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1. Introduction
The multiple divisions within a firm often share a
variety of common resources, such as information
technology, legal services, human resource manage-
ment, executive time, etc. Managerial accounting text-
books (Horngren et al. 2005, Zimmerman 2006) and
surveys of company practice (Fremgen and Liao 1981,
Atkinson 1987, Ramadan 1989, Dean et al. 1991) docu-
ment the widespread practice of common cost alloca-
tion to induce appropriate consumption of corporate
resources. For example, if divisions are not allocated
any corporate costs, they may have adverse incentives
to overconsume such common resources. The objec-
tive of this paper is to examine cost allocation rules
that solve this free-rider problem, i.e., induce efficient
resource use by divisions acting simultaneously and
independently.

We demonstrate that the main feature of any effi-
cient allocation is that it must reflect the firm’s under-
lying costs. While this point may seem obvious, the
linear rules used in practice make allocations without
regard to the shape of the firm’s cost function, and
this keeps such rules from achieving efficiency. The
reason for this failure is straightforward: Charging for
each unit of common resource used at the same con-
stant rate (whether an actual average cost or a bud-
geted per-unit overhead rate) ignores the fact that the
actual marginal cost of each unit of resource used may
depend on the total amount of resources used. Conse-
quently, under such cost allocation schemes, the price
that a division pays for an additional unit of resource
(i.e., the private cost to the division) differs from the

actual marginal cost to the firm, which causes ineffi-
cient resource consumption decisions by the division.

The analysis here operates in environments that try
to resemble real-world settings, with the aim of rec-
ommending cost allocations that will be practically
useful to managers. We depart from formal mecha-
nism design theory (such as Green and Laffont 1979)
in that we assume that the private information of the
divisional managers is too complex to be embedded
in the firm’s contracts. Therefore, the firm cannot per-
fectly obtain the manager’s entire private information
through a complex reporting game and through con-
tracts that depend on announcements of private infor-
mation. Private information is sufficiently complex,
communication is sufficiently costly, and contracts are
sufficiently incomplete that the Revelation Principle
no longer applies. Despite this, our efficient mecha-
nism operates similarly to the Groves (1973) scheme,
in that it forces each division to fully internalize its
externality on other divisions. In the Groves scheme,
this is done by making each division’s payment equal
the sum of everybody else’s payoffs and a term that
does not depend on that division. In our mechanism,
the same effect is achieved by making each division
pay the total costs of the firm, plus a term that does
not depend on that particular division’s resource use.

The class of efficient cost allocations turns out to be
large. However, the class of efficient cost allocations
useful in practice can be reduced by imposing addi-
tional desirable properties on these allocations. In line
with our main goal of capturing a more realistic firm
environment, we require that cost allocation rules sat-
isfy certain properties of actual allocation methods
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used in practice. Like the early cooperative cost allo-
cation literature, we impose certain constraints on
allocation rules and explore when these constraints
can be satisfied. An allocation is budget balancing if the
sum of the allocated costs equals total cost. Follow-
ing Baldenius et al. (2007), an allocation satisfies no-
play-no-pay (NPNP) when a division pays nothing if it
consumes none of the resource. Linear allocation rules
commonly used in practice satisfy both properties,
though they are not efficient. Requiring these proper-
ties constrains the set of possible efficient allocation
rules. For example, the firm could easily charge every
division the full corporate cost. While this would
achieve efficiency for each division, it would grossly
break the budget. Is it possible to construct efficient
cost allocation rules that have these additional desir-
able properties?

Almost. There exist allocations that are both effi-
cient and approximate budget balancing. This alloca-
tion rule (called the polynomial allocation) induces
efficient resource levels, but may exhibit a small bud-
get imbalance. For firms with more divisions, this
budget imbalance shrinks, eventually vanishing alto-
gether. Numerical simulations show that for a firm
with as few as four divisions, these imbalances are a
small fraction of total cost. We give an explicit algo-
rithm for calculating the polynomial allocation from
the firm’s cost function. First, fit a polynomial to the
firm’s cost function. Then use the coefficients of that
polynomial to construct the allocation rule (specifi-
cally, use the coefficients to determine the transfers
to different divisions). In fact, the firm can use this
explicit algorithm even if it does not know its cost
function exactly, but must estimate that function from
internal cost data. This makes the polynomial alloca-
tion useful in practice, as it reduces the informational
requirements of the allocation.

Even though linear rules are, in general, not effi-
cient, they are widely used in practice. We conclude
our analysis by exploring the welfare losses of linear
rules. In particular, welfare losses increase with the
number of divisions. Intuitively, linear rules are ineffi-
cient because they do not reflect the firm’s underlying
costs, and therefore do not adjust to changes in the
firm’s cost function. The linear rule is a blunt instru-
ment to control managerial behavior compared to the
efficient rule, which varies with the firm’s underlying
costs. An increase in the number of divisions aggra-
vates the free-rider problem, and linear rules are less
capable of resolving this problem compared to effi-
cient rules.

Agency models of cost allocation take place in
single-agent and multiple-agent settings. Single-agent
settings consider a principal who must compensate
and possibly allocate costs to an agent. Baiman and
Noel (1985) show that allocating costs can assist in

dynamic performance measurement. Magee (1988)
shows that the agent’s optimal contract can include
a cost component based on activity levels to better
control his unobservable effort levels. Demski (1981)
argues that cost allocation is valuable if it provides
additional information for contracting purposes.

Some papers consider multiple agents. Suh (1987)
shows that the principal may want to include non-
controllable costs to discourage collusion. Rajan (1992)
shows that cost allocation schemes can serve a coordi-
nation purpose when multiple agents have correlated
private information. Baldenius et al. (2007) find that
a cost allocation based on hurdle rates of divisional
reports to a central office is an optimal mechanism
in a multiple division, multiperiod setting. These last
two papers both allow communication between the
agents and the principal, and assume the principal
can commit to a menu of contracts. We do not make
these assumptions on communication and commit-
ment here.

There has been a recent surge of interest in sim-
ple and robust mechanism design. A handful of
papers seek to calculate the welfare losses from sim-
ple, common mechanisms used in practice (Rogerson
2003, McAfee 2002, Satterthwaite and Williams 2002).
All three papers show that simple mechanisms fare
quite well, despite small efficiency losses. Hansen
and Magee (2003) show that linear allocation rules
are robust in a model of a single decision maker
who must allocate capacity to multiple products.
Bergemann and Morris (2005) and Arya et al. (2009)
consider mechanisms that are robust to small pertur-
bations in the environment.

2. The Model
Consider a firm with n divisions and a central office.
The firm has a decentralized structure: Each division
acts as a profit center and therefore each divisional
manager’s goal is to maximize the profit of his or
her division. Each division simultaneously selects a
resource level ki.1 These resources are assets such as
plants, machines, human capital, etc. Each division i
has a production function fi4ki5, which is a strictly
increasing and strictly concave function of division i’s
resource choice ki. The strict concavity reflects dimin-
ishing marginal returns from resource use, and guar-
antees that the first order conditions from the firm’s
maximization problem are sufficient.

All divisions of the firm make use of a common,
firm-wide resource, such as information technol-
ogy, corporate human resources, executive time, etc.

1 For simplicity, we assume ki is one dimensional (i.e., just a real
number). The analysis generalizes to multidimensional resources,
though the interpretation of the paper becomes more complex.
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The cost to the firm of the use of this com-
mon resource given each division’s resource level is
C4k1 + · · · + kn5, where C is strictly increasing, weakly
convex, continuous, and twice continuously differ-
entiable.2 Let k = 4k11 0 0 0 1 kn5 be the resource vector,
and let k−i = 4k11 0 0 0 1 ki−11 ki+11 0 0 0 kn5 be the resource
vector for all divisions other than i. Furthermore,
let K = k1 + · · · + kn be the total resource level and
K−i =

∑

j 6=i kj be the total resource level for all divi-
sions except i. We assume that the feasible resource
level set for each division i is bounded above by k̄i,
so that k ∈

∏n
i=1601 k̄i7 and K ∈ 601 K̄7, where K̄ =

∑n
i=1 k̄i. The cost of the common resource is an increas-

ing function of the sum of each division’s individ-
ual resource ki. Thus, ki measures individual activity,
whereas C4K5 measures collective use of the shared
activity.3 The additive nature of the total resource
level K reflects the natural assumption that the costs
of the common resource depend on the aggregate use
of all individual parties.4

The firm’s total profit is

n
∑

i=1

fi4ki5−C4K50 (1)

Let k∗ ≡ 8k∗
i 9

n
i=1 denote the first-best efficient

resource levels, i.e., the resource levels that maximize
the firm’s total profit. The first-order conditions for
a maximum require that (for all i) f ′

i 4k
∗
i 5 = C ′4K∗5,

where K∗ =
∑

k∗
j is the efficient total resource level.5

The production functions fi are private information
of the respective divisions, but resource level deci-
sions ki, current production levels fi4ki5, and costs

2 Convexity of the cost function is essential to guarantee the exis-
tence of a solution to the firm’s optimization problem. Differ-
entiability of the cost function is needed to generate analytical
expressions defining this optimal solution. Twice differentiability
is a technical condition needed for the approximations later in the
paper. The model does generalize to a weak form of non differen-
tiability at K = 0 (the case with a positive fixed cost) as long as the
optimal production level is positive. If the cost function were non-
differentiable at a finite number of points (such as lumpy costs),
the analysis would still go through if the cost function were locally
differentiable around the optimal solution. Details can be furnished
upon request.
3 We measure the resource level ki in units (plants, machines, facto-
ries), whereas we measure the cost of the common resource C4K5 in
dollars (cost of information technology, human resources, executive
time, etc.).
4 Making the common cost function a nonadditive (nonseparable)
function of the individual resource levels (or, more generally, an
arbitrary function of the vector k) is possible, but would signifi-
cantly complicate the analysis without any clear theoretical gain.
5 The assumptions on C and fi guarantee that the second-order con-
ditions for a maximum are met, and Lemma 1 in the appendix
shows that the solution k∗ is unique.

C4 · 5 are common knowledge.6 This stands in contrast
to many agency models where effort is unobservable,
but utility functions are common knowledge.

Contracts within the firm are incomplete. So the
firm cannot perfectly obtain the divisional managers’
private information through a complex menu of con-
tracts and incentive constraints. In this setting, the
Revelation Principle does not apply. The private infor-
mation of the divisions prevents the firm from imple-
menting first-best resource levels through a forcing
contract (i.e., a contract that pays each division a pos-
itive amount if it selects the first-best resource level,
and zero otherwise). A forcing contract is impossi-
ble because the firm does not even know the first-
best resource levels. The firm can, however, induce
first-best resource levels through an appropriate cost
allocation rule. Suppose that the firm charges Ai4k5
to division i, based on the resource levels of all
divisions.7 Let Si be the proportion of common costs
charged to division i, so Si =Ai/C. Each division then
maximizes

çi = fi4ki5− Si4ki1 k−i5C4k1 + · · · + kn50 (2)

The agency problem here is the classic free-rider
problem. Each division’s resource consumption gen-
erates common costs for the firm, and thus imposes
negative externalities on other divisions. The objec-
tive of the firm is to choose the allocation rule to
induce the selection of efficient resource levels. The
divisions are playing a simultaneous-move game, and
each adopts the standard Nash assumption in (2) that
all other divisions choose its resources at its equi-
librium level. Thus, even though the common cost
is an additive (and hence separable) function of the
individual resources, the Nash assumption guaran-
tees that each individual’s optimal choice ki depends
on choices of other divisions k−i.

2.1. Efficient Allocation Rules
Let k̃i denote the equilibrium resource level actually
chosen by division i. These actual resource levels will
be determined by the system of n first-order con-
ditions from the individual divisions’ optimization
problems:

f ′

i 4k̃i5= Si4k̃i1 k̃−i5C
′4K̃5+C4K̃5

¡Si4k̃i1 k̃−i5

¡ki
1 (3)

where k̃−i is the equilibrium resource level of all divi-
sions other than i, and K̃ is the equilibrium total

6 That is, each division (and the central office of the firm) observes
the current production of the other divisions, but it does not
observe the other divisions’ full production functions.
7 This includes charging each division a capital charge rate for its
resource level, in which case Ai4k5=�iki for some �i > 0. Of course,
Ai can be much more general than this.
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resource level. Thus in equilibrium, the marginal
return to additional resource consumption equals the
marginal cost. Observe that there are in fact two
marginal costs of resource consumption. For every
dollar’s worth of resources, the division bears not
only the direct marginal cost from use of the common
resource, but also the marginal change in the alloca-
tion rule. This shows that cost allocations indeed have
incentive effects.

Let S ≡ 8Si9
n
i=1 be a set of cost allocation rules.

Definition 1. S is efficient if, for any set of produc-
tion functions, k̃i = k∗

i for all i.

A set of cost allocation rules S is efficient if each
allocation rule Si induces efficient resource levels for
every division. Let S∗

i denote an efficient allocation
rule and S∗ the corresponding set of efficient allo-
cation rules. Because the firm does not know the
individual production functions, it can only ensure
efficiency if it induces k̃i = k∗

i for all possible pro-
duction functions. The differential equations given by
the first-order conditions for the first-best and for the
individual divisions’ problems immediately yield a
straightforward characterization of efficient allocation
rules (all proofs are in the appendix).

Proposition 1. S is efficient if and only if there exist
transfers ri2 �n−1 → � such that, for all i and all
4k11 0 0 0 1 kn5,

S∗

i 4ki1 k−i5= 1 −
ri4k−i5

C4K5
0 (4)

The firm can implement efficiency (i.e., induce first-
best resource levels) by setting an allocation rule with
an appropriate transfer scheme ri4k−i5, which consti-
tutes a payment between division i and the central
office. The intuition behind this result becomes appar-
ent if we rewrite (4) by multiplying through by C4K5:
A4ki1 k−i5=C4K5− ri4k−i5. Each division first pays the
full cost of the firm (C4K5) and then receives a refund
in the form of a transfer that depends only on the
other divisions’ resource choices (ri4k−i5). The first step
(paying the full common cost) makes each division’s
perceived cost move one-to-one with the firm’s com-
mon cost (i.e., it equates each division’s individual
marginal cost of resource consumption to that of the
firm), thus inducing the division to select the optimal
resource level. The second step (the transfer) allows
the firm to actually charge each division less than the
total common cost without distorting the incentives
of the division. This is because the transfer to each
division does not depend on that division’s decisions;
the division cannot affect its own transfer by manip-
ulating its resource level.

To see the logic in the proposition above, note
that, under efficiency, the allocation to division i

(Ai4ki1 k−i5) as a function of ki must be a parallel shift
of the total cost (C4K5 = C4ki +K−i5). This is because
the division equates its marginal benefit f ′

i 4ki5 to its
private marginal cost, whereas efficiency requires that
the same marginal benefit be equated to the firm’s
overall marginal cost 4¡/¡ki5C4ki +K−i5= C ′4K5. Thus,
if the division’s decision is to coincide with the effi-
cient decision, its private marginal cost must equal the
overall marginal cost, i.e., 4¡/¡ki5Ai4ki1 k−i5 = C ′4K5.
Put differently, the functions Ai4ki1 k−i5 and C4ki+K−i5
must have the same slope at every value of ki, which
means that one must be a parallel shift of the other.
This term is the transfer ri4k−i5. Note that, as far as
efficiency is concerned, the transfer can be any func-
tion of k−i: After receiving the payment C4K5 from
each division, the firm can pay back as much or as
little of it as it pleases, as long as the transfer given
back to each division is independent of that division’s
own resource use.

2.2. Relation to the Groves Scheme
That the transfer for division i in Proposition 1
depends only on k−i bears similarity to the Groves
(1973) scheme in direct revelation mechanisms. How-
ever, the efficient rule S∗

i in Proposition 1 is not a
Groves mechanism, because the game played here is
not a direct revelation game. Nonetheless, the essen-
tial logic of the Groves scheme applies. Division i’s
transfer, independent of division i’s actions, allows
the mechanism designer (in this case, the firm) to
adjust the total payment by division i without nega-
tively affecting the division’s incentives.

To see this concretely, let us revisit the direct rev-
elation framework of the Groves scheme, adapting it
for the particular allocation problem we study. In the
Groves setup, it would be assumed that each divi-
sion’s production function fi is its private informa-
tion. Each division submits a report f̂i to the firm,
which then sets

k̂4f̂ 5= arg max
k

[ N
∑

i=1

f̂i4ki5−C

( N
∑

i=1

ki

)]

and decides on monetary transfers ti4f̂ 5 to each divi-
sion (note that the transfer to each division is a func-
tion of the entire vector of all divisions’ reports, f̂ ).
Thus, given the report vector f̂ = 4f̂i1 f̂−i5, division i’s
payoff is

ui4f̂i1 f̂−i5= fi4k̂i4f̂i1 f̂−i55+ ti4f̂i1 f̂−i50 (5)

Groves (1973) shows that it is possible to set the
transfers in such a way that it is a weakly dominant
strategy for each division to report its true production
function (f̂i = fi for all i), so that the resulting resource
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allocation k̂ maximizes the true total surplus, that is,
k̂4f̂ 5= k∗4f 5, where

k∗4f 5= arg max
k

[ N
∑

i=1

fi4ki5−C

( N
∑

i=1

ki

)]

0

Transfers have this truthful-reporting-inducing
property if and only if they are of the following form
(Groves transfers):

ti4f̂ 5=
∑

j 6=i

f̂j4k̂4f̂ 55−C

( N
∑

i=1

k̂i4f̂i1 f̂−i5

)

+hi4f̂−i51 (6)

where hi is an arbitrary function of f̂−i. If we combine
(5) and (6), we see that the division’s payoff is

Ui4f̂i1 f̂−i5 = fi4k̂4f̂i1 f̂−i55+
∑

j 6=i

f̂j4k̂4f̂i1 f̂−i55

−C

( N
∑

i=1

k̂i4f̂i1 f̂−i5

)

+hi4f̂−i50 (7)

The last term, hi4f̂−i5, does not depend on division
i’s report. Because the rest of the expression coincides
with the objective function in the definition of k̂4f̂ 5

when f̂i = fi, the division can do no better than report-
ing truthfully, as this induces the firm to set k̂ to max-
imize the part of i’s payoff that i can influence.

In equilibrium, f̂−i = f−i, so that division i’s pay-
off (7) becomes exactly equal to the firm’s total sur-
plus plus the term hi4f̂−i5. Because the latter term
cannot be influenced by division i, this division is
effectively maximizing the total surplus of the firm:
The externality that the division imposes on other
divisions (through C) is fully internalized by the
transfer.8

In our model, the divisions do not report their pri-
vate information, but rather choose resource levels ki
directly. In addition, we assume that the information
asymmetry pertains only to the contracting stage; all
divisions know each other’s production functions at
the actual production stage. Yet the underlying logic
is identical: To force division i to choose the action
that is optimal for the entire firm, we set the divisional
payments so as to force each division to maximize
the entire firm’s profits, thus internalizing the exter-
nalities that divisions impose on each other. Insert-
ing the efficient transfers from Proposition 1 into each

8 The most commonly used type of Groves scheme, the Vickrey–
Clarke–Groves (VCG) mechanism, in fact sets the terms hi4f̂−i5 =

maxk6
∑

j 6=i f̂j 4kj 5 − C4
∑N

j 6=i kj 57, so that −ti4fi1 f−i5 becomes exactly
equal to the externality that i imposes on the rest of the firm, i.e., to
the difference between others’ combined profit in the absence of
division i and in its presence.

division’s payoff function shows that each division’s
profit in our equilibrium is

çi4ki1 k−i5= fi4ki5−C4K5− ri4k−i50 (8)

Furthermore, because
∑

j 6=i fj4kj5 is just a constant
from division i’s perspective, maximizing çi4ki1 k−i5
is equivalent to maximizing

ç̂i4ki1 k−i5=

N
∑

j=1

fj4kj5−C4K5− ri4k−i50

Because the last term is just another constant for divi-
sion i, division i ends up maximizing the entire sur-
plus of the firm, which results in an efficient choice.

The fundamental difference between our mecha-
nism and that of Groves is in the information and con-
tracting environment. In the Groves scheme, divisions
can communicate their entire private information to
the firm, which can then make optimal decisions
based on that information. In our mechanism, it is
not possible to write contracts on divisions’ private
information. Thus, a direct mechanism (one relying
on individual divisions’ reports of private informa-
tion to the firm) is not possible. Instead, we assume
that the firm must rely on the divisions to make
resource choices on their own. The only information
that the firm obtains is the actual resource choices
made by the divisions, and the firm can make divi-
sions’ payments contingent only on those choices. The
restricted communication between divisions and the
firm in our model does result in some weakening
of the result that the mechanism can achieve: In the
Groves scheme, efficient allocation obtains as an equi-
librium in weakly dominant strategies, whereas in our
mechanism efficiency is simply a Nash equilibrium,
but not a dominant strategy solution.

An allocation rule commonly used in practice is the
linear rule SL

i 4k11 0 0 0 1 kn5 = ki/K, where each division
is allocated costs based on its relative resource level.
The linear rule does not include the common cost
function, and therefore it is not efficient. Nonetheless,
the linear rule satisfies some convenient and intuitive
properties. We now consider more general allocation
rules that also satisfy these properties.

3. Budget Balance
In this section, we explore the implications of the
additional requirement of budget balance, namely, the
idea that the cost shares allocated should sum up
to one.

Definition 2. S is budget balancing 4BB5 if, for all
4k11 0 0 0 kn5,

n
∑

i=1

Si4ki1 k−i5= 10 (9)
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Budget balance simply requires the allocations to
sum to one, or the sum of the allocated costs to exactly
equal total costs.9 The equality must hold at all val-
ues of 4k11 0 0 0 1 kn5, not just at the equilibrium, because
the firm does not know the production functions and
therefore does not know the equilibrium or efficient
resource levels.

With this qualification, the requirement of budget
balance is an intuitive and natural one, and typically
satisfied by actual cost allocation rules used in prac-
tice (e.g., the linear rule). Textbook examples of cost
allocations (such as Zimmerman 2006, Chap. 7) are
also budget balancing: The identified common costs
are fully distributed among cost objects (such as divi-
sions of a firm) based on some allocation base (such
as hours of resource use). Furthermore, budget bal-
ance also has normative appeal: It simplifies account-
ing and allows the firm to cover the full costs incurred
without putting undue stress on the individual divi-
sions’ budgets.

3.1. Exact Budget Balance
When do efficient and budget balancing allocation
rules exist in general? The following example shows
that the search is not futile, even with strictly convex
costs and zero fixed costs.

Example. Let n = 3 and let C4K5 = K2. Our goal
is to create an efficient and budget balancing cost
allocation.

Recall from Proposition 1 that efficiency requires
the allocations to take the form

Ai4ki1 k−i5=C4K5− ri4k−i50 (10)

Therefore, all three allocations together sum to

A14k11 k−15+A24k21 k−25+A34k31 k−35

= 3C4K5− r14k−15− r24k−25− r34k−350 (11)

Budget balance requires that this total allocated cost
be equal to the total common cost, so

r14k−15+ r24k−25+ r34k−35= 2C4K50 (12)

Expanding this and plugging into the expression for
the sum of the transfers above yields

r14k−15+ r24k−25+ r34k−35

= 2k2
1 + 2k2

2 + 2k2
3 + 4k1k2 + 4k1k3 + 4k2k30 (13)

To obtain the individual transfers, we now just have
to regroup the terms in the sum above, making sure

9 Demski (1981) called allocations that sum to one “tidy.” We use
the term “budget balance,” following the extensive literature on
public decisions and cost-sharing (Groves 1973, Green and Laffont
1979, Moulin and Shenker 1992, Moulin 2005).

that ri does not contain any terms containing ki for
any i. One (symmetric) way to do this is to write

r14k−15= k2
2 + k2

3 + 4k2k31 (14)

r24k−25= k2
1 + k2

3 + 4k1k31 (15)

r34k−35= k2
1 + k2

2 + 4k1k20 (16)

Letting Ai4ki1 k−i5=C4K5− ri4k−i5 for all i now yields
our desired efficient, budget balancing solution.

Notice that in the three-division example above the
third derivative of the cost function was zero. The fol-
lowing proposition shows that this is no coincidence.

Proposition 2. An efficient and budget balancing allo-
cation rule exists if and only if the nth derivative of C is
identically 0.

This completely characterizes the set of efficient and
budget balancing allocation rules. The main insight
is that every efficient rule must satisfy Proposition 1,
and the allocations must sum to one. This reduces to
the expression:

1
n− 1

n
∑

i=1

ri4k−i5=C4K50 (17)

In words, the average transfer must equal the total
cost. Differentiating both sides of the equation above
n times with respect to k11 0 0 0 1 kn shows that the nth
derivative of C is 0. Moreover, any cost function
whose nth derivative is 0 must be a polynomial of
degree less than or equal to n−1. The proof of Propo-
sition 2 shows that it is possible to construct a set of
transfers based on the coefficients of that polynomial
such that the equation above holds.

The result of Proposition 2 makes a theoretical link
between the number of divisions in the firm and its
cost function. As long as there are more divisions in
the firm than the degree of the cost function, there
will exist an efficient and budget balancing allocation
rule. For example, suppose the cost function is the
quadratic cost function C4K5= �K2. The third deriva-
tive of this function is 0, so any firm with three or
more divisions can use the allocation rule constructed
in the proof of Proposition 2. This allocation rule is
efficient and budget balancing. One implication is that
it is easier to achieve efficiency and budget balance in
firms with many divisions. These firms allow for cost
functions with large degrees, because the high num-
ber of divisions permits a class of increasingly fine
polynomials.

3.2. Approximate Budget Balance with
Known Cost Function

While exact budget balance is a desirable feature, it
may often be sufficient to get “close enough.” This
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is analogous to the accounting notion of materiality,
well documented in textbooks of financial and man-
agerial accounting (Garrison et al. 2004, Stickney et
al. 2009). What happens when the budget does not
balance perfectly, but the amounts over and under-
budget are immaterial? In this case, we can expand
our analysis beyond polynomial cost functions to gen-
erate allocations that are still approximate budget bal-
ancing (i.e., they balance the budget almost, but not
exactly). The central office can then determine the
materiality threshold to which the accounting system
must adhere. This allows us to expand our domain of
analysis by considering a much wider range of cost
functions.

Proposition 2 also begs the question of what hap-
pens if the cost function is not a polynomial, because
some cost functions do not satisfy this property
for any n (consider, for example, C4K5 = eK). How-
ever, recalling the basic result from real analysis that
every continuous function can be arbitrarily well
approximated by polynomials (Weierstrass theorem;
see Royden 1988), it is possible to construct efficient
rules that converge to budget balance, as long as the
number of divisions is sufficiently large.

Definition 3. Let 88Sn
i 9

n
i=19

�
n=1 be a sequence of sets

of allocation rules. The sequence converges to budget
balance in n if

lim
n→�

max
k

∣

∣

∣

∣

n
∑

i=1

Sn
i 4ki1 k−i5− 1

∣

∣

∣

∣

= 00 (18)

Thus, if a sequence of sets of allocation rules con-
verges to budget balance in n, it is approximate bud-
get balancing in the sense discussed above: As the
number of divisions increases, the maximum possible
deviation from budget balance (over all possible equi-
librium values of k) gets arbitrarily small. The reason
we focus on the maximum possible deviation over
all k is that the firm does not know the production
functions of the individual divisions in advance, and
hence also does not know the equilibrium values of k.
Because any k is a possible equilibrium (as shown
in Lemma 2 in the appendix), the firm must design
the cost allocation rule to guarantee that the deviation
from budget balance will be small, no matter what
equilibrium k turns out to be.

Proposition 3. There always exists a sequence of effi-
cient allocation rules that converges to budget balance in n.

We can achieve efficiency under many cost func-
tions that are approximate budget balancing. As the
materiality threshold becomes tighter, so does the
hurdle for the number of divisions. Call the alloca-
tion rule constructed in Proposition 3 the “polynomial
allocation,” because the allocation itself is built from
a Chebyshev polynomial approximation of the cost

function. We know from Proposition 2 how to con-
struct an efficient and budget balancing rule when the
cost function is a polynomial. When the cost func-
tion is not a polynomial, we can approximate the func-
tion by a polynomial and construct the allocation
rule from this approximated function, instead of the
true one. By construction, the rule will be efficient.
Furthermore, the allocations will sum to the approx-
imated cost function. This will result in a budget
imbalance. However, as the quality of the approxima-
tion improves, the approximated function (and hence
also the sum of the allocations) will be closer and
closer to the true cost function. Now, as the num-
ber of divisions grows, higher order polynomials can
be used in the approximation (recall that we can use
polynomials of order at most n−1). Consequently, the
quality of the approximation improves, and the bud-
get imbalance gradually vanishes.

As an example, consider the case C4K5= eK and let
K̄ = 5 (so that K is restricted to the interval 40157).
To construct the polynomial allocation, an n-division
firm begins by approximating the cost function using
Chebyshev least squares approximation of degree
n− 1 over the interval 401 K̄7. If the firm has five
divisions, it will use the degree-4 approximation; in
the C4K5= eK case, Ĉ4K5 = 1066 − 5014K + 9028K2 −

3093K3 + 0069K4. The first five polynomial approxima-
tions are shown in Figure 1. The approximated cost
functions are quite close to the true C and the fit
improves as the order of the polynomial increases.
Once the cost function has been approximated by
a polynomial, the firm uses the coefficients of the
polynomial obtained to calculate the cost allocations
according to the algorithm in the proof of Proposi-
tion 2. Finally, the allocation is given by Ai =C4K5−ri.

Because, by construction, the allocated costs sum to
the value of the estimated cost function, the budget

Figure 1 The Quality of Fit of Polynomial Approximations
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Figure 2 Deviations from Budget Balance for Polynomial Rules
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imbalance at a given point equals the difference
between the true and estimated cost functions at that
point. Figure 2 uses this fact to show deviations from
budget balance (�

∑n
i=1 S

n
i 4ki1 k−i5− 1�) as a function of

K for the first few polynomial approximations. The
convergence is very fast (note that the y-axis is on
a logarithmic scale). Linear approximations allow for
budget imbalances more than 20 times the total cost
(however, as we saw before, these occur only when
the equilibrium K is very low; the “typical” budget
imbalance is much lower than this upper bound),
whereas high-order approximations have essentially
negligible imbalances. In particular, with 10 divisions
(ninth-degree approximation), the budget imbalance
is no more than 0006% times the total cost, and
with 20 divisions it is at most 804 × 10−13 times the
total cost; that is, budget balance is achieved almost
exactly.

The polynomial allocation constructed above is effi-
cient for any size firm, and converges to budget bal-
ance as the number of divisions increase. Therefore,
firms with more divisions that make use of this allo-
cation rule eventually achieve budget balance. This
feature of the polynomial allocation makes it superior
to other efficient rules. The allocation rule constructed
here, on the other hand, is not only efficient, but also
achieves approximate budget balance, with the devi-
ation from budget balance vanishing as the number
of divisions increase. Furthermore, because the coef-
ficients of the polynomial fitted to the cost function
form the basis for the allocation, Proposition 3 fur-
ther illustrates the message that the “right” allocation
must reflect the firm’s costs.

This analysis shows that budget balance and effi-
ciency are not as incompatible as previously thought,
especially in light of the impossibility results of
the formal mechanism design literature (Green and

Laffont 1979). We have always known that it is pos-
sible to achieve efficiency by breaking the budget,
and that it is impossible to simultaneously achieve
efficiency and budget balance for general cost func-
tions. Yet the impossibility is not as severe as it seems.
In particular, it is possible to construct allocation
rules that are simultaneously efficient and converge
to budget balance. Thus, if the firm is willing to relax
its need for exact budget balance, and is willing to
replace it with approximate budget balance, the poly-
nomial allocation can do this and achieve efficiency
as well. In some sense, this shows that the impos-
sibility result is discontinuous because it is possible
to approximate the cost function arbitrarily closely
and still achieve efficiency and approximate budget
balance.

3.3. Approximate Budget Balance with
Estimated Cost Function

In the previous subsection, we assumed that the firm
knows the entire cost function. However, this may be
unlikely in practice. It is much more likely that the
firm has observed the values of the cost function at a
finite set of points and has to extrapolate the function
elsewhere.

In this case, the firm can obtain a polynomial
approximation of the cost function by running an
ordinary least squares (OLS) regression of observed
cost function values on observed resource levels. The
firm can then use the polynomial allocation rule
with polynomial coefficients from the OLS regression
instead of those from the Chebyshev approximation
(the latter is unavailable for an unknown cost func-
tion). However, it is not immediately obvious that
the resulting rule will approach budget balance, even
when both the number of divisions and the number of
sample points are high; for each n, the OLS regression
used suffers from omitted variable bias (attributable
to truncating the series of powers of K at n − 1),
which usually does not vanish as sample size goes
to infinity. Fortunately, the special structure of the
regressor matrix, along with the convergence result
from the previous subsection, guarantees that, in this
particular case, the bias does disappear and the rule
does become budget balancing as both the number of
divisions and the sample size for each number of divi-
sions increase. We now turn to stating this result more
formally.

Let an n-division firm have data on cost function
values at m points. The data consist of a vector Kn1m

of m observed total resource levels and a vector yn1m

of the corresponding cost levels:

K̃n1m
= 4K̃n1m

1 1 K̃n1m
2 1 0 0 0 1 K̃n1m

m 5′1 (19)

ỹn1m
= 4C4K̃n1m

1 51C4K̃n1m
2 51 0 0 0 1C4K̃n1m

m 55′0 (20)
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The firm constructs an allocation rule in two steps as
follows:

1. Run an OLS regression of ỹn1m on the first n− 1
powers of K̃n1m and a constant to estimate the cost
function by C̃:

C̃4K5= c̃n1m0 + c̃n1m1 K + · · · + c̃n1mn−1K
n−11 (21)

where c̃n1m = 4c̃n1m0 1 c̃n1m1 1 0 0 0 1 c̃n1mn−1 5
′ is the vector of esti-

mated coefficients from the OLS regression.
2. Construct the cost allocation rules 8Sn1m

i 9ni=1 as
outlined in the proof of Proposition 3, with c̃n1mi in
place of ĉi.

Definition 4. Let 88Sn1m
i 9ni=19

�
n=1 be a sequence of

sets of allocation rules. The sequence converges to bud-
get balance in n and m if

lim
n→�

lim
m→�

max
k

∣

∣

∣

∣

n
∑

i=1

Sn1m
i 4ki1 k−i5− 1

∣

∣

∣

∣

= 00 (22)

That is, the sharing rules converge to budget balance
in n and m if the deviation from budget balance be-
comes negligible when the firm estimates its cost func-
tions from large samples and the number of divisions
becomes large. The intuition for this definition is essen-
tially the same as that for convergence to budget bal-
ance in n alone (from the case of known cost functions).
The only difference is that in the case of estimated
cost functions, one additional variable influences the
quality of the approximation and hence also the max-
imum deviation from budget balance. This variable is
sample size: The more observations of the cost func-
tion the firm has made in the past, the better it is
able to estimate the cost function. An allocation rule
converges to budget balance if the maximum possi-
ble deviation from budget balance goes to zero as the
number of divisions and the number of cost function
sample points grow.

Intuitively, this happens for two reasons. First, for
any firm with a given number of divisions, the esti-
mated cost function becomes closer and closer to
the true cost function as the number of cost func-
tion observations (m) grows (this is the inner limit
in the definition above). Second, just as in §3.2, the
allocation rule guarantees that the maximum possi-
ble deviation from budget balance diminishes as the
number of divisions (n) grows (this is the outer limit
in the definition). Consequently, if a large firm with a
large number of prior observations of the cost func-
tion implements cost allocation rules that converge to
budget balance, it can be certain that the deviation
from budget balance will be small, regardless of the
shapes of the divisions’ production functions.

It turns out that, as long as the firms’ samples are
sufficiently well dispersed over the range of feasible
resource levels, the estimated polynomial allocation
rule does indeed converge to budget balance.

Figure 3 Maximum Deviation from Budget Balance as a Function of
n and m
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Proposition 4. The estimated polynomial allocation
rule converges to budget balance in n and m, if for each n
and i, limm→�4K̃

m1n
i − 4K̄/m5i5= 0.

Thus, the algorithm for the estimated polynomial
rule differs from the simple polynomial rule only
in the way the cost function is approximated by
a polynomial: The simple polynomial rule uses the
Chebyshev least squares approximation, whereas the
estimated polynomial rule relies on OLS regression on
a set of previously observed values. The simple poly-
nomial rule requires exact knowledge of the cost func-
tion, whereas the estimated rule uses random samples
of values of the function.

Let us return to our earlier example C4K5 = eK

for K ∈ 60157. Suppose the firm has a sample of
m observations of the values of the cost function.
As described above, the firm runs the OLS regression
on these observations to obtain a polynomial approx-
imation of the cost function and then constructs the
cost allocation, as described in the examples in the
previous two sections. Figure 3 illustrates the speed
of convergence to budget balance. Each line corre-
sponds to a sample size. For each sample size the bud-
get imbalance decreases as the number of divisions
grows, and the budget imbalance for any given num-
ber of divisions is smaller as the sample size grows.
With a sample size of 100, the deviation from budget
balance is less than 10% (10−1) for firms with more
than seven divisions, less than 1% (10−2) for firms
with more than eight divisions, and less than one-
hundredth of 1% (10−4) for firms with twelve or more
divisions.

4. No-Play-No-Pay Allocation Rules
In the previous section, we analyzed conditions under
which cost allocation rules are budget balancing.
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Following Baldenius et al. (2007), we now consider
allocations that satisfy NPNP.

Definition 5. S satisfies NPNP if Si401 k−i5 = 0 for
all i and all k−i.

NPNP allocation rules neither reward nor penal-
ize divisions for not consuming any of the common
resource. Like budget balance, we take NPNP as an
exogenous constraint on the class of feasible alloca-
tion rules. Combining efficiency (Proposition 1) and
NPNP yields the following (unique) allocation rule:

Si4ki1 k−i5= 1 −
C4K−i5

C4K5
0 (23)

NPNP implies that ri4k−i5 = C4K−i5: Each division
pays the additional costs that it incurs. The efficient
allocation above that satisfies NPNP allocates to each
division its relative incremental contribution to total
cost. Specifically, this is its incremental contribution
to total cost, C4K5−C4K−i5, divided by the total cost
C4K5. Charging each division its relative incremental
contribution to total cost induces each division to con-
sume resources at the efficient level.

Recall that any efficient rule must include the com-
mon cost function of the firm. This is essential to
obtain efficiency and is a key distinction between effi-
cient allocation rules and linear allocation rules. Con-
sider a particular example. Let C4K5= F +Kq , pick one
division (labeled i), and fix the total resource use of all
other divisions at K−i = 1. Figure 4 graphs the share
allocated to division i according to the linear rule and
according to the efficient NPNP rule under two sce-
narios: highly convex C (F = 0, q = 205) and high fixed
costs with linear variable costs (F = 11 q = 1).

Suppose that the cost function C is highly convex.
Therefore, additional resources for any division are

Figure 4 Efficient vs. Linear Allocation Rules
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highly costly for the firm. The firm would like to dis-
courage such resource use, and can do this by increas-
ing the share of allocated costs. In particular, for any
given resource level ki, the firm will allocate more of
the common cost under the efficient rule satisfying
NPNP than under the linear rule. Essentially, the firm
adjusts its allocation to respond to its highly convex
cost function. Figure 4 shows that for the cost function
C4K5 = F +Kq the efficient rule satisfying NPNP lies
above the linear rule if costs are sufficiently convex
(if q is sufficiently high).10 The efficient rule essentially
accelerates the cost allocation for any given resource
level.

Alternatively, suppose that the firm’s cost func-
tion has a high fixed component but a low vari-
able component. In this case, the marginal effect of
additional resource use by any division on the total
resource level will be small. The firm would like to
encourage additional resource use, and can do so by
reducing the share of allocated cost for any given
resource level. Therefore, the efficient allocation satis-
fying NPNP will lie below the linear allocation rule as
shown in Figure 4. The efficient rule satisfying NPNP
essentially decelerates the cost allocation for any given
resource level, compared to the linear rule. Unlike the
linear rule, the efficient rule satisfying NPNP varies
as the firm’s cost function varies. Efficiency forces
the allocation to reflect the underlying costs; linear
rules do not.

A natural question to ask is whether efficient, bud-
get balancing, and NPNP-satisfactory allocation rules
even exist. For example, linear rules are budget bal-
ancing and satisfy NPNP, but are not necessarily effi-
cient. The polynomial rule constructed in the previous
section is efficient and approximate budget balanc-
ing, but does not necessarily satisfy NPNP. The effi-
cient allocation rule satisfying NPNP in (23) does
not always balance the budget. Unfortunately, these
examples are not a coincidence. For virtually any
commonly used cost function (except for constant
marginal cost with zero fixed cost) allocation rules
that satisfy all three of the criteria above (efficiency,
budget balance, and NPNP) do not exist.

Proposition 5. An efficient and budget balancing
allocation rule that satisfies NPNP exists if and only if
C4K5≡ �K, for some � ∈�+.

Any efficient allocation rule satisfying NPNP must
satisfy (23) or, in words, must allocate to each divi-
sion its relative incremental contribution to total cost.
Yet budget balance constrains these allocations to one.
Said differently, budget balance requires that the sum

10 See Corollary 1 in the appendix for a derivation of this result.
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of each division’s incremental contribution to total
cost exactly equals total cost:

n
∑

i=1

4C4K5−C4K−i55=C4K5=C

( n
∑

i=1

4K −K−i5

)

0 (24)

The only cost function that satisfies this condition
for all (k11 0 0 0 1 kn) is the constant-marginal-cost func-
tion with no fixed cost (C4K5 = �K). Intuitively, the
linearity of the variable costs (constant marginal cost),
along with the absence of fixed costs, allows us to
exchange the C and

∑

in the equation above. More-
over, no other cost function permits this.

Green and Laffont (1979) show that it is impossi-
ble to find mechanisms that satisfy ex-post efficiency,
budget balance, and implementation in dominant
strategies. Their setting is different from here. We
use a weaker equilibrium notion (Nash instead of
dominant-strategy), a less complete class of con-
tracts (those that do not vary with private informa-
tion), a more restrictive set of mechanisms (allocation
rules instead of general mechanisms), and an addi-
tional requirement that the allocations satisfy NPNP.
Nonetheless, efficiency, budget balance, and NPNP
are generally incompatible (except in the knife-edge
case when costs are linear and with zero fixed costs).

To see this explicitly, recall the Groves scheme dis-
cussed in §2.2. There, the firm will set the transfers for
division i equal to the externality imposed on all other
agents, plus a term that does not vary with that divi-
sion’s choice. With these transfers, each division faces
the same problem as the firm, and therefore maxi-
mizes total benefits and makes the efficient choice. Yet
budget balance in the Groves scheme imposes that the
transfers must sum to zero. Imposing

∑N
i=1 ti4f̂ 5= 0 on

each of the individual transfers in the Groves scheme
in (5) shows that this is clearly impossible. To guaran-
tee efficiency, each transfer must internalize the exter-
nality imposed on others. Imposing the additional
constraint that the transfers sum to zero obstructs this
process. There are no more degrees of freedom to
adjust the transfers, and so imposing budget balance
will only shift the equilibrium away from efficiency.

The same logic applies here. Budget balance in this
context means that the allocations must sum to total
cost, so

∑

Si = 1. NPNP makes the transfers ri4k−i5 =

C4K−i5. Like the Groves scheme, Proposition 1 ensures
that the efficient cost allocation forces each division to
act in the interest of the firm as a whole by charging
each division the full cost. Each division then has the
proper incentives to constrain cost because a marginal
increase in resource leads to a marginal increase in
total common cost. Thus, in equilibrium, the divi-
sion’s marginal private benefit equals the marginal
social cost. Yet budget balance forces the sharing rule
to sum to one, and this breaks the equality between
private benefit and social cost.

In sum, the common thread between the public
decision literature and our study is that budget bal-
ance interferes with efficient incentives. The transfer
in the Groves scheme matches social benefits with pri-
vate benefits, just as our efficient allocation rule in
Proposition 1 matches private costs with social costs.
It is this equivalence that leads the individual divi-
sions to choose privately what is optimal socially. Yet
to do so, the mechanism designer must structure the
transfer so that the individual parties act in the inter-
ests of all parties. Doing so breaks the budget. Forc-
ing budget balance prevents each individual party
from fully internalizing the costs and benefits from
the planner’s problem, and this is what causes the
inefficiency.

5. Inefficiency of Linear Rules
In practice, linear rules are often used even though
they may not be efficient. This section considers the
relationship between linear and efficient allocation
rules. This will give insight into the welfare losses
from using linear rules compared to the efficient rule.
In general, the use of linear rules leads to over-
consumption of resources relative to first-best. The
superscript “L” designates the linear rule and the
superscript “∗” designates the efficient rule.

Proposition 6. Let C405 = 0. If fi = f for all i, then
kLi > k∗

i .

In the case of symmetric production, at the sym-
metric equilibrium, the resource levels under a linear
allocation rule will be larger for each division than
the efficient symmetric value. Consider

fi4ki5=A4ki5
p for each i and C4K5= BKq1 (25)

where 0 < p < 1 < q < �. Let ã ≡ 1 − �L/�∗ be the
measure of welfare loss; a larger ã corresponds to a
greater welfare loss.

Proposition 7. The welfare loss ã increases in n,
increases in q for sufficiently high values of n or p and for
sufficiently low values of q, and decreases in q for suffi-
ciently high values of q.

Most importantly, the welfare loss increases with
the number of divisions. Larger firms with more divi-
sions suffer more from using linear rules than smaller
firms with fewer divisions. Combined with Proposi-
tion 3, this gives a general prediction on efficient cost
allocation and the size of firms. If n is small, then
Proposition 7 shows that the welfare loss from using
the linear rule is small, and so small firms can use
linear rules with few efficiency losses. But if n is big,
not only do the welfare losses from the linear rules
increase, but the benefits of the polynomial allocation
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also increase, because the polynomial allocation con-
verges to budget balance for large n. Therefore, small
firms can use linear rules, and large firms should use
nonlinear rules (such as the polynomial allocation).
This recommendation from the model is consistent
with the normative flavor of much of the cost alloca-
tion literature.

6. Conclusion
This study proposes a new cost allocation—the poly-
nomial allocation—that achieves efficiency and con-
verges to budget balance, as the number of divisions
in the firm increases. The main message is that any
efficient allocation must reflect the firm’s underlying
costs. As the cost of a common resource increases,
the firm would like to discourage use of the com-
mon resource (to mitigate the negative externalities of
resource consumption) and therefore will accelerate
the allocation, relative to the linear rule used in prac-
tice. Thus, the efficient rule will vary with the firm’s
cost structure. Future research in this area should pro-
ceed in a similar manner by examining what firms
actually do and making explicit, concrete recommen-
dations for changes to practice.
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Appendix

Lemma 1. Given C and the set of production functions
4f11 0 0 0 1 fn5, there is a single vector of resource levels 4k∗

11 0 0 0 1 k
∗
n5

satisfying the first-best conditions f ′
i 4k

∗
i 5=C ′4

∑

i k
∗
i 5= 0 for all i.

Proof of Lemma 1. Suppose that ka = 4ka11 0 0 0 1 k
a
n5 and

kb = 4kb11 0 0 0 1 k
b
n5 both satisfy f ′

i 4k
j
i 5 = C ′4Kj5 for j ∈ 8a1 b9,

where Kj ≡
∑n

i=1 k
j
i . First, suppose Ka 6= Kb . Without loss of

generality, Ka <Kb . Then

f ′

i 4k
a
i 5=C ′4Ka5 < C ′4Kb5= f ′

i 4k
b
i 50 (26)

This implies that kai > kbi for each i, since f ′′
i < 0. So Ka =

∑

kai >
∑

kbi =Kb , which is a contradiction.
Therefore, Ka = Kb = K∗. Because f ′

i 4k
j
i 5 = C ′4K∗5, it must

also hold that kai = kbi = k∗
i for each i. �

Lemma 2. For any vector 4k̂11 0 0 0 1 k̂n5 there is a vector of pro-
duction functions 4f̂11 0 0 0 1 f̂n5 that leads to optimal resource levels
k∗
i = k̂i for each i.

Proof of Lemma 2. Let the function f �4x5≡ �x1/2. Then
f �′4x5= �/42x1/25. So for each i, let

f̂i = f �i for �i = 2k̂1/2
i C ′

( n
∑

i=1

k̂i

)

0 (27)

These production functions generate our desired optimal
resource levels. �

Proof of Proposition 1. We will prove the equivalent
statement that a set of cost allocations induces k∗

i = k̃i
for all i and all 8fi9ni=1 if and only if there exist ri2 �n−1 →�
such that, for all i and all 4k11 0 0 0 1 kn5, Ai4ki1 k−i5 =

C4
∑n

i=1 ki5− ri4k−i50
Recall that, for a given set of production functions, k∗

i

and k̃i are defined by the first-order conditions for the
firm’s and the individual division’s optimization problems,
respectively:

f ′

i 4k
∗

i 5=C ′

( n
∑

i=1

k∗

i

)

and f ′

i 4k̃i5=
¡Ai

¡ki
4k̃i1 k̃−i50 (28)

Therefore, k∗
i = k̃i for all i if and only if

C ′

( n
∑

i=1

k∗

i

)

=
¡Ai

¡ki
4k∗

i 1 k
∗

−i50 (29)

This completes the proof of the “if” part of Proposi-
tion 1: If Ai4ki1 k−i5=C4

∑n
i=1 ki5− ri4k−i51 then C ′4

∑n
i=1 ki5=

4¡Ai/¡ki54ki1 k−i5 at all 4k11 0 0 0 1 kn5 and thus also at
4k∗

11 0 0 0 1 k
∗
n5.

The “only if” part requires some more work because,
for a given set of production functions, the relationship
C ′ = ¡Ai/¡ki must hold only at one point, namely, at the cor-
responding first-best resource vector. This precludes us from
determining a global relationship between A and C directly.
However, the fact that we must ensure k∗

i = k̃i for arbitrary
production functions guarantees that the relationship will
hold at every point 4k11 0 0 0 1 kn5, as Lemma 2 shows.

Because every vector 4k11 0 0 0 1 kn5 is first-best for some set
of production functions, the relationship

C ′

( n
∑

i=1

ki

)

=
¡Ai

¡ki
4ki1 k−i5 (30)

must hold at all 4k11 0 0 0 1 kn5. Holding k−i fixed and integrat-
ing with respect to ki, we readily obtain

Ai4ki1 k−i5=C

( n
∑

i=1

ki

)

− ri4k−i50 � (31)

Corollary 1. Let C4K5= F +Kq . Let SL
i and S∗

i denote the
“linear” and “NPNP-satisfactory and efficient” allocation rules,
respectively. For any i and k−i,

1. S∗
i 4ki1 k−i5 > SL

i 4ki1 k−i5 for sufficiently high m;
2. S∗

i 4ki1 k−i5 < SL
i 4ki1 k−i5 for sufficiently high F .

Proof of Corollary 1. Observe SL
i 4ki1 k−i5 = ki/K and

S∗
i 4ki1 k−i5 = 1 − C4K−i5/C4K5. So S∗

i 4ki1 k−i5 > SL
i 4ki1 k−i5 if

and only if

K−i

K
>

C4K−i5

C4K5
=

F + 4K−i5
q

F +Kq
≡D0 (32)
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Observe that

D =
1

1 +Kq/F
+

4K−i/K5
q

F /Kq + 1
→ 0 as q → �0 (33)

Both terms vanish as q → � since K−i < K. This proves
part one.

Observe that

D =
1 +K

q
−i/F

1 +Kq/F
→ 1 as F → �1 (34)

since K−i/K < 1. This proves part two. �

Proof of Proposition 2. =⇒: Suppose an efficient and
budget balancing allocation rule does exist. By efficiency,
there are functions 4r11 0 0 0 1 rn5 satisfying

Si4ki1 k−i5= 1 −
ri4k−i5

C4
∑n

i=1 ki5
0 (35)

Summing over all divisions and applying the BB condition
yields

n
∑

i=1

ri4k−i5= 4n− 15C
( n
∑

i=1

ki

)

0 (36)

Apply ¡n/4¡k1 · · · ¡kn5 to both sides to get

0 = 4n− 15C 4n5

( n
∑

i=1

ki

)

0 (37)

⇐=: If C 4n5 is identically 0, then C must be a polynomial
of degree less than or equal to n− 1:

C4K5= an−1K
n−1

+ · · · + a1K + a00 (38)

We will now define some helpful terminology. First
define the sets

P j
≡

{

p= 4p110001pn5
∣

∣

∣

pl a nonnegative integer1
( n
∑

l=1

pl

)

= j

}

1

(39)

P
j
i ≡8p∈P j

�pi =09 (40)

for j = 11 0 0 0 1n− 13 i = 11 0 0 0 1n. Next, for p ∈ P j , let G4p5 be
the number of nonzero coordinates of p: G4p5≡ �8l � pl 6= 09�.
Note that G4p5 is at most j . Finally, define

(

j
p

)

≡ j!/4p1! · · ·pn!5.
By the multinomial expansion theorem, it holds that

4k1 + · · · + kn5
j
=
∑

p∈P j

(

j

p

)

k
p1
1 0 0 0 k

pn
n 0 (41)

Now we will define a series of �j
i for j = 01 0 0 0 1n− 13 i =

11 0 0 0 1n:

�0
i = a0

n− 1
n

1 (42)

�
j
i =aj

∑

p∈P
j
i

n−1
n−G4p5

(

j

p

)

k
p1
1 ···k

pn
n for j=110001n−10 (43)

Observe that for a given vector p ∈ P j , p is in P
j
i for

n−G4p5 values of i. Therefore,

n
∑

i=1

�
j
i = aj4n− 154k1 + · · · + kn5

j
= aj4n− 15Kj 0 (44)

By construction, �
j
i is independent of ki for each j . So

now let

ri4k−i5=

n−1
∑

j=0

�
j
i (45)

and define

Si4ki1 k−i5= 1 −
ri4k−i5

C4K5
0 (46)

By Proposition 1, this rule is efficient. Furthermore, it sat-
isfies budget balance, because

n
∑

i=1

ri4k−i5 =

n
∑

i=1

n−1
∑

j=0

�
j
i =

n−1
∑

j=0

n
∑

i=1

�
j
i

=

n−1
∑

j=0

aj4n− 15Kj
= 4n− 15C4K50 � (47)

Proof of Proposition 3. For each n ≥ 2, let Ĉn−1 be the
Chebyshev least squares approximation of C over the inter-
val 401 K̄7. Note that, by definition, Ĉn−1 is a polynomial of
degree n− 1,

Ĉn−14K5= ĉn−1K
n−1

+ · · · + ĉ1K + ĉ00 (48)

Construct the sets of allocation rules as in the proof of
Proposition 2. That is, let

�0
i = ĉ0

n− 1
n

1 (49)

�
j
i = ĉj

∑

p∈P
j
i

n− 1
n−G4p5

(

j

p

)

k
p1
1 · · ·k

pn
n

for j = 11 0 0 0 1n− 11 (50)

where P
j
i and G4p5 are as defined in the proof of Proposi-

tion 2, and let

Sn
i 4ki1 k−i5= 1 −

rni 4k−i5

C4K5
1 (51)

where

rni 4k−i5=

n−1
∑

j=0

�
j
i 0 (52)

As before, the rule is efficient by Proposition 1, and

n
∑

i=1

rni 4k−i5 =

n
∑

i=1

n−1
∑

j=0

�
j
i =

n−1
∑

j=0

n
∑

i=1

�
j
i

=

n−1
∑

j=0

ĉj4n− 15Kj
= 4n− 15Ĉn−14K50 (53)

Therefore, for a given k ∈
∏n

i=1601 k̄i7,
∣

∣

∣

∣

n
∑

i=1

Sn
i 4ki1 k−i5− 1

∣

∣

∣

∣

=
n− 1
C4K5

�C4K5− Ĉn−14K5�0 (54)

Since C is C2, the standard results on the convergence
of Chebyshev approximations apply (see, e.g., Judd 1998,
pp. 210–215). In particular, there exists a B < � such that
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�C4K5− Ĉn−14K5� ≤ B4ln4n5/n25 for all K ∈ 401 K̄7. Therefore,
for each K,

∣

∣

∣

∣

n
∑

i=1

Sn
i 4ki1 k−i5− 1

∣

∣

∣

∣

≤
B

C4K5

ln4n5
n

→ 01 (55)

as n→ �, because C4K5 > 0 for K > 0. �

Proof of Proposition 4. In what follows, we will omit
the superscript m1n for visual clarity. Thus, we will use K̃,
ỹ, and c̃ to denote K̃m1n, ỹm1n, and c̃m1n, respectively.

Let

K̃ =

















1 K̃1 4K̃15
2 · · · 4K̃15

n−1

1 K̃2 4K̃25
2 · · · 4K̃25

n−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 K̃m 4K̃m5
2 · · · 4K̃m5

n−1

















0 (56)

Estimating the polynomial coefficients by OLS, we obtain

c̃ = 4K̃′K̃5−1K̃′ỹ0 (57)

Recall that we construct the estimated polynomial sharing
rule by using c̃ instead of ĉ in the algorithm outlined in
the proof of Proposition 3. That proof then shows that the
budget imbalance arising from using this rule when total
resource level is K is

n− 1
C4K5

�C4K5− C̃4K5�1 (58)

where C̃4K5= c̃0 + c̃1K+· · ·+ c̃n−1K
n−1. Our goal is therefore

to show that (for any K)

lim
n→�

lim
m→�

n− 1
C4K5

�C4K5− C̃4K5� = 00 (59)

Now, let Ĉ be the 4n − 15st-degree Chebyshev least
squares approximation of C, and let � be the residual,
�4K5 = C4K5− Ĉ4K5. Recall that �4K5 = O44lnn5/n25 (where
O4 · 5 denotes the asymptotic operator “of order no more
than”). We can now write

ỹi = C4K̃i5= Ĉ4K̃i5+ �4K̃i5

= 4 1 K̃i 4K̃i5
2 0 0 0 4K̃i5

n−1 5ĉ+ �4K̃i51 (60)

so that ỹ = K̃ĉ + ã1 where ã = 4�4K̃15 �4K̃25 0 0 0 �4K̃m55
′.

Now,

C̃4K5 = 4 1 K K2 · · · Kn−1 5c̃ (61)

= 4 1 K K2 · · · Kn−1 54K̃′K̃5−1K̃′4K̃ĉ+ã5 (62)

= Ĉ4K5+ 4 1 K K2 · · · Kn−1 544K̃′K̃5−1K̃′ã50 (63)

Now, given our assumption that limm→�4Ki − 4K̄/m5i5 =

0, we know that

lim
m→�

K̃ = lim
m→�















1 K̄/m 4K̄/m52 · · · 4K̄/m5n−1

1 24K̄/m5 424K̄/m552 · · · 442K̄/m55n−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 K̄ 4K̄52 · · · 4K̄5n−1















= lim
m→�

VD1 (64)

where V is the rectangular (n1m) Vandermonde matrix
on integer nodes (Vij = ij−1) and D = diag41 K̄/m 0 0 0

4K̄/m5n−10 Therefore, for each n,

lim
m→�

4 1 K K2 · · · Kn−1 54K̃′K̃5−1K̃′ã5

= lim
m→�

4 1 K K2 · · · Kn−1 5D−1V +ã1 (65)

where V + is the Moore–Penrose pseudoinverse of V , V + =

4V ′V 5−1V ′.
Using the factorization in Eisinberg et al. (2001), we can

write V + = S̄M, where S̄ is an n×n upper-triangular matrix
whose entries do not depend on m and M is given by

Mi1 j =

n
∑

t=1

n
∑

k=1

4−15t
(

j − 1
t − 1

)

(

i+k−2
i−1

)(

m−i
m−k

)(

t+k−2
t−1

)(

m−t
m−k

)

(2k−2
k−1

)(

m+k−1
2k−1

)

0 (66)

Now,
(

j−1
t−1

)

≤
(

m−1
t−1

)

= ä4mt−15, where ä denotes the
asymptotic operator “of the same order as.” Similarly,
(

m−i
m−k

)

= ä4mk−i5,
(

m−t
m−k

)

= ä4mk−t5, and
(2k−2
k−1

)(

m+k−1
2k−1

)

=

ä4m2k−15. Consequently, each term in the finite summation
for Mij (and therefore Mij itself) is

O4mt−1+k−i+k−t−42k−155=O4m−i51 (67)

where O denotes the asymptotic operator “of order no more
than.” Finally, the 4i1 j5 element of D−1V + =D−1S̄M is

4D−1V +5i1 j =

n
∑

l=1

(

m

K̄

)i−1

S̄i1 lMl1 j 0 (68)

Since Ml1 j = O4m−l5, all terms are O4mi−l−15. Noting that
S̄i1 l = 0 when i > l we see that i− l− 1 ≤ −1 for all nonzero
terms, so that each element of 4D−1V +5i1 j is decreasing at a
rate at least m−1. Hence, for any n,

lim
m→�

41 K K2
· · · Kn−15D−1V +ã= 01 (69)

so that limm→� C̃4K5= Ĉ4K5. Now,

lim
m→�

n− 1
C4K5

�C4K5− C̃4K5� =
n− 1
C4K5

�C4K5− Ĉ4K5�

=
n− 1
C4K5

��4K5� =O

(

ln4n5
n

)

1 (70)

so that

lim
n→�

lim
m→�

n− 1
C4K5

�C4K5− C̃4K5� = 00 � (71)

Proof of Proposition 5. A set of allocation rules is effi-
cient, budget balancing, and satisfies NPNP if and only
if the following three conditions hold for all i and all
4k11 0 0 0 1 kn5:

Si4ki1 k−i5= 1 −
ri4k−i5

C4
∑n

i=1 ki5
1 (72)

n
∑

i=1

Si4ki1 k−i5= 11 (73)

Si401 k−i5= 00 (74)
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The first and third conditions (i.e., efficiency and NPNP)
together are equivalent to

Si4ki1 k−i5= 1 −
C4
∑

j 6=i kj5

C4
∑n

i=1 ki5
0 (75)

Combining this with budget balance yields

n−

∑n
i=1 C4

∑

j 6=i kj5

C4
∑n

i=1 ki5
= 11 (76)

that is,

C

( n
∑

i=1

ki

)

=
1

n− 1

n
∑

i=1

C

(

∑

j 6=i

kj

)

0 (77)

We therefore see that a set of efficient and budget bal-
ancing allocation rules that satisfy NPNP exists if and only
if (77) holds for all k ∈

∏n
i=1601 k̄i7.

Now, pick any k1 ∈ � and take k = 4k1101 0 0 0 105. By (77),
if an efficient budget balancing allocation rule that satisfies
NPNP exists, then C4k15 = 41/4n − 1554C405 + 4n − 15C4k155,
that is, C405= 0.

Next, suppose that C is strictly convex and there exists
an efficient, budget balancing allocation rule that satis-
fies NPNP. Let K ≡

∑n
i=1 ki and let K−i ≡

∑

j 6=i kj . Now,
observe that

C4K−i5 = C

(

K−i

K
K +

ki
K

· 0
)

<
K−i

K
C4K5+

ki
K
C405

=
K−i

K
C4K5 (78)

for all i, where the inequality follows by the convexity of C
and C405= 0 as shown above. Therefore,

n
∑

i=1

C4K−i5 <
n
∑

i=1

K−i

K
C4K5 =

C4K5

K

n
∑

i=1

K−i (79)

=
C4K54n− 15K

K

= 4n− 15C4K51 (80)

which contradicts (77).
Therefore, we see that if an efficient, budget balancing

allocation rule that satisfies NPNP exists, C must not be
strictly convex and must have C405 = 0. That is, the only
candidate functions are the linear cost functions C4K5= �K.
This family of functions satisfies (77):

1
n− 1

n
∑

i=1

C4K−i5 =
1

n− 1

(

�
n
∑

i=1

∑

j 6=i

kj

)

= �K =C4K50 � (81)

Proof of Proposition 6. Fix K−i. Let kLci be the resource
levels induced by the linear cost allocation rule for divi-
sion i, conditional on K−i, and let k∗c

i be the conditional
efficient resource level. Given K−i, we see from (94) that the
conditional efficient k∗c

i will satisfy

f ′

i 4k
∗c
i 5=C ′4K−i + k∗c

i 50 (82)

The linear rule will have

SL
i 4k5=

k

K−i + k
1 SL′

i 4k5=
K−i

4K−i + k52
1 (83)

and the linear kLci will satisfy

f ′

i 4k
Lc
i 5 =

K−i

4K−i + kLci 52
C4K−i + kLci 5

+
kLci

K−i + kLci
C ′4K−i + kLci 50 (84)

And, because C is convex,

C4x5 < xC ′4x5+C4050 (85)

We have assumed C405 = 0, so plug this back in with x =

K−i + kLci :

f ′

i 4k
Lc
i 5<

K−i4K−i+kLci 5

4K−i+kLci 52
C ′4K−i+kLci 5+

kLci
K−i+kLci

C ′4K−i+kLci 5

=C ′4K−i+kLci 50 (86)

Because f ′
i 4k5 is decreasing in k and C ′4K−i +k5 is increas-

ing in k, we have that

f ′

i 4k
Lc
i 5 < C ′4K−i + kLci 5 and (87)

f ′

i 4k
∗c
i 5=C ′4K−i + k∗c

i 5 (88)

if and only if kLci > k∗c
i . If production is symmetric, k∗

i = k∗

for each i. Let k∗c
i 4K−i5 be the optimal conditional resource

levels for a given K−i. k∗c
i 4K−i5 satisfies f ′4k∗c

i 4K−i55 −

C ′4k∗c
i 4K−i5+K−i5= 0, so we can implicitly differentiate and

see that
dk∗c

i 4K−i5

dK−i

=
C ′′

f ′′ −C ′′
< 00 (89)

At any symmetric equilibrium, K−i = 4n−15k and K = nk.
Now kLci 4K−i5 > k∗c

i 4K−i5 for any K−i. Also, for K−i ≤K∗
−i, the

above differentiation shows that k∗c
i 4K−i5≥ k∗c

i 4K∗
−i5= k∗. So

assume that KL ≤K∗. Then, KL
−i ≤K∗

−i for all i, and therefore

kLi = kLci 4KL
−i5 > k∗c

i 4KL
−i5≥ k∗0 (90)

Yet this implies that KL > K∗, which is a contradiction. So
KL >K∗ and kL > k∗. �

Lemma 3. If fi4ki5 = A4ki5
p for each i and C4K5 = BKq for

0 < p < 1 < q <�, then

k∗
=

(

Ap

Bq
n1−q

)1/4q−p5

1 (91)

kL =

(

Apn2−q

B4n− 1 + q5

)1/4q−p5

1 (92)

�L

�∗
= np/4q−p5

(

q

n− 1 + q

)p/4q−p5(1 − 4np5/4n− 1 + q5

1 − p/q

)

0 (93)

Proof. From the firm’s objective function, we see that k∗
i

is defined by the first-order condition:

f ′

i 4k
∗

i 5−C ′4K∗5= 00 (94)

Division i maximizes fi4ki5 − Si4k11 0 0 0 1 kn5C4K5. Let ¡iSi
denote the derivative of Si4k11 0 0 0 1 kn5 with respect to ki.
With an arbitrary allocation rule S, we get the first order
condition for division i’s problem,

f ′

i 4k̃i5− ¡iSi4k̃11 0 0 0 1 k̃n5C4K̃5− Si4k̃11 0 0 0 1 k̃n5C
′4K̃5= 00 (95)
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In the respective symmetric equilibria, k∗
i = k∗

j and
kLi = kLj , so we can drop the subscripts. The optimal produc-
tion k∗ solves (94), and kL solves (95), so straightforward
calculation gives k∗ and kL in the statement of the lemma.

Now, �4k5 = nAkp − B4nk5q for a symmetric output level
k, so straightforward calculation of these terms gives �L/�∗

in the statement of the lemma. �

Proof of Proposition 7. Note ã = 1 − �L/�∗, where
�L/�∗ is calculated in Lemma 3. Without calculations, it is
clear that ¡ã/¡A= ¡ã/¡B = 0. Now

¡ã

¡n
=

4n− 15np/4q−p5−1p4q − 152q4q/4n+ q − 155p/4q−p5

4q − p524n+ q − 152
> 01

(96)

¡ã

¡p
=

1
4p−q53

(

np/4q−p5

(

q

n−1+q

)q/4q−p5

(97)

·

(

4n−154p−q54q−15+q4n−np+q−15log
(

nq

n−1+q

)))

0

(98)

So ¡ã/¡p has the opposite sign of 4n − 154p − q54q − 15 +

q4n−np+q−15 log4nq/4n− 1 + q550 Plugging in the inequal-
ity log4x5≤ x− 1,

4n− 154p− q54q − 15+ q4n−np+ q − 15 log
(

nq

n− 1 + q

)

(99)

≤ 4n− 154p− q54q − 15+ q4n−np+ q − 15

·

(

nq

n− 1 + q
− 1

)

(100)

= −
4n− 152p4q − 152

n− 1 + q
(101)

< 00 (102)

Thus, ¡ã/¡p > 0. Now

¡ã

¡q
=

1
4p− q534n− 1 + q52

(

np/4q−p5pq

(

q

n− 1 + q

)p/4q−p5

(103)

·

(

4n− 154q − p54q − 15− 4q − 1 +n−np5

· 4n− 1 + q5 log
(

nq

n− 1 + q

)))

0 (104)

So ¡ã/¡q has the opposite sign of

4n−154q−p54q−15−4q−1+n−np54n−1+q5log
(

nq

n−1+q

)

0

In other words, ¡ã/¡q has the sign of

log
(

nq

n− 1 + q

)

−
4n− 154q − p54q − 15

4n− 1 + q54n−np+ q − 15
0 (105)

As n → �, this goes to log4q5 − 0 = log4q5 > 0. So for n
large enough holding other parameters fixed, ¡ã/¡q > 0.

As q → �, this goes to log4n5 − 4n − 15 which is strictly
less than 0 for n≥ 2. So for q large enough, ¡ã/¡q < 0.

As q → 1, we can find the sign by dividing through by
the fraction and applying L’Hôpital’s rule to the limit. This
has the sign of n− 1 > 0, so for q small enough, ¡ã/¡q > 0.

As p → 1, the expression goes to log4nq/4n − 1 + q55 −

44n− 154q− 155/4n− 1 + q5. Applying the inequality log4x5≤

x−1, we get log4nq/4n−1+q55≤ 44n−154q−155/4n−1+q5.
So ¡ã/¡p < 0 for p large enough, when other parameters are
held constant. �
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