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A Non-Monetary Mechanism for Optimal Rate
Control Through Efficient Cost Allocation
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Abstract— This paper proposes a practical non-monetary1

mechanism that induces the efficient solution to the optimal2

rate control problem, where each client optimizes its request3

arrival rate to maximize its own net utility individually, and4

at the Nash Equilibrium the total net utility of the system is5

also maximized. Existing mechanisms typically rely on monetary6

exchange which requires additional infrastructure that is not7

always available. Instead, the proposed mechanism is based on8

efficient cost allocation, where the cost is in terms of non-9

monetary metric, such as average delay or request loss rate.10

Specifically, we present an efficient cost allocation rule for the11

server to determine the target cost of each client. We then propose12

an intelligent policy for the server to control the costs of the13

clients to achieve the efficient allocation. Furthermore, we design14

a distributed rate control protocol with provable convergence to15

the Nash Equilibrium of the system. The effectiveness of our16

mechanism is extensively evaluated via simulations of both delay17

allocation and loss rate allocation against baseline mechanisms18

with classic control policies.19

Index Terms— Optimal rate control, non-monetary mecha-20

nism, efficient cost allocation, distributed protocol, state space21

collapse.22

I. INTRODUCTION23

THE mobile Internet market has been enjoying an unprece-24

dented growth in recent years. It is predicted that the trend25

will continue, and the global mobile data traffic will increase26

sevenfold between 2016 and 2021 [2]. With the growing27

market, it is of great interest to understand the economics28

of the network. In this paper, we are interested in finding29

a practical mechanism to induce the efficient solution to the30

optimal rate control problem in a network system of multiple31

selfish and strategic clients. We consider systems where a32

server processes requests from multiple clients, and each client33

can dynamically adjust its own request arrival rate. Each client34

obtains some utility based on its request arrival rate and its35

own utility function, but also suffers from some disutility based36
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on some cost such as its experienced delay or request losses. 37

Each client optimizes its request arrival rate to maximize its 38

own net utility individually. The server’s goal is to ensure that 39

the total net utility is maximized at the Nash Equilibrium. Our 40

system model can be applied to a wide range of networks. For 41

example, the clients might be smartphones, wearable devices, 42

tablets and so on, and the server can be a cellular base 43

station (e.g. LTE eNodeB) or a WiFi hotspot which provides 44

Internet services to the clients. Each request corresponds to an 45

LTE subframe or an IP packet. 46

The optimal rate control problem, which entails maximizing 47

the total net utility in the system, is typically convex, and 48

it is thus easy to solve when one has complete information 49

of all the individual utility functions. In practice, however, 50

the utility functions are often private information of clients, 51

and a strategic client that aims to maximize its own net utility 52

may not reveal its true utility function. Further, request rates 53

are directly controlled by clients, instead of the server. Most 54

existing work employs some auction or pricing scheme that 55

ensures strategic clients reveal their true functions and follow 56

the assigned rates from the server [3], [4]. However, these 57

schemes involve additional monetary exchange between clients 58

and the server, which requires additional infrastructure that is 59

not always available. 60

In this paper, we propose a novel non-monetary mechanism 61

for optimal rate control to address this issue. Note that each 62

client suffers from some disutility based on its experienced 63

delay or request loss rate, and the server can indirectly 64

adjust such disutility experienced by each client through its 65

employed control policy. Therefore, the server can potentially 66

steer request rates of strategic clients toward the optimal 67

point through its control policy. Effectively, the server uses 68

“delay” or “loss rate” as a kind of “currency.” 69

In economic terms, there are negative externalities from 70

a client increasing its request rate, since this increases the 71

overall cost, in the form of delay or loss rate, of all clients. 72

This is an analogy to a public goods problem [5], in which 73

one client’s consumption choice affects the utility and payoffs 74

of the other clients. As such, the server’s objective is to 75

design an allocation scheme such that each client internalizes 76

these negative externalities, thereby leading to efficient 77

consumption of resources. 78

In designing the non-monetary mechanism, we make the 79

following contributions: 80

1) First, for both the cost of delay and the cost of loss rate, 81

we propose efficient cost allocation rules through which 82
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the server can determine the cost to be allocated to each83

client.84

2) We then design control policies used by the server to85

allocate costs and adjust disutilities experienced by the86

clients. For the cost of delay, we propose a simple87

scheduling algorithm and proves that it achieves the88

efficient delay allocation in the heavy traffic regime.189

For the cost of loss rate, we propose a simple policy90

that determines which request to drop when the server’s91

buffer is full.92

3) Furthermore, we present a distributed rate control93

protocol where clients update their request rates based on94

their experienced costs. The protocol is scalable and light-95

weight, and is proved to converge to the Nash Equilibrium96

where the total net utility of the system is also maximized.97

Altogether, they form our non-monetary mechanism for opti-98

mal rate control through efficient cost allocation.99

The rest of the paper is organized as follows. Section II100

reviews the literature related to our work. Section III intro-101

duces our system model and problem formulation, using102

delay allocation as an example. Section IV, V, and VI103

present the efficient delay allocation rule, the efficient delay104

scheduling policy, and the distributed rate control protocol105

for delay allocation respectively. Section VII extends the non-106

monetary mechanism to loss rate allocation. Simulation study107

is described in Section VIII, and we conclude our paper108

in Section IX.109

II. RELATED WORK110

There has been a considerable amount of literature that111

studies networks from the respect of economics. Altman112

et al. gave a comprehensive survey on networking games [6].113

Specifically for rate control, Kelly et al. [4] analyzed the114

stability and fairness of pricing based rate control algorithms.115

Alpcan and Başar [7] gave a utility-based congestion control116

scheme for cost minimization and showed its stability for117

a general network topology. Hou and Kumar [3] presented118

a truthful and utility-optimal auction for wireless networks119

with per-packet deadline constraints. Gupta et al. [8] studied120

network utility maximization where flows are aggregated into121

flow classes. Ramaswamy et al. [9] considered the case when122

a client can choose from a number of congestion control pro-123

tocols. Despite the rich literature, most existing mechanisms124

require additional monetary exchange between clients and125

the server, and infrastructure for monetary exchange is thus126

necessary. However, such infrastructure is not always available127

in wireless networks, which in turn limits the applicability of128

these monetary mechanisms. In contrast, our non-monetary129

mechanism exploits existing wireless network properties such130

as delay or loss rate to realize optimal rate control. The main131

advantage is that no additional infrastructure for monetary132

exchange needs to be set up or maintained, which can be a133

substantial cost saving.134

The intellectual foundation of our research comes from135

economics. The early literature began with problems of cre-136

ating incentives to reduce free riding in teams, such as in137

1Heavy traffic means the total request rate approaches the service rate.

Groves [10]. This research uses much of the similar logic 138

as our method on the behavior of other agents in a strategic 139

game. Baldenius et al. [11], Moulin and Shenker [12], and 140

Rajan [13] studied the problem of cost allocation, namely, how 141

to allocate a common cost to separate corporate departments. 142

Our contribution is combining a framework that is well utilized 143

in economics and applying it to the optimal rate control 144

problem in wireless networks. The application to distributed 145

networks is new to our knowledge. 146

Besides, our work shares a similar spirit as the standard loss- 147

based TCP congestion control and delay-based TCP variants, 148

such as TCP Vegas [14], TCP Westwood+ [15], [16], and 149

FAST TCP [17], in the sense that loss or delay is used as the 150

signal for the clients to adjust their request rates. However, 151

our mechanism includes not only a rate update protocol but 152

also an efficient cost allocation rule and a control policy to 153

enforce such rule for optimal rate control. 154

III. SYSTEM MODEL FOR DELAY ALLOCATION 155

Starting from this section, we first focus on the delay 156

allocation problem for ease of presentation. As will be shown 157

in Section VII, the system model and mechanism design can 158

be easily extended to the loss rate allocation problem. 159

Consider a system with N clients and a server. Each client i 160

generates requests by some predefined random process, such 161

as Poisson random process, but it can dynamically adjust its 162

average request rate, denoted by λi. We use λ := [λi] to 163

denote the vector containing the average request rates of all 164

clients, and λ−i to denote the vector of average request rates 165

of all clients other than i. 166

On the other hand, the server employs some schedul- 167

ing policy to determine which request to process. Unserved 168

requests are queued in the system. This corresponds to real 169

systems with sufficiently large buffers, for example, campus 170

WiFi networks. The processing time of each request is a 171

random variable with mean 1
μ . If the server’s scheduling 172

policy is work-conserving, which never idles as long as 173

there is at least one request available for processing, then 174

the average delay of all requests is a function of the total 175

average request arrival rate, Λ :=
∑

i λi, regardless of the 176

employed scheduling policy. The average delay function C̄(Λ) 177

is smooth, strictly increasing, and strictly convex. We assume 178

that the average delay C̄(Λ) can be well fitted by a low-order 179

polynomial function C(Λ) via, for example, Chebyshev least 180

squares approximation. 181

Suppose each client obtains some utility based on its request 182

rate λi and suffers from disutility for every unit delay experi- 183

enced by each of its request. Specifically, the utility of client i 184

is Ui(λi), where Ui(·) is a smooth, strictly increasing, and 185

strictly concave function. Let Di(λi, λ−i) be the average delay 186

that client i experiences for all its requests. The disutility 187

of client i is λiDi(λi, λ−i). Client i aims to maximize its 188

net utility, Ui(λi) − λiDi(λi, λ−i), by choosing its request 189

rate λi. 190

The server aims to maximize the total net utility in the 191

system, which can be written as
∑

i(Ui(λi)−λiDi(λi, λ−i)). 192

Since the average delay of all requests is the weighted average 193�
i λiDi(λi,λ−i)

Λ ≈ C(Λ), we say that the server aims to 194
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Fig. 1. An illustration of the system model.

maximize
∑

i Ui(λi)−ΛC(Λ). The system model is illustrated195

in Fig. 1.196

Note that the average delay of all requests is always infinite197

when the system is overloaded with Λ ≥ μ. To simplify198

discussions, we assume that λ has the properties that Λ =199 ∑
i λi ≤ (1 − ε)μ, where ε > 0 is a predetermined value200

known to the server. We further assume that λi ≥ λδ for all i,201

for some predetermined λδ > 0 known to the server. These202

assumptions are not restrictive since we can choose ε and203

λδ arbitrarily close to 0. Let Sλ := {λΛ ≤ (1− ε)μ, λi ≥ λδ}204

be the feasible region of λ. The server’s optimization problem205

is thus formally:206

max
λ∈Sλ

N∑

i=1

Ui(λi)− ΛC(Λ). (1)207

Since Ui(·) is concave, C(·) is convex, and Sλ is a convex208

set, the problem of maximizing the total net utility can be209

easily solved when one has complete information of all these210

functions. In practice, however, the function Ui(·) is the private211

information of client i, and a strategic client may not reveal its212

true Ui(·). Now consider a game where, given λ, the server213

determines the average delay experienced by each client i,214

Di(λi, λ−i), with the constraint that
∑

i λiDi(λi, λ−i) ≥215

ΛC(Λ). On the other hand, given λ−i and Ui(·), each client i216

aims to maximize its own net utility by solving217

λ̃i = argmax
λi

Ui(λi)− λiDi(λi, λ−i). (2)218

Note that we allow
∑

i λiDi(λi, λ−i) to be strictly larger219

than ΛC(Λ), which can be achieved by employing a policy220

that is not work-conserving and may arbitrarily delay, or drop,221

requests.222

We say that the system reaches a Nash Equilibrium if no223

client in the system can improve its own net utility unilaterally.224

Definition 1: A vector λ̃ := [λ̃i] is said to be a Nash225

Equilibrium if λ̃i = argmaxλi Ui(λi)− λiDi(λi, λ̃−i), ∀i.226

Let λ∗ := [λ∗i ] be the vector that maximizes the total net227

utility. We assume λ∗ lies in the interior of Sλ to simplify228

the analysis. This assumption is not restrictive by choosing ε229

and λδ sufficiently small. The server’s problem is to find the230

rule that allocates delays, [Di(·)], to induce optimal choices231

of [λi].232

Definition 2: A rule of allocating delays, [Di(·)], is said to233

be efficient if λ∗ is the only Nash Equilibrium.234

IV. EFFICIENT DELAY ALLOCATION 235

In this section, we propose the first building block of our 236

non-monetary mechanism, an efficient delay allocation rule. 237

The rule will be used by the server to determine how much 238

delay should be allocated to each client given their request 239

rates λ. 240

We first study some basic properties of the optimal vector 241

λ∗ = [λ∗i ] that maximizes total net utility
∑

i Ui(λi)−ΛC(Λ). 242

We have 243

∂

∂λi

[
∑

i

Ui(λ∗i )− Λ∗C(Λ∗)

]

= 0. (3) 244

Hence, 245

U ′
i(λ

∗
i ) =

∂

∂λi
Λ∗C(Λ∗). (4) 246

On the other hand, if λ∗ is also the Nash Equilibrium 247

under some delay allocation rule [Di(·)], then λ∗i maximizes 248

Ui(λi)− λiDi(λi, λ
∗
−i), and we have 249

∂

∂λi
[Ui(λ∗i )− λ∗iDi(λ∗i , λ

∗
−i)] = 0. (5) 250

Hence, 251

U ′
i(λ

∗
i ) =

∂

∂λi
λ∗iDi(λ∗i , λ

∗
−i). (6) 252

Combining the above equations yields 253

∂

∂λi
[Λ∗C(Λ∗)− λ∗iDi(λ∗i , λ

∗
−i)] = 0. (7) 254

Eq. (7) suggests that an efficient rule of delay allocation should 255

ensure that ΛC(Λ)−λiDi(λi, λ−i) is only determined by λ−i, 256

and is not influenced by λi. It means the sum of the disutilities 257

of all clients but i should not depend on the request rate of 258

client i. This implication has indeed been formally stated and 259

proved in [5]: 260

Proposition 1: [Di(·)] is efficient if and only if there exists 261

functions Ri : R
N−1 → R such that for all i, 262

λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i), (8) 263

and 264

N∑

i=1

λiDi(λi, λ−i) = ΛC(Λ). (9) 265

Recall that C(Λ) is a low-order polynomial. Therefore, 266

ΛC(Λ) is also a low-order polynomial, and can be expressed 267

as ΛC(Λ) = c1Λ + c2Λ2 + · · ·+ cmΛm. 268

We now define some helpful terminology. First define the 269

sets 270

P j :=
{

p = [pi]
∣
∣ pi is a nonnegative integer,

N∑

i=1

pi = j
}
, 271

(10) 272

P j
i := {p ∈ P j

∣
∣ pi = 0}, (11) 273

for j = 1, . . . ,m and i = 1, . . . , N . Next, for p ∈ P j , let 274

G(p) be the number of nonzero coordinates of p: G(p) := 275∣
∣
{
l
∣
∣ pl �= 0

}∣
∣. Note that G(p) is at most j, for all p ∈ P j . 276

Finally, define
(

j
p

)
:= j!

p1!···pN ! . 277
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By the multinomial expansion theorem, it holds that278

(λ1 + · · ·+ λN )j =
∑

p∈P j

(
j

p

)

λp1
1 · · ·λpN

N . (12)279

We now introduce our delay allocation rule. Let280

βj
i = cj

∑

p∈P j
i

N − 1
N −G(p)

(
j

p

)

λp1
1 · · ·λpN

N , (13)281

for j = 1, . . . ,m. We then choose Ri(λ−i) as282

Ri(λ−i) =
m∑

j=1

βj
i , (14)283

and284

λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i). (15)285

(15) ensures that Ri(λ−i) is the sum of the disutilities of all286

clients but i. (14) guarantees it does not depend on λi, which287

is consistent with the aforementioned implication.288

Theorem 1: The rule of delay allocation [Di(·)] as defined289

by Eq. (14) and (15) is efficient.290

Proof: Since pi = 0 for all p ∈ P j
i , it is obvious that291

Ri(λ−i) =
∑m

j=1 β
j
i is not influenced by λi.292

Next, we check the condition
∑

i λiDi(λi, λ−i) = ΛC(Λ).293

By Eq. (13), for every p ∈ P j , the term N−1
N−G(p)

(
j
p

)
294

λp1
1 · · ·λpN

N appears in βj
i if and only if pi = 0, and there295

are (N − G(p)) different i with pi = 0. Therefore, the term296

N−1
N−G(p)

(
j
p

)
λp1

1 · · ·λpN

N appears in [βj
i ] a total number of297

(N −G(p)) times. We then have298

N∑

i=1

Ri(λ−i) =
N∑

i=1

m∑

j=1

βj
i299

=
m∑

j=1

cj
∑

p∈P j

(N − 1)
(
j

p

)

λp1
1 · · ·λpN

N300

= (N − 1)ΛC(Λ), (16)301

and302

∑

i

λiDi(λi, λ−i) = NΛC(Λ)−
N∑

i=1

Ri(λ−i) = ΛC(Λ).303

(17)304

Therefore, by Proposition 1, the rule of delay allocation [Di(·)]305

as defined by Eq. (14) and (15) is efficient.306

Next, we briefly discuss the time complexity of calculating307

efficient delay allocation using the above rule. The most time308

consuming part is obtaining all the elements of the set P j ,309

whose size is no more than O(N j), for all j = 1, . . . ,m.310

We can obtain P j
i as well as G(p) and

(
j
p

)
while obtaining311

the elements of P j . Therefore, the total time complexity312

is O(Nm), where m is a small constant.313

Remark: We note that the allocated delays of some 314

clients following the efficient delay allocation rule [Di(·)] as 315

in Eq. (15) might be unachievable (e.g. negative) in practice, 316

especially when their request rates are too small compared 317

with others. We call those clients “VIP”, since their allocated 318

delays are among the smallest. Note there is always at least 319

one non-VIP client in the system. The above delay allocation 320

rule is efficient only when there are no VIP clients in practical 321

systems. In the following theoretical analysis, we will focus 322

on the case where all clients in the system are non-VIP. 323

We will present preliminary simulation studies on VIP clients 324

in Section VIII-A3. 325

V. EFFICIENT DELAY SCHEDULING 326

In this section, we propose an online scheduling policy used

AQ:2

327

by the server to ensure that the actual delay experienced by 328

each client is the same as its allocated delay, as described 329

in Eq. (14) and (15). 330

As mentioned before, we focus on non-VIP clients, and 331

assume that gi := λiDi > 0 for all i. According to Little’s 332

law, gi can be interpreted as the target average queue length 333

(i.e. number of requests in the system) of client i, which is 334

known to the server. Based on this observation, we propose 335

the following maximum-relative-queue-length (MRQ) policy: 336

Definition 3 (MRQ): Let Qi(t) be the queue length of client 337

i at time t. At time t, the MRQ policy schedules the client with 338

the largest relative queue length, defined as Qi(t)/gi, breaking 339

ties by scheduling the client with the lowest ID. 340

The intuition behind MRQ is that by always scheduling 341

the client with the largest relative queue length, eventually 342

all relative queue lengths are equal on average in steady 343

state, or equivalently, the average queue length of each client 344

is roughly the same as its target queue length. 345

Below we will show that the MRQ policy indeed achieves 346

the desirable efficient delay allocation in the heavy traffic 347

regime.2 In particular, we show that the deviation of the 348

actual average delay from the target delay is bounded for 349

each client i, regardless of the difference between the total 350

request rate Λ and the service rate μ. When Λ approaches μ, 351

the actual average delay goes to infinity, and therefore the 352

deviation becomes negligible compared to the actual average 353

delay. Our technical approach is similar to the state space 354

collapse results in the queueing theory literature [18]. 355

Let g := [gi] be the vector of target queue lengths for all 356

clients. Let ĝ := g/
∑

i gi be the normalized vector of g such 357

that ĝi > 0 is the fraction of target queue length for client i 358

and
∑

i ĝi = 1. Define the weighted inner product of two 359

vectors x and y by: 360

〈x,y〉 :=
N∑

i=1

xiyi

ĝi
, 361

and the norm of a vector x by: 362

‖x‖ :=
√
〈x,x〉. 363

2On the other hand, if the traffic is light and queues are not built up, it is
not quite necessary to employ an advanced scheduling policy. Nevertheless,
MRQ can still be used in light traffic and simulation results suggest that it
works reasonably well. See also Section VIII-A2.
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Note that ‖ĝ‖ = 1 and thus ĝ is the unit vector in the direction364

of g.365

Let Q(t),A(t), and S(t) be the vector of queue lengths,366

arrivals, and services respectively for all clients at time t.367

To simplify discussions, we assume that time is slotted and368

the duration of a time slot is τ . Moreover, in each time slot,369

each client can generate at most one request, and the server can370

serve at most one request. This assumption is not restrictive371

as we can set τ to be arbitrarily small. Next we define the372

generalized projection of Q(t) onto g, denoted by Q‖(t), as373

follows:374

Q‖(t) := 〈Q(t), ĝ〉ĝ =
N∑

i=1

Qi(t)ĝ.375

Since the total queue length is
∑

i Qi(t), the queue length of376

each client i is exactly the i-th element of Q‖(t) if we allocate377

queue lengths proportionally to g. Therefore, Q‖(t) can be378

thought of as the vector of target queue lengths of all clients379

under perfect state space collapse.380

The deviation Q⊥(t) of actual queue lengths Q(t) from the381

target queue lengths Q‖(t) is defined as:382

Q⊥(t) := Q(t)−Q‖(t).383

Now we introduce a helpful lemma to prove the state space384

collapse property. Our proof is based on the Lyapunov drift385

techniques. First, define the following Lyapunov functions:386

V⊥(t) := ‖Q⊥(t)‖, W (t) := ‖Q(t)‖2, W‖(t) :=
∥
∥Q‖(t)

∥
∥2
.387

The respective drifts are defined as follows:388

ΔV⊥(t) := V⊥(t+ τ) − V⊥(t)389

ΔW (t) := W (t+ τ)−W (t)390

ΔW‖(t) := W‖(t+ τ) −W‖(t)391

The following lemma, adapted from [18, Lemma 7], shows392

that the drift ΔV⊥(t) can be bounded by ΔW (t) and ΔW‖(t),393

and absolutely bounded.394

Lemma 1: We have395

ΔV⊥(t) ≤ 1
2 ‖Q⊥(t)‖ (ΔW (t) −ΔW‖(t)), (18)396

and397

|ΔV⊥(t)| ≤ 2

√
N

ĝmin
, (19)398

where ĝmin := mini ĝi.399

Proof: See Appendix A.400

Since we are considering a single server system, it is easy401

to see our MRQ policy stabilizes the queues of all clients402

as long as Λ < μ. Therefore, Q(t) converges to a limiting403

random vector Q̄ in steady state.404

Consider the following limiting queueing process: fix a405

vector ĝ of unit length with ĝi > 0, we consider all systems406

whose allocated delays satisfy g/
∑

i gi = ĝ. Each system is407

indexed by ε := μ−Λ(ε), where Λ(ε) is the total request arrival408

rate of the system. We use Q̄(ε) to denote the random vector409

of queue lengths in steady state for the system, and use Q̄
(ε)
⊥ to410

denote the deviation in steady state. The efficiency of MRQ is 411

formally stated in the following theorem: 412

Theorem 2: The efficient delay allocation rule is enforced 413

by the MRQ scheduling policy in the heavy traffic regime. 414

That is, there exists a sequence of finite integers {Nr} such 415

that E

[∥
∥
∥Q̄

(ε)
⊥

∥
∥
∥

r]
≤ Nr for all r = 1, 2, . . . and for all ε > 0. 416

Proof: Below the superscript (ε) is omitted for brevity. 417

By [18, Lemma 1], we only need to show the Lyapunov drift 418

ΔV⊥(t) is 1) negative when ‖Q⊥(t)‖ is sufficiently large, and 419

2) absolutely bounded. Lemma 1 has shown that 2) is satisfied. 420

Moreover, 1) can be reduced to bound ΔW (t) and ΔW‖(t). 421

Consider E [ΔW (t) | Q] := E [ΔW (t) | Q(t) = Q]. 422

E [ΔW (t) | Q] 423

= E

[
‖Q(t+ τ)‖2 − ‖Q(t)‖2

∣
∣
∣ Q

]
424

= E

[∥
∥
∥(Q(t) + A(t)− S(t))+

∥
∥
∥

2

− ‖Q(t)‖2
∣
∣
∣
∣ Q

]

425

≤ E

[
‖Q(t) + A(t)− S(t)‖2 − ‖Q(t)‖2

∣
∣
∣ Q

]
426

≤ 2E [〈Q(t),A(t) − S(t)〉 | Q] +K1, (20) 427

where (·)+ := max{0, ·} andK1 is a bounded constant. Below 428

we will omit (t) in the derivation for brevity. 429

Given a request rate vector λ, define a hypothetical service 430

rate vector μ := λ + εĝ, where ε > 0. Note that μΣ := 431∑
i μi = Λ + ε = μ. Recall μ is the service rate the server 432

can provide. 433

Next, we bound the term E [〈Q,A− S〉 | Q] in Eq. (20). 434

Without loss of generality, suppose at time t, client 1 has the 435

largest relative queue length, that is Q1(t)/g1 ≥ Qi(t)/gi for 436

all i. Note that by the definition of the MRQ scheduling policy, 437

〈Q,E [S | Q]〉 = Q1

ĝ1
μ ≥ Qi

ĝi
μ. 438

Therefore, 439

E [〈Q,A− S〉 | Q] 440

= 〈Q,λ− μ〉+ 〈Q,μ− E [S | Q]〉 441

= −ε ∥
∥Q‖

∥
∥−

N∑

i=1

μi

∣
∣
∣
∣
Qi

ĝi
− Q1

ĝ1

∣
∣
∣
∣ 442

≤ −ε ∥
∥Q‖

∥
∥− μmin

N∑

i=1

∣
∣
∣
∣
Qi

ĝi
− Q1

ĝ1

∣
∣
∣
∣ , (21) 443

where μmin := mini μi. 444

Since 0 < ĝi < 1 for all i, we know ĝ2
i < ĝi, and thus 445

N∑

i=1

∣
∣
∣
∣
Qi

ĝi
− Q1

ĝ1

∣
∣
∣
∣ ≥

√
√
√
√

N∑

i=1

(
Qi

ĝi
− Q1

ĝ1

)2

≥
∥
∥
∥
∥Q− Q1

ĝ1
ĝ

∥
∥
∥
∥ . 446

Further, we know ‖Q− tĝ‖ ≥ ‖Q⊥‖ for all t ∈ R. Hence, 447

E [〈Q,A− S〉 | Q] ≤ −ε ∥
∥Q‖

∥
∥− μmin

∥
∥
∥
∥Q− Q1

ĝ1
ĝ

∥
∥
∥
∥ 448

≤ −ε ∥
∥Q‖

∥
∥− μmin ‖Q⊥‖ 449

≤ −ε ∥
∥Q‖

∥
∥− δ ‖Q⊥‖ , (22) 450

for any δ such that 0 < δ < mini λi. 451
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Substituting Eq. (22) to Eq. (20), we get452

E [ΔW (t) | Q] ≤ −2ε
∥
∥Q‖

∥
∥− 2δ ‖Q⊥‖+K1. (23)453

Next, we obtain a lower bound of ΔW‖(t). Consider454

E
[
ΔW‖(t)

∣
∣ Q

]
:= E

[
ΔW‖(t)

∣
∣ Q(t) = Q

]
. Let Ψ(t) be455

the unused service at time t such that Q(t + 1) = Q(t) +456

A(t)− S(t) + Ψ(t). Note that 0 ≤ ψi ≤ 1 for all i.457

E
[
ΔW‖(t)

∣
∣ Q

]
458

= E

[
〈ĝ,Q + A− S + Ψ〉2 − 〈ĝ,Q〉2

∣
∣
∣ Q

]
459

= E

[
2 〈ĝ,Q〉 〈ĝ,A− S〉+ 〈ĝ,A− S〉2460

+ 2 〈ĝ,Q + A− S〉 〈ĝ,Ψ〉+ 〈ĝ,Ψ〉2
∣
∣
∣ Q

]
461

≥ 2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉462

− 2E [〈ĝ,S〉 〈ĝ,Ψ〉 | Q]463

≥ 2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉 −K2, (24)464

where K2 := 2 N2 considering Si ≤ 1 and ψi ≤ 1 for all i.465

The first term can be further reduced as follows:466

2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉 = 2
∥
∥Q‖

∥
∥ (Λ− μ) = −2ε

∥
∥Q‖

∥
∥ .467

Therefore,468

E
[
ΔW‖(t)

∣
∣ Q

] ≥ −2ε
∥
∥Q‖

∥
∥−K2. (25)469

By taking expectation of Eq. (18), and substituting Eq. (23)470

and (25) into it, we have471

E [ΔV⊥(t) | Q] ≤ −δ +
K1 +K2

2 ‖Q⊥‖ ,472

which establishes the negative drift of E [ΔV⊥(t) | Q]. Along473

with the absolute boundness provided by Lemma 1, we can474

conclude that the conditions for [18, Lemma 1] are satisfied,475

and thus there exists a sequence of finite integers {Nr} such476

that E

[∥
∥
∥Q̄

(ε)
⊥

∥
∥
∥

r]
≤ Nr for all r = 1, 2, . . . .477

Remark: Since the constants in these bounds are all478

independent of ε, the deviation of the limiting queue length479

vector Q̄(ε) from the target queue length vector g becomes480

negligible as ε → 0. Therefore, we observe the state space481

collapse behavior of relative queue lengths, and the efficient482

delay allocation rule is enforced by our MRQ scheduling483

policy in the heavy traffic regime.484

VI. DISTRIBUTED RATE CONTROL PROTOCOL485

Theorem 1 has shown that our proposed delay allocation486

rule in Section IV is efficient. That is, suppose there is a unique487

vector λ∗ = [λ∗i ] that maximizes total net utility
∑

i Ui(λi)−488

ΛC(Λ) in Eq. (1), then λ∗ is also the unique vector of Nash489

Equilibrium under our delay allocation rule. Theorem 2 further490

proves that our MRQ scheduling policy enforces the delay491

allocation rule, that is each client experiences its own allocated492

delay in the heavy traffic regime. In this section, we propose493

a distributed rate control protocol for clients to dynamically494

adjust their rates so as to converge to the Nash Equilibrium.495

Our protocol is based on the projected gradient method [19],496

a simple yet effective method to solve convex optimization497

problems. The projected gradient method consists of two steps:498

initialization and iterative update. In the initialization step, 499

the method arbitrarily chooses a vector λ(0) ∈ Sλ. Recall that 500

Sλ is the feasible region for λ. In each subsequent iteration k, 501

the projected gradient method updates λ by: 502

λ̂(k + 1) = λ(k) + κ(k)∇
[

N∑

i=1

Ui(λi)− ΛC(Λ)

]

, 503

λ(k + 1) = P(λ̂(k + 1)), 504

where κ(k) > 0 is the step size at the k-th iteration, and P is 505

the projection to the convex set Sλ. Note that the index k 506

of iteration should not be confused with the time slot for 507

scheduling. We assume a time scale separation, where rate 508

update happens in a more coarse time scale than scheduling, 509

so that there is sufficient time for the scheduling policy to 510

steer the clients and enforce the efficient delay allocation rule. 511

Reference [19] has shown that the projected gradient method 512

converges to the unique optimal solution, and therefore also 513

converges to the Nash Equilibrium. 514

Proposition 2: If κ(k) satisfies
∑∞

k=0 κ(k) = ∞ and 515∑∞
k=0 κ

2(k) < ∞, then the projected gradient method either 516

stops at some iteration k, or the infinite sequence {λ(k)} 517

generated by the method converges to the optimal point. 518

Note that stopping at some iteration k means the method 519

reaches the optimality in finite steps. However, the projected 520

gradient method is a centralized algorithm. In particular, 521

calculating the projection λ(k + 1) = P(λ̂(k + 1)) requires 522

the knowledge of all elements in λ̂(k+1). Below, we propose 523

a distributed rate control protocol that is inspired by the 524

projected gradient method. 525

Since 526

∂

∂λi
[ΛC(Λ)] =

d[ΛC(Λ)]
dΛ

∂Λ
∂λi

=
d

dΛ
[ΛC(Λ)], 527

λ̂(k + 1) can be acquired by each client updating its own 528

request rate: 529

λ̂i(k + 1) = λi(k) + κ(k)
[

U ′
i(λi(k))− d[ΛC(Λ)]

dΛ

]

. 530

Note that, to facilitate the update, the server only needs to 531

broadcast the value of κ(k) and d[ΛC(Λ)]
dΛ in each iteration to 532

all clients. 533

To ensure that λ(k + 1) satisfies Λ(k + 1) ≤ (1 − ε)μ and 534

λi(k + 1) ≥ λδ , each client i further chooses 535

λi(k + 1) = min{max{λ̂i(k + 1), λδ}, λi(k)
(1 − ε)μ

Λ(k)
}. 536

This step ensures that λδ ≤ λi(k + 1) ≤ λi(k)
(1−ε)μ
Λ(k) , and 537

therefore Λ(k + 1) ≤ Λ(k) (1−ε)μ
Λ(k) = (1 − ε)μ. We also 538

note that, to facilitate this step, the server only needs to 539

broadcast the value of Λ(k) in each iteration. Fig. 2 illustrates 540

the different projection behaviors of the centralized projected 541

gradient method and our distributed rate control protocol. 542

Note that distributed projection requires the constraints of the 543

optimization problem are either decoupled for each client or in 544

a summation form, while centralized projection works with a 545

general convex set as the feasible region. 546
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Fig. 2. Centralized vs. distributed projection.

The complete distributed protocol is summarized in547

Protocol 1. Compared with the centralized method, our dis-548

tributed protocol is more scalable and lightweight, since it549

utilizes the broadcast nature of wireless channel and requires550

less resource of the server and the channel.551

Protocol 1 (Distributed Rate Control Protocol):

Server: on convergence of relative queue lengths:

1. k ← k + 1
2. Broadcast Λ(k), κ(k), and d[ΛC(Λ)]

dΛ

Client i: on reception of server broadcast message:

1. Update: λ̂i ← λi +κ(k)
[
U ′

i(λi)− d[ΛC(Λ)]
dΛ

]

2. Projection: λi ←
min{max{λ̂i, λδ}, λi

(1−ε)μ
Λ }

We can prove that our distributed protocol also converges552

to the Nash Equilibrium. This property will also be verified553

by simulations in Section VIII.554

Theorem 3: If κ(k) satisfies
∑∞

k=0 κ(k) = ∞ and555 ∑∞
k=0 κ

2(k) < ∞, then the distributed rate control protocol556

either stops at some iteration k, or the infinite sequence557

{λ(k)} generated by the protocol converges to the Nash558

Equilibrium of the system.559

Proof: See Appendix B.560

VII. NON-MONETARY PROTOCOL WITH561

EFFICIENT LOSS RATE ALLOCATION562

Our non-monetary mechanism can be extended to deal563

with different costs other than delay itself. In this section,564

we consider loss rate allocation in a finite-buffer system as565

an example. This is more practical for real systems with566

only small buffers where packet losses are more common, for567

example, mobile hotspots set up by cellphones.568

A. System Model for the Loss Rate Allocation Problem569

Similar to Section III, suppose that there are N clients570

and a server in the system. Each client i controls its request571

arrival rate λi, and the service time needed by each request572

is a sequence of i.i.d. random variables with mean 1
μ . On the 573

other hand, we assume that the server serves all requests in a 574

first-in-first-out (FIFO) fashion, and that the server only has 575

a finite buffer that can hold B unfinished requests, including 576

the one being served. When the buffer is full and there is 577

another request arrival, the server needs to drop a request to 578

accommodate the new request, and the corresponding client 579

experiences a loss.3 580

Since the service times of all requests have the same 581

probability distribution, the request loss rate, defined as the 582

average number of dropped requests per unit time, is a function 583

of total request arrival rate, Λ =
∑

i λi. We denote the request 584

loss rate by L̄(Λ), and note that L̄(Λ) = ΛPB(Λ), where 585

PB(Λ) is the blocking probability of the queueing system. 586

We assume that L̄(Λ) can be well fitted by a low-order 587

polynomial function L(Λ), which is strictly increasing and 588

strictly convex. 589

Each client obtains some utility Ui(λi) based on its own 590

request rate, and suffers from some disutility that equals its 591

own loss rate. We use li(λi, λ−i) to denote the loss rate of 592

client i. Hence, the net utility of client i is Ui(λi)−li(λi, λ−i). 593

Obviously, we have
∑

i li(λi, λ−i) = L̄(Λ) ≈ L(Λ). The 594

goal of the server is to maximize the total net utility in the 595

system, which can be approximated by
∑

i Ui(λi) − L(Λ), 596

while each client i aims to maximize its own net utility 597

Ui(λi) − li(λi, λ−i). The server can allocate the loss rate 598

li(λi, λ−i) of each client i through its policy of dropping 599

requests, subject to the constraint that
∑

i li(λi, λ−i) = L(Λ). 600

Similar to delay allocation, we can define Nash Equilibrium 601

and efficient allocation rule for loss rate allocation as follows: 602

Definition 4: A vector λ̃ := [λ̃i] is said to be a Nash 603

Equilibrium for loss rate allocation if λ̃i = argmaxλi Ui(λi)− 604

li(λi, λ̃−i), ∀i. 605

Definition 5: A rule of allocating loss rates, [li(·)], is said 606

to be efficient if λ∗ is the only Nash Equilibrium. 607

B. Mechanism Design for Efficient Loss Rate Allocation 608

Our results of efficient allocation rule in Section IV can be 609

easily extended to loss rate allocation. In particular, we have 610

the following proposition: 611

Proposition 3: [li(·)] is efficient if and only if there exists 612

functions Ri : R
N−1 → R such that for all i, 613

li(λi, λ−i) = L(Λ)−Ri(λ−i), (26) 614

and 615

N∑

i=1

li(λi, λ−i) = L(Λ). (27) 616

For the allocation rule, redefine ci to be the coefficients of 617

L(Λ) instead of ΛC(Λ) in Section IV. Then setting 618

li(λi, λ−i) = L(Λ)−Ri(λ−i), (28) 619

is efficient, where Ri(λ−i) has the same form as in (14). 620

Next, we discuss how to design a policy that ensures the 621

actual perceived loss rate of each client i is close to the 622

3The dropped request can be the newly arriving one, or some request already
in the buffer.
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desirable li(λi, λ−i). Suppose at time t, the server’s buffer623

is full and one more client request arrives. Let l̄i(t) be624

the perceived loss rate of client i till time t for all i. On the625

other hand, li is the allocated loss rate according to the626

above allocation rule. We propose the following drop-smallest-627

relative-loss-rate (DropSRLR) policy:628

Definition 6 (DropSRLR): Suppose the server’s buffer is629

full and a new request arrives at time t, the DropSRLR policy630

drops a request from the client with the smallest relative loss631

rate, defined as l̄i(t)/li, breaking ties by choosing the client632

with the lowest ID.633

The intuition of our dropping policy is that by always634

selecting the client with the smallest relative loss rate, over635

a long term all relative loss rates tend to be the same, which636

is equivalent to say each client obtains a loss rate as allocated.637

The efficiency of the policy will be demonstrated in the638

simulations in Section VIII.639

Moreover, we can extend our distributed rate control proto-640

col to loss rate allocation. The complete distributed protocol is641

summarized in Protocol 2. Note that there is no upper limit for642

the total request rate to make the finite-buffer system stable.643

Therefore, the distributed protocol is essentially the same as its644

centralized counterpart, and its convergence is straightforward645

to show.646

Protocol 2 (Distributed Rate Control Protocol for Loss
Rate Allocation):

Server: on convergence of relative loss rates:
1. k ← k + 1
2. Broadcast κ(k) and L′(Λ(k))

Client i: on reception of server broadcast message:
1. Update: λ̂i ← λi + κ(k) [U ′

i(λi)− L′(Λ(k))]
2. Projection: λi ← max{λ̂i, λδ}

VIII. SIMULATIONS647

In this section, we evaluate the performance of our overall648

design via simulations. We will present the simulations for649

delay allocation and loss rate allocation respectively.650

A. Simulations of Delay Allocation651

For delay allocation, we validate the polynomial approxi-652

mation assumption for the average delay function, the state653

space collapse behavior of relative queue lengths through654

the MRQ scheduling policy, and the convergence to the655

Nash Equilibrium of our distributed rate control protocol.656

For comparison, we also consider a baseline mechanism657

with the classic FIFO policy for scheduling and centralized658

projected gradient method for rate control. Note that with659

FIFO scheduling, each client experiences the same average660

delay, i.e. Di(λi, λ−i) = C(Λ).661

In our simulations, we consider two systems each with662

N = 10 clients and one server. Both systems have Poisson663

arrivals of requests from all clients. The service time distrib-664

ution of one system is exponential, and the other is determin-665

istic. Hence, the two systems correspond to an M/M/1 queue666

Fig. 3. Polynomial approximation of total disutility functions ΛC(Λ).

and an M/D/1 queue respectively. Each system has an average 667

service rate μ = 1× 103s−1 and an initial total average 668

request rate Λ = 0.95μ = 0.95× 103s−1. Request rates 669

will be updated by clients over time. We round up all inter- 670

arrival times between two consecutive requests and service 671

times of requests to the nearest microsecond. Given the above 672

average service rate, we make about 103 scheduling decisions 673

every second. 674

1) Polynomial Approximation of Average Delay Function: 675

First, we evaluated the assumption that the average delay 676

function can be well approximated by a polynomial C(Λ). 677

There are two methods to obtain the average delay function: 678

One is via the theoretical formula, and the other is via simu- 679

lations. Here, we use the first method. For the M/M/1 queue, 680

the theoretical average delay function is: 681

C̄(Λ) =
1

μ− Λ
. 682

For the M/D/1 queue, it is: 683

C̄(Λ) =
1
μ

+
Λ

2μ(μ− Λ)
. 684

In our simulations, we fit C̄(Λ) with ten samples in our 685

most interested heavy traffic region, where Λ/μ ∈ [0.9, 0.99], 686

to get the polynomial C(Λ). Recall that the total disutility 687

in terms of total average queue length is ΛC(Λ). The total 688

disutility functions before and after approximation are com- 689

pared in Fig. 3, labeled as “Theory” and “Approx” respectively. 690

We can observe that the polynomial approximation fits the 691

theoretical functions very well. In fact, the order of the 692

polynomial C(Λ) is as small as six, and the largest relative 693

error of the approximation is only about 2.66%. 694

2) Scheduling Policy: We implemented our MRQ schedul- 695

ing policy and validated the state space collapse behavior in 696

the simulations. We use a new metric, the relative difference 697

of queue lengths, defined as: 698

(

max
i

Qi(t)
gi
−min

i

Qi(t)
gi

) / ∑

i

Qi(t)
gi

699

to evaluate the state space collapse performance. Theorem 2 700

has shown that, given the target queue length gi of each 701
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Fig. 4. State space collapse of relative queue lengths.

Fig. 5. State space collapse in light traffic.

client i, our MRQ policy ensures that the relative difference702

of queue lengths converges to 0 in the heavy traffic regime.703

Fig. 4 shows the evolution of the relative difference of queue704

lengths for both systems for two sets of initial request rates,705

“Same rate” and “Diff rates”. “Same rate” means all ten clients706

have the same request rate λ = Λ/N = 95s−1, while in “Diff707

rates” we have two groups of request rates: λi = 95.6s−1 for708

i = 1, 2, . . . , 5 and 94.4s−1 for i = 6, 7, . . . , 10. We initialize709

the queue length of client i to be i2 to exhibit the convergence710

of relative queue lengths more clearly. We can see that the711

relative difference of queue lengths converges to 0 quickly for712

each scenario.713

Fig. 5 depicts the state space collapse behavior in light714

traffic, where the total load of each system is only 0.1. Here715

“Same rate” means all ten clients have the same request rate716

λ = Λ/N = 10s−1, while in “Diff rates” the two groups of717

request rates are: λi = 10.6s−1 for i = 1, 2, . . . , 5 and 9.4s−1
718

for i = 6, 7, . . . , 10. Similar to Fig. 4, the queue length of719

client i is initialized to be i2. We observe that the relative720

difference of queue lengths also quickly decreases to a low721

level initially where there are enough requests to schedule.722

However, there is no further decrease afterwards since too few723

requests are in the system to achieve exact allocation of queue724

lengths and delays.725

Fig. 6. Convergence performance of request rates for delay allocation.
(a) M/M/1 system. (b) M/D/1 system.

3) Nash Equilibrium: Furthermore, we evaluated our dis- 726

tributed rate control protocol in the simulations. We set the 727

utility functions for both systems to be Ui(λi) = αwi logλi, 728

where α = 100 is the common scaling coefficient for all 729

clients, and wi’s are different weights for different clients. 730

We set the weights to be in two groups: wi = 0.99 for 731

i = 1, 2, . . . , 5 and 1.01 for i = 6, 7, . . . , 10. Therefore, 732

the evolution of request rates of all the clients can be captured 733

by those of Client 1 and Client 10. For the step size, we let 734

κ(k) = 10/k for all k. 735

Fig. 6 shows the rate convergence performance for the two 736

systems respectively. We can see that for each system, the 737

request rates converge to two distinct values after tens of 738

iterations. Observe that the distributed rate control protocol 739

(“Dist” in the figure) has almost the same rate updates as the 740

projected centralized gradient method (“Cent” in the figure). 741

It validates that the request rates converge to the optimal 742

rates λ∗, and the distributed rate control protocol achieves 743

the Nash Equilibrium of the system. 744

Fig. 7 shows the convergence performance in terms of total 745

net utility for the two systems. The total net utility settles 746

down quickly with our distributed protocol (“MRQ, Dist” in 747
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Fig. 7. Convergence performance of total net utility for delay allocation.
(a) M/M/1 system. (b) M/D/1 system.

the figures), and the evolution is again almost the same as the748

centralized method (“MRQ, Cent” in the figures). It means749

the total net utility converges to the optimal value of the750

optimization problem, and confirms the convergence of our751

distributed rate control protocol. In these figures we also752

plot the performance of the baseline mechanism with the753

FIFO scheduling policy for comparison. We can see that under754

the baseline mechanism, the total net utility converges to a755

suboptimal value. It indicates that the delay allocation rule of756

the baseline mechanism is not efficient.757

We also conduct preliminary studies on the impact of758

VIP clients via simulations. We assume VIP clients experi-759

ence zero delay and update their request rates accordingly.760

We consider two scenarios where VIP clients exist. One is761

that there are VIP clients at the Nash Equilibrium. In the762

simulation, we set the weights in the utility functions to be763

wi = 0.7 for i = 1, 2, . . . , 5 and 1.3 for i = 6, 7, . . . , 10 so764

that Clients 1–5 will be VIP at the Nash Equilibrium. Fig. 8765

depicts the evolution of total net utility for the M/M/1 system766

in this scenario. Observe that under our protocol, the total767

net utility oscillates over time. However, our mechanism still768

outperforms the baseline mechanism. The other scenario uses769

Fig. 8. Total net utility evolution with VIP clients at the Nash Equilibrium.

Fig. 9. Total net utility convergence with VIP clients at initial arrival.

the same utility functions as those in Fig. 7, but sets the 770

initial request rates to be λi = 100s−1 for i = 1, 2, . . . , 5 771

and 90s−1 for i = 6, 7, . . . , 10 so that initially Clients 6–10 772

are VIP. We find that Clients 6–10 remain VIP clients in 773

the first two iterations. However, all clients are non-VIP 774

afterwards. Fig. 9 shows the convergence performance of total 775

net utility for the M/M/1 system. Note that it converges to 776

the same optimal value as in Fig. 7a under our mechanism. 777

Therefore, in this case the system eventually converges to the 778

original optimal Nash Equilibrium. 779

B. Simulations of Loss Rate Allocation 780

For loss rate allocation, we will show the validity of 781

polynomial approximation for the loss rate function, the con- 782

vergence of relative loss rates under our DropSRLR policy, 783

and the convergence of the distributed rate control protocol 784

in Protocol 2. As for the baseline mechanism, we use the 785

well-known DropTail policy that always drops the newly 786

arriving request when the buffer is full. Note that under Drop- 787

Tail, each client has the same blocking probability, and thus 788

li(λi, λ−i) = λiL(Λ)/Λ. 789
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Fig. 10. Polynomial approximation of loss rate functions.

Similar to delay allocation, we simulate two systems each790

with N = 10 clients and one server for loss rate allocation.791

The two systems correspond to an M/M/1/B queue and an792

M/D/1/B queue respectively. That is to say, the request arrival793

processes are both Poisson, while the service time distributions794

are exponential and deterministic respectively. The buffer size795

B is fixed to be 10 for each system. Besides, we set the average796

service rate μ = 1× 103s−1, and the initial total average797

request rate Λ = 0.99μ = 0.99× 103s−1.798

1) Polynomial Approximation of Loss Rate Function: First,799

we evaluated the assumption that the loss rate function can800

be well approximated by a polynomial L(Λ). Similar to801

delay allocation, we use theoretical results to obtain the loss802

rate function L̄(Λ). Recall that L̄(Λ) = ΛPB(Λ). For the803

M/M/1/B queue, the blocking probability PB(Λ) is given by804

the following formula:805

PB(Λ) =
(Λ

μ )B

∑B
i=0(

Λ
μ )i

.806

For the M/D/1/B queue, PB(Λ) can be calculated by the807

procedure described in [20]. Therefore, we can get PB(Λ)808

and L̄(Λ) for any given Λ.809

In our simulations, we fit PB(Λ) with ten samples where810

Λ/μ ∈ [0.7, 1.3] to be a 6-order polynomial. The total811

disutility functions in terms of loss rate L(Λ) before and812

after approximation are compared in Fig. 10, labeled as813

“Theory” and “Approx” respectively. Similar to delay alloca-814

tion, the polynomial approximation can be observed to match815

the theoretical functions very well. The largest relative error816

is only about 1.57%.817

2) Dropping Policy: We implemented our DropSRLR drop-818

ping policy for loss rate allocation and validated the conver-819

gence of relative loss rates via simulations. To quantify the820

convergence performance, we introduce the relative difference821

of loss rates, defined as822

(

max
i

l̄i(t)
li
−min

i

l̄i(t)
li

) /∑

i

l̄i(t)
li

.823

Fig. 11 shows the evolution of the relative difference of loss824

rates for both systems for two sets of initial request rates.825

Fig. 11. Convergence performance of relative loss rates.

Fig. 12. Convergence performance of request rates for loss rate allocation.

Similar to delay allocation, “Same rate” means all ten clients 826

have the same request rate λ = Λ/N = 99s−1. On the other 827

hand, for “Diff rates” in loss rate allocation we set λi = 828

100s−1 for i = 1, 2, . . . , 5 and 98s−1 for i = 6, 7, . . . , 10. 829

The initial loss rate of client i is set to be i. From the figure, 830

we can see that the relative difference of loss rates converges 831

to 0 quickly for both systems and both sets of initial request 832

rates. It shows that our DropSRLR dropping policy ensures 833

that the loss rates experienced are as allocated and the policy 834

is thus efficient. 835

3) Distributed Protocol: We also validated the convergence 836

of our distributed rate control protocol for loss rate allocation, 837

Protocol 2, in our simulations. Similar to delay allocation, the 838

utility function of client i is Ui(λi) = αwi log λi. We set 839

α = 50 as the common scaling coefficient for all clients. 840

We set the weights to be in two groups: wi = 1 − 5× 10−3
841

for i = 1, 2, . . . , 5 and 1 + 5× 10−3 for i = 6, 7, . . . , 10. For 842

the step size, we let κ(k) = 80/k for all k. 843

Fig. 12 shows the rate convergence performance for the 844

two finite-buffer systems. In our setup, the rate evolution of 845

Client 1 and Client 10 depicts the rate evolution of all the 846

ten clients. We can see that for each system, the request 847



IEE
E P

ro
of

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. Convergence performance of total net utility for loss rate allocation.

Fig. 14. Sensitivity on the buffer size B.

rates converge to two distinct values after tens of iterations.848

Fig. 13 shows the convergence performance in terms of total849

net utility for the two systems. The total net utility settles850

down quickly with our distributed protocol (“DropSRLR”851

in the figure). Note that the centralized method is omitted852

since it is essentially the same as the distributed protocol for853

loss rate allocation. Therefore, under our distributed protocol,854

the request rates of all clients converge to the Nash Equilib-855

rium, and the total net utility converges to the optimal value of856

the rate control problem. On the other hand, under the baseline857

mechanism with the DropTail dropping policy the total net858

utility converges to a suboptimal value for each system. Hence,859

the loss rate allocation of the baseline mechanism is not860

efficient.861

We also conduct sensitivity analysis on the buffer size B862

via simulations. The results are plotted in Fig. 14, and they863

clearly show diminishing returns. The total net utility, i.e. the864

objective value of the rate control problem, increases as the865

buffer size B increases. This is consistent with the intuition866

that larger buffer size leads to smaller loss rates. However,867

the marginal increase in total net utility decreases and the total868

net utility becomes saturated when B is large.869

IX. CONCLUSIONS 870

We have presented our non-monetary mechanism for opti- 871

mal rate control through efficient cost allocation. First, 872

we focus on delay allocation. We give our delay allocation 873

rule and prove its efficiency based on multinomial expansion. 874

Then we propose our MRQ scheduling policy that can enforce 875

the delay allocation rule effectively in the heavy traffic regime. 876

Besides, we design a distributed rate control protocol which 877

can lead the system to the Nash Equilibrium. Furthermore, 878

we show that our non-monetary mechanism can be extended 879

to handle loss rate allocation as well. Finally, simulation results 880

depict the effectiveness of our mechanism. We will conduct 881

further study on VIP clients for future work. We would like 882

to obtain nontrivial sufficient conditions for clients to become 883

VIPs and for our mechanism to still achieve efficient cost 884

allocation considering VIP clients. 885

APPENDIX A 886

PROOF OF LEMMA 1 887

Proof: The proof of Eq. (18) is omitted since it is virtually 888

the same as the proof of [18, Lemma 7]. 889

The proof of Eq. (19) is stated below: 890

|ΔV⊥(t)| = |‖Q⊥(t+ τ)‖ − ‖Q⊥(t)‖| 891

≤ ‖Q⊥(t+ τ)−Q⊥(t)‖ 892

=
∥
∥Q(t+ τ)−Q(t)−Q‖(t+ τ) + Q‖(t)

∥
∥ 893

≤ ‖Q(t+ τ)−Q(t)‖ +
∥
∥Q‖(t+ τ) −Q‖(t)

∥
∥. 894

The vector in the second term is exactly the projection 895

of Q(t + τ) − Q(t) onto g. Due to Pythagoras theorem, 896∥
∥Q‖(t+ τ)−Q‖(t)

∥
∥ ≤ ‖Q(t+ τ) −Q(t)‖. Hence, 897

|ΔV⊥(t)| ≤ 2(‖Q(t+ τ) −Q(t)‖) 898

= 2

√
√
√
√

N∑

i=1

1
ĝi

(Ai(t)− Si(t))2 899

≤ 2

√
N

ĝmin
, 900

where the last inequality follows because we assume that there 901

is at most one request arrival and one request service in each 902

time slot. 903

APPENDIX B 904

PROOF OF THEOREM 3 905

We will use a descent lemma in [19]: 906

Lemma 2: Let f : R
n �→ R be continously differentiable, 907

and let x and y be two vectors in R
n. Suppose that 908

‖∇f(x + ty)−∇f(x)‖ ≤ Lt ‖y‖ , ∀t ∈ [0, 1], 909

where L is some scalar. Then 910

f(x + y) ≤ f(x) + yT∇f(x) +
L

2
‖y‖2 . 911

912

Proof: See [19, Proposition A.24]. 913

Proof of Theorem 3: First, note the distributed protocol 914

is possible to stop at some iteration k, if λ(k) = λ∗. 915
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Since ∇f(λ∗) = 0, λ∗ is stationary between successive916

iterations. In such case, the optimal point is reached in finite917

iterations. Below we will focus on the case where we have an918

infinite sequence {λ(k)}.919

Let f(λ) := ΛC(Λ) −∑
i Ui(λi) be the opposite to the920

objective function of the server’s optimization problem in (1).921

Easy to check f is smooth, strictly convex, and bounded922

on Sλ. Therefore, ∇f is Lipschitz-continous, i.e. there exists923

L < ∞ such that ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,924

y ∈ Sλ.925

By Lemma 2, we have926

f(λ(k + 1))− f(λ(k)) ≤ ∇T f(λ(k))(λ(k + 1)− λ(k))927

+
L

2
‖λ(k + 1)− λ(k)‖2 (29)928

We can rewrite the iterative update in the distributed proto-929

col in vector form:930

λ̂(k + 1) = λ(k)− κ(k)∇f(λ(k)), (30)931

λ(k + 1) = Pk(λ̂(k + 1)), (31)932

where Pk is the projection to the convex set Sk
λ :=933

{λλδ ≤ λi ≤ λi(k)
(1−ε)μ
Λ(k) , ∀i = 1, 2, . . . , N}. Easy to see934

Sk
λ ⊂ Sλ,λ(k) ∈ Sk

λ, and λ(k + 1) ∈ Sk
λ.935

By the Projection Theorem (See [19, Proposition 2.1.3]),936

(
λ̂(k + 1)− λ(k + 1)

)
(λ− λ(k + 1)) ≤ 0, ∀λ ∈ Sk

λ.937

Let λ = λ(k), and substitute in (30). We then have938

(λ(k)− κ(k)∇f(λ(k))− λ(k + 1)) (λ(k)− λ(k + 1)) ≤ 0.939

Hence,940

∇T f(λ(k))(λ(k + 1)− λ(k)) ≤ − 1
κ(k)

‖λ(k + 1)−λ(k)‖2941

(32)942

Substituting (32) to (29), we get943

f(λ(k + 1))− f(λ(k)) ≤
(
L

2
− 1
κ(k)

)

‖λ(k + 1)−λ(k)‖2944

(33)945

Since κ(k) satisfies
∑∞

k=0 κ
2(k) <∞, there must exist some946

integerK1 > 0 such that for all k ≥ K1, κ(k) < 2
L . Therefore,947

f(λ(k + 1)) ≤ f(λ(k)), ∀k ≥ K1.948

By assumption, there is a bounded optimal value for the949

server’s optimization problem at λ∗. Hence, {f(λ(k))} is950

monotonically decreasing and lower bounded by f(λ∗).951

Therefore, {f(λ(k))} converges as k → ∞. Taking the limit952

of (33), the left hand side goes to 0, and the right hand side is953

nonpositive. Therefore, ‖λ(k + 1)− λ(k)‖ → 0 as k → ∞.954

Since {λ(k)} is bounded in Sλ, the sequence must converge955

to some point in Sλ.956

Let λ̄ ∈ Sλ be the limit point of {λ(k)} as k → ∞.957

We shall show λ̄ = λ∗ by contradiction. Suppose λ̄ �= λ∗,958

which implies ∇f(λ̄) �= 0. Hence, limk→∞ ‖∇f(λ(k))‖ =959 ∥
∥∇f(λ̄)

∥
∥ > 0. Since the sequence {λ(k)} is infinite,960

‖∇f(λ(k))‖ > 0 for all k. Therefore, there exists ς1 > 0961

such that ‖∇f(λ(k))‖ > ς1 > 0 for all k.962

Let Γ(Λ) := ΛC(Λ). Γ(Λ) is strictly convex and thus Γ′(Λ) 963

is strictly increasing. Besides, since Ui(·) is strictly concave, 964

U ′
i(·) is strictly decreasing. Consider λ(k) and Λ(k) = 965∑
i λi(k) for large k, the following are all the possible cases: 966

1) Λ(k) = (1 − ε)μ. We know Λ(k) > Λ∗, and therefore 967

Γ′(Λ(k)) ≥ Γ′(Λ∗). There must be some client i such 968

that λi(k) > λ∗i , and thus U ′
i(λi(k)) < U ′

i(λ
∗
i ). Hence, 969

U ′
i(λi(k)) − Γ′(Λ(k)) < U ′

i(λ
∗
i ) − Γ′(Λ∗) = 0, and 970

the update substep will have λ̂i(k + 1) < λi(k). Since 971

λi(k) > λ∗i > λδ , the distributed projection allows 972

λi to decrease. Therefore, after one iteration we have 973

λi(k + 1) < λi(k) = λi(k)
(1−ε)μ
Λ(k) . For all j �= i, 974

λj(k+1) ≤ λj(k)
(1−ε)μ
Λ(k) . Therefore, Λ(k+1) < (1−ε)μ. 975

2) Λ(k) < (1 − ε)μ, and there is some i such that 976

λi(k) = λδ . Recall that under efficient delay allocation, 977

∂
∂λi

λiDi(λi, λ−i) = ∂
∂λi

ΛC(Λ) = Γ′(Λ). We have 978

− ∂

∂λi
f(λ(k)) = U ′

i(λδ)− Γ′(Λ(k)) 979

= U ′
i(λδ)− ∂λiDi

∂λi
(λδ, λ−i(k)) > 0, 980

where the last inequality is due to the assumption that the 981

Nash Equilibrium is in the interior of the feasible set Sλ. 982

The update substep will then have λ̂i(k + 1) > λi(k). 983

Note that
∑

k κ
2(k) < ∞ implies limk→∞ κ(k) = 0. 984

Besides, ∂
∂λi

f(λ(k)) is bounded. Since λi(k) < 985

λi(k)
(1−ε)μ
Λ(k) , for sufficiently large k, λδ < λ̂i(k + 1) < 986

λi(k)
(1−ε)μ
Λ(k) . After one iteration, we have λδ < λi(k + 987

1) < λi(k)
(1−ε)μ
Λ(k) . Hence, Λ(k + 1) < (1 − ε)μ and 988

λi(k + 1) > λδ, ∀i. 989

3) Λ(k) < (1 − ε)μ and λi(k) > λδ, ∀i. In this case, 990

λ(k) lies in the interior of Sk
λ. Note that limk→∞ 991

κ(k) = 0, and ‖∇f(λ(k))‖ is bounded. Therefore, for 992

sufficiently large k, λ̂(k+1) also lies in the interior of Sk
λ. 993

In this case, λ(k+1) = P k(λ̂(k+1)) = λ̂(k+1). Hence, 994

Λ(k + 1) < (1− ε)μ and λi(k + 1) > λδ, ∀i. 995

Therefore, we can conclude that there exists an integer 996

K2 > 0, such that for all k ≥ K2, Λ(k) < (1 − ε)μ, and 997

λi(k) > λδ, ∀i. λ(k+1) = λ̂(k+1) = λ(k)−κ(k)∇f(λ(k)). 998

Using Lemma 2 again, we have 999

f(λ(k + 1))− f(λ(k)) 1000

≤ −κ(k) ‖∇f(λ(k))‖2 +
L

2
κ2(k) ‖∇f(λ(k))‖2 1001

= −κ(k)
(

1− L

2
κ(k)

)

‖∇f(λ(k))‖2 (34) 1002

Let K3 := max{K1,K2}. For all k ≥ K3, κ(k) < 2
L , and 1003

there exists some ς2 > 0 such that 1 − L
2 κ(k) > ς2. Recall 1004

‖∇f(λ(k))‖ > ς1 > 0. Substituting into (34), we have 1005

f(λ(k + 1))− f(λ(k)) < −ς21 ς2κ(k), ∀k ≥ K3. (35) 1006

Let ς := ς21 ς2. Taking the telescopic sum of (35) from K3 to 1007

some k̄ > K3, we get 1008

f(λ(k̄))− f(λ(K3)) < −ς
k̄∑

k=K3

κ(k). 1009



IEE
E P

ro
of

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Let k̄ →∞. We have1010

f(λ̄)− f(λ(K3)) < −ς
∞∑

k=K3

κ(k).1011

The left hand side is bounded, while the right hand side is −∞1012

since
∑

k κ(k) = ∞. This results in a contradiction. Hence,1013

it is impossible that λ̄ �= λ∗. In other words, λ(k) → λ∗
1014

as k →∞. �1015
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