whether a target can be 'lost' if line-of-sight is lost.

Require Target Lock Whether a target can be 'lost' if the turret is unable to lock on to it.

To use Guided Projectiles with Auto Targeting Module, make sure the Projectile Module prefab has “Guide to

Target” enabled.

To show weapon targets on the HUD:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 65

1. Add a HUD prefab to the scene (e.g., Prefabs / Visuals / HUD1)

2. On the Ship Display Module configure at least 1 DisplayTarget (leave Show Target unticked)

3. Add the HUD from the scene to the “Ship Display Module” slot on the “Auto Targeting Module”

4. Tick “Show Targets on HUD”

Damage Receiver
This is a simple component that you can add to your own non-ship assets in the scene to receive notification when a

projectile or (laser) beam has hit your object. A sample script (demos\scripts\SampleObjectDamage.cs) is included to

demonstrate how this can work in your game code.

When this component is added to a SurfaceTurretModule, it automatically transmits health data to the turret

weapon.

Destructible Object Module
This module can be used to trigger a DestructModule and/or an EffectsModule when the health of the object

reaches 0.

IMPORTANT: If you want a ship, a ship’s damage regions, or a surface turret to take damage, use the features

included in the Ship Control Module or the Surface Turret Module. This module’s to be used with regular

gameobjects that don’t include those components. Examples could include buildings or destructible props.

Property Description

Initialise on Start If enabled, Initialise() will be called as soon as Start() runs. This should be disabled if
you want to control when the Destructible Object Module is enabled through code.

Starting Health How much 'health' the object has initially.

Use Shielding Whether this object uses shielding. Up until a point, shielding protects the object
from damage

Damage Threshold Damage below this value will not affect the shield or the object's health while the
shield is still active (i.e., until the shield has absorbed damage more than or equal to
the shielding Amount value from damage events above the damage threshold).

Shield Amount How much damage the shield can absorb before it ceases to protect the object from
damage.

Recharge Rate The rate per second that a shield will recharge (default = 0)

Recharge Delay The delay, in seconds, between when damage occurs to a shield and it begins to
recharge.

Destruct Object The destruct prefab that breaks into fragments when the object is destroyed. See
also the Destruct Module chapter.

Destruct Offset The offset in the forward direction, from the objects gameobject, that the destruct
module is instantiated.

Effects Object The particle and/or sound effect prefab that will be instantiated when the object is
destroyed. See also the Effects Module chapter.

Effects Offset The offset in the forward direction, from the objects gameobject, that the
destruction effect is instantiated.

Use Damage Multipliers Whether damage type multipliers are used when calculating damage from
projectiles.

Damage Type A-F The relative amount of damage a Type A-F projectile will inflict on the object.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 66

Property Description

Faction Id The faction or alliance the object belongs to. This can be used to identify if a object
is friend or foe. Neutral = 0.

Squadron Id Although normally representing a squadron of ships, this can be used on a
gameobjects to group it with other things in your scene.

Visible to Radar Is this object visible to the radar system?

Radar Blip Size The relative size of the blip on the radar mini-map.

Ship Docking and Undocking
Ship docking consists of two main script components, Ship Docking Station and Ship Docking. Player and AI ships can

use this feature. It can be configured in the editor and/or at runtime. Often a combination of both is used as can be

seen in Demos\TechDemo\Scenes\techdemo2scene1.

Ship Docking Station - Overview
This is a place where multiple ships can depart from or arrive at. It could be a static hangar on the ground, or it could

be part of a large capital or mothership. There are four components:

• The docking station gameobject with a Ship Docking Station script attached

• One or more ships with a Ship Docking script attached

• An optional exit Path (created with SSC Manager)

• An optional entry Path (created with SSC Manager)

When a Ship Docking Station is attached to a Ship Control Module (a.k.a. mothership), the entry and exit Path, if

defined, moves with the mothership at runtime. For this reason, entry and exit Paths must be only used by one Ship

Docking Station at a time. If you have multiple Docking Stations, and want to use entry/exit Paths, you need to

create different ones for each Docking Station.

A single Docking Station should not use the same Path for the entry and exit Paths. This is because the start of the

entry Path should be near the docking point and the end of the exit Path should be near the docking points. See

Docking Point Properties below for more detail. However, multiple docking points on the same Docking Station can

use the same entry and exit Paths.

Entry and exit Paths are created in world-space using the SSC Manager in a scene (just like any other Path would be

created for Sci-Fi Ship Controller). See “Locations and Paths” under SSC Manager elsewhere in this manual. It is

important that entry/exit Path are correctly aligned with the mothership in the scene.

To create the Paths in the Unity editor, add the mothership (or stationary hangar) to the scene, position it where you

want it to be when the scene loads, and then create your Paths using the SSC Manager. If you intend to change this

starting position or rotation of the mothership when the scene loads at runtime, in code, you will need to tell the

Ship Docking Station that the Paths also need to be changed. This can be done with the

InitialiseDockingPointsPaths(Vector3 positionOffset, Quaternion rotationDelta) method. See Runtime and API

section for more information or contact us on either our Unity Forum or Discord channel.

Basic setup instructions:

1. Add a ShipDockingStation script to a gameobject in the scene (this could be a static object like a hangar or a

(mother)ship which includes a ShipControlModule component.

2. Configure one or more Ship Docking Points in the ShipDockingStation. These can be manually configured in

the Inspector or can be manipulated in the scene view using gizmos and the Unity Move and/or Rotate tools.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 67

3. Add a ShipDocking script to the ships that you wish to dock with the ShipDockingStation. NOTE: A

mothership does not need a ShipDocking script unless it too will dock with a bigger ShipDockingStation (this

scenario is shown in Tech Demo #2 where the capital ship also has a hanger it departs from.

4. A ship has an Anchor Point. This is the location on the ship that docks with the ShipDockingStation’s docking

points. Typically, this anchor point would be at the base or bottom of the ship and face downwards so that it

could “land” on a Station’s docking point. However, many other orientations are possible so that you could

say have a ship dock with an airlock of a space station.

5. Ships can start in a scene as Docked or Undocked. Ships can also be assigned to a Docking Point on a docking

station.

6. AI Ships can depart from a station using an Exit Path or can enter on an Entry Path. Paths are created in the

scene using the SSC Manager and then selected in the ShipDockingStation’s docking points.

7. Ships can be assigned or unassigned to a station docking point in game code. They can also change their

state from Docked, to Undocking, to Undocked, and/or Docking.

8. Player ships can Dock or Undock using a button configured in the Player Input Module.

Ship Docking Station - General Properties

Property Description

Initialise on Awake If enabled, Initialise() will be called as soon as Awake() runs. This should be disabled
if you are instantiating the Ship or ShipDockingStation through code and using the
Docking API methods.

On Pre Undock Methods that get called immediately before Undock or UndockDelayed are
executed.

WARNING: Do NOT call UndockShip from this event.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

On Post Docked Methods that get called immediately after docking is complete.

WARNING: Do NOT call DockShip from this event.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

A Ship Docking Station can have 0, 1 or more Docking Points. These are the places where a ship can dock or undock

with the docking station. Docking Points show up in the Unity Editor as small clickable gizmos when the “G” button in

the inspector is down. When a Docking Point is selected in the scene, it can be moved around like any gameobject.

Its relative position can also be updated in the inspector.

Docking points can be exported to a json file or imported using a previously exported file. These json (text) files can

be saved in a project or outside of a Unity project. After importing Ship Docking Points, you may still need to

configure Docking Entry and Exit Paths, as well as Assigned Ships etc. However, it is a convenient way of copying

setting between Ship Docking Stations.

Ship Docking Station – Docking Point Properties

Property Description

Relative Position Local position relative to the ShipDockingStation transform position

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 68

Property Description

Relative Rotation Docking Point rotation in degrees relative to the ShipDockingStation transform
rotation

Docking Entry Path The optional Path (stored as a guidHash) which identifies the entry path a ship can
take to dock at this docking point. This is the Path that an AI Ship will automatically
take when its docking state is set to “Docking”. The Path must start near the docking
point and end where the ship should be considered “undocked”.

Undocking Exit Path The optional Path (stored as a guidHash) which identifies the exit path a ship can
take to depart from this docking point. This is the Path that an AI Ship will
automatically take when it’s docking state is set to “Undocking”. The Path must start
when the ship is considered “undocked” and end near the docking point.

Hover Height This is the optimum height above the docking point in the relative up direction, a
ship hovers before arriving or departing.

Assigned Ship The Ship in the scene that is currently docked, docking, or undocking with the Ship
Docking Point. This assigned ship requires a Ship Docking component. It can be a
player ship (with a Player Input Module) or an AI Ship (with a Ship AI Input Module).

Ship Docking Component
To dock with a Docking Station, a ship needs to have a Docking Station component attached to it. The ship can either

be a player ship (with a Player Input Module) or an AI Ship (with a Ship AI Input Module).

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 69

Player ships have a special option in the Player Input Module to allow a user to press a button to dock or undock

with a Docking Station Docking Point.

AI Ships can be docked, undocked, docking or undocking. When AI Ships are in a state of “Docking”, they will

automatically follow the Docking Entry Path (if there is one defined). When AI Ships are in a state of “Undocking”,

they will hover to their desired height then automatically follow the Undocking Exit Path (if there is one defined).

AI Ships are typically assigned to a Docking Point, and put in a specific DockingState, via code.

General Property Description

Initialise On Awake If enabled, the Initialise() will be called as soon as Awake() runs. This should be
disabled if you are instantiating the ShipDocking through code.

If the ship has been assigned to a Ship Docking Station Point in the editor before
runtime, you can leave this disabled, as the Ship Docking script will be automatically
initialised when the Ship Docking Station is initialised.

Initial Docking State The ship can start in a Docked or Undocked position. Currently it cannot start
docking or undocking. However, in code, you can make an AI Ship start docking or
undocking almost immediately a scene loads if need be.

Landing Distance Precision How close the ship has to be (in metres) to the docking position before it can
become docked.

Landing Angle Precision How close the ship has to be (in degrees) to the docking rotation before it can
become docked.

Hover Distance Precision How close the ship has to be (in metres) to the hovering position before it is deemed
to have reached the hover position.

Hover Angle Precision How close the ship has to be (in degrees) to the hovering rotation before it is
deemed to have reached the hover position.

Detect Collisions (Docked) Should physics collisions been detected when the state is Docked? Off by default,
this could be useful if you want to have characters walk around the ship when it is in
the Docked state.

Undocking Delay When used with ShipDockingStation.UndockShip(..), the number of seconds that the
undocking manoeuvre is delayed. This allows you to create cinematic effects or
perform other actions, before the Undocking process begins.

Auto Undock Time When the value is greater than 0, the number of seconds the ship waits while
docked, before automatically attempting to start the undocking procedure.

Mothership Undocking If the Ship Docking Station is attached to big ship, smaller ships may need to
immediately have some velocity relative to the moving mother ship.

Undock Vert Velocity This is additional velocity in an upwards direction relative to the mothership

Undock Fwd Velocity This is additional velocity in a forward direction relative to the mothership

Catapult Undocking A catapult can be used to launch a ship from a docking point.

Catapult Thrust (kN) The amount of force applied by the catapult when undocking in KiloNewtons. For AI
and AI-assisted ships, this gets applied when the undocking ship reaches the hover
height. For non-AI assisted Player ships, this is applied immediately upon launch.

Catapult Duration The number of seconds that the force is applied from the catapult to the ship.

Ship Docking Adapter A ship docking adapter is a location on a ship that allows it to dock with a Ship
Docking Point on a Ship Docking Station. In this release, each ship will have 1
adapter.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 70

General Property Description

Relative Position Local position of the adapter relative to the Ship

Relative Direction The direction the adapter is facing relative to the Ship. Default is down (y = -1). A +ve
Z value is forwards, and -ve Z value is backwards. By default, the ship will “land” on
top of the Docking Point with the underside of the ship facing the Docking Point on
the Ship Docking Station.

Debug Mode This can be used at runtime in the editor to help determine what is happening in
your gameplay. It needs to be enabled while the Unity editor is in play mode.

Event Property Description

On Dock Start Delay The time, in seconds, to delay the actioning of any On Post Docking Start methods.

On Post Docking Start Methods that get called immediately after docking has started. Typically used to
perform a non-docking API action like chatter with ground staff, disabling radar,
preparing for landing etc.

WARNING: Be careful not to call other docking APIs that might create a circular loop.

On (Post) Docking Hover
Delay

The time, in seconds, to delay the actioning of any On Post Docking Hover methods.

On Post Docking Hover Methods that get called immediately after the Hover point is reached when docking.
Typically used to perform a non-docking API action like lowering landing gear,
disabling radar, disarming weapons etc.

WARNING: Be careful not to call other docking APIs that might create a circular loop.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

On (Post) Docked Delay The time, in seconds, to delay the actioning of any On Post Docked methods.

On Post Docked Methods that get called immediately after the ship has finished docking.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

On Undock Start Delay The time, in seconds, to delay the actioning of any On Post Undocking Start
methods.

On Post Undocking Start Methods that get called immediately after undocking has started. Typically used to
perform a non-docking API action like dust or steam particle effects or opening
hanger doors.

WARNING: Be careful not to call other docking APIs that might create a circular loop.

On (Post) Undocked Delay The time, in seconds, to delay the actioning of any On Post Undocked methods.

On Post Undocked Methods that get called immediately after the ship has finished undocking.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 71

Event Property Description

On (Post) Undocking Hover
Delay

The time, in seconds, to delay the actioning of any On Post Undocking Hover
methods.

On Post Undocking Hover Methods that get called immediately after the Hover point is reached when
undocking. Typically used to perform a non-docking API action like raising landing
gear, enabling radar, arming weapons etc.

WARNING: Be careful not to call other docking APIs that might create a circular loop.

If the function you call has four parameters (int, int, int, Vector3), it will appear as a
Dynamic Parameters function. This can be useful if you want your method (function)
to be automatically passed the ShipDockingStationID, the shipId, and the Docking
Station Point Number (1 – n). The Vector3 is for future use.

See also Runtime and API, Ship Docking API Methods.

Player Docking – Non-assisted
Human player ships that use the Player Input Module can dock and undock with a Ship Docking Station. Your player

flies their ship really close to the docking point, then presses the button setup in the “Docking Input Button” section

of the Player Input Module’s editor. The ship will “snap” to the docking point.

The player ship must also have Ship Docking component attached to the same gameobject as the Ship Control

Module. See “Ship Docking Station – Docking Point Properties” above to configure a docking point for the ship.

Player AI-Assisted Docking
Human player ships that use the Player Input Module can use the Ship AI Input Module to help them dock and

undock with a docking station. This is different than using the “Docking Input Button” in the Player Input Module

which will immediately set the docking state to either “Docked” or “Undocked”.

The player ship must have the following components:

• Ship Control Module

• Player Input Module

• Ship Docking

• Ship AI Input Module

You can configure the player to either press a single button to toggle docking and undocking or you can configure

two buttons, one for docking and the other for undocking.

Single Button Method

1. On the Player Input Module, make sure the “Docking Input Button” is not configured

2. Expand “Custom Player Inputs” and add a new one

3. Configure the button or input axis for your controller or keyboard input

4. Add a Callback Method with the “+” button provided

5. Drag the Player ship gameobject into the Object slot under “Runtime Only”

6. For the “Function” select “Player Input Module” -> ToggleAIDocking()

Two Button Method

1. On the Player Input Module, make sure the “Docking Input Button” is not configured

2. Expand “Custom Player Inputs” and add a new one

3. Configure the docking button or input axis for your controller or keyboard input

4. Add a Callback Method with the “+” button provided

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 72

5. Drag the Player ship gameobject into the Object slot under “Runtime Only”

6. For the “Function” select “Player Input Module” -> EnableAIDocking()

7. Add another Custom Player Input

8. Configure the undocking button or input axis for your controller or keyboard input

9. Add a Callback Method with the “+” button provided

10. Drag the Player ship gameobject into the Object slot under “Runtime Only”

11. For the “Function” select “Player Input Module” -> EnableAIUndocking()

NOTE: When configuring buttons for docking and undocking, ensure the button is not configured to be held down.

You want the event to only occur once.

Ship Display Module (HUD)
The Ship Display Module can be used as a heads-up display (HUD) for your player ship.

Prefabs included in the Prefabs\visuals folder can be dropped into a scene. If you plan to modify the prefab, we

suggest creating a copy or “original” prefab from this one to work with. Otherwise, when you next update Sci-Fi Ship

Controller you may overwrite your changes.

When making changes to a HUD prefab, ensure you edit in the scene OR “Open Prefab”. If you attempt to make

changes when the prefab is not open or in the scene you will receive many errors and warnings in the console which

may leave the HUD prefab in an inconsistent state.

The Ship Display Module is a UnityEngine.UI or canvas-based solution. Currently it does not use any custom shaders

and therefore should work wherever the UI canvas and components are supported. If you see any platform-centric

issues, please let us know.

The module currently has the following feature areas:

• Auto-hide cursor

• Reticle selection

• Altitude and Speed

• Display Attitude (pitch)

• Flicker the HUD on/off

• Display Heading (compass)

• Display Messages

• Display Targets

• Display Gauges

• API for integration with your own project

Our plan is to add new features over time based on typical user requirements. Where possible, we endeavour to add

core features that have widespread appeal. We believe stable low-level features are more important than visual or

graphical elements. That’s because we know you will have very particular look and feel requirement which will set

you game or project apart from others. Essentially, we want to empower you rather than restrict you.

Don’t feel compelled to use this module. If you want to design a totally different HUD you can still do so and use our

extensive API to pull data from ships, radar, weapons, health, damage etc.

WARNING: Do not manually change the size, anchor points or settings of the HUD elements in the scene. This could

lead to unpredictable results.

Ship Display Module – Extending
As the module is constructed on top of the standard Unity UI and has its own built-in API, you should be able to

extend its functionality without too much fuss.

This feature is currently NOT SUPPORTED with VR because Unity does not support screen space overlay in VR.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 73

We’d recommend the following approach:

1. Create a custom monobehaviour script in your own namespace

2. Attach this component to the same gameobject as the ShipDisplayModule component

3. In your script get a reference to both the ShipDisplayModule and the Canvas.

4. Call any ShipDisplayModule API methods as required

5. Add UI elements giving them unique names on the same canvas.

6. Update your UI elements as required

Ship Display Module – General Settings
Many of these properties can be adjusted in real-time in the editor at runtime to see the effect they have.

Property Description

Initialise on Start If enabled, the Initialise () will be called as soon as Start () runs. This should be
disabled if you are instantiating the HUD through code.

Show on Initialise Show the HUD when it is first Initialised

Show Overlay Show the overlay image on the HUD.

Auto Hide Cursor Automatically hide the screen cursor or mouse pointer after it has been stationary
for a fixed period of time. Automatically show the cursor if the mouse if moved
provided that the Display Reticle is on shown.

Hide Cursor Time The number of seconds to wait until after the cursor has not moved before hiding it

Main Camera The main camera used to perform calculations with the heads-up display. If blank
will be auto-assigned to the first camera with a MainCamera tag.

Source Ship The ship in the scene that will supply the data for this HUD

HUD Width The head-up display's normalised width of the screen. 1.0 is full width, 0.5 is half
width. To see the effect of this outside play mode, enable Show HUD Outline and
look in the scene view.

HUD Height The head-up display's normalised height of the screen. 1.0 is full height, 0.5 is half
height. To see the effect of this outside play mode, enable Show HUD Outline and
look in the scene view.

HUD Offset X The head-up display's normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen. To see the effect of this outside play mode, enable
Show HUD Outline and look in the scene view.

HUD Offset Y The head-up display's normalised offset between the bottom (-1) and the top (1)
from the centre (0) of the screen. To see the effect of this outside play mode, enable
Show HUD Outline and look in the scene view.

Primary Colour Primary colour of the heads-up display. This changes the colour of the overlay
image. This are affected by Brightness. Calibrate when Brightness = 1.

Brightness This is the overall brightness of the HUD relative to its initial state at runtime.

Canvas Sort Order The sort order of the canvas in the scene. Higher numbers are on top.

Show HUD Outline Show the HUD as a yellow outline in the scene view [Has no effect in play mode].
Click Refresh if screen has been resized. This can help to gauge the overall size of the
HUD without going into play mode.

Ship Display Module – Display Reticle Settings
Many of these properties can be adjusted in real-time in the editor at runtime.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 74

Property Description

Show Active Reticle Show or render the active Display Reticle on the HUD. [Has no effect outside play
mode]

Active Display Reticle The currently selected or displayed reticle. This is used to help aim your weapons in
front of the ship.

Reticle Offset X The Display Reticle's normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen.

Reticle Offset Y The Display Reticle's normalised offset between the bottom (-1) and the top (1) from
the centre (0) of the screen.

Reticle Colour The colour of the active Display Reticle

Lock Reticle to Cursor Should the Display Reticle follow the cursor or mouse position on the screen?

Sprite (for each Reticle) The sprite (texture) to be displayed in the heads-up display for this reticle. Samples
of these are provided in the Textures\HUD folder. They should be 64x64, white with
a transparent background, and have a Texture Type of Sprite (2D and UI).

To create a custom reticle you can perform the following tasks:

1. In an image editor like Photoshop, Corel Paintshop Pro or Gimp, create a new image with a transparent

background that has dimensions of 64x64 pixels.

2. Draw your reticle in white (RGBA 1,1,1,1) – you can colour the reticle inside the Ship Display Module.

3. Import the image into Unity (we have used PNG but the format should not matter)

4. Change the Texture Type to “Sprite (2D and UI)”

5. Use this sprite in your Display Reticle.

Ship Display Module – Altitude and Speed Settings
Many of these properties can be adjusted in real-time in the editor at runtime.

Property Description

Show Altitude Show the Altitude indicator on the HUD. Typically, only used when near the surface
of a planet. In space this would be turned off. Like in an aircraft, it does NOT
consider the height of the terrain below it.

Show Air Speed Show the Air Speed indicator on the HUD. Speed is in km/h.

Ground Plane Height Used to determine altitude when near a planet's surface. On Earth this would
typically be sea-level but it can be used to set an artificial zero-height which may be
useful when flying over the surface of a planet. This is the height in metres on the
world-space y-axis.

Altitude Text Colour The colour of the Altitude text (number). This are affected by Brightness. Calibrate
when Brightness = 1.

Air Speed Text Colour The colour of the Air Speed text (number). This are affected by Brightness. Calibrate
when Brightness = 1.

Ship Display Module – Display Attitude Settings
These settings are used display a scrollable attitude on the HUD. Typically, the attitude will contain a pitch ladder

from -90 to 90 degrees with an artificial horizon bar in the middle.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 75

Property Description

Show Attitude Show or hide the Attitude as a scrollable image in the UI.

Scrolling Sprite The sprite (texture) that will scroll up or down. You can use our sprite or create your
own. See Textures\HUD\SSCUIPitchLadder1

Mask Sprite The sprite (texture) that will mask the scrollable attitude sprite. E.g.,
Textures\HUD\SSCUIFilled

Height The normalised masked height of the scrollable attitude. 1.0 is full height of the
screen, 0.5 is half height.

Offset X The Display Attitude’s normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen.

Offset Y The Display Attitude’s normalised offset between the bottom (-1) and the top (1)
from the centre (0) of the screen.

Primary Colour Primary colour of the scrollable attitude.

Sprite Border Width The number of pixels between the top of the scroll sprite and the first (90) pitch line.
It is assumed that this is the same for between the bottom and the -90 pitch line.
This is the actual number of pixels in the Scrolling Sprite image. It gets scaled at
runtime in the HUD.

Ship Display Module – Display Flicker Settings
These settings are used to determine how a feature of the module flickers on or off. Currently it applies to HUD

visibility but may be extended to other features in the future.

Property Description

Show HUD with Flicker Whenever the HUD is shown, should it flicker on?

Hide HUD with Flicker Whenever the HUD is hidden, should it flicker off?

Default Duration The time, in seconds, the effect takes to reach a steady state

Min Inactive Time The minimum time, in seconds, that the effect is inactive or off

Max Inactive Time The maximum time, in seconds, that the effect is inactive or off

Min Active Time The minimum time, in seconds, that the effect is active or on

Max Active Time The maximum time, in seconds, that the effect is active or on

Variable Intensity The intensity of the effect will randomly change

Smoothing Smooth the flickering effect. Higher values give a smoother effect. [Only applies
when Variable Intensity is enabled]

Max Intensity The maximum intensity of the effect used during the on cycle when Variable
Intensity is enabled. This is a multiplier of the starting intensity of the effect. Value
must be between 0.01 and 1.0.

Ship Display Module – Display Heading Settings
These settings are used display a scrollable heading ribbon on the HUD.

Property Description

Show Heading Show or hide the Heading or direction as a scrollable ribbon in the UI.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 76

Property Description

Indicator Show the small heading indicator

Scrolling Sprite The sprite (texture) that will scroll left or right. You can use our sprite or create your
own. See Textures\HUD\SSCUIHeading1

Mask Sprite The sprite (texture) that will mask the scrollable heading sprite. E.g.,
Textures\HUD\SSCUIFilled

Indicator Sprite The small sprite (texture) that will indicate or point to the heading on the HUD. E.g.,
Textures\HUD\SSCUIIndicator1.

Width The normalised masked width of the scrollable heading. 1.0 is full width of the
screen, 0.5 is half width.

Offset X The Display Heading's normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen.

Offset Y The Display Heading's normalised offset between the bottom (-1) and the top (1)
from the centre (0) of the screen.

Primary Colour Primary colour of the scrollable heading.

Indicator Colour The small indicator colour of the scrollable heading.

Ship Display Module – Display Message Settings
Display Messages are used to present information to the player. They are displayed on the HUD and can also be

created, shown, hidden, moved or scrolled at runtime via our extensive API. See “Runtime and API” for more details.

At runtime, messages are stacking on the UI canvas in the order they appear in the Ship Display Module Inspector

list. The first item is on placed on the canvas first, and then the second message, and so forth. You can re-order the

list by using the small “V” move button.

Many of these properties can be adjusted in real-time in the editor at runtime.

Property Description

Show Message Show the message on the HUD. When a message is created, this is off by design.
[Has no effect outside play mode]

Message Name The name or description of the message. This can be used to identify the message.

Message Text The text to display in the message. It can include RichText markup. e.g. Bold
Text

Offset X The Display Message's normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen.

Offset Y The Display Message's normalised offset between the bottom (-1) and the top (1)
from the centre (0) of the screen.

Display Width The Display Message's normalised width. 1.0 is full screen width, 0.5 is half width.

Display Height The Display Message's normalised height. 1.0 is full screen height, 0.5 is half height.

Show Background Show the Display Message background

Text Colour Colour of the Message text

Text Alignment The position of the text within the Display Message panel

Is Best Fit Is the text font size automatically changes within the bounds of Font Min Size and
Font Max Size to fill the panel?

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 77

Property Description

Font Min Size When Is Best Fit is true will use this minimum font size if required

Font Max Size The size of the font. If isBestFit is true, this will be the maximum font size it can use.

Scroll Direction The direction (if any) the text should scroll across the screen.

Scroll Speed Speed or rate at which the text will scroll across the display.

Is Scroll Fullscreen Scroll full screen regardless of message width and height.

Ship Display Module – Display Target Settings
These are used to show potential enemy targets or friendly ships to the player. Like the “Active Display Reticle”, they

use the Reticles from the list that is available in the Display Reticle Settings section of the editor.

Display Targets can be created, shown, hidden or moved at runtime via our extensive API. See “Runtime and API” for

more details.

If you are using more than one Display Target, ensure that there are no overlapping factions or squadrons. Each

DisplayTarget should have its own unique group of factions and/or squadrons. When you have more than one

DisplayTarget configured, ensure the correct faction and/or squadrons are “included” (see Properties below).

Many of these properties can be adjusted in real-time in the editor at runtime.

Property Description

Auto Update Positions When DisplayTarget slots have an active RadarItem assigned to them, should the
reticles be automatically moved on the HUD? Turn this off if you want to move the
Display Target reticles yourself in code. It can also be set at runtime.

Show Viewport Outline Show the rendering limits as a red outline in the scene view [Has no effect in play
mode]. Click Refresh if screen has been resized.

Viewport Width The width of the clipped area in which Targets are visible. 1.0 is full width, 0.5 is half
width.

Viewport Height The height of the clipped area in which Targets are visible. 1.0 is full height, 0.5 is
half height.

Viewport Offset X The X offset from centre of the screen for the viewport

Viewport Offset Y The Y offset from centre of the screen for the viewport

Targeting Range The maximum distance in metres that targets can be away from the ship

Per Target Settings

Show Target Show the target reticle on the HUD. When a target is created, this is off by design.
[Has no effect outside play mode]

Display Reticle The Display Reticle to use for this Target. To add more Reticles, see the list in the
Display Reticle Settings section.

Reticle Sprite This is what the target will look like on the HUD before colour and brightness is
applied.

Reticle Colour The colour of the active Display Reticle for this Target

Is Targetable Can this DisplayTarget be assigned to a weapon?

Factions to Include An array of Faction Ids that the DisplayTarget can show. If the array is empty (0), any
item belonging to a faction in the game can be used on this DisplayTarget. This is
true except when “Is Targetable” is enabled, in which case only enemy factions can

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 78

Property Description

be shown. Using our APIs, you could override this behaviour. If you define it for one
DisplayTarget, you must configure it on all DisplayTargets.

Squadrons to Include An array of Squadron Ids that the DisplayTarget can show. If the array is empty (0),
any item belonging to a squadron in the game can be used on this DisplayTarget.
This is true except when “Is Targetable” is enabled, in which case only enemy
squadrons can be shown. Using our APIs, you could override this behaviour. If you
define it for one DisplayTarget, you must configure it on all DisplayTargets.

Max. Number of Targets The maximum number of these DisplayTargets that can be shown on the HUD at any
one time.

Ship Display Module – Display Gauge Settings
These simple measuring bars and gauges can be used to let players know the status of things in your game. Some

examples include:

• The health of the player ship

• The amount of charge left in a beam weapon

• Shields level

• Fuel level (assuming you track this)

• The distance to your destination

• Your game score

• Number of times the player can respawn

• The percentage of enemies left to destroy

Gauges are typically constructed by using a different foreground and background sprite (UI texture). There are

several examples included in the Textures\HUD folder to get you started. Examples include:

• SSCUICircle1BGnd and SSCUICircle1FGnd

• SSCUICircle2BGnd

• SSCUIFilled (when in doubt, start with this one)

• SSCUIFilledTBBorder1 (has a transparent top and bottom border)

• SSCUIRect1BGnd and SSCUIRect1FGnd

• SSCUIRect2BGnd and SSCUIRect2FGnd

• SSCUIStripeH1Border (has a transparent border)

• SSCUIStripeH1NoBorder

• SSCUIStripeH2Border

• SSCUIStripeH2NoBorder

• SSCUIStripeV1Border

• SSCUIStripeV1NoBorder

• SSCUIStripeV2Border

• SSCUIStripeV2NoBorder

To build custom background and/or foreground sprites, follow the following basic steps:

1. In an image editor like Photoshop, Corel Paintshop Pro or Gimp, create a new image with a transparent

background that has dimensions of 64x64 or 256x256 pixels.

2. Draw your sprite details in white (RGBA 1,1,1,1) – you can colour the sprite inside the Ship Display Module.

For darker areas use a grey scale. Don’t forget to test how they look when the colours are changed in the

display module AND the brightness is modified in the General Settings. This is the primary reason why you

draw the sprite using white.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 79

3. Import the image into Unity (we have used PNG but the format should not matter). Typically, you will want

to place the new sprite in your own folder within the project (not within the SciFiShipController folder).

4. Change the Texture Type to “Sprite (2D and UI)”

There are many API methods that can help you manage and update gauges at runtime.

Many of these properties can be adjusted in real-time in the editor at runtime.

Property Description

Show Gauge Show the gauge on the HUD. When a gauge is created, this is off by design. [Has no
effect outside play mode].

Gauge Name The name or description of the gauge. This can be used to identify the gauge.

Gauge Type The type or style of the gauge. Default: Filled.

Gauge Text The text to display in the gauge. Does not apply to numeric gauges. It can include
RichText markup. e.g., Bold Text

Gauge Label The label text on a numeric gauge with a label. It can include RichText markup. e.g.,
Bold Text. For non-numeric gauges, see “Gauge Text”.

Gauge Value The current amount or reading on the gauge. Value must be between 0.0
(empty/min) and 1.0 (full/max).

Offset X The Display Gauge’s normalised offset between the left (-1) and the right (1) from
the centre (0) of the screen.

Offset Y The Display Gauge’s normalised offset between the bottom (-1) and the top (1) from
the centre (0) of the screen.

Display Width The Display Gauge’s normalised width. 1.0 is full screen width, 0.5 is half width.

Display Height The Display Gauge’s normalised height. 1.0 is full screen height, 0.5 is half height.

Value Affects Colour Does the colour of the foreground change, based on the value of the gauge?

Medium Colour Value When “Value Affects Colour” is true, the value for the foreground medium colour
[default: 0.5]

Foreground Colour Colour of the gauge foreground when the value does not affect the colour.

Foreground Low Colour Colour of the Gauge foreground when value is 0.0

Foreground Medium
Colour

Colour of the Gauge foreground when value is “Medium Colour Value”

Foreground High Colour Colour of the Gauge foreground when value is 1.0

Foreground Sprite The sprite (texture) for the foreground of the gauge

Background Colour Colour of the gauge background.

Background Sprite The sprite (texture) for the background of the gauge

Fill Method Determines the method used to fill the gauge foreground sprite when the
gaugeValue is modified.

Keep Aspect Ratio Keep the original aspect ratio of the foreground and background sprites. Useful
when creating circular gauges.

Text Colour Colour of the Gauge text

Text Alignment The position of the text within the Display Gauge panel

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 80

Property Description

Label Alignment The position of the label within the Display Gauge panel. This only applies to
numeric gauges with a label.

Text Direction The direction of the text within the Display Gauge panel

Text Style The style of the text within the Display Gauge panel

Is Best Fit Is the text font size automatically changes within the bounds of Font Min Size and
Font Max Size to fill the panel?

Font Min Size When Is Best Fit is true will use this minimum font size if required

Font Max Size The size of the font. If isBestFit is true, this will be the maximum font size it can use.

Is Numeric Percentage Is the numeric gauge to be displayed as a percentage?

Max Value When a numeric Gauge Type is used, this is the number to display when Gauge
Value is 1.0.

Decimal Places The number of decimal places to display for numeric gauges.

Debug Mode is used at runtime to show useful information that can help with troubleshooting.

Scriptable Render Pipelines
Sci-Fi Ship Controller is predominately a script-based package. The core modules can run in any render pipeline.

However, there are a number of demo prefabs and assets included in the pack. There is a dedicated folder called

“SRP” which contains packages that can be unpackaged to work with Universal and High Definition Render Pipelines.

Please read the SSC_SRP_Readme.txt file in the SRP folder before proceeding.

Proximity Component
This component let you call your game code, many SSC API methods, and/or set properties on gameobjects when an

object with a collider enters or exits an area of your scene. Essentially, it saves you time from having to write collider

trigger code. There is also an option to check the object’s Unity tag.

If no tags are provided, all objects can affect this area. NOTE: All tags MUST exist.

A typical use case is when a ship enters an area and you want to perform some kind of custom task or make

something particular happen in your game. It could be triggering an enemy attack when the player ship enters

enemy airspace.

To add one to the scene, use the 3D Object -> Sci-Fi Ship Controller menu to create a new gameobject with either a

sphere or box trigger collider.

SSC Moving Platform
This component helps you control the movement and rotation of a platform. This can be helpful when you want to

create a lift or elevator mechanism to raise, lower, or transport, a spaceship, vehicle, equipment, or even a 3rd party

character controller from A to B.

NOTE: This is not a full elevator system and has no concept of floors.

Property Description

Initialise on Start If enabled, Initialise () will be called as soon as Start () runs. This should be disabled if
you want to control when the platform is enabled through code.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 81

Property Description

Move Does the platform move?

Relative Positions Use positions relative to the initial gameobject position, rather than absolute world
space positions.

Average Move Speed Average movement speed of the platform in metres per second

Wait Time The time the platform waits at each position

Movement Profile The *profile* of the platform's movement. Use this to make the movement more or
less smooth.

Smooth Start Time The maximum time it takes the platform to come to resume normal speed when
smooth start is used with StartPlatform().

Smooth Stop Time The maximum time it takes the platform to come to a stop when smooth stop is
used with StopPlatform().

Rotate The starting rotation of the platform in degrees

Starting Rotation Does the platform rotate?

Rotation Axis The axis of rotation of the platform.

Rotation Speed The rotational speed of the platform in degrees per second.

Audio Source The audio source containing the clip to play for the platform. Must be a child of the
platform gameobject.

Overall Audio Volume Overall volume of sound for the platform

In Transit Sound The sound that is played while the platform is moving

Arrived Start Sound The sound that is played when the platform arrives at the first position. This does
not play when it is first initialised.

Arrived Start Volume The relative volume the “Arrived Start Sound” audio clip is played

Arrived End Sound The sound that is played when the platform arrives at the last position

Arrived End Volume The relative volume the ‘Arrived End Sound” audio clip is played

On Arrive Start These events are triggered by a moving platform when it arrives at the start
position.

On Arrive End These events are triggered by a moving platform when it arrives at the end position.

On Depart Start These events are triggered by a moving platform when it departs from the start
position.

On Depart End These events are triggered by a moving platform when it departs from the end
position.

Positions A list of 3D positions that the platform will move between. By default, they are in
world-space. When “Relative Positions” is enabled, they are relative to the initial
position and orientation of the platform.

Moving Platforms support an optional (kinematic) RigidBody which can be attached to the same gameobject.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 82

SSC and Unity Physics (DOTS)
We have started experimenting with the DOTS version of Unity Physics. It may be a long time, if ever, that this is fully

supported in this asset. At the time of writing, DOTS code is rapidly changing with every release and Unity may break

major functionality or components with each release.

Nevertheless, we are slowing adding interaction between some SSC components and Unity Physics (DOTS).

When Projectiles are enabled for DOTS, they will be able to collide with both regular colliders and Unity Physics

(DOTS) colliders. This can be seen in the Asteroid Demo scene when “AsteroidField” has “Use DOTS” enabled, DOTS

for projectiles has been setup, and the Unity Physics (DOTS) package is installed.

To install Unity Physics (DOTS) perform the following tasks:

In Unity 2020.3 LTS

1. Open Project Settings, and select Package Manager

2. Under “Advanced Settings” turn on “Enable Preview Packages” and “Show Dependencies”

3. Close Project Settings, and open the Package Manager

4. Change to Packages to “Unity Register”

5. "Add package from git URL..." under the + menu at the top left of the package manage.

6. Enter “com.unity.physics” and click “Add” (Unity Physics 0.6.0-preview.3 or newer should be installed)

If you have any questions or suggestions about Unity Physics for DOTS and SSC integration, please contact us on our

Discord channel or our Unity forum.

Common Issues
Below is a list of common issues people can encounter that are usually fixed by tweaking the configuration of various

components.

Our “Useful Posts” section in our forum might also help:

https://forum.unity.com/threads/594448/#post-3971293

Common Issues – General
1. Cannot expand a section of the UI. Click slightly to the right of the arrow near the beginning of the first letter

to the right of the arrow. This is a known problem with the newer Unity UI in 2019.1+.

2. All the objects are pink in my scene and/or the terrains in the TechDemo scene are missing. You most likely

need to unpack the appropriate Scriptable Render Pipeline package. See the previous chapter in the manual.

3. Setting Time.timeScale to 0 produces issues.

 Before setting Time.timeScale to 0, call:

shipCameraModule.MoveCamera();
shipCameraModule.DisableCamera();
shipControlModule.DisableShip(..) // for each ship
sscManager.PauseBeams()
sscManager.PauseDestructs()

https://forum.unity.com/threads/594448/#post-3971293

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 83

sscManager.PauseProjectiles()
sscManager.PauseEffectsObjects()

After setting Time.timeScale back to 1, call:

sscManager.ResumeBeams()
sscManager.ResumeDestructs()
sscManager.ResumeProjectiles()
sscManager.ResumeEffectsObjects()
shipControlModule.EnableShip(..) // for each ship
shipCameraModule1.EnableCamera();

See also PauseGame() and UnPauseGame() in TechDemo2.cs and TechDemo3.cs.

Common Issues – Auto Targeting Module
1. When I add the Auto Target Module to a ship with a Fixed Projectile Weapon that fires Guided Projectiles, it

never targets a Surface Turret. On the “Surface Turret Module” make sure “Auto Create Location” is NOT

enabled.

2. I’ve set up a HUD and linked it to the “Ship Display Module” in the “Auto Targeting Module” but my targets

don’t appear on the screen. At runtime, click “Debug Mode” on the “Auto Targeting Module” and see if

anything is obviously wrong. Check that the ships you want to target are visible to radar (at runtime, click

Debug Mode on the targetable ships). Not in play mode, check you have a Display Target configured on the

Ship Display Module (HUD) and that “Is Targetable” is enabled. Make sure the you have at least one

matching “Factions to Include” or “Squadrons to include” and that they match your ships you wish to target.

Ensure you have a weapon on the player ship that has “Auto Targeting” enabled. This needs to be either a

guided projectile if using a “Fixed Projectile” type, or the type needs to be a Projectile or Beam Turret.

3. See also “Common Issues – Weapons”

Common Issues – Player Input
1. Rewired is configured but nothing happens in play mode. In the Player Input Module, when the “Input

Mode” is set to “Rewired”, the player needs to be assigned a Rewired player number. This can be done in

code, by calling PlayerInputModule.SetPlayerNumber(..), or by setting the Player Number in the Player Input

Module editor to a non-zero value, like 1,2,3 or 4.

2. My ship doesn’t move or respond correctly to player input. Although there are several causes, a handy

feature in play mode in the Unity editor, is enable “Debug Mode” on the Player Input Module. This can help

to determine which input is actually being received and is being sent to the ship.

3. I need to be able to open the cockpit canopy or raise/lower the landing gear when the user presses a button.

You can perform custom actions using a Custom Player Input. See the Player Input Module. You can trigger

animations using this method by combining it with the SSCDoorAnimation script. See “Demo Scripts” in the

“Runtime and API” chapter.

4. After upgrading Unity Input System from 1.0.1 to 1.0.2 I get the message “The Unity Input System Player

Input component requires an Input Action Asset”. This occurs even though an Input Action Asset is already

assigned. Restart Unity to correct the issue.

5. How can I add Custom Player Inputs at runtime? See “Player Input Module (General) API Methods” in the

“Runtime and API” chapter. Also take a look at Demos\Scripts\SampleCustomPlayerInput.cs.

Common Issues – Ship Behaviour
1. Large ships turn too quickly in Arcade mode. In the Ship Control Module editor, on the "Physics" tab, adjust

the Pitch, Roll, and/or Yaw acceleration rates. Small numbers will give the user the impression they are

piloting a large, heavy spaceship. Default values around 100 are more suited to fighter-style craft.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 84

2. One or more ships seem to jitter or stutter as they move. Ensure that the Interpolation setting on Rigidbody

components for ships in your scene near the player ship have the same setting.

3. After I create a new Ship prefab or replace the model on an existing prefab, my ship jitters or vibrates once it

gets moving. Ensure you have a least one Collider on your model. On the Physics tab in Ship Control Module,

either turn off Set CoM Manually or click “Reset Centre of Mass”. On the Aero tab, click “Calculate Drag

Properties”.

4. In Arcade mode, when turning sharply at speed, the ship pitches and rolls erratically over uneven ground

when “Stick to Ground Surface” is enabled. Increase the “Ground Normal History”.

5. Ship won’t move forwards. If Gravity acceleration is non-zero it may just move in the direction of Gravity.

Thrusters may to be on but have no effect on motion. On the Physicals tab, ensure “Initialise on Awake” is

enabled or it is set within a script.

6. The ship goes too fast. Either decrease the Max Thrust of the forward thrusters and/or on the “Aero” tab,

increase the Drag Z Coefficient. Change the Drag Z Coefficient to affect top speed but still allow the ship to

accelerate quickly from rest.

7. Rotational Flight Assist doesn’t seem to have any effect, even when it is turned all the way up to 10. If using

the legacy Unity Input System, make sure “Gravity” for an Axes is not set to 0. Setting it to a high value, like

1000 can quickly test if that is the issue.

8. Thruster sound flickers on and off. Adjust the Throttle Up and Down times on the Thrusters that have an

Effects Object containing sound effects.

9. At speed, my ship veers to one side or trends upward or downward when I attempt to fly in a straight line.

This may be because your model is not symmetrical and is being affected by aerodynamic drag. You can

check this by temporarily ticking “Disable Drag Moments” or setting the “Medium Density” to 0 on the Aero

tab. You can also try adjusting the “Centre of Mass” on the Physics tab.

10. Setting Time.timeScale to 0 produces “Input torque is { NaN, NaN, NaN }”. Call

shipControlModule.DisableShip(..) before setting timescale to 0, and EnableShip(..) after setting it back to 1.

See also example PauseGame() and UnPauseGame() code in TechDemo2.cs and TechDemo3.cs.

11. When my ship is docked, nothing seems to be able to collide with it. On the docked ship, go to the Ship

Docking component, and enable “Detect Collisions (Docked)”.

12. In Arcade mode, Gravity Acceleration seems to have little or no effect unless I make it some ridiculously

large value. On the Physics tab, decrease “Flight Turn Acceleration”.

Common Issues – Ship AI Behaviour
1. My ship suddenly flips upside down while manoeuvring. If you ship is designed to flying in 3D with any

rotation, make sure the “Movement Algorithm” on the Ship AI Input Module is set to “Full 3D Flight”.

2. My ship jerks backwards and forwards while trying to say follow a path and may actually go backwards. If the

Physics Model is Arcade on the Ship Control Module, if turning off “Use Brake Component” on the Aero tab

fixes the issue, use a lower “Brake Strength” when “Use Brake Component” is enabled.

3. When following a path, my AI ship can seem to get stuck or come to a stop when near a particular path

point. It is likely that the path tangent (made using the 2 control points of a path point), is facing in the

wrong direction and ship suddenly thinks the path is going in the opposite direction. Move one of control

points to the other side of the path point (kind of like rotating it 180 degrees around the path point).

Common Issues – Ship Camera Module
1. The camera view suddenly inverts or flips upside down when the ship is climbing at an almost vertical angle.

E.g., 90 degrees. If the ship being targeted by the camera can fly straight up or straight down, on the Ship

Camera Module, turn off “Orient Upwards”. If the “Target Offset Coords” is set to “Camera Rotation” you

could try changing this to “Target Rotation”.

2. transform.position assign attempt for 'PlayerCamera' is not valid. Input position is { NaN, NaN, NaN }. The

mostly likely cause is that you set Time.timeScale = 0f without calling shipCameraModule.DisableCamera().

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 85

3. When “Clip Objects” is enabled and the ship is moving quickly (say 200+ m/s) artifacts of the ship appear in

front of the ship (especially in an in-cockpit view). To resolve, either click the “Est.” next to “Minimum

Distance” or increase the “Minimum Distance”.

Common Issues – Destruct Module
1. Currently there are no known issues.

Common Issues – Demo Scenes
1. Everything is pink. This occurs when the material shaders in the scene cannot be rendered. The most

common cause is that the project was created with a different render pipeline like Universal Render Pipeline

(URP) or High-Definition Render Pipeline (HDRP). To apply the correct materials, load the appropriate

package from the SciFiShipController\SRP folder. See the readme file in this folder for more details.

2. In TechDemo3, when Sticky3D Controller is also included in the project, I get errors when running the scene.

You can either download the “SSC TechDemo3 With Sticky3D” package from the Beta Program, or follow the

instructions at the top of the Techdemo3.cs script.

Common Issues – Demo Prefabs and Scripts
1. By default, the Celestials (background stars) use the Unity Layer #25. On (rare) occasions, this may conflict

with another asset that is difficult to change. To change the layer, open Demos\Scripts\Celestials.cs and

following the instructions at the top of the file.

Common Issues – Effects
1. Sound on my effects prefab always ignores Volume Rolloff and Max Distance settings. This may be because

Spatial Blend is set to 0. Try setting it to 1.

2. Some or all of my particle effects only play once when “Use Pooling” is enabled. This may be because one or

more particle systems have a “Stop Action” other than “None”.

3. My thruster produces too few particles when only a small amount of thrust input is received. If at maximum

thrust the effect looks correct, in Ship Control Module, on the Thrusters tab, increase the “Minimum Effects

Rate” for that thruster.

Common Issues – Radar
1. The UI or mini-map is always shown when the scene first loads. If you want it to be hidden on loading, in the

Radar inspector, untick “Initialise on Start” and in your game code call sscRadar =

SSCRadar.GetOrCreateRadar(). When you are ready to show the UI, call sscRadar.ShowUI().

2. The UI or mini-map does not move or rotate when my player ship moves. In the Inspector of SSC Radar,

under “Movement” add your ship to “Ship to Follow”, or call the sscRadar.FollowShip(..) API at runtime.

3. On the UI or mini-map, all my friendly and foe blips appear white. The radar compares the blips with faction

Id of the ship being followed by the radar mini-map. In the Inspector of SSC Radar, under “Movement” add

your ship to “Ship to Follow”, or call the sscRadar.FollowShip(..) API at runtime.

Common Issues – Weapons
1. When DOTS is enabled for projectiles, they hit colliders with “Is Trigger” enabled. Either add those objects

they hit to the “Ignore Raycast” Unity Layer in the scene, or switch to Pooling.

2. Particle effects (like a Trail) on a projectile prefab don’t appear when DOTS is enabled on the Projectile

Module. Currently there is little or no performance benefit for adding Particle Systems (and therefore

GameObjects) to DOTS-enabled projectiles. To use particle systems attached to projectiles, switch to Use

Pooling. As DOTS matures, we’ll be investigating new solutions in this area.

3. My turret doesn’t fire in the correct direction. If the turret barrel or gun in the editor, does not face towards

the front of the ship, you will need to rotate the Fire Direction. In this manual look under Ship Control

Module, Combat Tab, Weapons and Fire Direction.

4. I want my non-Turret weapon to fire where the user points on the screen. To do this, convert the screen

space coordinates into world-space 3D co-ordinates, then call the following:

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 86

shipControlModule.shipInstance.SetWeaponFireDirection(weaponIdx,

wsTargetPosition);

5. My own objects aren’t destroyed when a projectile hits them. Add a Damage Receiver component to your

non-ship objects then, in code, decide what to do when the projectile this the object. A sample script

(demos\scripts\SampleObjectDamage.cs) is included to demonstrate how this can work.

6. When a Beam weapon is fired and it hits an object, the Effect stops while the Beam is still hitting the object.

To correct this, ensure the Effect Module has a Despawn Time greater than the Max Beam Duration AND the

particle effect has “Looping” enabled.

7. My Auto-Fire turrets don’t rotate to aim at the enemy. Check that you have a correctly attached and

configured “Auto Targeting Module” on the Surface Turret or Ship. Using “Debug Mode”, at runtime, check

that the Auto Targeting Module is initialised and that the targets are in range. Using “Debug Mode” on the

ShipControlModule, check that the ship is initialised, the ship is enabled, Movement is enabled, and Health is

greater than 0.

8. My Muzzle FX don’t follow the fire point of my weapon. On the Effects Module for the muzzle FX, ensure

“Use Pooling” and “Is Reparented” are both enabled.

Common Issues – Moving Platforms
1. My platform jitters when it is close to my ship or third-party character controller. Try adding a (kinematic)

RigidBody to the platform (the SSC Moving Platform will automatically take this into account). If this does

not fix the issue, make sure your other moving object has “Interpolate” set on its rigidbody.

Common Issues – Paths
1. When creating a Path in empty space, it can be difficult to add the points where I want them. To solve this,

add the first point to the scene by setting the current window to the Scene view and pressing the + key. Then

right click in the scene, select “Extend Active Path” from the menu, and drag the new Path Point using the 3D

handle provided.

2. I cannot see my path points to edit. On the Path tab, try toggling the (G)izmos icon on/off for the Path.

Common Issues – Ship Docking Station
1. When I manually move the Ship Docking Station in the scene in the Unity Editor, the entry and exit paths do

not move with it. Either move the docking station to where it will start before creating the entry and exit

paths OR move the paths, one at a time. To move them, select SSC Manager, go to the Path tab, right-click in

scene “Select All (Active Path)”, then holding the shift key down and dragging one of the path points in the

scene to move the whole path.

2. When undocking, my ship immediately crashes into the mothership. Ensure that you have left, right, up, and

down thrusters on your smaller ship. They also need to have enough power (max thrust) to control the

smaller ship that is attempting to undock. It can be helpful to first test when the mothership is not moving so

that you know everything is setup correctly. It is also possible to give the undocking ship a small boost by

modifying the “Undock Vertical / Forward Velocity” settings on the Ship Docking script in the Inspector.

3. When undocking from a moving mother ship, my ship immediately turns to face another direction. This can

happen if the docking point relative direction is not in the same direction as the mother ship is facing. One

potential solution is to set the undocking ship’s Flight Turn Acceleration to 0 while it is undocking. Then set it

back to the original value when the docking state is Undocked. This can be done by setting the

shipDocking.callbackOnStateChange value to your own method.

4. When undocking, my ship doesn’t reach the hover point. Confirm this by watching the “Debug Mode” for the

“Ship Docking” component. If “Is Hover Target” remains true after undocking, then make sure you have

thrusters that work in all directions. Forwards, Backwards, Upward, Downward, Left and Right. If the

thrusters look correct, adjust the “Hover Distance Precision” and/or the “Hover Angle Precision”.

5. My ship has too much left/right or upward thrust after it has become undocked. Create your own custom

method and assign it to the shipDocking.callbackOnStateChange delegate. Then set the maxThrust value

according to the dockingstate. shipInstance.thrusterList[x].maxThrust = xyz Neutons.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 87

6. My ship gets close to the docking point but never becomes docked. Make sure you have thrusters that work

in all directions. Forwards, Backwards, Upward, Downward, Left and Right.

7. My ship gets close to the docking point but keeps moving slightly. That is, it never becomes docked. In play

mode in the editor, turn on Debug Mode on the Ship Docking component. Check if the Current State remains

“Docking” (it should change to Docked). Check the Ship AI Input Module Debug Mode. If the AI ship also

remains in the “Docking” state, look at the “Desired Local Velocity” and “Current Local Velocity”. It is

possible one (or more) of your Thrusters does not have enough power to move the ship in the correct

direction.

8. My player ship snaps to the docking station point if the player doesn’t get close enough when docking. How

can I make this look smoother and more natural? The solution is to use Player AI-Assisted docking. See the

“Ship Docking and Undocking” chapter for more details.

9. When my ship is docked, nothing seems to be able to collide with it. On the docked ship, go to the Ship

Docking component, and enable “Detect Collisions (Docked)”.

Common Issues – Ship Display Module (HUD)
1. The Altitude or Air Speed indicators are show when I play the scene but their values remain 0. Add a ship

from the scene to the “Source Ship” field in the “Altitude and Speed Settings” of the Inspector. This can also

be done at runtime via code.

2. The fonts are all wrong – I want something different. Create an original copy of the sample HUD1 prefab.

Modify the fonts as required in your new prefab. Make sure you keep the original panel structure and

names.

3. When a Display Target is shown on screen, it does not follow the target as the camera position changes. On

the Ship Display Module, under “General Settings”, select the correct camera for the HUD.

4. I want a different image for my HUD. On the OverlayPanel, change the “Source Image” to your desired

Sprite (UI Texture). Now create an original prefab (if you haven’t already done so) using the HUD in the

scene. This will prevent updates to Sci-Fi Ship Controller from overwriting your change.

5. ERROR: Setting the parent of a transform which resides in a Prefab Asset is disabled to prevent data

corruption. This occurs if you attempt to edit a prefab from the Project folder without either placing it the

scene or without clicking “Open Prefab” in Unity 2019.1 or newer. Contact support if you need help cleaning

up your scene.

6. ERROR: InvalidOperationException: Destroying a GameObject inside a Prefab instance is not allowed. This

can occur if you try to remove a Message, Target or Gauge from a HUD prefab that has been added to a

scene. To correct this, right-click on the HUD gameobject in the scene, select Prefab, and Unpack completely.

Remove any unwanted Messages, Targets or Gauges using the HUD Inspector UI. Optionally, to create a new

prefab, give the scene HUD gameobject a unique name, and drag it into the Editor Project panel. Click

“Original Prefab” when prompted.

7. The Altitude and/or AirSpeed Text do not appear where I want them. If you are using one of the HUD

prefabs that comes with SSC, make a duplicate copy of the prefab, rename it, and drag it into your own

folder. Then, open your new prefab and, using the normal Unity Editor UI tools, under HUDPanel ->

OverlayPanel gameobject, move the “AltitudeText” and/or “AirSpeedText” items to where you want them.

8. When I modify the Gauge Value in the editor or at runtime in code my gauge doesn’t change. Ensure you

have added a Foreground Sprite.

9. The HeadingPanel, AttitudePanel or subpanels of these have strange width and heights (e.g., 0 x 0 or say

8498 x 4780). Add the prefab to the scene, on the Ship Display Module, click “Refresh”.

Common Issues – SSC Celestials
1. The star material is not set. This warning can appear if you have deleted the LBStar.mat material from your

project. It is typically located in SCSM\SciFiShipController\Demos\Materials\Environment. If you cannot find

it in your project, reimport it using either a full package of SSC or from the Asset Store.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 88

2. The star mesh is not set. This warning can appear if you have deleted the StarLowPolyFBX.fbx model from

your project. It is typically located in SCSM\SciFiShipController\Demos\Models\Environment. If you cannot

find it in your project, reimport it using either a full package of SSC or from the Asset Store.

Common Issues – VR
1. My hands hit the ship while I’m flying and push it around. See the “Unity XR – Hands and Physics Collisions”

section of the “Player Input Module” chapter.

2. How do I use in-game levers or joysticks to control my ship? See the “Unity XR – Levers and Joysticks with

Sticky3D” section of the “Player Input Module” chapter.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 89

Runtime and API
SSC is designed to be used in your games. We expect your code to interact with ours. For example, you may wish to

do any of the following:

• Spawn Non-Player-Character (NPC) friendly or enemy ships

• Move NPC ships with our built-in Ship Artificial Intelligence (AI) system

• Move NPC ships with your own AI code

• Set targets for turret weapons on ships

• Set targets for surface (ground) turrets

• Update game scoring whenever a ship is destroyed

• Fire weapons automatically from code

• Change the behaviour of a ship as it enters, exits a planet’s atmosphere

• Enable or disable “Stick To Ground Surface” in code

• Prevent weapons from firing during certain gameplay

• Assign or unassign a ship from a squadron

• Run queries against the Radar API

• Add or remove Ships and Surface Turrets from radar

• Make your own gameobjects visible to radar

• Assign targets to turret weapons and/or AI ships using the radar data.

• Get an AI ship to follow a path

• Dock or undock Ships on a Ship Docking Station

• Have AI ships attack enemy ships or surface turrets

• Switch the camera module to different ships

If there is anything that you’d like to control at runtime but cannot, please talk to us about that, we’re want to

provide you the best runtime experience possible.

Runtime General Guidance
The majority of our code is well documented and broken down in to regions marked with #region #endregion tags.

These are expandable in Visual Studio.

When integrating Sci-Fi Ship Controller into your game or project, make sure your scripts are in your own namespace

so that they don’t conflict with other people’s code or assets.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 90

Public Variables and Properties in our scripts are generally available for you to safely access in your own code.

Anything marked “[INTERNAL ONLY]”, “private” or “internal” should never be used in your code as these items are

subject to change and will most likely either break your game or make it behave is a strange manner.

Some of our scripts have Public API methods. These are used in our demo scripts and can safely be used in your

game code. Look for these Public API regions at the bottom of our scripts.

Many of our public variables, properties, delegate call-backs, and methods are documented in the sections below in

this manual. Everything else is documented in our script files. Feel free to contact us in our Unity forum or on our

dedicated Discord channel if you are unsure of how a variable or method should be used.

Changing Variable at Runtime
Many public variables are modifiable at runtime from within your own code. Variables are commented so that (a)

you know what they do, and (b) you can see if they require a method to be called after changing at runtime. For

example, if you change ship.groundMatchResponsiveness or maxGroundMatchAccelerationFactor at runtime, you

also need to call ship.ReinitialiseGroundMatchVariables().

Demo Scripts
We have included a collection of helpful scripts that show how certain features can be used in your games or

projects. They are subject to change with version upgrades, so are not meant to be used directly in your projects.

Instead, the intention is to help you build games with Sci-Fi Ship Controller by providing coding examples. Do not

make changes to these scripts, instead create your own based on these.

Most scripts have a description at the top and comments throughout.

Script name Description

AI Scripts See also the “Ship AI System” section earlier in this document for other sample
Ship AI scripts.

BeaconLight A script to rotate a light on the y-axis. If an audiosource (and clip) is attached to
the same gameobject, it will activate and deactivate at the same time as the
light. If including an audiosource, turn off “Play On Awake” for the audiosource.
Assumes original rotation y is between -359.999 and +359.999

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 91

Script name Description

Celestials This sample script, is used to create background stars. Drag the Prefab of the
same name into a scene, set the camera and click play. The second camera can
be used on a second monitor.

NOTE: Currently stars are not rendered in LWRP nor HDRP due to a Unity
restriction on multiple cameras.

For URP support you need Unity 2019.4+ and URP 7.3.1+.

DemoDockingStation Demo script that uses your pre-configured Docking Station to undock, then
redock AI Ships. You should attach this script to your Ship Docking Station to
test that the ships can undock and then re-dock successfully. See the script for
more comments.

An example use of this script is in the Docking Demo scene.

DemoDockingTransit Demo script that uses your pre-configured Docking Station for an AI Ship to
undock, fly along a path, then dock with another Docking Station. This is
designed to work with TechDemo4scene2 but a similar script could be adapted
to work with your scenario.

DemoFloatingPoint Simple demo that acts a bit like a floating-point error manager. It is currently
used in the Demos\scenes\Demo Floating Point scene. See also
Demos\Scripts\SampleTelePortWorld which moves Paths and AI Ships.

NOTE: This is NOT designed to solve all FP error issues.

DemoFlyToLocation Demo to spawn an AI Ship (or get it from the scene) and head towards the first
target location using a custom AIState and custom behaviour. Includes an
example of a custom arrival behaviour to slow down a ship as it approaches the
location in the scene. The “DemoLocation” is script placed in the scene on
another gameobject.

HideCursor Sample script hide/show the mouse pointer due to mouse (in)activity. Drop it
onto a gameobject in the scene.

SampleAddObjectsToRadar This simple sample script adds GameObjects to radar. If you hit them with
projectiles or (laser) beam from a ship they will be destroyed and removed from
radar.

SampleAimWithReticle This is used with the ShipDisplayModule to aim fixed weapons where the active
display reticle is pointing. Attach this script to a gameobject in the scene.

NOTE: It is not physically accurate as the fixed weapon on your model will still
be pointing in its original direction. e.g., straight ahead. This is only sample to
demonstrate how API calls could be used in your own code. You should write
your own version of this in your own namespace.

SampleChangeCameraView This sample script shows how you can use a custom player input action to
change the camera view for a ship.

SampleCreatePath This sample script shows how to create a new Path in the scene at runtime.

SampleDamageRegionHit Sample code to show how you can get notified when a localised damage region
on a ship is hit by a projectile or (laser) beam.

SampleFlyToPosition Fly an AI ship to a given position in 3D space.

SampleHUDTargets This sample shows how you can:

1. Run radar queries for a player ship to find nearby enemy
2. Use DisplayTargets on a HUD to track enemy on the screen

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 92

Script name Description

3. Assign targets to weapons that use Guided Projectiles

4. Get notified when an enemy is hit

Setup instructions are included at the top of the script.

SampleInputAIOverride This simple sample script shows how to override input that gets sent from the
ShipAIInputModule to the ShipControlModule of an NPC ship. This script
overrides the primary fire mechanism. This script will control when the primary
weapons on the AI ship, rather than using something like the
AutoTargetingModule.

SampleInputOverride Attach this script to a player ship to override the Longitudinal axis (forward /
backward) player control in the Player Input Module. This sample script
demonstrates how one (or more) axis can be overridden while still using the
Player Input Module. E.g., control the speed of the player ship.

SampleObjectDamage Attach a DamageReceiver component to an object in your scene, then use your
own code to process the damage received after being hit by a projectile or
(laser) beam.

SampleObstacleSpawner Use by the demo Asteroid Field prefab to create a large number of randomly
scaled objects in the scene.

SampleProjectileModule Demo script used to show how to create your own custom ProjectileModule
component.

SampleSendShipInput Attach a SampleSendShipInput component to a player ship that does NOT use
the PlayerInputModule. This is an over-simplified way of sending input to a
player ship without using the PlayerInputModule. This is only sample to
demonstrate how API calls could be used in your own code. You should write
your own version of this in your own namespace.

For PC and Console typically, you will use the PlayerInputModule with one of
the Input Modes.

e.g. Keyboard, Legacy or New Unity Input System, Rewired, Occulus, Vive VR etc

SampleShipSpawner1 Sample ship spawner that leverages the in-build ShipSpawner class. In your
project, you'll want to include "using SciFiShipController" namespace and write
your own code.

SampleShowShipHealth Sample script to show Health of a ship in the UI. This is only sample to
demonstrate how API calls could be used in your own code.

SampleShowShipMetrics Sample script to show how ship metrics like health and beam weapon charge
can be added to a Ship Display Module (HUD) at runtime. Setup instructions are
included at the top of the script.

SampleShowThrusterMetrics Sample script to show how thruster metrics can be added to a Ship Display
Module (HUD) at runtime. Setup instructions are included at the top of the
script.

SampleStickToGroundChange Sample script used to show how to override the StickToGround options at
runtime. This sample controls target ground distance but you could change
other options.

SampleTelePortWorld Sample to create a new Path in the scene at runtime and then teleport the ship
and path. This works a bit like a floating-point error manager.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 93

Script name Description

SampleThrusterFXOverride Sample script to show how to override the thruster particle effects and audio
based on the speed of the ship. Attach it to the parent of a ship prefab. This
assumes that the particle effects attached to thrusters have Loop enabled.

SampleSurfaceTurretAssignTarget Sample script to assign a target to a Surface Turret at runtime. This is only a
code segment to demonstrate how API calls could be used in your own code.
Place it on an empty gameobject in the scene to see how it works.

SampleWeaponAssignTarget Sample script to assign targets to turret weapons on a ship at runtime. This is
only a code segment to demonstrate how API calls could be used in your own
code. Place it on an empty gameobject in the scene to see how it works.

SSCDoorAnimator See Demos\TechDemo\Scripts folder in the package.

Although this is used in our TechDemo scenes, you can probably use this as is in
your own games. If you want to make alterations, create your own script so that
it won’t be overwritten when we do updates.

As the name suggests, this can be used to animate one or more sets of doors. It
could be used to open/close hangar doors, cargo door(s), bomb-bay doors, raise
or lower a cockpit canopy, even raise or lower landing gear!

You first need to create your own animation (clips) and one or more Layers in an
Animator Controller.

There is some additional information included at the top of the script. If you
need assistance, please contact us in the Unity forum or on Discord.

Transitions should be conditional based on the value of the isOpen Boolean
parameter for that Layer. Each parameter must have a unique name.

SSCDoorControl This component is used with the SSCDoorAnimator component to open, close or
lock a door. Typically, this should be added to the gameobject that contains
your door control panel model.

See an example in techdemo3scene1. In the scene Hierarchy: Ships, SSCShuttle1
(Arcade), Shuttle SSCDoorControl1.

SSCDoorProximity This component is used with the SSCDoorAnimator component to trigger when
doors are locked or unlocked.

Typically, attach to the same object (or child gameobject) of your
SSCDoorAnimator component. Then Door Indexes to match the doors in the
animator you want to lock or unlock.

SSCObjectRotator See Demos\TechDemo\Scripts folder in the package. If you want to make
alterations, create your own script so that it won’t be overwritten when we do
updates.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 94

Script name Description

This can be used to rotate or pivot an object on 2 axes. An example is the
SSCSRadarDish1 included in Demos\TechDemo\Prefabs\Props.

Ship Control Module Methods or Properties
See also Ship Methods or Properties which can be called from shipControlModule.shipInstance.[method].

Property or Method Description

shipInstance The class in which the majority of ship data is stored in. Typically use this to
access/modify data relating to a ship. You should check IsInitialised before
referencing the shipInstance as it is only available on initialised ships.

GetShipId Session-only transform InstanceID. This is a fast way of seeing if two references
point to the same ship.

EnableShip

(bool resetVelocity)

Enables the ship and make visible. If resetVelocity is set to true, resets the velocity
of the ship to zero.

EnableShip

(bool updateVisibility, bool
resetVelocity)

Enables the ship. If updateVisibility is set to true, makes the ship visible. If
resetVelocity is set to true, resets the velocity of the ship to zero. If the ship is
enabled for radar, it will become visible to radar.

DisableShip

(bool updateVisibility)

Disables the ship. If updateVisibility is set to true, makes the ship invisible. If the
ship was enabled for radar, it will become invisible to radar when disabled.

DisableShipMovement() This is a subset of DisableShip(...). It only applies to Physics, Thruster Effects, User
or AI Input to the ship, and Sound FX (audio). See also EnableShipMovement().

DisableRadar() Similar to EnableRadar() for ships and Locations. If you want a ship or Location to
be temporarily invisible to radar, call sscRadar.SetVisibility(..) instead. When using
a Localised ShipDamageModel, it will also disable radar on all localised Damage
Regions.

DisableRadar
(DamageRegion
damageRegion)

The ship will no longer send tracking information to the radar system for this
damage region. If you want to change the visibility to other radar consumers,
consider changing the radar item data rather than disabling the radar and (later)
calling EnableRadar (damageRegion) again.

NOTE: You do not need to call this if calling DisableRadar() for the ship.

EnableShipMovement() This is a subset of EnableShip(...). It only applies to Physics, Thruster Effects, User
or AI Input to the ship, and Sound FX (audio). If a ship is also disabled, this will re-
enable the ship. See also DisableShipMovement().

EnableRadar() shipControlModule.EnableRadar() enables the ship to send tracking information to
the radar system. The ship must first be initialised.

sscManager.EnableRadar(LocationData locationData) is used to enable a stationary
location to be discoverable in the radar system.

See also UpdateItem(int itemIndex, SSCRadarPacket sscRadarPacket) in the Radar
API Methods section to send radar data from the ship to the radar system.

EnableRadar (DamageRegion
damageRegion)

Enable the ship to send tracking information to the radar system for this damage
region. The ship must be initialised and radar must already be enabled for the ship.
See also EnableRadar().

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 95

Property or Method Description

See also UpdateItem(int itemIndex, SSCRadarPacket sscRadarPacket) in the Radar
API Methods section to send radar data from the damage region to the radar
system.

EnableThrusterEffects

(string effectNameContains)

Enable all the thruster effects where the gameobject contains the specified string.
Typically used to turn on an effect to improve the quality or look of a game. Call
ReinitialiseThrusterEffects() after calling 1 or more of these methods. If you wish to
enable or start a thruster, it is more likely you want to use EnableShip() or
EnableShipMovement().WARNING: This will generate Garbage so use sparingly.
See also StopThrusterEffects ()

DisableThrusterEffects

(string effectNameContains)

Disable all the thruster effects where the gameobject contains the specified string.
Typically used to turn off an effect to reduce the performance overhead of running
it. Call ReinitialiseThrusterEffects() after calling 1 or more of these methods. If you
wish to pause or stop a thruster, it is more likely you want to use DisableShip() or
DisableShipMovement().WARNING: This will generate Garbage so use sparingly.
See also StopThrusterEffects ()

IsInitialised [READONLY] Has the ship been initialised?

IsRespawning [READONLY] Is the ship currently being respawned? The ship will be disabled
during the respawn time.

IsRespawningPaused [READONLY] Has respawning been paused? If so, this ship cannot respawn until
ResumeRespawning() has been called. See also PauseRespawning().

IsVisbleToRadar [READONLY] Is this ship visible to the radar?

ResetShip() A fast way of re-initialising a ship without changing its position or core settings.
Typically called when re-initialising a scene or bringing a ship out of hibernation. If
you want to temporarily stop a ship from moving, like when a user brings up a
menu, call DisableShip() and EnableShip() instead.

NumberOfWeapons [READONLY] The number of weapons on this ship. Will always return 0 if ship has
not been initialised. See also ship.NumberOfWeapons.

NumberOfRespawns [READONLY] The number of times the ship has been respawned. This is
incremented when the ship respawns, not when it is destroyed.

SetThrusterMaxVolume

(int thrusterNumber, float
newMaxVolume)

Set the maximum volume for a given thruster. Numbers begin at 1. Values should
be between 0.0 and 1.0.

ShipIsEnabled() Returns whether the ship is currently enabled.

ShipIsDocked() Is the ShipDocking component attached to this ship, and if so, is the ship's state
'Docked'? NOTE: This does not mean it must be docked with a ShipDockingStation.
For that, you would need to check the ShipDockingStation's docking points.

ShipIsNotDocked() Is the ShipDocking component attached to this ship, and if so, is the ship's state
'Not Docked'? NOTE: This does not mean it must be undocked with a
ShipDockingStation. For that, you would need to check the ShipDockingStation's
docking points.

PauseRespawning() If the ship is currently respawning, this will stop the countdown timer, preventing
the ship from respawning until ResumeRespawning() is called. NOTE: Has no effect
if not already respawning.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 96

Property or Method Description

ResumeRespawning() If respawning is currently paused, the respawning timer will now continue until the
ship is respawned. NOTE: Has no effect if respawningMode is DontRespawn

ReinitialiseThrusterEffects() Reinitialises the thruster effects for a ship. Call this after modifying thruster effects
objects for this ship. WARNING: This will generate Garbage so use sparingly.

ReinitialiseShipBeams () Reinitialises variables required for ship beam weapons and effects used by those
beams. Call this after modifying any beams or beam effect data for this ship.

ReinitialiseShipDestruct
Objects ()

Reinitialises variables required for destruct objects of the ship. Call after modifying
any destruct data for this ship.

ReinitialiseShipProjectiles
AndEffects()

Reinitialises variables required for projectiles and effects of the ship. Call this after
modifying any projectile or effect data for this ship.

ShipRigidbody [READONLY] The rigidbody of the ship.

ShutdownThrusterSystems
(bool isInstantShutdown =
false)

Begin to shut down the thrusters. Optionally override the shutdown duration.

StartupThrusterSystems
(bool isInstantStartup =
false)

Begin to bring the thrusters online. Optionally, override the start-up duration. As
soon as the systems begin to start up, IsThrusterSystemsStarted will be true.

TelePort (Vector3 delta, bool
resetVelocity)

Teleport the ship to a new location by moving by an amount in the x, y and z
directions. This could be useful if changing the origin or centre of your world to
compensate for float-point error.

NOTE: This does not alter the current Respawn position.

TelePort (Vector3
newPosition, Quaternion
newRotation, bool
resetVelocity)

Teleport the ship to a new location with a new rotation.

NOTE: This does not alter the current Respawn position.

Ship Control Module API Call Backs
Custom runtime methods should be a lightweight to avoid performance issues. These single-cast delegates can have

a single instance of a call-back method. This is useful when you want to take some (custom) action when something

occurs, like when a ship is destroyed or is hit or damaged by a projectile.

Property or Method Description

CallbackOnCollision

callbackOnCollision

The name of the custom method that is called immediately after a collision. Your
method must take 2 parameters (ShipControlModule and Collision). This should be
a lightweight method to avoid performance issues.

CallbackOnDestroy
callbackOnDestroy

The name of the custom method that is called immediately before the ship is
destroyed when it reaches a health of 0. Your method must take 1 parameter of
class Ship. It could be used to update a score or remove a ship from a squadron.

Create your own method in your game code which takes a parameter of the ship
class.

E.g.

Public void MyPreDestroyMethod(Ship ship)

{

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 97

Property or Method Description

 If (ship.someshipvariable == ‘something’) { DoSomething(); }

}

..

shipControlModule.callbackOnDestroy = MyPreDestroyMethod;

CallbackOnHit callbackOnHit The name of the custom method that is called immediately after the ship is hit by a
projectile or beam. Your method must take 1 parameter of type
CallbackOnShipHitParameters. This should be a lightweight method to avoid
performance issues. It could be used to take evasive action while being pursued by
an enemy ship. It could also be used to detect friendly fire.

shipControlModule.callbackOnHit = MyOnHitMethod;

CallbackOnRespawn
callbackOnRespawn

The name of the custom method that is called immediately after the ship is
respawned. Your method must take 2 parameters: ShipControlModule and
ShipAIInputModule. The first is never null but there may be no AI module attached
to this ship. This should be a lightweight method to avoid performance issues.

CallbackOnDamage
callbackOnDamage

The name of the custom method that is called immediately after damage has
changed. Your method must take 1 float parameter (mainDamageRegionHealth). It
could be used to update a HUD or take some other action.

ship.callbackOnDamage = MyOnDamageMethod;

Ship (General) Methods or Properties
These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

AddBoost (Vector3 forceDirection,
float forceAmount, float duration)

Add temporary boost to the ship in a normalised local-space forceDirection
which a force of forceAmount Newtons for a period of duration seconds.
IMPORTANT: forceDirection must be normalised, otherwise you will get odd
results. See also StopBoost().

IsGrounded [READONLY] Whether the ship is currently sticking to a ground surface.

LocalAngularVelocity [READONLY] The local angular velocity of the ship as a vector. Derived from
the angular velocity of the rigidbody.

LocalVelocity [READONLY] The local velocity of the ship as a vector. Derived from the
velocity of the rigidbody.

PitchAngle [READONLY] The pitch angle, in degrees, above or below the artificial horizon

ReinitialisePitchRollMatchVariables
()

Re-initialises variables related to pitch and roll match.

ReinitialiseShipPhysicsModel() Re-initialises all variables needed when changing the ship physics model. Call
after modifying shipPhysicsModel.

ReinitialiseGroundMatchVariables
()

Re-initialises variables related to ground distance match calculations. Call
after modifying useGroundMatchSmoothing, groundMatchResponsiveness,
groundMatchDamping, maxGroundMatchAccelerationFactor,
centralMaxGroundMatchAccelerationFactor or groundNormalHistoryLength.

ReinitialiseInputControlVariables () Re-initialises variables related to Input Control for 2.5D flight. Call this after
changing inputControlAxis at runtime.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 98

Property or Method Description

ReinitialiseThrusterVariables () Re-initialises variables related to thrusters. Call after modifying thrusterList.

ReinitialiseWingVariables () Re-initialises variables related to wings. Call after modifying wingList.

ReinitialiseInputVariables () Re-initialises variables related to ship inputs. Call after modifying
thrusterList, controlSurfaceList and/or forceUse / primaryMomentUse /
secondaryMomentUse of a thruster or the type of a control surface.

RigidbodyPosition [READONLY] The rigidbody position of the ship as a vector. Derived from the
position of the rigidbody. This is where the physics engine says the ship is.

RigidbodyRotation [READONLY] The rigidbody rotation of the ship as a vector. Derived from the
rotation of the rigidbody. This is where the physics engine says the ship is
rotated.

RigidbodyInverseRotation [READONLY] The rigidbody inverse rotation of the ship as a vector. Derived
from the rotation of the rigidbody. This is the inverse of where the physics
engine says the ship is rotated.

RigidbodyForward [READONLY] The rigidbody forward direction of the ship as a vector. Derived
from the rotation of the rigidbody. This is the direction the physics engine
says the ship is facing.

RigidbodyRight [READONLY] The rigidbody right direction of the ship as a vector. Derived
from the rotation of the rigidbody. This is the direction the physics engine
says the ship's right direction is facing.

RigidbodyUp [READONLY] The rigidbody up direction of the ship as a vector. Derived from
the rotation of the rigidbody. This is the direction the physics engine says the
ship's up direction is facing.

TransformPosition [READONLY] The position of the ship as a vector. Derived from the position
of the transform. You should use RigidbodyPosition instead if you are using
the data for physics calculations.

TransformForward [READONLY] The forward direction of the ship in world space as a vector.
Derived from the forward direction of the transform. You should use
RigidbodyForward instead if you are using the data for physics calculations.

TransformRight [READONLY] The right direction of the ship in world space as a vector.
Derived from the right direction of the transform. You should use
RigidbodyRight instead if you are using the data for physics calculations.

TransformUp [READONLY] The up direction of the ship in world space as a vector. Derived
from the up direction of the transform. You should use RigidbodyUp instead
if you are using the data for physics calculations.

TransformRotation [READONLY] The rotation of the ship in world space as a quaternion. Derived
from the rotation of the transform. You should use RigidbodyRotation
instead if you are using the data for physics calculations.

TransformInverseRotation [READONLY] The inverse rotation of the ship in world space as a quaternion.
Derived from the rotation of the transform. You should use
RigidbodyInverseRotation instead if you are using the data for physics
calculations.

StopBoost() Immediately stop any boost that has been applied with AddBoost(..).

WorldAngularVelocity [READONLY] The world angular velocity of the ship as a vector. Derived from
the angular velocity of the rigidbody.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 99

Property or Method Description

WorldTargetPlaneNormal [READONLY] The current normal of the target plane in world space. This is
the upwards direction the ship will attempt to orient itself to if limit pitch
and roll is enabled.

WorldVelocity [READONLY] The world velocity of the ship as a vector. Derived from the
velocity of the rigidbody.

Ship (Damage) Methods or Properties
These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

AddHealth

(float healthAmount, bool
isAffectShield)

Typically used when ShipDamageModel is Simple or Progressive, add health
to the ship. If isAffectShield is true, and the health reaches the maximum
configured, excess health will be applied to the shield for the specified
DamageRegion. For Progressive Damage, health is also added to components
that have Use Progressive Damage enabled.

AddHealth

(DamageRegion damageRegion,
float healthAmount, bool
isAffectShield)

Add health to a specific DamageRegion. If isAffectShield is true, and the
health reaches the maximum configured, excess health will be applied to the
shield for the specified DamageRegion. For Progressive Damage, health is
also added to components that have Use Progressive Damage enabled.
NOTE: -ve values are ignored. To incur damage, use the ApplyNormalDamage
or ApplyCollisionDamage API methods.

ApplyCollisionDamage

(float damageAmount, Vector3
damagePosition)

Applies a specified amount of damage to the ship at a specified position. The
damage is registered as "collision" damage, meaning that if it destroys the
ship the ship will be respawned at a previously recorded respawn position.

ApplyCollisionDamage (Collision
collisionInfo)

Applies damage to the ship due to a collision. The damage is registered as
"collision" damage, meaning that if it destroys the ship the ship will be
respawned at a previously recorded respawn position.

ApplyNormalDamage

(float damageAmount,
ProjectileModule.DamageType
damageType, Vector3
damagePosition)

Applies a specified amount of damage to the ship at a specified position.

AttachCollider (Collider
colliderToAttach)

When attaching an object to the ship, call this method for each non-trigger
collider. It is automatically called when using VR hands to avoid them
colliding with the ship and causing damage.

AttachColliders (Collider[]
collidersToAttach)

When attaching an object to the ship, call this method with an array of non-
trigger collider. It is automatically called when using VR hands to avoid them
colliding with the ship and causing damage. See also AttachCollider(..) and
DetachCollider(..).

DetachCollider (int colliderID) When detaching or removing an object from the ship, call this method for
each non-trigger collider. This is only required if it was first registered with
AttachCollider(..).

USAGE: DetachCollider (collider.GetInstanceID())

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 100

Property or Method Description

DetachColliders (Collider[]
collidersToDetach)

When detaching or removing an object from the ship, call this method with
an array of non-trigger colliders. This is only required if they were first
attached.

GetDamageRegion

(int guidHash)

Get the localised damage region with guidHash in the list of regions. The ship
must be initialised.

GetDamageRegionByIndex (int
index)

Get the localised damage region with the zero-based index in the list of
regions. The ship must be initialised.

GetDamageRegionIndexByName

(string damageRegionName)

Get the zero-based index of a local damage region in the ship given the
damage region name. Returns -1 if not found or the Damage Model is not
Localised. Use this sparingly as it will incur garabage. Always declare the
parameter as a static readonly variable. Usage:

private static readonly string EngineDamageRegionName = "Engines";

..

int drIdx = GetDamageRegionIndexByName(EngineDamageRegionName);

DamageRegion damageRegion = GetDamageRegionByIndex(drIdx);

GetDamageRegionWSPosition (int
guidHash)

Get the world space central position of the localised damage region with the
given guidHash. If the ship is not using the Localised damage model or a
damage region with guidHash cannot be found, this returns the world space
position of the ship. The ship must be initialised.

GetDamageRegionWSPosition
(DamageRegion damageRegion)

Get the world space central position of the damage region. The ship must be
initialised.

HasActiveShield (Vector3
worldSpacePoint)

Is this world space point on the ship, currently shielded? If the main damage
region is invincible, it will always return true. If the Ship Damage Model is
NOT Localised, the worldSpacePoint is ignored.

MakeShipInvincible() Make the whole ship invincible to damage. For individual damageRegions
change the isInvisible value on the localised region.

MakeShipVincible() Make the whole ship vincible to damage. When hit, the ship or shields will
take damage. For individual damageRegions change the isInvisible value on
the localised region.

HealthNormalised This property returns the normalised (0.0 – 1.0) value of the overall health of
the ship. To get the actual health values, see the damageRegions of the ship.
This is useful if you want to show the health on the UI for example in a HUD
gauge.

IsPointInDamageRegion
(DamageRegion damageRegion,
Vector3 worldSpacePoint)

Check if a world-space point is within the volume area of a damage region.

LastDamageEventIndex () Returns the index of the last damage event. When this value changes, a
damage event has occurred.

ReinitialiseDamageRegionVariables
(bool refreshAll = false)

Re-initialises variables related to damage regions. Call after modifying
mainDamageRegion or localDamageRegionList (or modifying
shipDamageModel). NOTE: Not required if just changing the Health or
ShieldHealth

RequiredDamageRumbleAmount () Returns the amount of rumble required due to the last damage event.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 101

Property or Method Description

ResetHealth() Resets health data for the ship. Used when initialising and respawning the
ship.

damageRegion.ShieldNormalised This property returns the normalised (0.0 – 1.0) value of shield for the
damage region. If damageRegion.useShielding is false, it will always return 0.
For the ship’s main shield, use:

shipControlModule.shipInstance.mainDamageRegion.ShieldNormalised

Ship (Respawning) Methods or Properties
These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

Destroyed () Returns true if the ship has been destroyed.

GetRespawnPosition () Returns the position for the ship to respawn at.

GetRespawnRotation() Returns the rotation for the ship to respawn with.

ReinitialiseRespawnVariables
()

Re-initialises respawn variables using the current position and rotation of the ship.
Also needs to be called after changing respawningMode to
RespawningMode.RespawnAtLastPosition.

Ship (Thruster) Methods or Properties
These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

GetFuelLevel () Get the (central) fuel level of the ship. Fuel Level Range 0.0 (empty) to 100.0 (full).

GetFuelLevel

(int thrusterNumber)

Get the fuel level of the Thruster based on the order it appears in the Thrusters tab
in the ShipControlModule. Numbers begin at 1. Fuel Level Range 0.0 (empty) to
100.0 (full).

GetHeatLevel

(int thrusterNumber)

Get the heat level of the Thruster based on the order it appears in the Thrusters
tab in the ShipControlModule. Numbers begin at 1. Heat Level Range 0.0 (min) to
100.0 (max).

GetMaxThrust

(int thrusterNumber)

Get the Maximum Thrust of the Thruster based on the order it appears in the
Thrusters tab in the ShipControlModule. Numbers begin at 1. Values are returned
in kilo Newtons.

SetMaxThrustNewtons (int
thrusterNumber, float
newMaxThrustNewtons)

Use this if you want fine-grained control over max thruster force, otherwise use
SetMaxThrust. Set the Maximum Thrust of the Thruster based on the order it
appears in the Thruster tab in the ShipControlModule. Numbers begin at 1. Values
are in Newtons. This could be useful if you have a very light ship, say a few
kilograms, and you need more control.

GetOverheatingThreshold
(int thrusterNumber)

Get the overheating threshold of the Thruster based on the order it appears in the
Thrusters tab in the ShipControlModule. Numbers begin at 1.

IsThrusterOverheating

(int thrusterNumber)

Is the thruster heat level at or above the overheating threshold? Thruster Number
is based on the order it appears in the Thrusters tab in the ShipControlModule.
Numbers begin at 1.

RepairThruster Repair the health of a thruster. Will also set the heat level to 0. Can be useful if a
thruster has burnt out after being over heated. Thruster Number is based on the

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 102

Property or Method Description

(int thrusterNumber) order it appears in the Thrusters tab in the ShipControlModule. Numbers begin at
1.

SetFuelLevel

(float newFuelLevel)

Set the central fuel level for the whole ship. If useCentralFuel is false, use
SetFuelLevel (thrusterNumber, new FuelLevel).

SetFuelLevel

(int thrusterNumber, float
newFuelLevel)

Set the fuel level of the Thruster based on the order it appears in the Thrusters tab
in the ShipControlModule. Numbers begin at 1. Fuel Level Range 0.0 (empty) to
100.0 (full).

SetHeatLevel

(int thrusterNumber, float
newHeatLevel)

Set the heat level of the Thruster based on the order it appears in the Thrusters
tab in the ShipControlModule. Numbers begin at 1. Heat Level Range 0.0 (min) to
100.0 (max).

SetMaxThrust

(int thrusterNumber, int
newMaxThrustkN)

Set the Maximum Thrust of the Thruster based on the order it appears in the
Thruster tab in the ShipControlModule. Numbers begin at 1. Values should be in
kilo Newtons.

SetThrottleAllThrusters

(float newThrottleValue)

Set all thrusters to the same throttle value. Values are clamped to between 0.0 and
1.0.

SetThrusterThrottle (int
thrusterNumber, float
newThrottleValue)

Set the throttle for a given thruster. Numbers begin at 1. Values should be
between 0.0 and 1.0.

ShutdownThrusterSystems
(bool isInstantShutdown =
false)

Begin to shut down the thrusters. Optionally override the shutdown duration.

StartupThrusterSystems
(bool isInstantStartup =
false)

Begin to bring the thrusters online. Optionally, override the start-up duration. As
soon as the systems begin to start up, isThrusterSystemsStarted will be true.

Ship (Weapon) Methods or Properties
These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

DeactivateBeams (SSCManager
sscManager)

Deactivate all beam weapons that are currently firing

GetWeaponHeatLevel

(int weaponIdx)

Get the heat level of the Weapon with the zero-based index in list of
weapons. Heat Level Range 0.0 (min) to 100.0 (max).

GetWeaponIndexByName

(string weaponName)

Get the zero-based index of a weapon on the ship given the weapon
name. Returns -1 if not found. Use this sparingly as it will incur garbage.
Always declare the parameter as a static readonly variable.

private static readonly string WPNturret1Name = "Turret 1";

..

int wpIdx = GetWeaponIndexByName(WPNturret1Name);

GetWeaponByIndex

(int weaponIdx)

Get the weapon on the ship from a zero-based index in the list of
weapons. This will be 1 less than the number shown next to the weapon

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 103

Property or Method Description

on the Combat tab. It validates the weaponIdx so, if possible, don't call this
every frame.

NumberOfWeapons [READ ONLY] The number of weapons on this ship.

ClearWeaponTarget (int weaponIdx) Clears all targeting information for the weapon. This should be called if
you do not know if the target is a ship or a gameobject.

WARNING: For the sake of performance, does not validate weaponIdx.

HasWeaponTarget (int weaponIdx) Has the weapon with the zero-based index in list of weapons got a target
assigned to it? The target could be a GameObject, Ship, or Ship Damage
Region.

WARNING: For the sake of performance, does not validate weaponIdx.

ReinitialiseWeaponVariables () Re-initialises variables related to weapons. Call after modifying
weaponList.

RepairWeapon

(int weaponIdx)

Repair the health of a weapon with the zero-based index in list of
weapons. Will also set the heat level to 0. Can be useful if a weapon has
burnt out after being over heated.

SetWeaponHeatLevel (int
weaponIdx, float newHeatLevel)

Set the heat level of the Weapon with the zero-based index in list of
weapons. Heat Level Range 0.0 (min) to 100.0 (max).

SetWeaponTarget

(string weaponName, GameObject
target)

Sets the gameobject that the weapon will attempt to aim at. Currently
only applies to Weapon.WeaponType.TurretProjectile and FixedProjectile
weapons with guided projectiles. However, for the sake of performance,
this method does not do any WeaponType validation.

WARNING: This method will generate garbage. Where possible call
SetWeaponTarget(int weaponIdx, GameObject target). If only the name is
known, first call GetWeaponIndexByName(string weaponName) once in
your Awake() routine.

SetWeaponTarget

(int weaponIdx, GameObject target)

Sets the gameobject that the weapon will attempt to aim at. Currently
only applies to Weapon.WeaponType.TurretProjectile and FixedProjectile
weapons with guided projectiles. However, for the sake of performance,
this method does not do any WeaponType validation.

WARNING: For the sake of performance, does not validate weaponIdx.

SetWeaponTargetShip

(int weaponIdx, ShipControlModule
targetShipControlModule)

Sets the ship that the weapon will attempt to aim at. Currently only
applies to Weapon.WeaponType.TurretProjectile and FixedProjectile
weapons with guided projectiles. However, for the sake of performance,
this method does not do any WeaponType validation.

WARNING: For the sake of performance, does not validate weaponIdx.

SetWeaponTargetShipDamageRegion
(int weaponIdx, ShipControlModule
targetShipControlModule,
DamageRegion damageRegion)

Sets the ship’s Localised damage region that the weapon will attempt to
aim at. Currently only applies to Weapon.WeaponType.TurretProjectile
and FixedProjectile weapons with guided projectiles. However, for the
sake of performance, this method does not do any WeaponType
validation. WARNING: For the sake of performance, does not validate
weaponIdx.

SetWeaponFireDirection

(int weaponIdx, Vector3
aimAtWorldSpacePosition)

Performs a once-off change to the direction the weapon will fire based on
a "target" position in world-space. The weapon will NOT stay locked onto
this position.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 104

Property or Method Description

NOTE: Should NOT be used for Turrets. Use SetWeaponTarget(..) instead.

WARNING: For the sake of performance, does not validate weaponIdx.

WeaponHasLineOfSight (Weapon
weapon, bool directToTarget = false,
bool obstaclesBlockLineOfSight =
true, bool anyEnemy = true)

Returns whether a weapon has line of sight to the weapon's specified
target (i.e. weapon.target). If directToTarget is set to true, will raycast
directly from the weapon to the target. If directToTarget is set to false, will
raycast in the direction the weapon is facing. This method will return true
if the raycast hits:

a) The weapon's specified target,
b) An enemy ship (distinguished by faction ID) - even if it is not the

target and anyEnemy is true
c) An object that isn't the target (if obstaclesBlockLineOfSight is set

to false),
d) Nothing.

This method will return false if the raycast hits:

a) A friendly ship (distinguished by faction ID),
b) An object that isn't the target (if obstaclesBlockLineOfSight is set

to true).
c) An enemy ship that is not the target when anyEnemy is false

WeaponHasLineOfSight

(Weapon weapon, GameObject
target, bool directToTarget = false,
bool obstaclesBlockLineOfSight =
true, bool anyEnemy = true)

Returns whether a weapon has line of sight to a target. If directToTarget is
set to true, will raycast directly from the weapon to the target. If
directToTarget is set to false, will raycast in the direction the weapon is
facing. This method will return true if the raycast hits:

a) The target,
b) An enemy ship (distinguished by faction ID) - even if it is not the

target and anyEnemy is true,
c) An object that isn't the target (if obstaclesBlockLineOfSight is set

to false),
d) Nothing.

This method will return false if the raycast hits:

a) A friendly ship (distinguished by faction ID),
b) An object that isn't the target (if obstaclesBlockLineOfSight is set

to true).
c) An enemy ship that is not the target when anyEnemy is false

Ship API Call Backs
Custom runtime methods should be a lightweight to avoid performance issues. These single-cast delegates can have

a single instance of a call-back method. This is useful when you want to take some (custom) action when something

occurs, like when a ship is destroyed or is hit or damaged by a projectile.

These can be referenced or called from shipControlModule.shipInstance.

Property or Method Description

CallbackOnDamage
callbackOnDamage

The name of the custom method that is called immediately after damage has
changed. Your method must take 1 float parameter. This should be a lightweight

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 105

Property or Method Description

method to avoid performance issues. It could be used to update a HUD or take
some other action.

CallbackOnCameraShake
callbackOnCameraShake

Generally reserved for internal use by ShipCameraModule. If you use your own
camera scripts, you can create a lightweight custom method and assign it at
runtime so that this is called whenever camera shake data is available.

CallbackOnWeaponFired
callbackOnWeaponFired

The name of the custom method that is called immediately after a weapon has
fired. This should be a lightweight method to avoid performance issues that
doesn't hold references the ship or weapon past the end of the current frame.

CallbackOnWeaponNoAmmo
callbackOnWeaponNoAmmo

The name of the custom method that is called immediately after the weapon runs
out of ammunition. Your method must take a ship and weapon parameter. This
should be a lightweight method to avoid performance issues that doesn't hold
references the ship or weapon past the end of the current frame.

Player Input Module Properties

Property or Method Description

GetShipInput Gets a reference to the input being sent from the
PlayerInputModule to the ShipControlMode

GetShipControlModule Get a reference to the ShipControlModule that this
PlayerInputModule will send input data to.

IsInitialised Is the Player Input Module initialised and ready for use?

IsInputEnabled Is the PlayerInputModule currently enabled to send input to
the ship? See EnableInput() and DisableInput(..)

IsCustomPlayerInputOnlyEnabled Is all input except CustomerPlayerInputs ignored? See
EnableInput() and DisableInput(..)

IsShipAIModeEnabled Is the ship currently getting movement input from the
ShipAIInputModule rather than PlayerInputModule?

Player Input Module (General) API Methods

Property or Method Description

EnableInput () Enable the Player Input Module to receive input from the
configured device

DisableInput (bool allowCustomPlayerInput = false) Disable input or stop the Player Input Module from receiving
input from the configured device. Also calls ResetInput().
When allowCustomPlayerInput is true, all other input except
CustomPlayerInputs are ignored. This can be useful when
you want to still receive actions that generally don't involve
ship movement.

Initialise () Call this via code if “Initialise on Awake” is not enabled.

RemoveListeners() Call this when you wish to remove any custom event
listeners, like after creating them in code and then
destroying the object. You could add this to your game play
OnDestroy code.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 106

Property or Method Description

ResetInput() Reset and send 0 input on each axis to the ship

ReinitialiseCustomPlayerInput () This should be called if you modify the CustomPlayerInputs
at runtime

ReinitialiseDiscardData () Re-initialise (set) the shipInput based on the
is[axis/button]DataDiscard field settings. Must be called
after each change to any of those fields/variables.

SetTargetDisplay (int displayNumber) Used on a PC with multiple screens (display monitors) to
adjust mouse position when player wants to use a screen
other than Display 1.

Custom Player Inputs can be added at runtime. Here is a code fragment that demonstrates one scenario.

private void Start()

{

 // Do stuff here

 PlayerInputModule playerInputModule = GetComponent<PlayerInputModule>();

 // In code, add the input for the button press (assume Direct Keyboard)

 CustomPlayerInput customPlayerInput = new CustomPlayerInput();

 if (customPlayerInput != null)

 {

 customPlayerInput.inputAxisMode = PlayerInputModule.InputAxisMode.SingleAxis;

 customPlayerInput.isButton = true;

 customPlayerInput.isButtonEnabled = true;

 // Here we use Direct Keyboard but could also setup Unity Input System, Oculus, VIVE, Rewired etc.

 customPlayerInput.dkmPositiveKeycode = KeyCode.L;

 // Tell SSC to call our method when the button is pressed.

 customPlayerInput.customPlayerInputEvt = new CustomPlayerInputEvt();

 // Add a delegate listener. You could also call a method that that takes

 // a parameters of (Vector3 inputValue, int customPlayerInputEventType).

 customPlayerInput.customPlayerInputEvt.AddListener(delegate { LaunchShip(); });

 // Add the custom player input to the list in the PlayerInputModule

 playerInputModule.customPlayerInputList.Add(customPlayerInput);

 // We have modified the Custom Player Inputs, so we need to reinitilise them.

 playerInputModule.ReinitialiseCustomPlayerInput();

 }

 // Do other stuff here

}

/// <summary>

/// Count down and then launch the ship using the catapult

/// </summary>

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 107

public void LaunchShip()

{

 if (isInitialised)

 {

 shipDisplayModule.ShowDisplayMessage(countdownDisplayMessage);

 // Count down with HUD messages

 Invoke(countDownMethodName, 1f);

 Invoke(countDownMethodName, 2f);

 Invoke(countDownMethodName, 3f);

 // Undock in CountDown() when countDown reaches 0.

 }

}

private void OnDestroy()

{

 if (isInitialised)

 {

 playerInputModule.RemoveListeners();

 }

}

Player Input Module (AI-Assist) API Methods
See also “Ship Docking Station API Methods” and “Ship Docking API Methods”.

Property or Method Description

DiableAIMode () Attempt to disable AI control mode. This requires a Ship AI
Input Module to also be attached to the player ship. After
calling this method, check if it was successful with the
IsShipAIModeEnabled property.

EnableAIMode () Attempt to enable AI control mode. This requires a Ship AI
Input Module to also be attached to the player ship. After
calling this method, check if it was successful with the
IsShipAIModeEnabled property. When AI mode is enabled,
the Custom Inputs are still enabled. To also disable Custom
Player Inputs, call DisableInput(false) after calling
EnableAIMode().

EnableAIDocking () Attempt to enter Ship AI-assisted mode, then attempt
docking. This will leave and Custom Player Inputs enabled.
To disable them, call DisableInput(false) after calling after
calling EnableAIDocking().

EnableAIUndocking () Attempt to enter Ship AI-assisted mode, then attempt
undocking. This will leave and Custom Player Inputs enabled.
To disable them, call DisableInput(false) after calling after
calling EnableAIUndocking().

ToggleAIMode () Attempt to switch between Player and AI control or vis
versa. If the mode is changed during this method, we can
assume that the Ship AI Input Module component is present
and initialised.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 108

Property or Method Description

ToggleAIDocking () Attempt to enter Ship AI-assisted mode, then attempt
docking or undocking depending upon the current
DockignState.

Player Input Module (XR) API Methods or Properties
This section contains a selection of useful properties and methods for use with Unity XR in a VR game or project. See

also the Player Input Module chapter.

Property or Method Description

DisableXRCamera() Attempt to disable the XR Camera. Has no effect if UnityXR is
not configured.

DisableXRHands() Attempt to disable the XR Hands. Has no effect if UnityXR is
not configured.

EnableXRCamera() Attempt to enable the XR Camera. Has no effect if UnityXR is
not configured.

EnableXRHands() Attempt to enable the XR Hands. Has no effect if UnityXR is
not configured.

GetXRInputActionAsset() Get the Unity Input System InputActionAsset
scriptableobject for XR.

SetXRFirstPersonCamera1 (Camera newCamera,
Transform cameraTrfm, bool isAutoEnable)

Set the XR camera which will be rotated by the Tracked Pose
Driver.

UpdateUnityXRActions (bool showErrors = false) Used at runtime to convert string unique identifiers for
actions (GUIDs) into Unity Input System ActionInputs to
avoid looking them up and incurring GC overhead each
Update. If actions are modified at runtime, call this method.
Has no effect if Unity Input System package is not installed.

Ship AI Input Module API Methods or Properties
This section contains a selection of useful properties and methods for the AI module. Others can be found by looking

in the scripts\ai\ShipAIInputModule.cs script.

Property or Method Description

AIStateActionInfo GetCurrentStateAction () Returns an enumeration indicating what the current
state action for this AI ship is.

AssignShipsToEvade (List<Ship> shipsToEvadeList) Assigns a list of ships to evade for this ship, to be used
by the current state.

AssignSurfaceTurretsToEvade(List<SurfaceTurretModule>
surfaceTurretsToEvadeList)

Assigns a list of surface turrets to evade for this ship,
to be used by the current state.

AssignTargetLocation(LocationData locationData) Assigns a target location for this AI ship, to be used by
the current state.

AssignTargetPath (PathData pathData) Assigns a target path for this AI ship, to be used by the
current state. Sets the current target path location

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 109

Property or Method Description

index to 1 (the second point) or 0 (the first point) if
there is no second point.

AssignTargetPath (PathData pathData, int
previousPathLocationIndex, int nextPathLocationIndex,
float targetPathTValue)

Assigns a target path for this AI ship, to be used by the
current state. Set the previous and next locations
along the path, and the normalised distance between
the two locations where the ship will join the path.

AssignTargetAngularDistance

(float targetAngularDistance)

Assigns a target angular distance for this ship, to be
used by the current state.

AssignTargetDistance (float targetDistance) Assigns a target distance for this ship, to be used by
the current state.

AssignTargetTime (float targetTime) Assigns a target time for this ship, to be used by the
current state.

AssignTargetPosition

(Vector3 targetPositionVector)

Assigns a target position for this AI ship, to be used by
the current state.

AssignTargetRadius(float targetRadius) Assigns a target radius for this ship, to be used by the
current state.

AssignTargetRotation

(Quaternion targetRotationQuaternion)

Assigns a target rotation for this AI ship, to be used by
the current state.

AssignTargetShip (ShipControlModule
targetShipControlModule)

Assigns a target ship for this AI ship, to be used by the
current state.

AssignTargetVelocity (Vector3 targetVelocity) Assigns a target velocity for this ship, to be used by
the current state.

HasCompletedStateAction () Returns whether the state action has been completed
yet.

GetCurrentTargetPathTValue() Get the time value between the previous Target Path
Location and the current (next) Location along the
Path. The TValue should be between 0.0 and 1.0.

GetLastBehaviourInputTarget () Returns the last position to be designated as the
target position by the chosen AI behaviour input.

GetShipControlModule When the Ship AI Input Module is initialised, this
property returns the attached ShipControlModule
without having to call GetComponent().

GetState() Returns the state ID of the current state for this AI
ship. Returns -1 if the currentState is not set. To get
the instance of the state call
AIState.GetState(shipAIInputModule.GetState())

GetCurrentStateStageIndex() Gets the current stage index for the current state. This
(zero-based) index is used to keep track of what stage
the AI ship has reached in the current state.

GetCurrentTargetPathLocationIndex() Gets the current index of the location of the target
path the AI ship will head towards.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 110

Property or Method Description

GetPreviousTargetPathLocationIndex() Gets the previous index of the location of the target
path the AI ship is heading away from.

GetShip Get a reference to the Ship instance which is part of
an initialised ShipControlModule. If the Ship AI Input
Module or Ship Control Module are not initialised, it
will return null.

GetShipId Get the identity of the ship this AI module is attached
to. It will return 0 if the ship is not initialised.

GetShipsToEvade () Gets the currently assigned list of ships to evade (if
any).

GetSurfaceTurretsToEvade() Gets the currently assigned list of surface turrets to
evade (if any).

GetTargetAngularDistance() Gets the currently assigned target angular distance.

GetTargetDistance() Gets the currently assigned target distance.

GetTargetRadius() Gets the currently assigned target radius.

GetTargetPosition() Gets the currently assigned target position (if any). A
returned value of Vector3.Zero indicates it is
unassigned.

GetTargetLocation() Gets the currently assigned target location (if any).

GetTargetPath() Gets the currently assigned target path (if any).

GetTargetRotation() Gets the currently assigned target rotation (if any).

GetTargetTime() Gets the currently assigned target time.

GetTargetVelocity() Gets the currently assigned target velocity.

Initialise () Initialises the Ship AI Input Module.

RecalculateShipParameters () Recalculates the parameters for the AI's "model" of
the ship. Should be called if any of the ship's
characteristics are modified.

ResetPIDControllers () Resets the ship's PID Controllers. Call this if you
manually modify the ship's velocity or angular velocity.

SetCurrentStateStageIndex(int newStateStageIndex) Sets the current stage index for the current state. This
(zero-based) index is used to keep track of what stage
the AI ship has reached in the current state. Typically,
this should only be set from inside a state method.

SetCurrentTargetPathLocationIndex (int
newTargetPathLocationIndex)

Sets the current index of the location of the target
path the AI ship will head towards. If the index value
has changed, also updates the Previous Target Path
Location Index.

SetCurrentTargetPathLocationIndex (int
newTargetPathLocationIndex, float
newTargetPathLocationTValue)

Sets the current index of the location of the target
path the AI ship will head towards. If the index value
has changed, also update the Previous Target Path
Location Index. Also sets the time value between the
previous location and the current (next) location. The
time value should be between 0.0 and 1.0

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 111

Property or Method Description

SetCurrentTargetPathTValue(float tValue) Set the time value between the previous Target Path
Location and the current (next) Location along the
Path. The TValue should be between 0.0 and 1.0.

SetHasCompletedStateAction (bool isCompleted = true) Set whether the state action has been completed yet.
Typically, this should only be called from within a state
method.

SetPreviousTargetPathLocationIndex(int
newTargetPathLocationIndex)

Sets the previous index of the location of the target
path the AI ship is heading away from.

SetState (int newStateID) Sets the current state for this AI ship using the given
state ID.

Ship GetTargetShip() Gets the currently assigned target ship (if any).

TelePort (Vector3 delta, bool resetVelocity) Teleport the AI ship to a new location by moving by an
amount in the x, y and z directions. This could be
useful if changing the origin or centre of your world to
compensate for float-point error. It could also be used
it as part of a custom hyper-drive system you have
developed.

Ship AI Input Module API Call Backs
Custom runtime methods should be a lightweight to avoid performance issues. These single-cast delegates can have

a single instance of a call-back method. This is useful when you want to take some (custom) action when something

occurs, like when a behaviour output is set, and action has been completed, or when the AIState is changed.

See Demos\Scripts\DemoFlyToLocation.cs for an example of writing a custom behaviour.

These can be referenced or called from an instance of shipAIInputModule.

Property or Method Description

CallbackCompletedStateAction
callbackCompletedStateAction

The name of the developer-supplied custom method that is called
when the current state action has been completed. For example, a
ship has got to the end of a path. Must have 1 parameter of type
ShipAIInputModule.

CallbackCustomDockBehaviour
callbackCustomDockBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomDock".

CallbackCustomEvasionBehaviour
callbackCustomEvasionBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomEvasion".

CallbackCustomFleeBehaviour
callbackCustomFleeBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomFlee".

CallbackCustomFollowPathBehaviour
callbackCustomFollowPathBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomFollowPath".

CallbackCustomIdleBehaviour
callbackCustomIdleBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomIdle".

CallbackCustomObstacleAvoidanceBehaviour
callbackCustomObstacleAvoidanceBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomObstacleAvoidance".

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 112

Property or Method Description

CallbackCustomPursuitArrivalBehaviour
callbackCustomPursuitArrivalBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomPursuitArrival".

CallbackCustomPursuitBehaviour
callbackCustomPursuitBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomPursuit".

CallbackCustomSeekArrivalBehaviour
callbackCustomSeekArrivalBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomSeekArrival".

CallbackCustomSeekBehaviour
callbackCustomSeekBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomSeek".

CallbackCustomSeekMovingArrivalBehaviour
callbackCustomSeekMovingArrivalBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomSeekMovingArrival".

CallbackCustomUnblockConeBehaviour
callbackCustomUnblockConeBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomUnblockCone".

CallbackCustomUnblockCylinderBehaviour
callbackCustomUnblockCylinderBehaviour

The name of the developer-supplied custom method that is called
when the AIBehaviourType is "CustomUnblockCylinder".

CallbackOnStateChange
callbackOnStateChange

The name of the developer-supplied custom method that gets
called whenever the state changes. Must have 3 parameters of
type: ShipAIInputModule, int (currentStateId), and int
(previousStateId).

You can get the actual AIState by calling say AIState.GetState
(previousStateId).

Ship Camera Module API Methods

Property or Method Description

DisableCamera() Disables the camera, preventing it from moving. It does not
stop the camera from rendering. If you set Time.timeScale to
0 in your game, you must first call this method. Typically,
you’ll also want to call MoveCamera() just before
DisableCamera() for the current frame. See also
StopCamera().

EnableCamera() Enables the camera, allowing it to move and follow or aim at
a target ship. See StartCamera() to allow it to render.

GetCamera1 Get the camera being used by this module

GetTarget () Get the current target ship for the camera. If the camera is
currently not assigned to a ship, it will return null.

IsCameraInFixedUpdate Is the camera being moved using FixedUpdate()?

IsCameraStarted Is camera started and rendering?

IsCameraEnabled Is the camera enabled for movement?

MoveCamera() Typically, you should not call this yourself, as it is called
automatically each frame. However, it can prove useful in
the case where you need to force a camera movement
update for this frame.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 113

Property or Method Description

MoveTo(Vector3 position, Vector3 rotation) Tele-port the camera to a new position. Rotation is xyz euler
angles in degrees. See also TelePort(..)

ReinitialiseTargetVariables () Re-initialises variables related to the target. Call after
modifying the camera “target” public variable.

SetTarget (ShipControlModule shipControlModule) Set's a new target for the camera and calls
ReinitialiseTargetVariables().

ShakeCamera() Shake the camera for maxShakeDuration seconds which
maxShakeStrength or force. If the camera is not enabled or
the duration and/or strength are 0 or less,
StopCameraShake() will be automatically called and the
inputs ignored.

ShakeCamera (float relativeStrength) Shake the camera with strength and duration relative to the
current maxShakeDuration and maxShakeStrength. Range of
relativeStrength should be between 0.0 and 1.0.

ShakeCamera (float duration, float strength) Shake the camera for specified seconds which the given
relative strength or force. If the camera is not enabled or the
duration and/or strength are 0 or less, StopCameraShake()
will be automatically called and the inputs ignored.

ShakeCameraDelayed (float delayTime) Shake the camera after initial delay in seconds, with the
current maxShakeDuration and maxShakeStrength.

StartCamera () Start the camera rendering. If the camera is disabled, it will
remain so. Call EnableCamera() to allow it to also move. If
there was an Audio Listener component attached and
enabled when this module was initialised, the listener will be
re-enabled.

StopCamera () Stops the camera from rendering. Also disables the camera
from moving. If there was an Audio Listener component
attached and enabled when this module was initialised, the
listener will be disabled. See also DisableCamera().

StopCameraShake() Stop the camera from shaking

SetCameraTargetDisplay (int displayNumber) Set the camera to use a particular display or screen. Displays
or monitors are numbered from 1 to 8.

TelePort (Vector3 delta) Teleport the camera to a new location by moving by an
amount in the x, y and z directions. This could be useful if
changing the origin or centre of your world to compensate
for float-point error. It could also be used it as part of a
custom hyper-drive system you have developed.

TelePort (Vector3 newPosition, Quaternion
newRotation)

Teleport the camera to a new location with given rotation in
world space.

Auto Targeting Module API Methods or Properties

Property or Method Description

IsInitialised Is the AutoTargetingModule initialised and ready for use? If
not, call Initialise() or set initialiseOnStart in the Inspector.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 114

Property or Method Description

IsTargetsShownOnHUD Are the radar targets being sent to the HUD?

NumberOfTargetsInRange The number of targets that are currently in range of
weapons with auto-targeting enabled.

SetHUD (ShipDisplayModule shipDisplayModule) If the Module Mode is ShipControlModule, assign the HUD
to the AutoTargetingModule - else set it to null.

ShowTargetsOnHUD () If the HUD is initialised and shown, start sending Target data
to the HUD. Only Display Targets already on the HUD will be
updated.

See also shipDisplayModule.AddTarget(..)

HideTargetsOnHUD () Stop sending targeting data to the HUD. Also, turn off any
Display Targets on the HUD.

Location and Path API Methods

Property or Method Description

SSCManager.GetOrCreateManager() Static method to get a reference to the Sci-Fi Ship Controller
Manager instance in the scene. The SSCManager manages
Locations and Paths in the scene.

SSCManager.AddLocation

(LocationData locationData)

Add a new Location in the scene. The Location can then be
added to one or more Paths. Locations can be used with SSC
AI and can appear on radar.

SSCManager.AddLocation

(Vector3 wsPosition, bool autoGenerateName)

Same as calling AppendLocation(wsPosition,
autoGenerateName)

SSCManager.GetNextLocation

(PathData pathData, int currentIdx, bool
isWrapEnabled)

Static method to get the next Location that has been
assigned to a Path, based on the 0-based index position in
list of PathLocationData items. May return null if no next
found. Wraps to start if isWrapEnabled is true. If currentIdx
= -1, it will attempt to find the first assigned Location.

e.g. LocationData locationData = GetNextLocation(pathData,
prevIdx, false);

SSCManager.GetNextPathLocationIndex

(PathData pathData, int currentIdx, bool
isWrapEnabled)

Static method to get the next PathLocation index that has
been assigned to a Path, based on the 0-based index
position in list of PathLocationData items. May return -1 if
no next found. Wraps to start if isWrapEnabled is true. If
currentIdx = -1, it will attempt to find the first assigned
Location.

SSCManager.GetPreviousLocation

(PathData pathData, int currentIdx, bool
isWrapEnabled)

Static method to get the previous Location that has been
assigned to a Path, based on the 0-based index position in
list of PathLocationData items. May return null if no previous
found. Wraps to end if isWrapEnabled is true. If currentIdx
== number of Locations in Path, the last assigned Location
will be returned.

SSCManager.GetPreviousPathLocationIndex Static method to get the previous PathLocation index that
has been assigned to a Path, based on the 0-based index

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 115

Property or Method Description

(PathData pathData, int currentIdx, bool
isWrapEnabled)

position in list of PathLocationData items. May return -1 if
no previous found. Wraps to end if isWrapEnabled is true. If
currentIdx == number of Locations in Path, the last assigned
Location will be returned.

sscManager.AppendLocation

(Vector3 wsPosition, bool autoGenerateName)

Add a new Location in the scene. The Location can then be
added to one or more Paths. Locations can be used with SSC
AI. If autoGenerateName is true, GC will be impacted.

sscManager.AppendLocation

(PathData pathData, Vector3 wsPosition, bool
autoGenerateName, bool refreshPath)

Add a new Location in the scene and add it to the Path. If
autoGenerateName is true, GC will be impacted. refreshPath
will update the path distances. If adding many Locations, set
refreshPath to false and call RefreshPathDistances(..) for
each Path manually.

sscManager.AddPath (PathData newPath) Add a path to the scene. Alternatively, use CreatePath().

sscManager.CreatePath() Create a new path and return the reference to the PathData.

sscManager.InsertLocationAt (PathData pathData,
int insertIndex, bool autoGenerateName, bool
refreshPath)

Insert a new Location before the zero-based point on the
Path. It has no effect if there are not no points in the Path.

sscManager.UpdateLocation

(LocationData locationData, Vector3 wsPosition,
bool refreshPath)

Update the Location's position. This also updates tangent
control points for any Paths that the Location is a member
of. refreshPath will update the path distances for all affected
Paths. If updating many Locations, set refreshPath to false
and call RefreshPathDistances(..) for each Path manually. If
enabled for radar, update the radar item.

sscManager.InitialiseLocations

(PathData pathData, Vector3
dockingStationPosition, Vector3 offsetPosition,
Quaternion deltaRotation, Vector3 pathVelocity,
Vector3 pathAngularVelocity)

Set the initial or starting positions of Locations and control
points along a dynamic (moveable) Path at runtime.
Currently used with ShipDockingStation entry and exit paths
that are attached to a mothership.

NOTE: Assumes the Locations in each Path are not members
of any other Paths in the scene. Paths will only be initialised
once.

sscManager.MoveLocations

(PathData pathData, LocationData
locationDataMoved, Vector3 wsPosition, bool
refreshPath)

Given a Location in a Path, being moved, update all other
selected Locations in the same Path at the same time.

NOTE: As this uses delegates, it may incur some GC
overhead.

ssManager. MoveLocations (PathData pathData,
float updateSeqNumber, Vector3 deltaPosition,
Quaternion deltaRotation)

Designed specifically for runtime movement of a Path, it
assumes the Locations of the Path are NOT members of any
other Path. Position and Rotation deltas are from the
CURRENT positions and rotations. Works similar to TelePort
API methods.

sscManager.MoveLocations

(PathData pathData, float updateSeqNumber,
Vector3 dockingStationPosition, Vector3
deltaPosition, Quaternion deltaRotation, Vector3
pathVelocity, Vector3 pathAngularVelocity)

Designed specifically for runtime movement of a Path, it
assumes the Locations of the Path are NOT members of any
other Path. Position and Rotation deltas are from the INITIAL
or starting positions and rotations.

See also InitialiseLocations(..).

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 116

Property or Method Description

sscManager.MoveLocations

(LocationData locationDataMoved, Vector3
wsPosition, bool refreshPaths)

Given a Location being moved, update all other selected
Locations in the scene at the same time. If they are
members of Paths, update those Paths.

sscManager.DeleteSelectedLocations

(bool refreshPath)

Delete all the selected Locations, including any Location slots
associated with a Path. refreshPath will update the path
distances for all affected Paths.

sscManager.GetLocation

(int guidHash)

Get a Location given the unique guidHash code of the
Location

sscManager.GetLocation

(string locationName)

Get the first Location given the name of the Location.
locationName is not case sensitive. If the locationName
parameter is empty or null, no Location will be returned
even if there are Locations without a name. NOTE: When
possible, use GetLocation(guidHash).

GetLocationByGameObjectID

(int gameObjectInstanceID)

If a location was added with AppendLocation(gameObject),
it can also be retrieved at runtime with this method by
passing in the gameobject.GetInstanceID(). This might be
useful if you wish to destroy the gameobject (and remove
the Location) but don’t have the guidHash or LocationData
reference.

sscManager.GetPath

(int guidHash)

Get a Path given the unique guidHash code of the Path

sscManager. GetPath

(string pathName)

Get the first Path given the name of the Path. pathName is
not case sensitive. If the pathName parameter is empty or
null, no Path will be returned even if there are Paths without
a name. NOTE: When possible, use GetPath(guidHash).

sscManager.GetPathDistance

(PathData pathData,

int pathLocationIndex1, int pathLocationIndex2)

Get the Path distance between two Locations. If the Location
index positions in the Path are invalid, the method will
return 0. If pathLocationIndex2 is less than
pathLocationIndex1, assume the path wraps around to the
start again.

sscManager.RefreshPathDistances

(PathData pathData)

Recalculate the distances that are stored in the
PathLocationData instances.

sscManager.ReversePath (PathData pathData) Attempt to reverse the direction of a path.

sscManager.SnapPathToMesh(testPath,
Vector3.up, ~0, true);

Attempt to snap the Path locations to a mesh above or
below the current location. The location is placed with an
offset from mesh. This 'snap' distance is the
pathData.locationDefaultNormalOffset. The method checks
for a mesh between pathData.snapMinHeight and
snapMaxHeight in the upDirection.

sscManager = SSCManager.GetOrCreateManager();

LocationData locn =
sscManager.GetLocation("MyLocation");

sscManager.SnapLocationToMesh(locn, 10f, 0f,
2000f, Vector3.up, ~0, true);

Attempt to snap the Location to a mesh above or below the
current position. The location is placed with an offset from
mesh. This 'snap' distance is the offset.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 117

Beam, Destruct, Projectile and Effects API Methods
Beams, Destruct, Projectiles, and Effects objects are instantiated and managed by the SSCManager within a scene.

Properties and methods are accessible via an instance of sscManager - see GetOrCreateSSCManager() below.

Property or Method Description

bool IsBeamsPaused [READONLY] Are all the beam objects in the scene currently
paused?

bool IsEffectsObjectsPaused [READONLY] Are all the effects objects in the scene currently
paused?

bool IsProjectilesPaused [READONLY] Are all the projectiles in the scene currently
paused?

GetBeamPrefab (int beamPrefabID) Returns the prefab for a beam given its beam prefab ID.

GetProjectilePrefab (int projectilePrefabID) Returns the prefab for a projectile given its projectile prefab
ID.

GetorCreateEffectsPool (EffectsModule
effectsObjectPrefab)

Get the effects pool for this prefab or create a new pool if
one does not already exist. Return the effectsObjectPrefabID
for the pool. See also InstantiateEffectsObject(ieParms), and
InstantiateSoundFX(..).

InstantiateEffectsObject (ref
InstantiateEffectsObjectParameters ieParms)

Instantiates the effects object with ID effectsObjectPrefabID
at the position specified in world space
(effectsObjectPrefabID is the ID sent back to each projectile
/ damage region after calling the
UpdateProjectilesAndEffects() method).

InstantiateSoundFX
(InstantiateSoundFXParameters sfxParms,
AudioClip audioClip)

Instantiate a pooled EffectsModule which contains an audio
source. If audioClip is null, the existing one (if there is one)
attached to the prefab will be used. See also
GetorCreateEffectsPool(..).

PauseBeams() Pause all Pooled, and Non-Pooled Beams in the scene. This
can be useful if you want to pause a game or bring up menu.

PauseDestructs() Pause all Pooled, and Non-Pooled Destruct objects in the
scene. This can be useful if you want to pause a game or
bring up menu.

PauseEffectsObjects() Pause all Pooled and Non-Pooled Effects Objects in the
scene. This can be useful if you want to pause a game or
bring up menu.

PauseProjectiles() Pause all DOTS, Pooled, and Non-Pooled Projectiles in the
scene. This can be useful if you want to pause a game or
bring up menu.

PlaySoundFX (int sfxObjectPrefabID, AudioClip
audioClip, Vector3 audioPosition, float clipVolume)

Play an audio clip at the specified world-space position at a
volume. This uses the pooled EffectsModules created with
GetOrCreateEffectsPool(..).
See also InstantiateSoundFX(..).

ResumeBeams () Resume all the Pooled and Non-Pooled Beams in the scene.

ResumeDestructs() Resume all the Pooled and Non-Pooled Destruct objects in
the scene.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 118

Property or Method Description

ResumeEffectsObjects() Resume all Pooled and Non-Pooled Effects Objects in the
scene.

ResumeProjectiles() Resume all DOTS, Pooled, and Non-Pooled Projectiles in the
scene. This can be useful if the game was previously paused.

SSCManager.GetOrCreateManager() Static method to get a reference to the Sci-Fi Ship Controller
Manager instance in the scene. The SSCManager is what
manages projectiles and effects in the scene.

TelePortBeams (Vector3 delta) Teleport or instantly move all active (weapon) beams by an
amount in the x, y and z directions. This could be useful if
changing the origin or centre of your world to compensate
for float-point error.

TelePortProjectiles (Vector3 delta) Teleport or instantly move all active projectiles by an
amount in the x, y and z directions. This could be useful if
changing the origin or centre of your world to compensate
for float-point error.

Projectile API Call Backs
Projectile callback can be useful when you wish to say write your own guided projectile algorithm rather than use

the one built-in.

Callback Description

CallbackProjectileMoveTo
callbackProjectileMoveTo

The name of the custom method that is called when a
kinematic guided projectile is being moved. Your method
must take 1 parameter of type ProjectileModule. It MUST
correctly update the Velocity property AND transform.position
on the projectile. Optionally it can update tranform.rotation.
This should be a lightweight method to avoid performance
issues as it is typically called each FixedUpdate.

SSCManager.GetOrCreateManager().callbackProjectileMoveTo
= YourMethod;

public void YourMethod (ProjectileModule projectileModule)

{

 // Your code here

}

Destructible Object Module API Methods or Properties
This module can be used to trigger a DestructModule when the health of the object reaches 0.

Property or Method Description

float Health The current health value of this object.

float HealthNormalised Normalised (0.0 – 1.0) value of the health of the object.

bool IsInitialised Has the module been initialised?

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 119

Property or Method Description

int RadarId The number used by the SSCRadar system to identify this
object at a point in time. This should not be stored across
frames and is updated as required by the system.

float ShieldHealth The current health value of this object’s shield. When a
shield is destroyed, its value is set to -0.01.

float ShieldNormalised Normalised (0.0 – 1.0) value of the shield for this object. If
useShielding is false, it will always return 0.

ApplyDamage (float damageAmount,
ProjectileModule.DamageType damageType =
ProjectileModule.DamageType.Default)

Apply damage to the object. If Use Damage Multipliers is
enabled, you can optionally pass in the DamageTye.

ApplyDamage (CallbackOnObjectHitParameters
callbackOnObjectHitParameters)

This routine is called by our damage receiver when a
projectile or beam hits our object

AddHealth (float healthAmount, bool
isAffectShield)

Add health to the object. If isAffectShield is true, and the
health reaches the maximum configured, excess health will
be applied to the shield. To incur damage, use the
ApplyDamage(..).

DisableRadar() Disable radar for this object. If you want to change the
visibility to other radar consumers, consider calling
SetRadarVisibility(..) rather than disabling the radar and
(later) calling EnableRadar() again. This will be automatically
called by DestructObject().

EnableRadar() Enable radar for this object. It will be visible on radar to
others in the scene.

GetDamageMultiplier
(ProjectileModule.DamageType damageType)

Returns the damage multiplier for damageType.

ReinitialiseDestructObjects() Reinitialises variables required for Destruct Module. Call
after modifying the destructObject.

ReinitialiseEffects() Reinitialises variables required for effects of the Destructible
Object Module. Call after modifying any effect data for this
module.

ResetHealth() Reset the health of the object back to initial values

SetDamageMultiplier
(ProjectileModule.DamageType damageType, float
damageMultiplier)

Sets the damage multiplier for damageType to
damageMultiplier.

SetRadarVisibility (bool isVisible) If radar is enabled for this object, set its visibility to radar.

SetSquadronId (int newSquadronId) Set the Squadron Id for the object. If radar is enabled, this
will also update the radar.

SetFactionId (int newFactionId) Set the Faction Id for the object. If radar is enabled, this will
also update the radar.

VerifyMultiplierArray() Verify that the damage multiplier array is correctly sized

The following methods can be overridden.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 120

Property or Method Description

virtual void Initialise() Initialises the DestructibleObjectModule. If you wish to
override this in a child (inherited) class you almost always
will want to call the base method first.

public override void Initialise()

{

 base.Initialise();

 // Do stuff here

}

virtual void DestructObject() Destroys the object. If you wish to override this in a child
(inherited) class you almost always will want to call the base
after doing your actions.

public override void DestructObject()

{

 // Do stuff here

 base.DestructObject();

}

virtual void DestructObjectDelayed

(float delayDuration)

Destroys the object after a delay period in seconds

Radar API Methods or Properties
A good way to learn about the Radar API is to look at any sample or demo code in the asset or discuss your scenario

with us in the Unity forum or on Discord.

As a general rule, if you see a parameter called “itemIndex”, for ships and locations this the RadarId. It is accessible

via:

shipControlModule.shipInstance.RadarId or locationData.RadarId.

To get the instance in the scene of the radar system use the following code:

SSCRadar sscRadar = SSCRadar.GetOrCreateRadar();

Property or Method Description

AddItem

(SSCRadarItem sscRadarItemInput)

Add an item to be tracked by radar. You would typically use
this for items created outside Sci-Fi Ship Controller. Ships
and Locations automatically call this when EnableRadar() is
called via the API or “Visible to Radar” is enabled in the
editor. For your own objects, you’ll need to regularly call
UpdateItem(..).

DisableRadar(int itemIndex) The item will no longer be visible in the radar system. If you
want to change the visibility to other radar consumers,
consider changing the radar item data rather than disabling
the radar and (later) calling EnableRadar(..) again.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 121

Property or Method Description

EnableRadar(GameObject gameObjectToAdd,
Vector3 position, int factionId, int squadronId, int
guidHash, int blipSize)

Attempt to add any gameobject to the radar system. If
added, it will be immediately visible to radar and the RadarId
(itemIndex) will be return. A value of -1 indicates it wasn't
added. NOTE: To add a ship to radar, use
shipControlModule.EnableRadar(). For Locations use
sscManager.EnableRadar(location).

If you set guidHash to 0, we will automatically set it to
gameObjectToAdd.GetHashCode().

FollowGameObject

(GameObject gameobject)

The centre of the radar will follow the gameobject. Currently
this only works when the built-in UI is configured in the
editor under Visuals. The same can be achieve via the API
when calling GetRadarResults(..) and passing in the
transform position.

FollowShip

(ShipControlModule shipControlModule)

The centre of the radar will follow the ship. Currently this
only works when the built-in UI is configured in the editor
under Visuals. The same can be achieve via the API when
calling GetRadarResults(..) and passing in the ship
TransformPosition.

GetNextBlipinScreenViewPort (List<SSCRadarBlip>
blipList, int startIndex, Camera camera, Vector2
viewSize, Vector2 viewportSize, Vector2
viewportOffset)

Get the next blip in the supplied list, that is in front of the
camera within a custom 2D viewport. The startIndex is the
zero-based index to begin searching the supplied list. If a
match is found, the zero-based index of that blip will be
returned, else -1 will be returned. viewSize is usually the
screen resolution. viewPortSize is the width and height as
0.0-1.0 values of the full viewSize. viewportOffset is -1.0 to
1.0 values with 0,0 as the centre of the screen.

GetNextBlipInView (List<SSCRadarBlip> blipList, int
startIndex, Camera camera, Vector2 viewSize)

Get the next blip in the supplied list, that is within the
camera's viewing area. The startIndex is the zero-based
index to begin searching the supplied list. If a match is
found, the zero-based index of that blip will be returned,
else -1 will be returned. viewSize is usually the screen
resolution.

NOTE: Currently assumes the camera is full screen.

GetRadarItem (int itemIndex, int
sequenceNumber)

Get an active (assigned) radar item given the itemIndex AND
its sequenceNumber. The sequence number is used to
validate that this is the correct radarItem. For ships and
locations, the itemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId

GetRadarItem (SSCRadarItemKey sscRadarItemKey) Get an active (assigned) radar item given the
SSCRadarItemKey. For ships and locations, the
sscRadarItemKey.radarItemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId.

GetRadarItemIndexByHash (int guidHash) Location radarItemTypes store a unique guidHash.
GameObject radarItemTypes by default store a Unity hash
code. Ship Damage Regions radarItemTypes store the
damage region unique guidHash. For these three types,
when the itemIndex (or RadarId) is unknown, this
methodcan be used to retrieve it.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 122

Property or Method Description

If there are no matches, -1 is returned.

GetRadarResults

(SSCRadarQuery sscRadarQuery,
List<SSCRadarBlip> queryResultsList)

Send a query (see below) to the radar system and populate a
list of matching items. The queryResultsList must be a non-
null, empty list. A query will never return items with
isVisibleToRadar = false.

GetVisibility (int itemIndex) Does this item appear in Radar queries? If the itemIndex is
invalid, this method will always return false.

NOTE: For performance reasons, it doesn't check if this is
non-empty radar item. For ships and locations, the
itemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId

HideUI() If the UI (mini-map) has been configured in the Editor under
Visuals, hide the radar display.

IsBlipInScreenViewPort (SSCRadarBlip radarBlip,
Camera camera, Vector2 viewSize, Vector2
viewportSize, Vector2 viewportOffset)

Is the blip in front of the camera within a custom 2D
viewport. Offset is -1.0 to 1.0 with 0,0 as the centre of the
screen. viewportSize is 0.0-1.0 of viewSize width and height.

IsBlipInView (SSCRadarBlip radarBlip, Camera
camera, Vector2 viewSize)

Is the blip within the camera's viewing area? viewSize is
usually the screen resolution.

NOTE: Currently assumes the camera is full screen.

IsGameObjectBlip (SSCRadarBlip radarBlip) Does the radar blip contain information about a
GameObject?

IsLocationBlip (SSCRadarBlip radarBlip) Does the radar blip contain information about a Location?

IsShipBlip (SSCRadarBlip radarBlip) Does the radar blip contain information about a ship?

IsShipDamageRegionBlip (SSCRadarBlip radarBlip) Does the radar blip contain information about a ship damage
region?

RefreshRadarImageStatus() Call at runtime if radarImage is swapped or made null.

SetBlipSize (int itemIndex, byte blipSize) Set the blip size of the radarItem. Typically, this is set
automatically when a ship or Location is enabled for radar.
However, this lets the blip size be overridden at runtime.
NOTE: For performance reasons, it doesn't check if this is
non-empty radar item. For ships, the itemIndex is stored as
RadarId. e.g. shipControlModule.shipInstance.RadarId. For
surfaceTurretModule, the itemIndex is stored as RadarId.

SetCanvasSortOrder (int newSortOrder) Set the sort order in the scene of the radar mini-map. Higher
values appear on top.

SetCanvasTargetDisplay (int displayNumber) Set the radar mini-map to use a particular display. Displays
or monitors are numbered from 1 to 8.

SetDisplay

(GameObject centre, float range)

Set the world space position of the radar system. Use when
you want the radar system to "move" with gameobject.

SetDisplay

(Vector3 centre, float range)

Set the world space position of the radar system. Use when
you want the radar system to be fixed to a given location or
will move infrequently.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 123

Property or Method Description

SetFactionId (int itemIndex, int factionId) Set the factionId of the radarItem. NOTE: For performance
reasons, it doesn't check if this is non-empty radar item. For
ships, the itemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId. For
surfaceTurretModule, the itemIndex is stored as RadarId.

SetItemPosition

(int itemIndex, Vector3 wsPosition)

Set a new world space position for a radar item. This is
useful if you only want to update the position. See also
UpdateItem(..). NOTE: For performance reasons, it doesn't
check if this is non-empty radar item.

SetItemType(int itemIndex,
SSCRadarItem.RadarItemType radarItemType)

Set the type of the radarItem. Typically, this will only be
performed once for each object (e.g. a ship or ground
installation). NOTE: For performance reasons, it doesn't
check if this is non-empty radar item.

SetSquardronId (int itemIndex, int squadronId) Set the factionId of the radarItem. NOTE: For performance
reasons, it doesn't check if this is non-empty radar item. For
ships, the itemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId. For
surfaceTurretModule, the itemIndex is stored as RadarId.

SetVisibility

(int itemIndex, bool isVisibleToRadar)

Set if this item should appear in Radar queries? NOTE: For
performance reasons, it doesn't check if this is non-empty
radar item. The itemIndex for a ship is stored on the
shpInstance as RadarId.

ShowUI() If the UI (mini-map) has been configured in the Editor under
Visuals, show the radar display on the screen.

SSCRadar.GetOrCreateRadar() Returns the current SSCRadar instance for this scene. If one
does not already exist, a new one is created. If there is an
on-screen radar mini-map, it will automatically be hidden. To
show it call sscRadar.ShowUI().

sscRadar.GetRadarItem (int itemIndex) Get an active (assigned) radar item. For ships and locations,
the itemIndex is stored as RadarId. e.g.
shipControlModule.shipInstance.RadarId

sscRadar.RemoveItem

(int itemIndex)

Remove a single item from the radar. Use for items created
outside SSC. For ships and Locations, you would typically call
shipControlModule.DisableRadar() or
sscManager.DisableRadar(…).

UpdateItem(int itemIndex, SSCRadarPacket
sscRadarPacket)

Send information about a ship or object to the radar system.
For SSC ships you generally won’t need to do this as we do it
for you. However, for your own items that you want the
radar system to track, here is where you need to submit
your data after initially calling AddItem(..).

A SSCRadarQuery is a class that holds query options typically passed to the GetRadarResults() method.

Property Description

centrePosition This is the world-space position around which the radar query emits.

range The radar range in metres from the centrePosition

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 124

Property Description

is3DQueryEnabled Uses 3D distances to determine range when querying the radar data.

querySortOrder The sort order of the results. None is the fastest option and has the lowest
performance impact.

factionId The faction or alliance the item belongs to. This can be used to identify if an item is
friend or foe.

0 = neutral. -1 means not set (ignore factionId in query and return all factions unless
factionsToExclude is set).

factionsToInclude [Optional] An array of factionIds to include from the query results. Only considered
sscRadarQuery.factionId is -1.

factionsToExclude An array of factionIds to exclude from the query results. For example, if factionId is -
1, and factionsToExclude is 0, 2, 4, all objects will be returned except those ships and
Locations with a factionId of 0 (neutral), 2 and 4. This would be useful if your player
ship had a factionId of 2, you had an alliance with factionId 4 and you wanted to see
all enemy ships.

squadronsToInclude [Optional] An array of squadronIds to include from the query results

squadronsToExclude [Optional] An array of squadronIds to exclude from the query results

Radar API Call Backs

Callback Description

CallbackOnDrawBlip callbackOnDrawBlip The name of the custom method that is called when a blip is
to be draw on the radar display. Your method must take 4
parameters - Texture2D, Quaternion, Int, and SSCRadarBlip.
Your custom method should "paint" the blip onto the
texture by modifying the pixels.

public void YourMethod (Texture2D tex, Quaternion
displayRotation, int factionId, SSCRadarBlip sscRadarBlip)

{

 // Your code here

}

Surface Turret Module API Methods

Method Description

ClearWeaponTarget() Clears all targeting information for the weapon. This should
be called if you do not know if the target is a ship or a
gameobject.

DeactivateBeams (SSCManager sscManager) Deactivate any beams that the weapon is currently firing.
This gets automatically called is a DamageReceiver
component is attached and there is no health.

FireIfReady() Fire all cannons on the weapon if they are loaded and ready.
This is a single shot action. For continuous firing, call
SetAutoFire().

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 125

Method Description

ReinitialiseTurretProjectilesAndEffects() Reinitialises variables required for projectiles and effects of
the surface turret. Call after modifying any projectile or
effect data for this surface turret.

SetAutoFire() Sets the weapon to automatically fire if a target is acquired
and the weapon is ready.

SetManualFire() For manually firing the weapon. After this is set, call
FireIfReady() to fire the weapon.

SetWeaponTarget(GameObject target) The turret will track this gameobject.

SetWeaponTargetShip(ShipControlModule
targetShipControlModule)

The turret will track this ship

SetWeaponTargetShipDamageRegion
(ShipControlModule targetShipControlModule,
DamageRegion damageRegion)

The turret will track this ship’s localised damage region

WeaponHasLineOfSight

(GameObject target, bool directToTarget = false,
bool obstaclesBlockLineOfSight = true, bool
anyEnemy = true)

Returns whether a weapon has line of sight to a target. If
directToTarget is set to true, will raycast directly from the
weapon to the target. If directToTarget is set to false, will
raycast in the direction the weapon is facing.

This method will return true if the raycast hits:

a) The target,

b) An enemy ship (distinguished by faction ID) - even if it is
not the target and anyEnemy is true,

c) An object that isn't the target (if
obstaclesBlockLineOfSight is set to false),

d) Nothing.

This method will return false if the raycast hits:

a) A friendly ship (distinguished by faction ID),

b) An object that isn't the target (if
obstaclesBlockLineOfSight is set to true).

c) An enemy ship that is not the target when anyEnemy is
false

Surface Turret Module API Call Backs

Callback Description

CallbackOnDestroy callbackOnDestroy The name of the custom method that is called immediately
before the turret is destroyed. Your method must take 1
parameter of class SurfaceTurretModule.

This should be a lightweight method to avoid performance
issues. It could be used to update a score or affect the status
of a mission.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 126

Ship Docking Station API Methods

Method Description

AssignShipToDockingPoint (ShipControlModule
shipControlModule, ShipDocking shipDocking, int
dockingPointIndex)

Assigns a ship to the docking point with index
dockingPointIndex, if that docking point is currently available.
You can check whether the docking point is available by
calling IsDockingPointAvailable(). If the ship and/or
ShipDocking components are not initialised, they will be
automatically initialised if the docking point is available. See
also UnassignDockingPoint(dockingPointIndex).

AssignShipToDockingPoint (ShipControlModule
shipControlModule, ShipDocking shipDocking)

Assigns a ship to the first available docking point (if any are
available). If the ship and/or ShipDocking components are not
initialised, they will be automatically initialised if a docking
point is available. See also UnassignDockingPoint
(dockingPointIndex).

DockShip

(int dockingPointIndex)

Start the docking process for an initialised ship at a valid
(zero-based) docking point index. The ship must be
Undocked. If this is an AI ship and there is an entry path, it
will go into the docking state. Otherwise, it will become
Docked. The ship must already be assigned to the Docking
Point. See also UnDockShip(..), AssignShipToDockingPoint(..)

DockShip

(ShipControlModule shipControlModule)

Start the docking process for an initialised ship at a valid
(zero-based) docking point index. The ship must be
Undocked. If this is an AI ship and there is an entry path, it
will go into the docking state. Otherwise, it will become
Docked. The ship must already be assigned to the Docking
Point. See also UnDockShip(..), AssignShipToDockingPoint(..)

GetDockingPoint (int dockingPointIndex) Safely retrieve a ShipDockingPoint from the
ShipDockingStation.

Example: ShipDockingPoint shipDockingPoint =
shipDockingStation.GetDockingPoint(shipDocking.
DockingPointId);

GetDockingPointIndex (int shipId) Get the zero-based docking point index which a ship is
assigned to. If the ship is not initialised or the ship is not
assigned to a docking point on this docking station, it will
return ShipDockingStation.NoDockingPoint (-1).

Example: int dpIdx = GetDockingPointIndex
(shipControlModule.shipInstance.shipId);

GetAssignedShip (int dockingPointIndex) If a ship is assigned to this docking point, the
ShipControlModule for that ship is returned. If the
ShipDockingStation is not initialised, or the docking point
index is invalid, or there is no assigned ship, this method will
return null.

NOTE An assigned ship can have a DockingState of Docked,
Undocking, or Docking. See also GetDockedShip(..).

GetDockedShip (int dockingPointIndex) If the ShipDockingStation is initialised, and the docking point
is valid, and a ship is assigned to the docking point, and the
ship's DockingStatus is Docked, then return the
ShipControlModule. For all other scenarios, return null.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 127

Method Description

GetDockingPointEntryPathguidHash

(int dockingPointIndex)

Get the guidHash of the Entry Path for a docking point using
the zero-based index. Use sscManager.GetPath(guidHash) to
get the Path. If the guidHash == 0 there is no path assigned,
the station is not initialised, or the docking point index is
invalid.

GetDockingPointExitPathguidHash

(int dockingPointIndex)

Get the guidHash of the Exit Path for a docking point using
the zero-based index. Use sscManager.GetPath(guidHash) to
get the Path. If the guidHash == 0 there is no path assigned,
the station is not initialised, or the docking point index is
invalid.

GetStationVelocity() If the Docking Station is moving (i.e. when it is a mothership),
this returns the world space velocity, else it returns
Vector3.Zero.

ImportDockingPointDataFromJson (string
folderPath, string fileName)

Import a json file from disk and return as list of
ShipDockingPoints.

InitialiseDockingPointsPaths

(Vector3 positionOffset, Quaternion rotationDelta)

Remember initial Entry/Exit docking path location positions
for all ShipDockingPoints. Offset and rotate them as
indicated. Initial positions may need to be modified if the
ShipDockingStation has moved in the scene from where the
Entry/Exit Paths were first setup. Also sets the initial velocity,
angular velocity and anchorPoint.

IsDockingPointAvailable (int dockingPointIndex) Is the docking point with index dockingPointIndex currently
available?

IsShipAssigned (int shipId) Is the ship assigned to any docking points of the Ship Docking
Station? The ship does not have to be docked, to be assigned.

IsShipDocked (int shipId) Is the ship docked at any docking point of this Ship Docking
Station?

RemoveListeners() Call this when you wish to remove any custom event
listeners, like after creating them in code and then destroying
the object. You could add this to your game play OnDestroy
code.

SaveDockingPointDataAsJson (string filePath) Save the list of docking points for this ShipDockingStation to a
json file on disk.

UnassignDockingPoint (int dockingPointIndex) Attempt to unassign any ship allocated to a docking point
within the ShipDockingStation.

UnDockShip

(int dockingPointIndex)

Undock an initialised ship that currently has
ShipDocking.DockingState of Docked at a valid (zero-based)
docking point index. If the docked ship is an AI ship it will go
into the Undocking state (from SSC v1.3.3+ it no longer
requires an Exit Path). See also UnDockShip(..),
AssignShipToDockingPoint(..).

WARNING: Do NOT call this from the onPreUndock event.

UnDockShip

(ShipControlModule shipControlModule)

Undock an initialised ship that currently has
ShipDocking.DockingState of Docked at a valid (zero-based)
docking point index. If the docked ship is an AI ship it will go
into the Undocking state (from SSC v1.3.3+ it no longer

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 128

Method Description

requires an Exit Path). See also UnDockShip(..),
AssignShipToDockingPoint(..)

WARNING: Do NOT call this from the onPreUndock event.

Ship Docking API Methods
See also Player Input Module (AI-Assist) API Methods for AI-assisted docking.

Method Description

GetState() Return the current docking state

GetStateInt() Return the current docking state as an integer.

RemoveListeners() Call this when you wish to remove any custom event
listeners, like after creating them in code and then destroying
the object. This is automatically called by OnDestroy.

SetState (DockingState dockingState) Set the docking state of the ship. When undocking, the
velocity of ShipDockingStation (mothership) is considered. If
configured, a custom method is called after the state has
been changed. See Ship Docking API Call Backs below.

StopOnPostDocked() Prevent a delayed Post Docked event from running once the
delay has been triggered by the ship has docked.

StopOnPostDockingHover() Prevent a delayed Post Docking Hover event from running
once the delay has been triggered by the ship reaching the
hover point while docking.

StopOnPostDockingStart() Prevent a delayed Post Docking Start event from running
once the delay has been triggered by the ship starting to
dock.

StopOnPostUndocked() Prevent a delayed Post Undocked event from running once
the delay has been triggered by the ship finishing the docking
manoeuvre.

StopOnPostUndockingHover() Prevent a delayed Post Undocking Hover event from running
once the delay has been triggered by the ship reaching the
hover point while undocking.

StopOnPostUndockingStart() Prevent a delayed Post Undocking Start event from running
once the delay has been triggered by the ship starting to
undock.

Ship Docking API Call Backs

Callback Description

CallbackOnStateChange callbackOnStateChange The name of the custom method that is called immediately
after the state is changed. Your method must take 4
parameters: shipDocking (never null), shipControlModule
(never null), shipAIInputModule (could be null) and
previousDockingState.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 129

Callback Description

This should be a lightweight method to avoid performance
issues. Your method will NOT be called if
ShipDocking.IsInitialised is false.

See also onPostDockingHover, onPostUndockingHover
events.

Ship Display Module API Properties
These can be found under “Public Variables” in the ShipDisplayModule.cs script. Comments and descriptions are

included.

[IMPORTANT] If you are scripting HUD elements at runtime during the Awake() or Start() events in your game, it is

possible that they run before the ShipDisplayModule is initialised even though you have “Initialise On Start” enabled

in “General Settings”. If this happens, you can simply write the following code in your game (you just need a

reference to shipDisplayModule from the scene):

if (!shipDisplayModule.IsInitialised) { shipDisplayModule.Initialise(); }

Ship Display Module (General) API Methods

Method Description

Initialise () Initialise the ShipDisplayModule. Either set initialiseOnStart
to false and call this method in your code, or set
initialiseOnStart to true in the inspector and don't call this
method.

IsSourceShip (ShipControlModule
shipControlModule)

IsSourceShip (Ship ship)

Check to see if the ship is the same as the sourceShip
currently assigned to the HUD. If either are null, the method
will return false.

ReinitialiseVariables () Call this if you modify any of the following at runtime.

1) displayRectList
2) The displayReticlePanel size

3) Add or remove the MainCamera tag from a camera

ShowHUD () Show the heads-up display

HideHUD () Hide the heads-up display

SetCamera (Camera camera) Set or assign the main camera used by the heads-up display
for calculations

SetCanvasTargetDisplay (int displayNumber) Set the HUD to use a particular display. Displays or monitors
are numbered from 1 to 8.

SetHUDOffset (float offsetX, float offsetY) Set the offset (position) of the HUD. If the module has been
initialised, this will also re-position the HUD.

SetHUDSize (float width, float height) Set the size of the HUD overlay image and text. If the module
has been initialised, this will also resize the HUD. The values
are only updated if they are outside the range 0.0 to 1.0 or
have changed.

SetPrimaryColour (Color32 newColour)

SetPrimaryColour (Color newColour)

Set the primary colour of the heads-up display. Only update
the colour if it has actually changed. If the module has been

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 130

Method Description

initialised, this will also re-colour the HUD with the
appropriate brightness.

SetBrightness (float newBrightness) Set the overall brightness of the HUD.

SetCanvasSortOrder(int newSortOrder) Set the sort order in the scene of the HUD. Higher values
appear on top.

ToggleHUD () Turn on or off the HUD. Has no effect if not initialised. See
also ShowHUD() and HideHUD()

Ship Display Module (Cursor) API Methods

Method Description

ShowCursor () Show the hardware (mouse) cursor. This also restarts the
countdown auto-hide timer if that is enabled.

HideCursor () Hide the hardware (mouse) cursor.

NOTE: This will sometimes fail to turn off the cursor in the
editor Game View when it doesn't have focus, but will work
fine in a build.

CentreCursor () Centre the hardware (mouse) cursor in the centre of the
screen. WARNING: This will wait until the next frame before it
returns. Best used when a user closes a menu and returns to
flying conditions.

ToggleCursor() Toggle the hardware (mouse) cursor on or off.

NOTE: This will sometimes fail to turn off the cursor in the
editor Game View when it doesn't have focus, but will work
fine in a build.

Ship Display Module (Display Reticle) API Methods

Method Description

ShowDisplayReticle() Show the Display Reticle on the HUD. The HUD will
automatically be shown if it is not already visible.

HideDisplayReticle() Hide or turn off the Display Reticle

GetDisplayReticleGuidHash (int index) Returns the guidHash of the Reticle in the list given the index
or zero-based position in the list. Will return 0 if no matching
Reticle is found. Will return 0 if the module hasn’t been
initialised.

GetDisplayReticleGuidHash (string spriteName) Returns the guidHash of the Reticle in the list given the name
of the sprite. Will return 0 if no matching Reticle is found.
WARNING: This will increase GC. Use
GetDisplayReticleGuidHash (int index) where possible.

GetDisplayReticle (int guidHash) Get a DisplayReticle given its guidHash. See also
GetDisplayReticleGuidHash(..).Will return null if guidHash
parameter is 0, it cannot be found or the module has not
been initialised.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 131

Method Description

GetDisplayReticleSprite (int guidHash) Get the UI sprite (image) for a DisplayReticle. See also
GetDisplayReticleGuidHash(..).

ChangeDisplayReticle (int guidHash) Change the DisplayReticle sprite on the UI panel. See also
GetDisplayReticleGuidHash(..).

SetDisplayReticleOffset (Vector2 offset) Set the offset (position) of the Display Reticle on the HUD. If
the module has been initialised, this will also re-position the
Display Reticle. Same as SetDisplayReticleOffset(offset.x,
offset.y)

SetDisplayReticleOffset (float offsetX, float offsetY) Set the offset (position) of the Display Reticle on the HUD. If
the module has been initialised, this will also re-position the
Display Reticle. Input values range from -1 to 1.

SetDisplayReticleColour (Color32 newColour)

SetDisplayReticleColour (Color newColour)

Set the active Display Reticle colour. Only update the colour if
it has actually changed. If the module has been initialised,
this will also re-colour the Reticle with the appropriate
brightness.

ToggleDisplayReticle() Show or Hide the Display Reticle on the HUD. The HUD will
automatically be shown if required.

ValidateReticleList() Create a new list if required

Ship Display Module (Altitude and Speed) API Methods

Method Description

ShowAltitude () Attempt to show the Altitude indicator. Turn on HUD if
required.

HideAltitude () Attempt to turn off the Altitude indicator

SetAltitudeTextColour (Color32 newColour)

SetAltitudeTextColour (Color newColour)

Set the altitude text colour on the heads-up display. Only
update the colour if it has actually changed. If the module has
been initialised, this will also re-colour the HUD with the
appropriate brightness.

ShowAirSpeed () Attempt to show the Air Speed indicator. Turn on HUD if
required.

HideAirSpeed () Attempt to turn off the Air Speed indicator

SetAirSpeedTextColour (Color32 newColour)

SetAirSpeedTextColour (Color newColour)

Set the air speed text colour on the heads-up display. Only
update the colour if it has actually changed. If the module has
been initialised, this will also re-colour the HUD with the
appropriate brightness.

Ship Display Module (Display Attitude) API Methods
Most methods require that the ShipDisplayModule to be initialised. Attitude properties can be set in the editor or via

scripts at runtime.

Method Description

HideAttitude() Attempt to turn off the Attitude display

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 132

Method Description

SetDisplayAttitudeMaskSprite (Sprite newSprite) Set the sprite that will mask the Display Attitude scrollable
sprite

SetDisplayAttitudePrimaryColour (Color
newColour)

Set the Display Attitude primary colour. Only update the
colour if it has actually changed. If the module has been
initialised, this will also re-colour the attitude with the
appropriate brightness.

SetDisplayAttitudeScrollSprite (Sprite newSprite) Set the Display Attitude scroll sprite. E.g., SSCUIPitchLadder1

SetDisplayAttitudeSize (float width, float height) Set the normalised size of the scrollable Display Attitude.
Currently width is always 1.0

SetDisplayAttitudeOffset (float offsetX, float
offsetY)

Set the normalised offset (position) of the Display Attitude on
the HUD. If the module has been initialised, this will also re-
position the Display Attitude.

SetDisplayAttitudeSpriteBorderWidth

(float newBorderWidth)

Set the border width of the Scroll Sprite (texture) in pixels.
The attitude scroll image should be -90 to 90 deg. Ideally it
should have a "border" at the top and bottom of blank
(transparent) space to prevent +-90 being right at the
top/bottom of the HUD. The image is autoscaled to the full
height of the default HUD screen size.

ShowAttitude() Attempt to show the scrollable Attitude. Turn on HUD if
required.

Ship Display Module (Display Flicker) API Methods
All methods require that the ShipDisplayModule to be initialised. Flicker properties can be set in the editor or via

scripts at runtime.

Method Description

FlickerOn (float duration) Flicker the HUD on/off. Override the Flicker Default Duration.
Show the HUD when flickering finishes.

FlickerOff (float duration) Flicker the HUD on/off. Override the Flicker Default Duration.
Hide the HUD when flickering finishers.

Ship Display Module (Display Gauge) API Methods
Where possible, always use the methods that take the DisplayGauge or guidHash of the gauge as a parameter.

Most methods require that the ShipDisplayModule to be initialised.

Method Description

AddGauge (string gaugeName, string gaugeText) Add a new gauge to the HUD. By design, they are not visible
at runtime when first added.

AddGauge (DisplayGauge displayGauge) Add a gauge to the HUD using a displayGauge instance.
Typically, this is used with CopyDisplayGauge(..).

DeleteGauge (int guidHash) Delete a gauge from the HUD. NOTE: It is much cheaper to
HideDisplayGauge(..) than completely remove it.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 133

Method Description

CopyDisplayGauge (DisplayGauge displayGauge,
string NameOfCopy)

Create a copy of an existing DisplayGauge, and give it a new
name. Call AddGauge(newDisplayGauge) to make it useable
in the game.

GetDisplayGaugeGuidHash (int index) Returns the guidHash of the Gauge in the list given the index
or zero-based position in the list. Will return 0 if no matching
Gauge is found.

GetDisplayGaugeIndex (int guidHash) Get the zero-based index of the Gauge in the list. Will return -
1 if not found.

GetDisplayGauge (int guidHash) Get a DisplayGauge given its guidHash. Will return null if
guidHash parameter is 0, it cannot be found. See also
GetDisplayGaugeGuidHash(..)

GetDisplayGauge (string displayGaugeName) Get the display gauge give the description title of the gauge.
WARNING: This will increase Garbage Collection (GC). Where
possible use GetDisplayGauge(guidHash) and/or
GetDisplayGaugeGuidHash(index)

HideDisplayGauge (int guidHash) Hide or turn off the Display Gauge

HideDisplayGauge (DisplayGauge displayGauge) Hide or turn off the Display Gauge

HideDisplayGauges() Hide or turn off all Display Gauges. ShipDisplayModule must
be initialised.

ImportGaugeFromJson (string folderPath, string
fileName)

Import a json file from disk and return as DisplayGauge

RefreshGaugesSortOrder () After adding or moving DisplayGauges, they may need to be
sorted to have the correct z-order in on the HUD.

SaveGaugeAsJson (DisplayGauge displayGauge,
string filePath)

Save the Gauge to a json file on disk.

SetDisplayGaugeValueAffectsColourOn

(DisplayGauge displayGauge, Color lowColour,
Color mediumColour, Color highColour)

The foreground colour of the gauge will be determined by the
gauge value and the low, medium and high colours.
LowColour = value of 0, MediumColour when value is
Medium Colour Value, and HighColour when value is 1.0

SetDisplayGaugeValueAffectsColourOff

(DisplayGauge displayGauge, Color
newForegroundColour)

The value of the gauge does not affect the foreground colour.

When turning off this feature the new foreground colour
would typically be the old foregroundHighColour.

SetDisplayGaugeOffset (DisplayGauge
displayGauge, float offsetX, float offsetY)

Set the offset (position) of the Display Gauge on the HUD. If
the module has been initialised, this will also re-position the
Display Gauge.

SetDisplayGaugeMediumColourValue
(DisplayGauge displayGauge, float newValue)

Set the gauge value at which the foreground medium colour
should be set. The default value is 0.5.

SetDisplayGaugeSize (DisplayGauge displayGauge,
float width, float height)

Set the size of the Gauge Panel. If the module has been
initialised, this will also resize the Gauge Panel. The values
are only updated if they are outside the range 0.0 to 1.0 or
have changed.

SetDisplayGaugeValue (DisplayGauge
displayGauge, float gaugeValue)

Update the value or reading of the gauge. If Value Affects
Colour (isColourAffectByValue) is enabled, the foreground

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 134

Method Description

colour of the gauge will also be updated. Values should be in
range 0.0 to 1.0.

SetDisplayGaugeLabel

(DisplayGauge displayGauge, string gaugeLabel)

Update the text of the gauge label. This only applies to
numeric gauges with labels. For non-numeric gauges see
SetDisplayGaugeText(..).

SetDisplayGaugeLabelAlignment (DisplayGauge
displayGauge, TextAnchor textAlignment)

Update the position of the label within the gauge panel. Only
applies to numeric gauges with a label. See also
SetDisplayGaugeTextAlignment(..).

SetDisplayGaugeText

(DisplayGauge displayGauge, string gaugeText)

Update the text of the gauge. For numeric gauges with a label
see SetDisplayGaugeLabel(..).

SetDisplayGaugeTextAlignment (DisplayGauge
displayGauge, TextAnchor textAlignment)

Update the position of the text within the gauge panel

SetDisplayGaugeTextFont (DisplayGauge
displayGauge, Font font)

Set the font of the DisplayGauge Text component

SetDisplayGaugeTextFontSize (DisplayGauge
displayGauge, bool isBestFit, int minSize, int
maxSize)

Set the font size of the display gauge text. If isBestFit is false,
maxSize is the font size set.

SetDisplayGaugeTextColour (DisplayGauge
displayGauge, Color newColour)

Set the Display Gauge text colour. Only update the colour if it
has actually changed. If the module has been initialised, this
will also re-colour the gauge text with the appropriate
brightness.

SetDisplayGaugeTextDirection (DisplayGauge
displayGauge, DisplayGauge.DGTextDirection
textDirection)

Update the rotation of the text within the gauge panel

SetDisplayGaugeTextFontStyle (DisplayGauge
displayGauge, FontStyle fontStyle)

Set the font style of the DisplayGauge Text component

SetDisplayGaugeType (DisplayGauge displayGauge,
DisplayGauge.DGType dgType)

Set the type or style of the gauge.

SetDisplayGaugeForegroundColour (DisplayGauge
displayGauge, Color newColour)

Set the Display Gauge foreground colour. Only update the
colour if it has actually changed. If the module has been
initialised, this will also re-colour the gauge foreground with
the appropriate brightness.

SetDisplayGaugeForegroundSprite (DisplayGauge
displayGauge, Sprite newSprite)

Set the Display Gauge foreground sprite. This is used to
render the gauge value by partially filling it.

SetDisplayGaugeBackgroundColour (DisplayGauge
displayGauge, Color newColour)

Set the Display Gauge background colour. Only update the
colour if it has actually changed. If the module has been
initialised, this will also re-colour the gauge background with
the appropriate brightness.

SetDisplayGaugeBackgroundSprite (DisplayGauge
displayGauge, Sprite newSprite)

Set the Display Gauge background sprite. This is used to
render the background image of the gauge.

SetDisplayGaugeFillMethod (DisplayGauge
displayGauge, DisplayGauge.DGFillMethod
fillMethod)

Set the Display Gauge fill method. This determines how the
gauge is filled

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 135

Method Description

SetDisplayGaugeKeepAspectRatio (DisplayGauge
displayGauge, bool isKeepAspectRatio)

Sets whether or not the foreground and background sprites
keep their original texture aspect ratio. This can be useful
when creating circular gauges.

ShowDisplayGauge(int guidHash) Show the Display Gauge on the HUD. The HUD will
automatically be shown if it is not already visible.

ShowDisplayGauge (DisplayGauge displayGauge) Show the Display Gauge on the HUD. The HUD will
automatically be shown if it is not already visible.

ShowDisplayGauges() Show or turn on all Display Gauges. ShipDisplayModule must
be initialised. The HUD will automatically be shown if it is not
already visible.

ValidateGaugeList() Create a new list if required

Ship Display Module (Display Heading) API Methods
Most methods require that the ShipDisplayModule to be initialised. Heading properties can be set in the editor or via

scripts at runtime.

Method Description

SetDisplayHeadingIndicatorSprite

(Sprite newSprite)

Set the small sprite that will indicate or point to the heading
on the HUD

SetDisplayHeadingMaskSprite

(Sprite newSprite)

Set the sprite that will mask the Display Heading scrollable
sprite

SetDisplayHeadingIndicatorColour

(Color newColour)

Set the Display Heading small indicator colour. Only update
the colour if it has actually changed. If the module has been
initialised, this will also re-colour the heading with the
appropriate brightness.

SetDisplayHeadingPrimaryColour

(Color newColour)

Set the Display Heading primary colour. Only update the
colour if it has actually changed. If the module has been
initialised, this will also re-colour the heading with the
appropriate brightness.

SetDisplayHeadingScrollSprite

(Sprite newSprite)

Set the Display Heading scroll sprite.

SetDisplayHeadingSize

(float width, float height)

Set the normalised size of the scrollable Display Heading.
Currently the height is always 1.0

SetDisplayHeadingOffset

(float offsetX, float offsetY)

Set the normalised offset (position) of the Display Heading on
the HUD. If the module has been initialised, this will also re-
position the Display Heading. The Horizontal and Vertical
offset is from the centre. Range between -1 and 1.

HideHeading() Attempt to turn off the scrollable Heading

HideHeadingIndicator() Attempt to turn off the Heading indicator

ShowHeading() Attempt to show the scrollable Heading. Turn on HUD if
required.

ShowHeadingIndicator() Attempt to turn on the Heading indicator

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 136

Ship Display Module (Display Message) API Methods
Where possible, always use the methods that take the DisplayMessage or guidHash of the message as a parameter.

These are much more efficient than using the name of the message which will incur GC overhead.

Most methods require that the ShipDisplayModule to be initialised.

Method Description

ShowDisplayMessage (int guidHash)

ShowDisplayMessage (DisplayMessage
displayMessage)

Show the Display Message on the HUD. The HUD will
automatically be shown if it is not already visible.

ShowDisplayMessages () Show or turn on all Display Messages. ShipDisplayModule
must be initialised. The HUD will automatically be shown if it
is not already visible.

HideDisplayMessage(int guidHash)

HideDisplayMessage (DisplayMessage
displayMessage)

Hide or turn off the Display Message

HideDisplayMessages () Hide or turn off all Display Messages. ShipDisplayModule
must be initialised.

AddMessage (string messageName, string
messageText)

Add a new message to the HUD and returns a reference to
the Display Message. By design, they are not visible at
runtime when first added.

AddMessage (DisplayMessage displayMessage) Add a message to the HUD using a displayMessage instance.
Typically, this is used with CopyDisplayMessage(..).

DeleteMessage (int guidHash) Delete a message from the HUD. NOTE: It is much cheaper to
HideDisplayMessage (..) than completely remove it.

CopyDisplayMessage (DisplayMessage
displayMessage, string NameOfCopy)

Create a copy of an existing DisplayMessage, and give it a
new name. Call AddMessage(newDisplayMessage) to make it
useable in the game.

GetDisplayMessageGuidHash (int index) Returns the guidHash of the Message in the list given the
index or zero-based position in the list. Will return 0 if no
matching Message is found. Will return 0 if the module hasn’t
been initialised.

GetDisplayMessage (int guidHash) Get a DisplayMessage given its guidHash. See also
GetDisplayMessageGuidHash(..).Will return null if guidHash
parameter is 0, it cannot be found or the module has not
been initialised.

GetDisplayMessage (string displayName) Get the display message give the description title of the
message.

WARNING: This will increase Garbage Collection (GC). Where
possible use GetDisplayMessage(guidHash) and/or
GetDisplayMessageGuidHash(index).

GetDisplayMessageIndex (int guidHash) Get the zero-based index of the Message in the list. Will
return -1 if not found.

ImportMessageFromJson (string folderPath, string
fileName)

Import a json file from disk and return as DisplayMessage.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 137

Method Description

IsDisplayMessageShown

(DisplayMessage displayMessage)

Is the Display Message currently being shown on the HUD?

ShowDisplayMessageBackground (DisplayMessage
displayMessage)

Show the Display Message background on the HUD. The
display the actual message, you would need to call
ShowDisplayMessage(..).

HideDisplayMessageBackground (DisplayMessage
displayMessage)

Hide the Display Message background on the HUD. The hide
the actual message, you would need to call
HideDisplayMessage(..).

SaveMessageAsJson (DisplayMessage
displayMessage, string filePath)

Save the Message to a json file on disk.

SetDisplayMessageOffset (DisplayMessage
displayMessage, float offsetX, float offsetY)

Set the offset (position) of the Display Message on the HUD.
If the module has been initialised, this will also re-position
the Display Message.

Parameter: offsetX is horizontal offset from centre. Range
between -1 and 1

Parameter: offsetY is vertical offset from centre. Range
between -1 and 1

SetDisplayMessageSize (DisplayMessage
displayMessage, float width, float height)

Set the size of the Message Panel. If the module has been
initialised, this will also resize the Message Panel. The values
are only updated if they are outside the range 0.0 to 1.0 or
have changed.

SetDisplayMessageBackgroundColour
(DisplayMessage displayMessage, Color
newColour)

Set the Display Message background colour. Only update the
colour if it has actually changed. If the module has been
initialised, this will also re-colour the message background
with the appropriate brightness.

SetDisplayMessageScrollDirection (DisplayMessage
displayMessage, int scrollDirection)

Set the Display Message scroll direction. USAGE:
SetDisplayMessageScrollDirection(displayMessage,
DisplayMessage.ScrollDirectionLR)

SetDisplayMessageScrollFullscreen
(DisplayMessage displayMessage, bool
isScrollFullscreen)

Set the Display Message to scroll across or up/down the full
screen regardless of the message width and height. Can also
be set directly with displayMessage.isScrollFullscreen = true;

SetDisplayMessageScrollSpeed (DisplayMessage
displayMessage, float scrollSpeed)

Set the Display Message scroll speed. Can also be set directly
with: displayMessage.scrollSpeed = scrollSpeed;

SetDisplayMessageText (DisplayMessage
displayMessage, string messageText)

Update the text of the message.

SetDisplayMessageTextAlignment (DisplayMessage
displayMessage, TextAnchor textAlignment)

Update the position of the text within the message panel

SetDisplayMessageTextFont (DisplayMessage
displayMessage, Font font)

Set the font of the DisplayMessage Text component. The
default is Arial, but you can supply your own.

SetDisplayMessageTextFontSize (DisplayMessage
displayMessage, bool isBestFit, int minSize, int
maxSize)

Set the font size of the display message text. If isBestFit is
false, maxSize is the font size set.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 138

Method Description

SetDisplayMessageTextColour (DisplayMessage
displayMessage, Color newColour)

Set the Display Message text colour. Only update the colour if
it has actually changed. If the module has been initialised,
this will also re-colour the message with the appropriate
brightness.

Ship Display Module (Display Target) API Methods
Where possible, always use the methods that take the DisplayTarget or guidHash of the target as a parameter.

Most methods require that the ShipDisplayModule to be initialised.

Method Description

AddTarget (int guidHashDisplayReticle) Add a new Target to the HUD and returns a reference to the
Display Target. By design, they are not visible at runtime
when first added.

AddTargetSlots (DisplayTarget displayTarget, int
numberToAdd)

Add another DisplayTarget slot to a DisplayTarget. This allows
you to display another copy of the target on the HUD. If the
DisplayTarget has not been initialised, the new slot panel will
be added to the scene but this method will return null. This
automatically updates displayTarget.maxNumberOfTargets.

AssignDisplayTargetSlot int displayTargetIndex, int
slotIndex, int radarItemIndex, uint
radarItemSequenceNumber, bool isAutoShow)

Assign a radar target to a DisplayTarget's slot. If isAutoShow
is true, the TargetDisplay will be shown if there is a valid
radarItem, else it will be hidden.

DeleteTarget (int guidHash) Delete a Target from the HUD. NOTE: It is much cheaper to
HideDisplayTarget (..) than completely remove it.

DeleteTargetSlots (int guidHash, int
numberToDelete)

Delete or remove a DisplayTarget slot from the HUD. This is
an expensive operation. It is much cheaper to
HideDisplayTargetSlot(..) than completely remove it.
Automatically updates displayTarget.maxNumberOfTargets.
NOTE: You cannot remove slot 0.

GetAssignedDisplayTarget (int displayTargetIndex,
int slotIndex)

Get the radarItemKey for a DisplayTarget's slot.
SSCRadarItemKey.radarItemIndex will be -1 if there is no
target.

GetAssignedDisplayTargetRadarItem
(DisplayTargetSlot displayTargetSlot)

Get the SSCRadarItem currently assigned to a DisplayTarget
slot (instance).

GetDisplayTarget (int guidHash) Get a DisplayTarget given its guidHash. See also
GetDisplayTargetGuidHash(..).Will return null if guidHash
parameter is 0, it cannot be found or the module has not
been initialised.

GetDisplayTargetByIndex (int index) Get a DisplayTarget given a zero-based index in the list.

GetDisplayTargetGuidHash (int index) Returns the guidHash of the Target in the list given the index
or zero-based position in the list. Will return 0 if no matching
Target is found. Will return 0 if the module hasn’t been
initialised.

GetDisplayTargetIndex (int guidHash) Get the zero-based index of the Target in the list. Will return -
1 if not found.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 139

Method Description

GetDisplayTargetName

(DisplayTarget displayTarget)

(int index)

Get the (sprite) name of the DisplayTarget using either the
DisplayTarget instance or the zero-based index in the list of
DisplayTargets on the HUD.
WARNING: This will create GC, so not recommended to be
called each frame. This is typically used for debugging
purposes only.

GetDisplayTargetSlotByIndex (DisplayTarget
displayTarget, int slotIndex)

Get a DisplayTargetSlot given the zero-based slot index. This
is an instance of a DisplayTarget.

HideDisplayTarget(int guidHash)

HideDisplayTarget (DisplayTarget displayTarget)

Hide or turn off all slots of the Display Target

HideDisplayTargets () Hide or turn off all slots of all Display Targets.

HideDisplayTargetSlot (DisplayTargetSlot
displayTargetSlot)

Hide the Display Target slot on the HUD. By design, if the
HUD is not shown, the Target in this slot will not be show.

SetDisplayTargetOffset (DisplayTarget
displayTarget, int slotIndex, float offsetX, float
offsetY)

Set the offset (position) of the Display Target slot on the
HUD. If the module has been initialised, this will also re-
position the Display Target.

Horizontal offset from centre. Range between -1 and 1.

Vertical offset from centre. Range between -1 and 1.

SetDisplayTargetOffset (DisplayTargetSlot
displayTargetSlot, float offsetX, float offsetY)

Set the offset (position) of the Display Target slot on the
HUD. If the module has been initialised, this will also re-
position the Display Target.

SetDisplayTargetPosition (DisplayTargetSlot
displayTargetSlot, float offsetX, float offsetY)

Move the DisplayTarget slot to the correct 2D position on the
HUD, based on a 3D world space position. If the camera has
not been automatically or manually assigned, the
DisplayTarget will not be moved.

SetDisplayTargetReticle (int guidHash, int
guidHashDisplayReticle)

Set or change the Reticle assigned to a DisplayTarget. The
Reticle must belong to the list of available reticles for the
HUD.

SetDisplayTargetReticleColour (DisplayTarget
displayTarget, Color newColour)

Set the Display Target Reticle colour. Only update the colour
if it has actually changed. If the module has been initialised,
this will also re-colour the reticle with the appropriate
brightness.

SetTargetsViewportOffset (float offsetX, float
offsetY)

Sets the viewport offset from the centre of the screen. Values
can be between -1.0 and 1.0 with 0,0 depicting the centre of
the screen. This is the area of the screen in which Targets will
be visible.

See also SetTargetsViewportSize(..).

SetTargetsViewportSize (float width, float height) Sets the clipped viewable area of the screen that
DisplayTargets can be shown. When Targets are outside this
area, they will be hidden. Width and height values are
between 0.1 and 1.0 of the total screen width or height.
See also SetTargetsViewportOffset(..).

ShowDisplayTarget (int guidHash)

ShowDisplayTarget (DisplayTarget displayTarget)

Show the Display Target on the HUD. By design, if the HUD is
not shown, the Targets will not be show.

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 140

Method Description

ShowDisplayTargets () Show or turn on all Display Targets.

ShowDisplayTargetSlot (DisplayTargetSlot
displayTargetSlot)

Show the Display Target slot on the HUD. By design, if the
HUD is not shown, the Target in this slot will not be show.

Ship Display Module API Call Backs

Callback Description

CallbackOnBrightnessChange
callbackOnBrightnessChange

The name of the custom method that is called immediately
after brightness has changed. Your method must take 1 float
parameter. This should be a lightweight method to avoid
performance issues. It could be used to update your custom
HUD elements.

shipDisplayModule.callbackOnBrightnessChange =
YourMethod;

public void YourMethod (float value)

{

 // Adjust the brightness of your elements here

}

CallbackOnSizeChange callbackOnSizeChange The name of the custom method that is called immediately
after the HUD size has changed. This method must take 2
float parameters. It should be a lightweight method to avoid
performance issues. It could be used to update your custom
HUD elements.

Support
For any other questions you have (or any suggestions on how we can improve Sci-Fi Ship Controller), feel free to

contact us via our Unity forum (https://forum.unity.com/threads/594448/) or on our Discord channel

(https://discord.gg/CjzCK4b).

Version History
Initial Release: 22 August 2019

Version 1.0.2 – 16 October 2019

[NEW] PlayerInputModule - support for (new) Unity Input System in U2019.1+

[FIXED] Weapons - NullReferenceException when (I)nserting a duplicate weapon

[IMPROVED] Sound - Use OGG files rather than MP3

Version 1.0.3 – 21 October 2019

[NEW] Ground Match Smoothing option when Stick to Surface is enabled

[NEW] Ground Normal History option when Stick to Surface is enabled

Version 1.0.4 – 28 November 2019

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 141

[NEW] Location and Path editor in SSC Manager

[NEW] Location and Path API

Version 1.0.5 – 03 December 2019

[FIXED] When Limit pitch and roll is enabled, pitch is incorrectly set

[IMPROVED] Player Input Module - Unity Input System can set Pitch/Yaw to use Mouse

Version 1.1.0 – 04 January 2020

[NEW] Ship AI system with API

[NEW] Asteroids demo using Ship AI

[FIXED] Multiple Path Locations / Control points are selected without SHIFT key held

[FIXED] DOTS support should not be enabled before Hybrid Renderer is installed

[FIXED] PlayerInput - Pitch or Yaw mouse input may not be reset when adding events

[IMPROVED] Celestials can be placed on a non-default Unity Layer

[IMPROVED] Celestials can optionally appear below the horizon

[IMPROVED] City Demo scene includes Ship AI system

Version 1.1.1 – 30 January 2020

[NEW] Projectiles with DOTS enabled, can hit Entities with a PhysicsCollider
[NEW] Ship AI API - SSCMath.FindClosestPointOnPath when previous point on path is unknown
[NEW] Ship API - EnableShip, DisableShip, ResetShip, and AddHealth methods
[NEW] Camera API - EnableCamera and DisableCamera methods
[NEW] Rumble or force feedback to controllers with Unity (new) Input System or Rewired.
[NEW] Take action if a ship becomes stuck (respawn on a path, use respawning mode or call your method).
[NEW] Respawning Mode - added Respawn On Path option
[NEW] PlayerInputModule - per axis sensitivity options
[IMPROVED] ShipAIInputModule - Ship Speed in km/h available in Debug mode in the editor
[IMPROVED] PlayerInputModule - Ship Speed in km/h available in Debug mode in the editor
[IMPROVED] SampleShowShipHealth - disable raycast target on Text objects
[IMPROVED] Faction Id and Squadron Id are now configurable from the Ship Control Module editor

Version 1.1.2 – 13 February 2020

[NEW] Ship API - SetWeaponFireDirection method added to provide easier changes at runtime

[NEW] Auto-fire turrets can optionally check line-of-sight

[NEW] Locations can have a Faction Id

[NEW] Radar API (in technical preview)

[NEW] Radar on-screen mini-map (in technical preview)

[FIXED] PlayerInputModule - Add Events can lose connection to Input Action asset

[FIXED] Ship AI - maxSpeed is not honoured correctly

[FIXED] Ship AI - ship's position may become unstable after EnableShip() and velocity is reset/changed.

[FIXED] Projectiles - when pooling is enabled, projectiles may get prematurely de-spawned

[FIXED] DemoFlyToLocation does not check for DemoFlyToLocationShipData component

[IMPROVED] ShipControlModule CallbackOnHit now provides hit and projectile information

Version 1.1.3 – 03 March 2020

[NEW] Projectile Damage types

[NEW] Damage Receiver for custom non-ship objects

[NEW] PlayerInputModule - Auto Cruise option

[NEW] PlayerInputModule API - EnableInput(), DisableInput(), and ResetInput() methods

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 142

[NEW] Surface Turret Module - add free standing weapons to your scene

[NEW] Guided Projectiles - turrets can fire projectiles that lock on to their targets

[NEW] Stick to Ground Surface - Look ahead option to help detect obstacles ahead of the ship

[NEW] Auto Targeting Module - Use radar to set ship turret or surface turret targets

[FIXED] Radar - IndexOutOfRangeException: Array index is out of range on screen resize

[FIXED] Localised Damage Region - ArgumentOutOfRangeException on destroy when no effects object

[FIXED] Localised Damage Region may not be hit by a projectile if the collider is same size as the region

[IMPROVED] (F)ind button to select a thruster, wing, control surface, damage region or weapon in scene

[IMPROVED] Ship turret weapons - Relative Position is set when the Pivot Y transform is set.

[IMPROVED] Radar API - factionsToExclude query option for faster friend or foe elimination

Version 1.1.4 – 20 April 2020

[NEW] Surface Turret Module supports effects objects
[NEW] Turrets have optional inaccuracy
[NEW] Paths - Snap To Mesh option in SSCManager Editor and runtime API
[NEW] Locations – Snap to Mesh option in SSCManager (runtime API only)
[NEW] Radar - query options to include/exclude ship squadrons
[NEW] Call your custom method when a ship is respawned
[NEW] Ship API - EnableShipMovement and DisableShipMovement methods
[NEW] Ship Control Module - Respawning can be paused or resumed via API
[NEW] Projectiles - guided projectile prefab
[NEW] Ship Docking Station system [Technical Preview]
[NEW] AI States: Docking and Strafing Run [Technical Preview]
[NEW] Docking AI Input Behaviour [Technical Preview]
[NEW] Added current state stage index for AI, to keep track of what has been completed in an AI state
[FIXED] Surface Turret Module - NullReferenceException before Turret Pivot X added
[FIXED] Surface Turret Module - ships targeted by radar do not consider their velocity
[FIXED] Ship Control Module - PID controller regression
[FIXED] Ship Control Module - damage regions in the editor are not rotated correctly
[FIXED] Radar - Locations Visible to Radar may not appear on mini-map when scene starts
[FIXED] PlayerInputModule - Oculus VR secondary fire button held down not set in editor
[FIXED] Ship AI Input Module - renamed Pitch Yaw Bias to Roll Bias
[FIXED] Projectiles - Effects may occasionally not work when colliding with an object
[IMPROVED] Surface Turret Module - automatically receive damage when a Damage Receiver is attached
[IMPROVED] Turret precision for ship targets
[IMPROVED] Turrets automatically stop targeting a ship that has been destroyed
[IMPROVED] Weapons that have no health, cannot aim, reload or fire.
[IMPROVED] Player Input Module - Initialise on Awake option
[IMPROVED] Ship collision damage is now automatically scaled based on the mass
[IMPROVED] Radar - Ships and Locations can have individual blip sizes
[IMPROVED] Manual - greatly expanded Runtime and API documentation
[IMPROVED] Full 3D Flight can now match an up direction passed by an AI Behaviour Output

Version 1.1.5 – 28 April 2020

[NEW] ShipControlModule - Thrusters have optional throttle up/down time.
[NEW] ShipControlModule - Brake Flight Assist
[NEW] Radar Basics Tutorial
[NEW] Tutorials link from ShipControlModule editor
[NEW] 2 new thruster effects and 1 new thruster sound
[FIXED] ShipAI Follow Path - Argument is out of range when Path has less than 2 assigned Locations
[FIXED] Radar - ships may stay on the radar after being destroyed

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 143

[IMPROVED] ShipControlModule - (F)ind button will enable gizmo
[IMPROVED] ShipControlModule - search filter for thrusters in the editor

Version 1.1.6 – 22 June 2020

[NEW] 2 new thruster effects
[NEW] Thrusters - Effects can be enabled based upon ship velocity
[NEW] Thrusters - Effects can enabled or disabled via API for different performance levels
[NEW] Ship and Surface Turrets - in editor visuals for turning and firing arc
[NEW] SurfaceTurretModule - callback for when turret is destroyed in API
[NEW] ProjectModule - Muzzle FX Object option (particle system and/or sound)
[NEW] Player Input Module - ability to override an axis in code (sample script included)
[NEW] Ship Display Module (HUD) with API in technical preview
[FIXED] ShipDockingStation - scene is not updated when all docking point gizmos are toggled
[FIXED] SSCManager - NullReferenceException when adding new Path or Location
[IMPROVED] Path gizmos are enabled when Activate for editing is clicked in the editor
[IMPROVED] Effects on included Ship prefabs have less performance overhead
[IMPROVED] Ship AI Input Module - debugger can display velocity in km/h and m/s
[IMPROVED] Celestials - demo script supports a second camera
[IMPROVED] Ship Camera Module - suggest using Target Rotation if Aim To Target is selected
[IMPROVED] HideCursor demo script is now New Input System aware
[IMPROVED] Added Ship API methods to the manual

Version 1.1.7 – 8 July 2020

[NEW] Ship Docking - editor runtime debugging option
[FIXED] Ship Display Module - calling Initialise twice may result in incorrect HUD layout
[FIXED] SSCManager.Initialise - could not get entities World
[FIXED] SSCManager - cannot delete locations or paths in U2019.4+
[FIXED] ShipDockingStation - NullReferenceException when adding docking point and DOTS is enabled
[FIXED] ShipDocking - adapter should not remain selected when Gizmo is turned off
[FIXED] ShipDocking - ship may not dock with a ship docking station
[FIXED] ShipDocking - thruster effects do not turn off when docked
[FIXED] ShipControlModule - cannot delete wing, control surface, damage region or weapon in U2019.4+
[FIXED] ShipDisplayModule - cannot delete reticles in U2019.4+
[IMPROVED] Ship Docking Station - unselected docking points are slightly transparent
[IMPROVED] Ship Docking Station - new docking points are automatically selected in the scene
[IMPROVED] Ship Docking Station - docking and undocking
[IMPROVED] Ship AI Input Module - roll bias

Version 1.1.8 – 19 August 2020

[NEW] PlayerInputModule - Mouse deadzone
[NEW] ShipDisplayModule - IsSourceShip, CentreCursor API methods
[NEW] ShipDisplayModule - scrollable messages with API
[NEW] ShipDisplayModule - on-screen targets with API
[NEW] ProjectileModule - editor runtime debugging option
[NEW] ProjectileModule - guided projectiles have adjustable turning speed
[NEW] HUD - SampleHUDTargets script for on-screen target tracking
[NEW] Radar API methods to check if blips are in viewable screen viewports
[NEW] AutoTargetingModule - optional on-screen target tracking
[NEW] AutoTargetingModule - support for fixed weapons with guided projectiles
[NEW] Ship AI Input Module - configurable banking and pitch angles
[FIXED] ShipDisplayModule - HUD does not adjust for screen resizing

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 144

[FIXED] Editors - cannot delete or move list items in U2019.3+
[FIXED] Radar - GetRadarResults API method ignored query sort order and created GC
[FIXED] Weapons - turning off Multiple Fire Positions may result in incorrect fire position
[FIXED] ShipControlModule - NullReferenceException when clicking Visible to Radar at runtime
[IMPROVED] Ship AI Input Module - runtime editor debugging
[IMPROVED] Ship Docking is out of technical preview
[IMPROVED] PlayerInputModule – (new) Unity Input System out of technical preview
[IMPROVED] PlayerInputModule - detect when legacy Unity Input System is disabled in 2019.2+
[IMPROVED] Turrets inaccuracy option is more realistic
[IMPROVED] Turrets adjust for velocity more accurately
[IMPROVED] Auto targeting for ship turrets discard targets outside of firing cone

Version 1.1.9 – 21 September 2020

[NEW] Sample Change Camera View script
[NEW] Ship Beam weapons
[NEW] Destruct Module in technical preview
[NEW] Radar - Ship Damage Regions can be tracked
[NEW] Auto Targeting Module - include Ship Damage Regions in possible targets
[NEW] Ship Display Module - customisable gauges with API
[NEW] Player Input Module - call your own code with Custom Player Inputs
[NEW] Ship Camera Module - camera shake in technical preview
[NEW] Surface Turret Module - editor runtime debugging option
[NEW] SampleShowShipMetrics script demonstrates creating gauges in code with API
[FIXED] Ship Control Module - fixed weapon gizmos are incorrect when ship is rotated
[FIXED] Radar - NullReferenceException when ship to follow is destroyed and not respawned
[FIXED] Auto Targeting Module - Display Targets should not be shown if the HUD is not shown
[FIXED] Auto Targeting Module - Targets may not be included when Squadrons to Include is set
[FIXED] Player Input Module - NullReference on undo for Rewired Custom Inputs
[FIXED] Ship Display Module - ArgumentOutOfRangeException when adding gauges in code
[IMPROVED] Ship Damage Regions - (destruction) effects can optionally follow a moving ship
[IMPROVED] Radar is out of technical preview
[IMPROVED] Radar - change the mini-map canvas sort order

Version 1.2.0 – 2 October 2020

[NEW] Full playable SSC Tech2 demo game
[FIXED] Player Input Module - CustomPlayerInput does not contain a definition for actionIDsPositive
[IMPROVED] Change display or screen output with HUD, Ship Camera Module, and Radar via API.
[IMPROVED] Celestials (background stars) script supports Universal Render Pipeline

Version 1.2.1 – 10 November 2020

[NEW] Shield Recharge - damage regions have optional shield recharge rate and delay
[NEW] Ship Control Module - Input Control to achieve 2.5D flight behaviour
[NEW] SampleFlyToPosition - AI sample script
[NEW] Ship AI Input Module - Button to estimate the radius of a ship for obstacle avoidance
[NEW] Ship Camera Module - can stop camera rendering and moving at initialisation time
[NEW] Ship Camera Module - Clip Objects is in Technical Preview
[FIXED] PlayerInputModule - Custom Player Input Negative Key for Direct Keyboard not working
[FIXED] ShipDisplayModule - Gauge Keep Aspect Ratio is incorrect after (I)nserting within the editor
[IMPROVED] ShipDocking supports docking manoeuvres with and without entry or exit paths
[IMPROVED] ShipDocking - option to detect collisions when docked
[IMPROVED] PlayerInputModule - can disable input on initialise

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 145

Version 1.2.2 – 11 January 2021

[NEW] Auto opening and locking doors (useful for Entry/Exit scenarios)
[NEW] Instructions to convert Tech Demo scene to (new) Unity Input System
[NEW] Ship Docking Station - export and import to JSON options for ship docking points
[NEW] Ship Docking - Catapult undocking option
[NEW] Docking Demo scene as seen in docking tutorial video
[FIXED] Player Input Module - correctly handle deleted Action Categories for Rewired integration
[FIXED] The name 'Celestials' does not exist in the current context when not importing the Demos
[FIXED] SSC Manager - EndLayoutGroup when exporting a Path as JSON.
[IMPROVED] Ship Display Module (HUD) is out of technical preview

Version 1.2.3 – 8 February 2021

[NEW] Ship Control Module - Turret Beam weapons (Technical Preview)
[NEW] Surface Turret Module - Beam weapon [Technical Preview]
[NEW] Auto Targeting Module - Can control Turret Beam weapons [Technical Preview]
[NEW] Ship Camera Module - Dynamic Target Offset damping [Technical Preview]
[NEW] Paths - Insert Before in SSCManager Editor option (callable from API)
[FIXED] PlayerInputMdule API - DisableAIMode() method name spelling
[IMPROVED] Ship Camera Module - Camera Shake now out of Technical Preview
[IMPROVED] Ship Docking - undocking AI Ships become idle at end of exit path

Version 1.2.4 – 29 March 2021

[NEW] ShipCameraModule - Top-down setup options for 2.5D games
[NEW] ShipDocking - can transition to docking while undocking and vis versa
[NEW] ShipDocking - target take-off and landing durations
[NEW] ProjectileModule - can override behaviour in own inherited class
[NEW] SampleProjectileModule script
[NEW] SampleCreatePath script
[NEW] Moving Platforms for vehicle, equipment, or character elevators
[NEW] Demo elevator sounds
[NEW] SSCDoorAnimator supports opening and closing audio clips
[NEW] ShipDisplayModule - ToggleHUD API method
[NEW] ShipControlModule - editor runtime debugger for thrusters, health, and weapons
[NEW] ShipInputModule - editor option to enable only Custom Player Inputs on initialise
[NEW] Turret weapons - option to auto-park after interval
[FIXED] Turret with Check Line of Sight - MissingReferenceException
[IMPROVED] Paths - auto-adjust control points on first location when second added
[IMPROVED] AutoTargetingModule - option to show first 10 radar query results
[IMPROVED] DOTS compatibility for projectiles with Unity 2020.3 LTS

Version 1.2.5 – 14 June 2021

[NEW] SampleStickToGroundChange script
[NEW] SSC Moving Platforms support kinematic rigidbodies
[FIXED] Ship Camera Module - jitter in Camera Rotation Mode "Follow Velocity"
[FIXED] Thruster FX and audio do not stop when Max Thrust is set to 0 at runtime
[IMPROVED] SSC Door Proximity - uses first trigger collider
[IMPROVED] ShipControlModule - braking algorithm

Version 1.2.6 – 28 July 2021

[NEW] Destructible Object Module - for use with non-ship objects

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 146

[NEW] General purpose Proximity component
[NEW] Limit Pitch/Roll - Avoid Ground Surface [Technical Preview]
[NEW] Light Strobe utility
[NEW] ShipDisplayModule - HUD flicker effect with API
[NEW] Door (button) Control component
[FIXED] IndexOutOfRangeException with Stick To Ground Surface and Smoothed Normal calc.
[FIXED] Ship Camera Module - Target Offset Align button does not consider rotation
[FIXED] PlayerInputModuleEditor - The name inputAxisModeContent does not exist
[IMPROVED] All components have component-add menus
[IMPROVED] DestructModule is out of Technical Preview
[IMPROVED] Display Module - reticle is more accurate when Lock Reticle to Cursor is enabled
[IMPROVED] Ships can become visible to radar in same frame as they are enabled via the API

Version 1.2.7 – 2 September 2021

[NEW] Damage regions or whole ships can be made Invincible to damage
[NEW] Override shipInput from ShipAIInputModule in your own game code
[NEW] SampleInputAIOverride sample script
[NEW] Thruster can optionally burn fuel at different rates
[FIXED] Regression bug on ships not undocking
[IMPROVED] Use input sensitivity and gravity in your own custom input code
[IMPROVED] Door (button) Control component includes static API methods
[IMPROVED] Docking manoeuvres
[IMPROVED] Braking on approach to a target

Version 1.2.8 – 14 October 2021 (Last version to support U2018.4 LTS)

[NEW] Thruster heat management
[NEW] Central thruster fuel or individual fuel levels
[NEW] Player Input Module - Unity XR [Technical Preview]
[NEW] Support for Oculus Quest 2 [Technical Preview]
[NEW] Object Targetable component for adding single objects to radar
[NEW] ShipDisplayModule - gauges can have adjustable medium colour range
[NEW] Track the number of times a ship is respawned
[NEW] HUD scrollable heading or compass display with API
[NEW] HUD numeric gauges with or without labels
[NEW] Sample Tele-Port World script
[IMPROVED] DoorControl - check for unlocked before changing button status
[IMPROVED] Radar mini-map overlay and background are changeable at runtime in the editor
[IMPROVED] Ship Display Module - Cursor is hidden when Lock Reticle to Cursor is on
[IMPROVED] Ship Display Module - optional Fill Method None for numeric gauges
[IMPROVED] Compatibility with Unity 2021.2

Version 1.2.9 – 5 November 2021

[NEW] ShipDisplayModule - HUD attitude overlay with pitch ladder
[FIXED] 'CustomPlayerInput' does not contain a definition for 'xrPositiveInputActionMapId'
[FIXED] ShipDisplayModule - Heading scrolls in the wrong direction
[FIXED] ShipDisplayModule - selecting a HUD prefab asset can create orphaned panels in the scene
[IMPROVED] Moving Platforms include optional arrival and departure events
[IMPROVED] Path editing - Option to Modify position Y-axis on selected Locations
[IMPROVED] Path editing - context menu to snap Locations to mesh below

Version 1.3.0 – 3 January 2022

[NEW] TechDemo3

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 147

[NEW] AI targeting accuracy
[NEW] Opening and closing events for SSCDoorAnimator
[NEW] Demo celestials component can add planets to the background of stars
[NEW] ShipDisplayModule - Targets debugging in editor at runtime
[NEW] Option for weapons to be used when ship movement is disabled
[FIXED] Docked ships can drift after being disabled and re-enabled via EnableShip APIs
[FIXED] Destruct Modules with a Despawn condition of Time do not despawn correctly when Pooled
[IMPROVED] Moving Platforms can smoothly stop and start
[IMPROVED] DestructibleObjectModule is out of Technical Preview
[IMPROVED] SSCStrobe light now works in HDRP
[IMPROVED] AI steering behaviours

Version 1.3.1 – 21 January 2022

[NEW] ProjectileModule - Collision Layer Mask
[FIXED] IndexOutOfRangeException after deleting local damage regions
[IMPROVED] PlayerInputModule - add RemoveListeners() API
[IMPROVED] UnityXR camera follows both HMD position and rotation

Version 1.3.2 – 15 March 2022

[NEW] Stability Flight Assist
[NEW] Physics Model - Disable Drag Moments
[NEW] Aero - Drag Moment Multipliers for pitch, yaw, and roll
[NEW] Ship Display Module - Export-Import Gauges and Messages as JSON files
[NEW] Ship AI Input Module -Raycast offset for colliders that do not overlap ship centre
[FIXED] Ship Display Module - HUD3 prefab does not display heading or attitude
[FIXED] SSC Door Animator - ToggleDoors does not play audio clips
[FIXED] Can place multiple Ship AI components on one ship
[IMPROVED] ThrusterEffects - virtual public methods
[IMPROVED] SSC Door Animator - Get parameters is more reliable at design time

Version 1.3.3 – 25 May 2022

[NEW] SSCManager - Reverse the direction of Paths
[NEW] Ship AI - optional AIState change notifications
[NEW] ShipDockingStation - On Pre Undock and On Post Docked events
[NEW] ShipDocking - Undocking Delay and Auto Undock Time options
[NEW] ShipControlModule - Start-up and Shutdown Thruster Systems
[NEW] ShipControlModule - Per Thruster throttle option
[NEW] Ship weapon out of ammo callback
[NEW] Floating Point Demo scene
[FIXED] Ship AI may not move toward target when target ship gravity is 0
[FIXED] Celestials camera may not rotate in step with main camera
[FIXED] Celestials may raise an error if more than 1000 stars are used
[FIXED] Ship AI - callbackCustomIdleBehaviour has the wrong type
[FIXED] Ship AI - callbackCustomSeekMovingArrivalBehaviour has the wrong type
[FIXED] Ship AI - callbackCustomDockBehaviour has the wrong type
[FIXED] SSCRadar.GetRadarResults returns false
[IMPROVED] PlayerInputModule support to invert axis in Unity Input System
[IMPROVED] SSCDoorAnimator - Add OpenDoorsAll and CloseDoorsAll methods
[IMPROVED] SSCRadar - Debug mode now shows Display Forwards in Euler angles
[IMPROVED] Muzzle FX can be parented to weapon fire points

Sci-Fi Ship Controller Version 1.3.7 Beta 1

Copyright © 2018-2022 SCSM Pty Ltd. All rights reserved. 148

Version 1.3.4 – 21 June 2022

[NEW] Weapon heat management
[NEW] ShipDisplayModule - ToggleDisplayReticle API
[IMPROVED] Ship Hit callback now includes sourceShipId

Version 1.3.5 – 29 August 2022

[NEW] ProjectileModule - Shield hit effects
[NEW] DamageRegion - IsHit API
[NEW] Ship - HasActiveShield API
[NEW] Ship - Attach[Detach]Collider(s) APIs
[NEW] ShipControlModule - Ship Input Debugging in editor at runtime
[NEW] ShipControlModule - CallbackOnCollision for custom collision handling
[FIXED] Handles.FreeMoveHandle change in Unity 2022.1
[IMPROVED] Projectiles support DOTS Entities 0.51 (URP and HDRP only)
[IMPROVED] Integration with Sticky3D Controller VR flight-stick and levers

Version 1.3.6 – 17 October 2022

[NEW] EnableShip API configurable from inspector event or callback method
[NEW] PlayerInputModule - Enable or Disable XR Camera and Hand APIs
[NEW] ShipDocking - Events configurable in the inspector and supporting APIs
[NEW] Thrusters - optional FX when stationary or no thruster input
[NEW] ShakeCameraDelayed and ShakeCamera API callable from inspector events
[NEW] SetThrusterThrottle API for setting individual thrusters
[NEW] SetMaxThrustNewtons API for fine-grained control with ultra-light weight ships
[NEW] Ship callbackOnWeaponFired delegate
[FIXED] Thrusters may have Throttle > 0 when Thruster Systems have not started
[IMPROVED] Disable XR camera and hands when Enable on Initialise is disabled
[IMPROVED] Shutdown[Startup]ThrusterSystems APIs callable from inspector events
[IMPROVED] Path editing - add or subtract y-axis position for multiple selected Locations

