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ABSTRACT

Much of the production in firms takes place over time. This paper seeks to
understand the value of interim performance information on long projects.
In particular, the model explores the sorting effects of performance evalua-
tions. Conducting an interim performance evaluation increases efficiency by
providing the option to end projects with low early returns. The main result: It
is efficient to allocate more resources towards the end of a project. This result
holds under a variety of scenarios: when the worker has unknown ability, when
the outside options vary with output, and even under an agency framework
with a risk-averse agent.

1. Introduction

The production of goods and services takes time. It takes time to build
cars, write software, develop drugs, formulate strategy, market products,
audit clients, and value companies. In fact, many firms today organize their
production in the form of projects that run for weeks, months, or even
years at a time before the firm can sell the finished product in a market.
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For example, software development runs through design, implementation,
and testing stages before final release. This paper examines the problem of
performance evaluation before a project is finished.

The main idea is that performance evaluations generate efficient sorting.
They provide the firm with the option of ending projects with low early
returns. A performance evaluation conducted at the interim stage sorts em-
ployees into two groups: stay or quit. It is efficient to quit if the early returns
are weak, and to stay otherwise. If the agent’s early output is low, it is in the
interest of both the firm and the agent to discontinue work and collect their
respective outside options. In this sense, the performance evaluation assigns
an agent to his most efficient use. The role of the evaluation, therefore, is
to perform this sorting.

Interim performance evaluations change the efficient allocation of re-
sources over time in surprising ways. The main result shows that it is efficient
to assign more resources to the later stages of the project. The evaluation
creates the possibility of termination after the early stage, which reduces the
marginal return from first-stage effort, and so the agent shades his effort
downward in the early stage. Once the agent advances, the possibility of
termination vanishes and the marginal return to effort rises, so he works
harder. In sum, it is efficient to stay if the early returns are high, and for
those that stay, it is efficient to work harder.

The usual analysis of performance evaluations takes place in agency mod-
els that span an enormous literature in accounting, economics, and finance
(see Baiman [1982, 1990], Indjejikian [1999], Lambert [2001], Prendergast
[1999] for reviews). Agency theory has enjoyed wide theoretical attention
over the last 20 years, and has dramatically advanced our understanding of
performance measurement. Unfortunately, its empirical support remains
mixed, as Prendergast [2002] and Lazear [2003] document. The results of
most agency models are highly sensitive to their details—the information
structure, the timing of the game, the restrictions on the contracts, etc. So
when the details of the game change, even slightly, so do the predictions of
the model.

This paper takes a different approach. The focus here is not on incentives,
but on sorting. I propose a simple and robust efficiency model that does
not rely on a complex contracting game within the firm. The aim is to
understand the value of interim performance information to all parties, not
the opportunistic use of information by one side.1 The analysis here shifts
attention away from distortions from first-best to improvements in first-best.
Performance evaluations don’t just slice up a fixed pie, but make the pie
itself bigger.

Exploring the sorting effects of interim performance evaluations in a first-
best world abstracts from conflicts of interests between parties and makes
more apparent the economic forces driving the effort allocation decision.

1 See Lizzeri, Meyer, and Persico [2002] or Ray [2006] for agency models of interim perfor-
mance evaluations.
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Nonetheless, I show that the main result of the model is still robust within
an agency context. In particular, when a risk-neutral principal cannot ob-
serve effort and contracts with a risk-averse agent, the agent still shifts his
effort into the later stages. The difference in risk preferences between the
two parties causes the agent to distort his effort choice within each period,
but does not qualitatively change his effort decision between periods. The
sorting effect of the interim evaluation only impacts the agent’s dynamic
decision problem, and does not interact with the difference in preferences
between the principal and agent. Therefore, the result still holds within an
agency context, even though it is not necessary to operate in a second-best
world to generate the sorting effect.

The model consists of an agent working for a firm on a project over two
stages. His effort levels across stages are perfect substitutes, so the produc-
tion technology by itself does not skew his effort allocation. Production is
indivisible: The firm cannot capture the full value of output until the end of
the project. This is the sense in which production takes time. In particular,
incomplete projects fetch a low market price, normalized to zero. The firm
has invested so much firm-specific capital and labor into the project that it
becomes too costly for other firms to understand and finish it. Finally, firms
and workers have outside options, which include future profits from new
projects for the firm and future wages from new jobs for the employee.

The existing body of theoretical literature on intertemporal allocation
of effort in multistage projects falls into three categories: first-best anal-
yses, models based on general agency considerations under discounting
and/or risk aversion, and career-concerns models. The first strand of this
literature, dating back to the early 1970s, is similar to my paper in that
it examines efficient intertemporal effort allocation in research and devel-
opment (R&D) projects, in the absence of any incentive problems. Exam-
ples include Kamien and Schwartz [1971], Luss [1975], and Grossman and
Shapiro [1986]. Kamien and Schwartz [1971] study the time pattern of
optimal R&D expenditures when the total cumulative effort E required to
complete the project is not known. They find that per-period investment (ef-
fort) is increasing in time if the hazard rate associated with the cumulative
distributive function of E is nondecreasing.

Luss [1975], on the other hand, examines a setup in which a project is
completed in known finite time, but its returns depend on effort exerted
each period, and the effectiveness of effort decreases over time. He finds
that it is optimal to exert the highest effort in the first period, medium-level
constant effort in the following intermediate periods, and the lowest effort
in the last period. Grossman and Shapiro [1986] argue that when the total
amount of effort required to complete a project is known, optimal effort
increases over time. This result occurs due to discounting: The marginal
product of effort falls at the discount rate. However, when time to comple-
tion is not known, effort is higher when the expected value of the project is
higher, which does not necessarily imply a time-monotonic path of effort.
This result is shown to be in line with Kamien and Schwartz’s [1971] result:
If the hazard rate is increasing over time, so is the expected project value.
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Finally, it is interesting to note that in the discrete two-period case, their
model predicts that second stage effort will be lower than first stage effort,
provided that the second stage occurs. This is due to a disappointment ef-
fect: The occurrence of the second stage is unambiguously bad news; it
shows that the project will take two periods rather than one.

The second strand of literature addresses optimal effort choice in an
agency setting. A seminal paper in this line of work is Lambert [1984],
who shows that when the project has time separable, mutually independent
returns each subperiod, a risk-averse manager will choose effort to “smooth”
income to keep it close to its ex ante expectation. In particular, second-stage
effort is decreasing in observed first-stage output (but it can be higher or
lower than first-stage effort). The author also shows that this result is an
artifact of the incentive problem: Under the first-best, each period’s effort
is independent of the previous periods’ output.

Lambert’s [1984] main result seems to be at odds with mine, since in my
model a satisfactorily high first-period output is followed by a high second-
stage effort, while a low first-period effort results in termination and no
further effort. This difference is a consequence of the independence of the
two-period outcomes in Lambert [1984]. Since the expected gains from
both periods’ efforts in his model are the same and can be collected sep-
arately, the only consideration is intertemporal smoothing. A risk-averse
agent smooths his effort choice to reduce variance in his consumption. In
my model, both periods’ efforts contribute only to the single final outcome
and first period effort is useless if no second period occurs. Thus, unlike
Lambert’s [1984]model, the stages here are inherently linked. This plus the
risk of termination causes my agent to work harder in later stages. This is
true even if the agent is risk averse.

Other papers in the dynamic incentives literature do not deliver clear-cut
predictions on intertemporal effort choice (such as Christensen, Feltham,
and Şabac [2003a,b], Christensen et al. [2003], Feltham, Indjejikian, and
Nanda [2003], Indjejikian and Nanda [1999]). For example, Feltham,
Indjejikian, and Nanda [2003] use a dynamic agency model to compare two
different performance measurement systems.2 While their model is cast in
a multiperiod LEN (Linear contracts, Exponential utility, Normal errors)
framework, their focus is not on effort allocation but instead on which sys-
tem generates more profit for the firm. As such, a comparison of effort levels
over time is ambiguous and depends on a joint condition of several param-
eters. The authors do not solve for whether and when e 1 < e 2—nor should
they, as that is not the aim of their paper. This speaks to a broader point:
The dynamic incentives literature explores issues of commitment, renego-
tiation, short-term versus long-term contracts, measurement systems, etc.,
but not issues of dynamic effort allocation.

2 They find that a single, dual purpose measurement system is simultaneously informative of
past performance and future productivity, and hence dominates a differentiated measurement
system.
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The third strand of the relevant literature is the career-concerns literature,
which is exemplified by the seminal work of Hölmstrom [1999]. He claims
that agents (inefficiently) choose higher effort in earlier stages of their
careers in order to send favorable signals to the market regarding their
abilities. In a similar vein, Lewis [1986] shows that firms’ reputation concerns
lead to an effect similar to managers’ career concerns. Gibbons and Murphy
[1992] show that the optimal contract in the presence of career concerns is
one that offers less steep compensation in earlier stages of the agent’s career,
when career concerns are the most severe. It is tempting to conclude that
the dynamic effort allocation predicted by Hölmstrom [1999] and the other
career-concerns papers rests on Bayesian updating of the agent’s underlying
ability. In fact, even if this updating takes place, sorting still guarantees that
effort levels rise over time, as I show in section 6 of my paper.

The primary difference between all of the foregoing models and my model
is that these papers do not explicitly account for the type of projects discussed
here: namely, projects whose benefits can be reaped only after the comple-
tion of the entire project, which is not guaranteed (i.e., it is possible that the
project will be terminated early). The combination of indivisible produc-
tion and outside options in my model makes it efficient to abandon such
projects if early returns are low, since the early returns are a signal of final
returns. These assumptions are natural in the context of R&D-like projects
and are used in models of research and development projects for at least a
quarter of a century (see Roberts and Weitzman [1981], where such projects
are termed SDPs or sequential development projects). However, this all-or-
nothing nature of many research and development endeavors has not been
captured by any of the existing intertemporal effort allocation papers.3

Overall, the disagreements found in the literature are not as fundamental
as they seem. All papers agree that effort is higher when its return is higher.
The only point of contention is the source of period-to-period variations
in the return to effort: most frequently, such differences arise from dis-
counting or preferences (Grossman and Shapiro [1986], Lambert [1984],
Toxvaerd [2006]), or from career or reputation concerns (Gibbons and
Murphy [1992], Hölmstrom [1999], Lewis [1986]). My paper shows that
in the case of an SDP (Roberts and Weitzman [1981]) early effort is less
valuable than late effort, because effort at each stage contributes equally to
the final outcome if the final stage is reached, but the benefits from early
effort are curtailed by the risk of early termination of the project.

The empirical literature on dynamic effort allocation shows that ef-
fort rises over time, consistent with the main prediction of this paper.
The main literature comes from empirical operations management, which

3 A notable exception is the paper by Harbaugh and Klumpp [2005], which models a two-
round tournament where only first-stage winners advance to the second stage. They show that
underdogs (i.e., players with a low probability of advancing to the second stage) exert higher
effort in the first stage while favorites (players with a high probability of advancing) save their
effort for the second stage.
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documents that projects within firms often run late, over budget, and ded-
icate most resources towards the final stages (see Marshall and Meckling
[1962] and Mansfield, Schnee, and Wagner [1995]). In particular, Barry,
Mukhopadhyay, and Slaughter [2002] and Genuchten [1991] find that soft-
ware projects are often subject to both delays and backloaded resource
allocation. A second literature comes from psychology, which documents
the tendency of managers to exert low effort well before the project dead-
line but high effort right before the deadline (see O’Donoghue and Rabin
[1999] and citations within). These are precisely the production environ-
ments that fit my model: long-term projects combined with intermediate
milestones that offer the option to quit before completion. Thus, at a first
pass, the predictions of my model are consistent with existing evidence.
Prior work either does not generate a precise prediction or generates one
inconsistent with evidence.4

The paper is organized as follows. Section 2 outlines the basic model,
and shows that gathering intermediate performance information raises to-
tal surplus. Section 3 establishes the main result: Collecting this intermediate
performance information skews the efficient allocation of effort towards the
end. Section 4 shows that the model is robust under three settings: the T -
stage extension of the two-stage model that incorporates a finite number
of evaluations, detailed evaluations when the agent conditions his effort
on first-stage output, and outside options that vary with first-stage output.
Section 5 lays out an agency model between a risk-neutral firm and risk-
averse agent, and shows that the main result still holds in this environment.
Section 6 includes an ability parameter for the agent that is unknown to
either party and that persists across both stages. Under the monotone like-
lihood ratio property, the agent still shifts his effort into the later stages.
Finally, I discuss an application to up-or-out schemes in accounting firms,
and section 7 concludes.

2. The Model

Consider an agent working on a project for a firm. Production takes place
across two stages, there is no discounting, and both parties are risk neutral.
The agent exerts effort e t in stage t = 1, 2 at cost C (e t), where C ′, C ′′

> 0. Although the model considers e t as effort, it is possible to interpret
it more generally as any costly resource (like capital). The agent’s output
from the project is qt = e t + εt . The noise terms εt are i.i.d., and distributed
symmetrically around a mean of zero, with cumulative distributive function
G(·) and density function g(·), which is continuously differentiable and has

4 For example, the career-concerns models enjoy mixed empirical support. Hölmstrom’s
[1999] manager decreases effort over time. However, measures of labor supply over the life cycle
rise over time up until the very last few years before retirement. See MaCurdy [1981], Heckman
and MaCurdy [1980], and Heckman [1974] for life-cycle models; Imai and Keane [2004] for
recent evidence; and Blundell and MaCurdy [1999] and Heckman [1993] for surveys.
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support (−∞, ∞). Interpret εt as a stage-specific technology shock unknown
to anyone. For now, assume effort e t is observable to the agent and the firm, so
the focus is on efficient resource allocation. Section 5 relaxes this assumption
and considers moral hazard.

Let V (q) be the value of the project after stage two, where q = q 1 + q 2.
Thus, qt is the project’s internal output within the firm (prototypes, beta
versions, etc.), while V (q) measures the project’s external value based on
market prices. Production is indivisible in that q1 fetches a market price
of zero. Unfinished projects have no external value; the project cannot be
sliced into pieces and sold separately. Work after the first stage alone has
value only inside the firm, insofar as it becomes part of a finished product
that the firm eventually sells in a market. Much of the investments into a
project over time are firm specific, such as the organization of capital and
labor surrounding the project. The market price of zero reflects the high
costs for another firm to comprehend, evaluate, and ultimately complete
another firm’s unfinished project.

Assuming that production is a function of q = q 1 + q 2 is equivalent to
assuming that effort levels across stages are perfect substitutes. This isolates
the effects of performance evaluations on effort from the effects of technol-
ogy on effort. So any discrepancy between e1 and e2 arises from information
and not from technology. Other assumptions on production are standard.
Let V be strictly increasing, weakly concave, and have a continuous first
derivative everywhere.5

The purpose of an evaluation is to make knowledge of q1 available after
the first stage. While V (q) is observable to all parties, q1 is observable only if
the firm conducts an evaluation. This describes any sort of production where
output is not immediately observable, but requires an evaluation to make
it observable. The model assumes the evaluation is costless, and focuses on
the benefits of conducting a performance evaluation. Finally, once the firm
conducts the evaluation, q1 is observable to both parties. Since the agent is
the sole worker on the project, an evaluation of the agent is synonymous
with an evaluation of the project.

An evaluation after the first stage gives the firm and the agent the option
to terminate the project and therefore end the agent’s employment on the
project. Let ūp

t and ūa
t be the outside options of the firm and agent in

stage t, respectively. These outside options capture the value of the outside
opportunities of both parties and are evaluated at the start of each stage. The
agent can switch projects or jobs within the firm, or switch jobs or careers to
other firms; the firm can reassign the agent to another project and deploy its
resources elsewhere. Let ūt = ūa

t + ūp
t , so ūt measures the opportunity cost

of the project (time, labor, capital) to both parties; assume that ūt > 0. Note

5 A large class of production functions satisfy these assumptions. Consider, for instance, the
affine and exponential examples V (q ) = α + βq and V (q ) = α − β exp (−γ q ), for any α ∈ R

and β, γ > 0. Note that since V is strictly increasing and weakly concave, limq→−∞V (q ) = −∞.
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that the outside options are independent of early-stage output. Section 4.3
relaxes this assumption.

An example of a production process that fits this model is software devel-
opment. Suppose that stage 1 is the design phase, and stage 2 is the actual
writing of software code. The firm can sell the complete software package to
clients, but not the software design by itself. Moreover, the firm has invested
specific capital into the design, in the form of the assignment of managers
to teams, lines of communication between groups, a project timetable, etc.
If the design fails, then so does the final software package. Evaluating the
design/prototype is an extensive procedure involving many parties: discus-
sions with clients, compatibility with other products and divisions, detailed
cost accounting, compliance with standards, etc. Finally, both the firm and
the programmer have outside options: The programmer can work on other
software projects within the firm, and the firm can assign its capital and
labor elsewhere.

Note that there are no explicit contracts in the benchmark model. Given
that effort is observable, the firm can contract on effort to achieve the first-
best, and therefore, it is easy to construct an efficient contract that imple-
ments first-best. For clarity, I suppress these efficient contracts from the
analysis and focus on the induced effort choices. Throughout the paper, I
assume all parties can fully commit to these efficient contracts.6

2.1 NO EVALUATION

As a benchmark, suppose that the firm does not conduct an evaluation
after the first stage. Neither party is any better informed about output after
the first stage than before. Importantly, there are no grounds for terminat-
ing the project after the first stage, since performance information is not
gathered. The focus of this paper is on efficient resource allocation and
thus the analysis centers on the social planner’s problem. This is formally
equivalent to the analysis of a self-employed agent who must decide when to
stop working and how hard to work across stages. Since effort is observable,
the firm can implement the first-best solution, and so the agent chooses the
effort levels that solve the planner’s problem. Let E denote the expectation
taken over ε1 + ε2 in the following definition:

DEFINITION 1. The efficient effort level under no evaluation is

ê t = arg max
e t

EV (q1 + q2) − C (e1) − C (e2).

In words, the efficient effort level under no evaluation maximizes total
surplus, which is the expected return less the cost of effort in each stage.
The first-order conditions yield

EV ′(q1 + q2) = C ′(ê t ).

6 The issue of renegotiation and lack of commitment in contracts has been extensively
explored elsewhere, as in Fudenberg, Holmstrom, and Milgrom [1990].
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Notice that the left-hand side of the equality is independent of t, so the
right-hand side must be as well. Hence ê1 = ê2 ≡ ê . It is efficient to split effort
evenly across periods. Effort is the same because (1) convexity of the cost
function guarantees a unique solution, (2) the marginal return to effort in
each period is the same, and (3) the cost function is separable and identical
across stages.

The only constraint is a bound on the reservation utilities. If the outside
options are too high, then it is inefficient for the firm to employ the agent
on the project at all. In particular, it must be that

EV (ê1 + ε1 + ê2 + ε2) − C (ê1) − C (ê2) ≥ ū1 + ū2,

where, as before, ê t is the efficient effort level under no evaluation. Call this
the project feasibility constraint.

3. Evaluation after the First Stage

Now suppose that the firm conducts a performance evaluation after the
first stage. The main reason for such an evaluation is that it provides the
option to abandon the project if the early returns are low. This is efficient
because of (1) indivisible production and (2) outside options. Precisely
because production is indivisible, the firm and the agent cannot capture the
market price for the unfinished project. Instead, they use first-stage output
to compute the expected project value after the second stage. Because of
the outside options, it is efficient to continue only if this value exceeds these
outside options.

Consider two types of evaluations: coarse and detailed. Call an evaluation
detailed if it returns the exact first-stage output level q1, and call an evaluation
coarse if it only returns whether q1 exceeds a specified threshold, but does not
specify the exact magnitude of q1. The second-stage effort choice depends
on whether the evaluation is coarse or detailed. Specifically, if the evaluation
is coarse, then the agent chooses an effort level e2, but if the evaluation is
detailed, he chooses an effort function e 2(q 1).

In this section, and for most of the rest of the paper, I assume coarse
evaluations instead of detailed evaluations. First, it may be difficult to as-
sess quality perfectly before the project is finished, especially since produc-
tion is indivisible and the external market prices projects at zero. Second,
coarse evaluation allows for sensible comparisons of effort across stages,
since e1 and e2 are both numbers, whereas under detailed evaluations,
e1 is a number and e 2(·) is a function. Section 4.2 solves for detailed
evaluations.

3.1 QUIT WHILE YOU’RE BEHIND

The linchpin of the analysis here and throughout the paper is the con-
tinuation surplus function

S(q1, e2) = E2V (q1 + e2 + ε2) − C (e2),
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where Et denotes the expectation taken over εt . This function gives the
expected value of continuing the project after the first stage, given that first-
stage output is q1 and planned second-stage effort is e2. Let e ∗

t denote the
efficient effort levels when a coarse intermediate performance evaluation
is conducted; In general this differs from ê t , the efficient effort without an
evaluation. For clarity, let S∗(q 1) ≡ S(q 1, e ∗

2) be the continuation surplus
evaluated at the efficient effort level. The continuation decision rests entirely
on this function. In particular, it is clearly efficient to continue if and only
if S∗(q1) ≥ ū2. The first result shows that the continuation surplus function
is strictly increasing.

This means there exists a unique cutoff output level q ∗ such that S∗(q ∗) ≥
ū2 if and only if q 1 ≥ q ∗. In words, it is efficient to continue the project if
and only if first-stage output exceeds the target q ∗, at which point the social
planner is indifferent between advancing and retaining the agent at the
target. All proofs are in the appendix.

PROPOSITION 1. Under coarse evaluations, there exists a target q ∗ such that it is
efficient only for agents with q 1 ≥ q ∗ to advance to the second stage.

The key assumption in this result is that the stages are connected, so
output in the early stage signals final project value. Indivisible production
guarantees this. If production were divisible, so that the firm could collect
value after stage one, it would always be efficient to employ the agent in the
second stage. For any level of q1, the firm would sell q1 on the market, pay
the agent, and start from scratch in the second stage, since the shocks, εt ,
are independent. The ability to quit halfway is also key, as it is a necessary
condition for the existence of a cutoff, q ∗.

Proposition 1 shows that the role of an interim performance evaluation is
to sort projects and agents into two groups: stay or quit. The target, q ∗, con-
ducts the sorting, in that it allows only agents with high output to proceed.
Imagine that after stage one, an agent with output q1 must be assigned to
one of two jobs. The first job pays him S∗(q 1) in stage two, and the second
job pays ū2. The interim performance evaluation does this assignment, and
does it efficiently.

COROLLARY 1. Interim performance evaluations strictly increase total surplus.

The intuition for the corollary is immediate. Whenever the first stage out-
put is so low that the expected contribution to the total surplus is less than
the outside options, evaluation allows termination of the project and collec-
tion of the outside options instead (which is impossible with no evaluations).
When the first-stage output is at least as high as the outside options, the eval-
uation has no effect. Therefore, as long as low first-stage output occurs with
positive probability, conducting an evaluation increases total surplus.

3.2 SETTING THE TARGET

The previous section shows that the continuation decision takes the form
of a cutoff rule. Precisely, the planner sets some target (or milestone) q
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after the first stage, and advances the agent only if q 1 > q . The probability
of clearing the target is

P1 = Pr(q1 > q ) = 1 − G(q − e1).

As expected, this probability increases in first-stage effort for each given
target q, since ∂P 1/∂e 1 = g(q − e 1) > 0. If the agent fails to clear the target,
both parties capture their outside options, so expected surplus is (1 − P1)ū2.
If he clears the target, he produces the surplus S(q 1, e 2) for each output
level q 1 > q . So the planner solves

max
e t ,q

∫ ∞

q
S(q1, e2)g(q1 − e1) dq1 + (1 − P1)ū2 − C (e1), (1)

where effort levels, e t , and the target, q, are the planner’s choice variables.
Let (e ∗

t , q ∗) denote the efficient choices, that is, the variables that solve the
planner’s problem (under coarse evaluation). The first term is the expected
value of continuing: the continuation surplus function integrated over all
realizations of q 1 > q . The middle term (1 − P1)ū2 is the expected value of
abandoning the project. Note that C (e 2) does not appear in the objective
function explicitly because it is embedded in S(q 1, e 2). The planner bears
the cost of C (e 2) only in the event that the agent advances.

Note that in this program the efficient target, q ∗, is set jointly with the
efficient effort levels, e ∗

t . To get traction on this, consider the first-order
condition with respect to e1 in the planner’s problem. After integrating by
parts, this condition is

C ′(e ∗
1

) =
∫ ∞

q ∗
S∗′(q1)g

(
q1 − e ∗

1

)
dq1 + g

(
q ∗ − e ∗

1

)[
S∗(q ∗) − ū2

]
,

where S∗(q 1) ≡ S(q 1, e ∗
2). This equation gives the efficient first-stage effort

as a function of the efficient target, q ∗, and the efficient second-stage effort,
e ∗

2. Increasing first-stage effort has two effects: It increases project value,
V (q 1 + q 2), and it increases the chances of clearing the target given by
P 1 = Pr(q 1 > q ∗). The integral above is the marginal increase in expected
value of the project, V (q 1 + q 2), arising from increased e1. The term in
brackets is the expected return from clearing the target. This is the change
in the probability of clearing the target g(q ∗ − e ∗

1) = ∂P1
∂e1

times the return
S∗(q ∗) − ū2, which is the benefit of continuing, S∗(q ), less the opportunity
cost from quitting.

The presence of the effect represented by the second term might suggest
that it is optimal to work harder in the first stage than in the second: If it
is known that poor performance in the first stage leads to termination of
the project and that working hard reduces the probability of poor first-stage
performance, then it seems perfectly reasonable to work hard initially to
avoid termination. While this logic is seductive, it is misleading. At the efficient
target, the planner is indifferent between continuing and terminating the
project (S∗(q ∗) = ū2 by the first order condition with respect to q), so that
the second term in the expression for C ′(e ∗

1) vanishes. At the same time,
a performance evaluation creates a possibility of early termination, which
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lowers the first term and thus reduces the marginal return to effort in stage
1 (relative to stage 2). Once the project advances to the next stage, the
possibility of termination vanishes, and it becomes efficient to work harder.
Performance evaluations offer the firm an option to quit, which generates
uncertainty in stage 1. This uncertainty lowers the marginal return to effort
early on, and thus skews the allocation of effort towards the end of the
project.

3.3 MAIN RESULT: EFFICIENT DYNAMIC EFFORT ALLOCATION

The following proposition solves for the efficient allocation of effort across
stages, and is the main result.

THEOREM 1. It is efficient to work harder in the second stage (e ∗
1 < e ∗

2).

Since the planner sets the target optimally, the marginal return to effort
after clearing the target exceeds the marginal return to effort in the first
stage. Formally,

C ′(e ∗
1

) = E
[
S∗′(q1)

]
< E

[
S∗′(q1)

∣∣ q1 ≥ q ∗] = C ′(e ∗
2

)
.

The mean marginal return conditional on q 1 ≥ q ∗ exceeds the uncondi-
tional mean. Since marginal costs are increasing, this implies that e ∗

1 < e ∗
2.

The marginal return to effort is lower in stage 1 precisely because the
agent may not advance to the second stage. In this case, the planner bears
the cost of effort, C (e 1), but acquires the benefit, V (q 1 + q 2), not with
certainty, but with probability less than one. This lowers the marginal return
to effort in stage 1 relative to stage 2. At the optimum, the planner sets the
marginal costs equal to the marginal returns, consequently shading effort
downward in the early stages. More effort is allocated in the later stages
of the project, when its marginal return is higher. This logic bears some
similarity to the tournament model of Lazear and Rosen [1981]. Recall
that in a tournament, an increase in noise chokes off effort for each agent.
Extreme noise essentially determines the outcome of the tournament, and
hence each agent has little incentive to work hard. Here, the possibility of
termination essentially brings additional noise into the first stage, and this
noise causes the social planner to shade effort downwards.

4. Robustness

4.1 FINITE NUMBER OF EVALUATIONS

A natural question is whether theorem 1 is an artifact of the two-stage
setting. For example, if production takes place over three stages, is it still
efficient to evaluate performance after the first and/or second stage? And if
so, do the efficient effort levels monotonically increase in t? It turns out that
Theorem 1 generalizes in the finite stage game. In particular, if a project
with indivisible output extends over an arbitrary finite number of stages
(instead of just two, as in the benchmark model), it is efficient to conduct
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performance evaluations after each stage and to hold back effort in the early
stages, continually increasing it as time goes on. The result is driven by the
same basic forces as in the benchmark model: Because of the indivisibility
of the project’s outcome, it is efficient to terminate the project early if its
expected output is lower than the outside options. Also, it is efficient to
shade early effort downward because of the possibility of early termination,
which decreases the expected return to effort.

More precisely, consider a model with T interim evaluations. There are,
therefore, T + 1 time periods. In time period t the agent exerts effort e t

at cost C (e t) with C ′, C ′′ > 0. As before, there is a random shock each
period, εt . The shocks are distributed independently and identically over
time with density function g(·). The functions g and C are the same each
time period. The intermediate output at period t is qt = e t + εt . However,
just as in the benchmark model, the intermediate outputs have no external
value: If terminated before the end of period T + 1, the project is worth
nothing. If brought to completion, the project is worth V (Q), where Q =
q1 + · · · + qT+1. As before, assume that V is a strictly increasing and weakly
concave C1 function. Evaluation of the project occurs after each of the
first T periods (at the time of the t th evaluation, only the first t shocks
have been realized). Evaluations are coarse in the sense that they only show
whether the cumulative intermediate output to date,

∑t
s=1 qt , exceeds a

specified threshold.7 Because evaluations are coarse, effort levels cannot be
conditioned on the observed intermediate outputs.

The rest of the assumptions are a straightforward extension of the two-
stage model. After each evaluation, the social planner decides whether or not
to continue the project. If the project is terminated, it cannot be restarted
later. The total outside option in period t is ūt > 0. Outside options are
expressed in per-period terms and are therefore additive: If the project is
terminated after period t, the total outside options collected are

∑T+1
s=t+1 ūs .

These outside options are evaluated at the start of each stage. And just as
before, effort is contractible, so the planner can implement the first-best with
an efficient contract under full commitment. Finally, the project is assumed
to be feasible, that is, E0V (q1 + . . . qT) >

∑T+1
s=1 ūs , where E0 denotes the

time-zero expectation, given efficient effort levels.
As a concrete example, consider the three-stage game, depicted in fig-

ure 1. There are two evaluation points, after the first and second stages. The
project is worth V (q 1 + q 2 + q 3) if completed. The payoffs in the figure
reflect the joint payoffs of all parties. In stage 1, the agent selects effort e1,
and nature delivers ε1, realizing q1. If there is an interim evaluation after
the first stage, it takes the form of a target, Q∗

1, such that the agent advances
if q 1 ≥ Q∗

1 (this is proven in the upcoming proposition). If the agent does

7 Alternatively, we can consider evaluations that also determine whether a particular interme-
diate output, qt , exceeds a given threshold. However, as Proposition 2 shows, the intermediate
continuation surpluses depend solely on the cumulative outputs, so that obtaining additional
information about individual thresholds is redundant.
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FIG. 1.—The model with three stages and two evaluations.

not clear the first target, he leaves the project and both parties collect their
outside options for the remaining stages, ū2 + ū3. If the agent does clear the
first target, he advances to the second stage, where again he exerts effort
and q2 is realized. Now if his cumulative output to date, q 1 + q 2, clears
a second target, Q∗

2, he advances to stage 3. If not, he leaves the project
and both parties collect their remaining outside option, ū3. In stage 3, he
exerts effort e 3, q 3 is realized, and both parties share the project value,
V (q 1 + q 2 + q 3).

Returning to the T-stage model, let St (q1, . . . , qt ; e t+1, . . . , e T+1) be the
continuation surplus at period t: The expected value of continuing the
project after the t th evaluation, given the first t intermediate outputs and
the planned effort levels in each period.8 Clearly, the planner chooses to
continue after the t th evaluation if and only if the continuation surplus is
greater than or equal to the outside options that are obtained if the project is
terminated that period, namely, if and only if St (q1, . . . , qt ; e t+1, . . . , e T+1) ≥∑T+1

s=t+1 ūs . Thus, the value of having reached the end of the t th pe-
riod with outputs q1, . . . , qt and a future effort plan (e t+1, . . . , e T+1) is
max{St (q1, . . . , qt ; e t+1, . . . , e T+1),

∑T+1
s=t+1 ūs }.

Consequently, for all t ∈ {1 . . . T}, define recursively

St (q1, . . . , qt ; e t+1, . . . , e T+1)

=
∫ ∞

−∞
max

{
St+1(q1, . . . , qt+1, ; e t+2, . . . , e T+1),

T+1∑
s=t+2

ūs

}

× g(qt+1 − e t+1) dqt+1 − C (e t+1),

8 Note that planned effort levels for stages one through t are irrelevant for the continuation
surplus after qt has been realized, since they have no effect on future outputs.
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where ST+1(q1, . . . , qT+1) ≡ V (q1 + · · · + qT+1).
While the continuation surplus function has more terms and is more

complex than in the single-evaluation case, the same forces identified earlier
apply here. In particular, the main result holds.

PROPOSITION 2. For any finite number of evaluations, T , efficiency requires that:

1. There exist cutoff points {Q∗
t }T

t=1 such that the project is terminated after
evaluation t if and only if

∑t
s=1 qs < Q∗

t ;
2. The efficient effort levels are monotonically increasing over time (e ∗

t < e ∗
t+1

for all 1 ≤ t ≤ T).

This proposition shows that the result is robust to finitely many stages, and
is not simply an artifact of a two-stage model. As before, the same intuition
applies. In the early stages, there is a low probability of finishing the game,
and this reduces the marginal return to effort, causing the planner to shade
effort downward. As the project advances through the stages, it clears suc-
cessive hurdles, and therefore the probability of collecting the final output,
V (q 1, . . . , q T), increases. This raises the marginal return to effort and causes
more effort to be invested in later stages. However, note that the sequence
of hurdles, {Q∗

t }T
t=1, need not be monotonic in T : Their relative magnitudes

depend on the nature of the sequence of outside options, {ūt }T
t=1.

4.2 DETAILED EVALUATION

Return now to the two-stage model, here and for the rest of the paper. As
mentioned earlier, the assumption of coarse evaluation eases analysis consid-
erably. Under detailed evaluation, Theorem 1 still holds, but an additional
technical assumption is needed and the proof is slightly more complex. In-
stead of an effort level, e2, the agent now selects an effort function, e 2(q 1).

First note that the surplus function is still strictly increasing without any
additional assumptions. Proposition 1 implicitly assumes a coarse evaluation,
but the assumption is without loss of generality as the following corollary
shows.

COROLLARY 2. Under detailed evaluation, there exists a cutoff point, q ∗, such
that it is efficient only for agents with q 1 ≥ q ∗ to advance.

An additional condition is necessary for Theorem 1 to remain valid under
detailed evaluations. The marginal cost function cannot be “too convex.”
More precisely, the condition is that C ′′′ ≤ 0. Note in particular that this
holds with quadratic costs (since C ′′′ = 0 if C (e) = c

2 e 2), the most common
cost of effort function used in applied models.

PROPOSITION 3. Under detailed evaluation, it is efficient to work harder on average
in the second stage (e ∗

1 < E[e ∗
2(q1) | q1 ≥ q ∗]), if C ′′′(e) ≤ 0 for all e.

The reason for the additional condition is as follows. Effort is increasing
in the main model because the marginal cost of effort is higher in the sec-
ond period due to higher marginal return to effort (no failure possibility).
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The same basic driving force continues to work under detailed evaluations.
However, because the second-period effort is now a function of first-period
output, it is a random variable from a time-zero perspective. Therefore, the
comparison is now between first-stage effort and second-stage expected effort.
If C ′′′ ≤ 0, then

C ′(
E

[
e ∗

2(q1)
∣∣ q1 ≥ q ∗]) ≥ E

[
C ′(e ∗

2(q1)
) ∣∣ q1 ≥ q ∗] > C ′(e ∗

1

)
,

where the first inequality is Jensen’s inequality. Increasing costs then imply
e ∗

1 < E[e ∗
2(q1) | q1 ≥ q ∗]. But if C ′′′ > 0, Jensen’s inequality operates in re-

verse, and the first inequality flips. In words, the sufficient condition is that
the marginal cost of expected effort in stage 2 (the leftmost term above)
exceeds the marginal cost of effort in stage 1 (the rightmost term above).
If marginal costs are convex, then the former term sinks relative to the lat-
ter. If they are sufficiently convex, it is possible that e ∗

1 > E[e ∗
2(q1) | q1 ≥ q ∗].

But if the marginal cost function is only slightly convex, the main result still
holds.9

4.3 OUTSIDE OPTIONS AND FIRST-STAGE OUTPUT

Previously, I assumed that the outside options, ū2, were independent of the
first-stage output, q1. Now I explore what happens when the outside options
vary with q1. The outside options are now a function of q1, so let ū2(q1)
denote that function. The most natural assumption is that this function is
increasing; for higher levels of first-stage output, the firm and/or agent earn
better opportunities outside. This occurs if information from the early stage
transfers to an external market, as when the market can observe the quality
of an intermediate good. To keep the model consistent, here I assume that
if the market can condition its outside options on q1, the agent can also.
Therefore, I explore detailed evaluation when the second-stage effort is a
function, e 2(q 1).

In general, arbitrary nonlinear functions, ū2(q1), may cross S∗(q 1) many
times, implying that the continuation set X = {q1 | S∗(q1) ≥ ū2(q1)} may be
a union of disjoint intervals. To make the analysis tractable, assume that
the continuation surplus function, S∗(q 1), and the outside option function,
ū2(q1), satisfy the single crossing property (the functions cross once). In this
case, let q ∗ satisfy S∗(q ∗) = ū2(q ∗), so the two functions cross at q ∗. Because
of single crossing, the continuation set is simply X = [q ∗, ∞).

Even under the single crossing property, arbitrary nonlinear outside op-
tion functions can cause second-stage effort to be higher than first-stage
effort at the optimum. Intuitively, if ū2(q1) increases rapidly with q1, small
increases in early-stage effort can lead to large increases in second-stage
outside opportunities. Therefore, it is efficient for the agent to work hard
early on in order to generate these outside opportunities. If, on the other

9 Unfortunately, it is not possible to generate an exogenous condition on the primitives of
the model that details how convex marginal costs can be before the main result reverses.
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hand, these outside opportunities increase slowly, it is still efficient to work
harder in the second stage. The next proposition gives conditions for the
main result to hold under nonconstant outside option functions.

PROPOSITION 4. Let S∗(·) and ū2(·) satisfy single crossing and let C ′′′(e) ≤ 0
for all e. If ū2

′(q1) < C ′(e ∗
1) for all q 1 < q ∗, it is efficient to work harder in stage 2,

so e ∗
1 < E[e ∗

2(q1) | q1 ≥ q ∗].

As long as the marginal outside opportunities do not exceed the marginal
costs of continuing the project, it is still efficient to work harder in the later
stages. For example, if costs are quadratic (C (e) = e 2) and outside options
are linear and increase slowly (ū2(q1) = γ + ηq1 for γ > 0, η ≈ 0), then the
proposition holds. Of course, it is possible to construct an outside option
function that increases so rapidly that it is always efficient to work harder
in the early stages. But aside from these manufactured examples, the main
result is still robust.

5. An Agency Model

This section explores an agency model where the firm can no longer
observe the agent’s effort. Instead the firm elicits effort through explicit
contracts on output. Following the standard assumption in agency models,
suppose the agent is now risk averse, while the firm is (still) risk neutral. It
is tempting to believe that the difference in risk preferences and the new
incentive problem causes the agent to change his dynamic effort allocation,
possibly reversing the main result. While his effort choices change from first-
best, his dynamic effort allocation is subject to the same forces discussed
earlier. In fact, the main result of the paper is robust within an agency
context: The agent still works harder in the second stage.

Because the principal can no longer observe effort, it is necessary to for-
mulate a contract on observable output, qt . Since the principal’s final profit
is a function of V (q 1 + q 2) and not a function of qt individually, the optimal
contract is also a function of q 1 + q 2. Moreover, any general contract, t(q 1 +
q 2), can be represented as a flat salary, α t , in stage t and a nonlinear sharing
rule, β(q 1 + q 2), on production.10 If the agent advances to the second stage,
his total compensation is α1 + α2 + β(q 1 + q 2)V (q 1 + q 2), and otherwise
he gets only α1. As before, all parties can fully commit to the contract. Both
parties have outside options in each stage, so let ūa

t > 0 and ūp
t > 0 denote

the outside options in stage t of the agent and principal, respectively.
The principal and agent now have different preferences and different

outside options, so they, in general, disagree on whether to continue the
project for any given first-stage output level, q1. Let the firing rule, q p , denote

10 To see this, suppose t(q) is a general contract where q = q 1 + q 2. Write this as t(q ) =
F + T(q ), decomposed into its fixed and variable components. Let α1 + α2 = F , and β(q ) =
T(q )/V (q ).
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FIG. 2.—Timeline.

the principal’s hurdle for continuation: The principal fires the agent if q 1 <

q p . Similarly, let the quit rule, q a , denote the agent’s hurdle for continuation:
The agent quits if q 1 < q a . I assume that q a and q p are set independently
and that either party can discontinue the project at will, a feature of at-will
employment.11 Both parties must agree to continue for the project to move
forward, so early-stage output, q1, must clear the hurdle τ = max{q a , q p}
to justify continuation. This is simply a consequence of the ability of either
party to walk away if they so choose, and doing so dissolves the project. The
probability of continuation is now P 1 = Pr(q 1 > τ).

Figure 2 denotes the timeline of the game. In stage 1, the principal pro-
poses the contract (α t , β(·), q p). The agent earns α1 and selects an effort
level, e1, and a quit rule, q a . Then q 1 = e 1 + ε1 is realized. In stage 2,
the agent stays if q 1 ≥ max{q a , q p} and leaves otherwise. If he stays, the
agent exerts effort e2, output q 2 = e 2 + ε2 is realized, and the project
value V (q 1 + q 2) is determined. The principal collects his share of the
output, (1 − β(q ))V (q ) − α2, and pays the agent β(q )V (q ) + α2, where
q = q 1 + q 2. I adopt the standard assumptions that the agent’s utility func-
tion is time-separable and separable in wages, w, and effort, e, and that there
is no discounting. Thus his final utility is [u(α1) − C (e1)] + ūa

2 if he quits
at the end of stage 1 and [u(α1) − C (e1)] + [u(β(q )V (q ) + α2) − C (e2)]
if he completes the project. Suppose u is an increasing and concave utility
function. The agent’s continuation utility for each q 1 > τ is

U (q1, e2) = E2[u(β(q1 + e2 + ε2)V (q1 + e2 + ε2) + α2)] − C (e2).

The agent receives this continuation utility for each q 1 > τ , and receives his

11 For example, in the United States at-will employment is the dominant form of employment
in the private sector. Workers can quit firms, and firms can fire workers, subject to two weeks
notice.
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outside option ūa
2 otherwise. Therefore, the agent’s problem is

max
e t ,qa

∫ ∞

τ

U (q1, e2)g(q1 − e1) dq1 + (1 − P1)ūa
2 − C (e1) + u(α1).

Similarly, the principal’s continuation profit for each q 1 > τ is

π(q1) = E2[(1 − β(q1 + e2 + ε2))V (q1 + e2 + ε2)] − α2.

The principal earns this continuation profit for every q 1 > τ and captures
his outside option, ūp

t , otherwise, so the principal solves

max
αt ,β,q p

∫ ∞

τ

π(q1)g(q1 − e1) dq1 + (1 − P1)ūp
2 − α1. (2)

The principal and the agent both have individual rationality constraints,
so their equilibrium utility and profit levels must exceed the value of their
outside options: (ūa

1 + ūa
2) for the agent and (ūp

1 + ūp
2 ) for the principal.

Before stating the main result for this setting, one additional assumption
is required. Recall that the players set their continuation thresholds, q a and
q p , independently, and the relevant threshold for continuing the project is
τ = max{q a , q p}. Intuitively, the relative levels of these thresholds move in
the same direction as the relative magnitudes of the two players’ outside
options. To guarantee that the agent still works harder in the second stage
than in the first, it must be that the agent’s threshold matters (which means
that the agent has high outside options relative to the principal). When the
agent’s threshold is the relevant one, the margin of continuing versus quit-
ting does not contribute to the effort decision, since the agent is indifferent
between staying and leaving at the threshold. However, when the principal’s
target is the relevant one, the agent strictly prefers staying to leaving at the
threshold. Thus, he has an additional incentive to work hard in the first
period to be able to clear the threshold. This additional effect might cause
the agent’s first period effort to be higher than that of the second period.
Assuming τ = q a prevents this from happening.

PROPOSITION 5. If qa ≥ qp, then a risk-averse agent works harder in the second
stage.

The same forces as in the benchmark case apply here: The possibility of
not advancing to the second stage reduces the marginal return to effort
in the first stage, causing the agent to shade his effort downward. The dif-
ference in risk preferences between the two parties does not change the
agent’s dynamic effort allocation decision. Risk aversion causes the princi-
pal to withhold some incentives from the agent (β < 1), but it does not
change the agent’s effort level between periods. Ultimately, this shows that
the agent’s effort allocation decision depends on the possibility of discon-
tinuing after the first stage and collecting an outside option. It does not
depend on differential preferences between the two parties.
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The agency model outlined above shows that while incentive problems
may change the effort choice within each period, they do not qualitatively
change the effort choice between periods. To be precise, let e ∗

t be the first-
best effort level selected by the planner in the absence of agency problems.
The main theorem earlier in the paper shows that e ∗

1 < e ∗
2. Now let ẽ t be

the equilibrium effort level the agent selects in the agency model of this
section. This is an action chosen by the agent in a noncooperative game
with the principal, where the principal selects a contract and the agent
simultaneously selects effort. As in all agency models, risk aversion leads
to a distortion in effort levels, so e ∗

t 
= ẽ t for each t. In this sense, incen-
tive problems change the effort choices within each stage. However, both
e ∗

1 < e ∗
2 and ẽ1 < ẽ2, so agency problems do not qualitatively change the

allocation of effort between stages. Again, this happens because the sorting
effect still operates even when the agent is risk averse and the principal can-
not observe his effort and so must induce it through an output contingent
contract.

Finally, the main result also holds in an agency model with renegoti-
ation, as long as a renegotiation-proof contract exists. Observe that the
agency-model result (Proposition 5) is obtained with no reference to the
principal’s problem. As long as a time-invariant optimal contract exists, the
original proof of Proposition 5 shows that the agent chooses ẽ1 < ẽ2. Now,
in a model with renegotiation, this optimal contract is different from the
model with full commitment, and the actual levels of ẽ1 and ẽ2 are differ-
ent as well. But that is of no consequence here: What matters is that ẽ1

is still lower than ẽ2. The sorting effect still causes the agent to allocate
more effort into later stages, for the same reasons outlined earlier: The
possibility of termination reduces the agent’s marginal return to effort in
stage 1, so he works less. Risk aversion and renegotiation do not alter this
force.

6. Ability

Return now to the original setting without the agency problem, that is,
assume that the firm can observe the agent’s effort. When projects fail, firms
have difficulty separating technology failure from employee failure. Did the
software fail because the programmer was incompetent, or because of a
negative technology shock? This happens because output measures cannot
disentangle the agent’s ability from technological uncertainty when assess-
ing the performance of a project. This section models dynamic decision
making when ability and uncertainty are impossible to observe separately. I
use ability as shorthand for project-specific ability, measuring the quality of
the match between the agent and the project.

I extend the benchmark model to include an underlying ability parameter
that persists through both stages. Ability, ã, is distributed according to a prior
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distribution, f (·), with support A.12 Since neither the firm nor the agent
knows the agent’s ability, the uncertainty is symmetric. Suppose that

q̃ t = ã + e t + ε̃t .

Clearly, higher ability increases output. More precisely, ability and effort are
substitutes, so more able agents can work less to generate the same output
as less able agents. Including a persistent ability term induces correlation in
output across stages. High ability, which generates high output today, also
generates high output tomorrow. This is the main intuition that drives the
results of this section.

The posterior mean, E[ã | q̃1 = q1], measures all parties’ revised estimate
of the agent’s ability after the first stage. If the posterior mean increases with
q1, then high early output signals high ability. Let f̄ (· | ·) be the posterior
density of ã, given the value of q̃1. A fairly weak condition that guarantees that
E[ã | q̃1 = q1] increases with q1 is the monotone likelihood ratio property
of this posterior density.

DEFINITION 2. Let ϕ̄(· | ·) be the conditional probability density function of a
random variable X̃ given the realization of another random variable Ỹ . ϕ̄ satisfies
the strict monotone likelihood ratio property (MLRP) if and only if the likelihood ratio
function LR(x1,x0)(y) ≡ ϕ̄(x1 | y)

ϕ̄(x0 | y) is strictly increasing in y for each pair of values x 1 >

x 0 in the support of X̃.

It is quite easy to see that MLRP does indeed guarantee that the posterior
mean E[X̃ | Ỹ = y] is increasing in y.13 In fact, the following stronger result
holds:

LEMMA 1. Let ϕ̄ satisfy the strict MLRP. If z(x) is a strictly increasing function,
then ∫

supp(X̃)
z(x)ϕ̄y (x | y) dx > 0.

Since first-stage output, q̃1, is the sum of a scalar (e1), ability (ã), and
an error term (ε̃1), the posterior of ã given q̃1 = q1 takes a particularly
simple form. In this special case, the MLRP reduces to conditions on just
the distribution of the noise term:

LEMMA 2. f̄ (· | ·) satisfies the strict MLRP if and only if the ratio g(ε − δ)
g(ε) is strictly

increasing in ε for all positive δ.14

12 To avoid confusion, in this section I denote random variables by letters with tildes (x̃) and
their values by the same letters without tildes (x). Also, conditional distribution functions are
denoted by an over bar ( f̄ (· | ·)), while unconditional distributions have no bar ( f (·)).

13 This readily follows from Lemma 1; just choose z(x) ≡ x.
14 It has been noted elsewhere (Mattsson, Voorneveld, and Weibull [2004]) that this property

holds if the error distribution is normal or Gumbel, but not if it is multimodal or fat-tailed (such
as the t-distribution).
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Now, let S(q 1, e 1, e 2) be the continuation surplus function, that is, the
expected utility of continuing given that first-stage output is q1 and the
effort plan is e1 and e2 (note that e2 is a function in the case of detailed
evaluations). This is the same function as before, except now it is necessary
to take expectations over ã. In the case of coarse evaluations, the surplus is

S(q1, e1, e2) =
∫

A

∫
R

V (q1 + a + e2 + ε2)g(ε2) f̄ (a | q1) dε2 da − C (e2);

in the case of detailed evaluations, it is

S(q1, e1, e2(·))

=
∫

A

∫
R

V (q1 + a + e2(q1) + ε2)g(ε2) f̄ (a | q1) dε2 da − C (e2(q1)).

It is efficient to continue the project if the continuation surplus exceeds
the outside option, or if S∗(q1) ≡ S(q1, e ∗

1, e ∗
2) ≥ ū2, where e ∗

1 and e ∗
2 are the

efficient effort levels. As before, a cutoff strategy is a target q ∗ that the planner
sets, such that the agent continues to work if q 1 ≥ q ∗, but not otherwise. If
S∗(q 1) is strictly increasing, then the planner uses a cutoff strategy. It is easy
to see that MLRP guarantees this: as Lemma 1 shows, MLRP implies that
a higher first-stage output signals higher ability and thus higher expected
second-stage output. Since a higher first-stage output also gives a higher
direct contribution to the final output, it is clear that high first-stage output
is unambiguously good news. Formally, this gives us the following result:

PROPOSITION 6. Let g satisfy the condition in Lemma 2. Then, it is efficient to
use a cutoff strategy under both coarse and detailed evaluations.

To illustrate this proposition, consider the simple example of a linear
production function, V (q ) = Vq, and suppose evaluations are coarse.

The continuation surplus simplifies to

S∗(q1) = V
(
q1 + e ∗

2 + E[ã | q̃1 = q1]
) − C

(
e ∗

2

)
.

Now MLRP guarantees that the posterior mean increases in q1, or

∂

∂q1
E[ã | q̃1 = q1] =

∫
A

a f̄ q1 (a | q1) da > 0.

In words, high realizations of output signal that the underlying ability of the
agent is high. Therefore

S∗′(q1) = V
[

1 +
∫

A
a f̄ q1 (a | q1) da

]
> 0.

That is, the continuation surplus increases in first-stage output. In addi-
tion, since limq1→−∞ S∗(q1) = −∞, limq1→∞ S∗(q1) = ∞, and S∗ is continu-
ous, the Intermediate Value Theorem states that there exists a q ∗ such that
S∗(q ∗) = ū2. Hence the planner uses a cutoff strategy: The project is contin-
ued if q 1 ≥ q ∗, or S(q1) ≥ ū2. The proof of Proposition 6 is a more general
version of this example. The entire decision on whether to terminate low
output rests on the continuation surplus function, S∗(q 1). As long as this
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function varies in q1, it is efficient to terminate some agents. In particular,
if the continuation surplus is monotonic, then the decision takes the form
of a cutoff.

Introducing persistent ability induces correlation across stages. This cor-
relation makes it worthwhile to cut projects with low output even if pro-
duction is divisible. The posterior mean E[ã | q̃1 = q1] increases in q1 un-
der MLRP. If a high q1 is observed, all parties learn (in a precise Bayesian
sense) that the agent’s ability is likely to be high. Because ability persists
into the second stage, this most likely results in a high q2. Therefore, it
makes sense to continue the project after a high q1. It is efficient to retain
the agent not only because output is high today, but because it is expected
that his ability is high, which is likely to lead to high output tomorrow. This
ability-induced correlation across stages is sufficient to guarantee the use of
a cutoff strategy.

6.1 EFFICIENT DYNAMIC EFFORT SUPPLY

This section analyzes the efficient supply of effort across stages in the
persistent-ability setting. The main result of the paper is robust even after
including ability in the model. Specifically, the sorting effect of the efficient
target, q ∗, biases effort upwards in the second stage.

PROPOSITION 7. Given persistent ability, the following results hold:

1. Under coarse evaluation, it is efficient to work harder in the second stage
(e ∗

1 < e ∗
2).

2. Under detailed evaluation, it is efficient to work harder on average in the
second stage (e ∗

1 < E[e ∗
2(q1) | q1 ≥ q ∗]), provided that C ′′′(e) ≤ 0 for

all e.

To gain intuition on the problem, suppose that errors are distributed
ε̃t ∼ N(0, s2), and the ability parameter is distributed ã ∼ N(a0, t2). Call
s2 the error variance and t2 the prior variance, that is, the variance on the
prior distribution of ability. Calculation shows that the posterior density is
normal with moments

E[ã | q̃1 = q1] = t2

t2 + s2
(q1 − e1) + s2

t2 + s2
a0;

Var(ã | q̃1 = q1) = s2t2

t2 + s2
. (3)

The posterior mean is a linear function of the output realization, q 1 −
e 1, and the prior mean, a0, placing more weight on the term with smaller
variance. For example, as the prior variance decreases to zero, the posterior
mean converges to the prior mean. So as the available prior information
on the agent’s ability improves, the posterior places little weight on the
observed output realization and more weight on the prior mean. Similarly,
as the error variance decreases to zero, the posterior mean converges to the
realization q 1 − e 1. With a low error variance, the output realization gives
an accurate signal of ability, and the posterior mean reflects this. Solving
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the social planner’s problem shows the paper’s main result is robust. The
same intuition from the main result earlier in the paper holds here: The
possibility of halfway termination lowers the marginal return to effort in
stage 1, and so it is efficient to shade effort downward in the first stage.

This result gives a view of dynamic labor supply different from the large
career concerns literature that began with Hölmstrom [1999], who argues
that managers work hard early in their careers to influence perceptions of
their ability. These perceptions of high ability translate into higher future
wages through a competitive labor market. The key assumption there is that
the market cannot observe the manager’s effort, and so the market “con-
fuses” effort with ability. More precisely, if the market observes high output,
there is positive probability that the high output comes from high ability. So
the market updates its posterior distribution on ability in a Bayesian manner.
Consequently, managers work hard knowing that this updating takes place.
Thus the manager supplies high effort early on because the market uses
output to make inferences on ability.

In contrast, effort is observable in my model, and this eliminates the career
concerns effect, leaving only the sorting effect. Because effort is observable,
the firm/market no longer interprets high output for high effort. It knows
effort precisely, and so can see through any attempt by the agent to work
harder to increase output and thus “fool the market” into believing he has
high ability. To see this formally, observe that from equation (3) the posterior
mean is a weighted average of the prior mean, a0, and the output realization,
q 1 − e 1 = a + ε1. Notice that the output realization is not just q1 but in fact
is output less effort. Essentially the planner removes the effect of effort
on output and considers only the random component, a + ε1. Thus the
agent has no reason to work hard simply to influence perceptions of his
ability, as such perceptions take his effort directly into account.15 Instead,
only the sorting effect remains. Thus, it is efficient to work harder once an
agent learns of his higher output and hence higher ability. This arises from
sorting, not career concerns.

Outside of Hölmstrom [1999], other career-concerns papers give mixed
predictions on dynamic effort allocation. For example, Dewatripont, Jewitt,
and Tirole [1999] extend Hölmstrom [1999] to a multitasking framework
and indeed find that effort falls over time. Similarly, Ghatak, Morelli, and
Sjöström [2001] show that agents work hard early in their careers because of
borrowing constraints: They exert high effort to produce high output and
accumulate savings that allow them to become entrepreneurs later in their
careers and subsequently acquire rent. But some papers find the opposite re-
sult, that effort increases over time. Meyer and Vickers [1997] and Gibbons

15 To see this more intuitively, recall that because effort is observable, the planner’s problem
is equivalent to a self-employed agent working over time. Clearly such an agent never works
harder just to fool himself into thinking he is high ability, as Holmstrom’s [1999] manager
does with the market. So career concerns are not relevant to a self-employed agent, nor are
they relevant for a social planner.
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[1987] show that the ratchet effect can cause the principal to increase in-
centives in later stages if the principal uses early output to infer productivity.
Knowing that the principal does this, the agent withholds effort in the early
stage to prevent the “ratcheting up” of incentives.

Gibbons and Murphy [1992] build on Hölmstrom [1999] to include both
explicit and implicit incentives in a model of career concerns. In this case,
agents work hard both because they are paid to do so (explicit incentives)
and because the firm updates its prior on their ability, which leads to higher
future wages (implicit incentives). The implicit incentives operate exactly as
in Hölmstrom’s [1999] model: The market observes output but not effort
or ability, and uses output to update its perceptions on ability. Gibbons and
Murphy [1992] find that optimal explicit incentives rise over time, serving
as a substitute instrument for implicit incentives. Yet the total effect on ef-
fort allocation is ambiguous, and depends on the parameters of the ability
distribution.16 My model differs from Gibbons and Murphy [1992] for the
same reasons it differs from Hölmstrom [1999]: Observability of effort elim-
inates the signal-jamming career-concerns effect, while outside options and
the ability to quit halfway create a sorting effect.17

6.2 UP-OR-OUT SCHEMES AS INTERIM PERFORMANCE EVALUATIONS

The model can also explain up-or-out promotion policies. These policies
are common in many professional services (accounting, law, consulting,
investment banking), as well as in the military and academia. Up-or-out is
a particular form of promotion in which employees are fired if they fail
a single, major performance evaluation (the decision to grant partner or
permanent tenure). They are fired even if their performance is just slightly
below the firm’s standard. This is puzzling because the firm could always
retain the agent at lower wages that reflect his lower productivity.

Previous explanations of up-or-out contracts rely on asymmetric informa-
tion. Kahn and Huberman [1988] argue that a firm chooses an up-or-out
policy to force itself to behave honestly towards the employee, thus main-
taining his incentive to work hard and acquire specific human capital. It is
critical that the firm observes the agent’s productivity but the agent him-
self does not. Waldman [1990] claims that firms use up-or-out to signal the
agent’s productivity between firms and thus induce human capital acquisi-
tion. The employee’s general human capital is private information to his

16 In particular, the effort allocation decision depends on the variance of the ability distri-
bution. If ability is known precisely (low variance), implicit incentives are strong and the agent
works hard early in his career in response to these incentives. On the other hand, if ability
is not known precisely (high variance), implicit incentives are weak and the agent primarily
responds to explicit incentives. Since these explicit incentives rise over time, so does his effort
allocation.

17 Career-concerns models include agency problems as well as outside options that vary with
output. The ability model of this section is robust to these extensions, that is, the sorting effect
(e 1 < e 2) still holds under some additional technical assumptions on the functions involved,
which are similar to those in Proposition 4. Details are available from the author upon request.
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firm, but the promotion decision of the firm is public information available
to all firms. Levin and Tadelis [2002] claim that partnerships use up-or-out
to maintain a commitment to high product and employee quality, where the
firm observes output (product quality) and employee ability, but the market
(including clients) does not.

This paper avoids a complicated asymmetric information argument, and
instead uses symmetric information to cast up-or-out schemes as examples of
efficient sorting. This stands in stark contrast to previous work, in particular
to Kahn and Huberman [1988], who view up-or-out contracts as involuntary
layoffs that occur because of information imperfections. Layoffs here are
the outcome of an efficient termination decision: Performance evaluations
efficiently sort agents into their most productive use, which may be to collect
their outside option. It is not necessary to resort to a special and stylized in-
formation structure to explain a common form of performance evaluation,
the up-or-out scheme.

Why doesn’t every firm use up-or-out rules? Firms use them if (1) ability is
a key factor of production and (2) both parties have outside options. These
conditions are consistent with production in professional services (like ac-
counting firms). These firms recruit highly educated workers because ability
is a key input in production. Workers in these occupations enjoy high market
wages, so their outside options are high. Firms in which these assumptions
do not hold (such as manufacturing) do not employ up-or-out schemes.

7. Conclusion

Given that so much of today’s production takes place in long-term
projects, it is natural to explore the role and consequences of performance
evaluations on projects before they finish. By their very definition, projects
take time, and firms cannot collect full value from them until they are com-
pleted. So interim performance evaluations give firms the option to end
projects (or fire employees on existing projects) if the early returns are low.
Performance evaluations efficiently sort projects and employees into those
that quit and those that stay. A surprising consequence of this sorting is its
effect on dynamic resource allocation: It is efficient to allocate more effort
towards the later stages.

The logic of the main result runs as follows. Because production is indivis-
ible, firms and agents cannot sell the project after the first stage, and instead
use early-stage output to calculate future project value and ultimately the
value of continuing. If the continuation value is sufficiently low, both parties
prefer to capture their outside options. This is the role of interim perfor-
mance evaluations. The possibility of termination after the first stage reduces
the expected project return in stage 1, and hence lowers the marginal return
to effort. Thus the agent invests more of his resources (effort) later in the
project. This is the main consequence of interim performance evaluations.

The paper shows that the main result is robust under a variety of per-
mutations. First, the result generalizes beyond the simple two-stage model
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to the finite stage game, proving that restriction to two stages is without
loss of generality. Second, even if the evaluation returns detailed perfor-
mance information, so that the agent can condition his second-stage effort
on first-stage output, the agent efficiently works harder on average in stage 2
than in stage 1. Third, if the outside options vary with output such that the
marginal increase in outside options does not exceed the marginal cost of
effort, the agent exerts more effort on average in stage 2 than in stage 1.
And most importantly, this result holds within an agency framework. With
a risk-neutral principal and a risk-averse agent, the agent still shades his ef-
fort downward in the early stage. The differential risk preferences do not
change the allocation of effort between stages even though they do change
the allocation of effort within each stage.

The purpose here is to show that production that takes place over time
gives firms the option of ending projects before they finish. Exercising this
option and collecting intermediate performance information skews the effi-
cient allocation of resources in surprising ways. The prior agency literature
on career concerns gives a mixed verdict on optimal effort allocation; some
papers predict increasing effort over time while others predict decreasing
effort over time. The aim of my analysis is to argue that sorting delivers a
strong prediction that resource allocation increases over time. I present the
majority of the analysis in a first-best world to show the main forces at work
and highlight the key economic intuition.

APPENDIX

Proof of Proposition 1. Let e ∗
1 and e ∗

2 be the efficient effort levels. Let
S∗(q 1) ≡ S(q 1, e ∗

2), and q ∗
1 = e ∗

1 + ε1.
Since V is strictly increasing, V ′ > 0, and therefore,

S∗′(q1) = ∂S
(
q1, e ∗

2

)
∂q1

=
∫ ∞

−∞
V ′(q1 + e ∗

2 + ε2
)
g(ε2) dε2 > 0.

So continuation surplus is strictly increasing and continuous in q1. Since V is
strictly increasing and weakly concave, limq→−∞V (q ) = −∞. Since ū2 > 0,
there exists an x low enough such that 0 < S∗(x) < ū2. Now

E1S∗(q ∗
1

) − C
(
e ∗

1

) = E1
[
E2V

(
q ∗

1 + e ∗
2 + ε2

) − C
(
e ∗

2

)] − C
(
e ∗

1

)
= E V

(
q ∗

1 + q ∗
2

) − C
(
e ∗

2

) − C
(
e ∗

1

)
≥ ū1 + ū2,

where the inequality follows from project feasibility. Therefore E1S∗(q ∗
1 ) >

ū2. Consequently, there exists a y ∈ R such that S∗(y) > ū2 > S∗(x). By the
Intermediate Value Theorem, there exists a q ∗ ∈ (x, y) such that S∗(q ∗) =
ū2.

Now note that S∗(q 1) is precisely the value of continuing the project,
given that the planner chooses effort levels optimally. While e ∗

2 is not
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necessarily optimal given q1, we must recall that q1 is unknown under coarse
evaluations, so it is impossible to condition effort on it. Consequently, the
same effort level, e ∗

2, is exerted regardless of q1; it is impossible to do better
than to obtain S∗(q 1) for each realization of q1. It follows that it is efficient
to continue the project if and only if S∗(q1) ≥ ū2. Because S∗(q 1) is mono-
tonically increasing in q1 and S∗(q ∗) = ū2, we know that this holds if and
only if q 1 ≥ q ∗. �

Proof of Corollary 1. Define

Sn(e1, e2) =
∫ ∞

−∞
S(q1, e2)g(q1 − e1) dq1 − C (e1);

Se (e1, e2, q ) = G(q − e1)ū2 +
∫ ∞

q
S(q1, e2)g(q1 − e1) dq1 − C (e1).

Under no evaluation, the expected surplus is Ŝn = Sn(ê1, ê2), where
(ê1, ê2) = arg maxSn(e1, e2) are effort levels that are efficient under no
evaluation.

By Proposition 1, evaluation results in termination of projects with first-
stage output below some threshold q. The surplus under evaluation is there-
fore S∗

e = Se (e ∗
1, e ∗

2, q ∗), where (e ∗
1, e ∗

2, q ∗) = arg maxSe (e1, e2, q ).
Let q̂ be defined by S(q̂ , ê2) = ū2. By arguments identical to those in

Proposition 1, this is well defined, and S(q1, ê2) ≥ ū2 if and only if q1 ≥ q̂ .
By definition, S∗

e ≥ Se (ê1, ê2, q̂ ), so that

S∗
e − Ŝn ≥

[
G(q̂ − ê1)ū2 +

∫ ∞

q̂
S(q1, ê2)g(q1 − ê1) dq1 − C (ê1)

]

−
[∫ ∞

−∞
S(q1, ê2)g(q1 − ê1) dq1 − C (ê1)

]

=
∫ q̂

−∞
(ū2 − S(q1, ê2))g(q1 − ê1) dq1 > 0.

The last inequality follows because ū2 > S(q1, ê2) for all q1 < q̂ and
g(ε) > 0 for all ε ∈ R. �

Proof of Theorem 1. The planner solves

max
e t ,q

∫ ∞

q
S(q1, e2)g(q1 − e1) dq1 + (1 − P1)ū2 − C (e1).

The first order conditions with respect to q , e 2, e 1 are

S∗(q ∗) = ū2;∫ ∞

q ∗

∂S
(
q1, e ∗

2

)
∂e2

g
(
q1 − e ∗

1

)
dq1 = 0;

C ′(e ∗
1

) = −
∫ ∞

q ∗
S∗(q1)g ′(q1 − e ∗

1

)
dq1 − g

(
q ∗ − e ∗

1

)
ū2,
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where S∗(q 1) = S(q 1, e ∗
2), and S∗′(q1) = ∂S(q1,e ∗

2)
∂q1

. Substituting S∗(q ∗) = ū2

into the last equation and integrating by parts gives

C ′(e ∗
1

) =
∫ ∞

q ∗
S∗′(q1)g

(
q1 − e ∗

1

)
dq1.

From the continuation surplus function S(q1, e2) = E2V (q1 + e2 + ε2) −
C (e2),

S∗′(q1) = E2V ′(q1 + e ∗
2 + ε2

)
;

∂S
(
q1, e ∗

2

)
∂e2

= E2V ′(q1 + e ∗
2 + ε2

) − C ′(e ∗
2

)
.

Combining these gives

∂S
(
q1, e ∗

2

)
∂e2

= S∗′(q1) − C ′(e ∗
2

)
.

Integrating both sides and combining with the FOC with respect to e2

yields

0 =
∫ ∞

q ∗

∂S
(
q1, e ∗

2

)
∂e2

g
(
q1 − e ∗

1

)
dq1 =

∫ ∞

q ∗
S∗′(q1)g

(
q1 − e ∗

1

)
dq1 − P1C ′(e ∗

2

)
,

where P 1 = Pr(q 1 ≥ q ∗). Now combining with FOC with respect to e1 gives

C ′(e ∗
1

) =
∫ ∞

q ∗
S∗′(q1)g

(
q1 − e ∗

1

)
dq1 = P1C ′(e ∗

2

)
< C ′(e ∗

2

)
.

Since marginal costs are increasing, this means e ∗
1 < e ∗

2. �

Proof of Proposition 2. Let us define, for all t ∈ {1, 2, . . . , T + 1}, Qt ≡∑t
s=1 qs . Observe that the continuation surplus at time t depends only on

Qt and the planned effort levels from period t + 1 onwards. Therefore, we
can write the continuation surplus function in terms of Qt . Call this new
function S̃t , where

S̃t (Qt ; e t+1, . . . , e T+1) = St (q1, q2, . . . qt ; e t+1, . . . e T+1).

The proof of this observation is simple backwards induction on t. Clearly,
the statement holds for t = T + 1, where S̃T+1(QT+1) = V (QT+1). Further-
more, if

St (q1, q2, . . . qt ; e t+1, . . . e T+1) = S̃t (Qt ; e t+1, . . . e T+1),
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then

St−1(q1, . . . , qt−1; e t , . . . , e T+1)

=
∫ ∞

−∞
max

{
S̃t (Qt ; e t+1, . . . , e T+1),

T+1∑
s=t+1

ūs

}
g(qt − e t ) dqt − C (e t )

=
∫ ∞

−∞
max

{
S̃t (Qt−1 + e t + εt ; e t+1, . . . , e T+1),

T+1∑
s=t+1

ūs

}
g(εt ) dεt − C (e t )

≡ S̃t−1(Qt−1; e t , e t+1, . . . , e T+1),

which completes the inductive step.
Let the efficient effort levels be e ∗

1, e ∗
2, . . . , e ∗

T+1. By the statement above,
the continuation surplus at the efficient effort levels can be expressed as
S∗

t (Qt ) ≡ S̃t (Qt ; e ∗
t+1, . . . , e ∗

T+1).

Part 1: Cutoff Rule. Note that the statement to be proved is equivalent to
the following: “There exist cutoff points {Q∗

t }T
t=1 such that, for all t, S∗

t (Qt ) ≥∑T+1
s=t+1 ūs if and only if Qt ≥ Q∗

t .” The proof is again by backwards induction
on t. I actually prove the following more detailed statement: “For all t ≤
T, S∗′(Qt) > 0 for all Qt . Furthermore, there exist cutoff points {Q∗

t }T
t=1

such that, for all t ≤ T, S∗
t (Q∗

t ) = ∑T+1
s=t+1 ūs and S∗

t (Qt ) ≥ ∑T+1
s=t+1 ūs if and

only if Qt ≥ Q∗
t .”

For the base case, consider t = T. Note that

S∗
T(QT) =

∫ ∞

−∞
V

(
QT + e ∗

T+1 + εT+1
)
g(εT+1) dεT+1 − C

(
e ∗

T+1

)
,

so that

S∗′
T (QT) =

∫ ∞

−∞
V ′(QT + e ∗

T+1 + εT+1
)
g(εT+1) dεT+1 > 0.

Thus S∗
T(Q T) is strictly increasing in Q T . Note that it is also continuous.

Since limQ→−∞V (Q) = −∞ and limQ→∞ V (Q) > ūT+1 (by feasibility), the
Intermediate Value Theorem implies that there exists a unique Q∗

T such that
S∗

T(Q∗
T) = ūT+1. Since S∗

T is increasing, this implies that S∗
T(QT) ≥ ūT+1 if

and only if Q T ≥ Q∗
T .

Now, on to the inductive step. We know that S∗
t
′(Qt) > 0 for all Qt , that

S∗
t (Q∗

t ) = ∑T+1
s=t+1 ūs , and that S∗

t (Qt ) ≥ ∑T+1
s=t+1 ūs if and only if Qt ≥ Q∗

t .
We want to prove the equivalent statements for t − 1. By the induction
assumption and the definition of continuation surplus,

S∗
t−1(Qt−1) =

∫ ∞

Q∗
t

S∗
t (Qt )g

(
Qt − Qt−1 − e ∗

t

)
dQ t

+
[

G
(
Q∗

t − Qt−1 − e ∗
t

) T+1∑
s=t+1

ūs

]
− C

(
e ∗

t

)
.
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Taking the derivative with respect to Q t−1, integrating by parts, and noting
that S∗

t (Q∗
t ) = ∑T+1

s=t+1 ūs gives

S∗′
t−1(Qt−1) =

∫ ∞

Q∗
t

S∗′
t (Qt )g

(
Qt − Qt−1 − e ∗

t

)
dQ t > 0,

since S∗
t
′(Qt) > 0 for all Qt by the induction assumption. Since S∗

t−1 is contin-
uous, feasibility and the usual Intermediate Value Theorem argument guar-
antee the existence of Q∗

t−1 such that S∗
t−1(Q∗

t−1) = ∑T+1
s=t ūs . Since S∗

t−1 is
increasing, S∗

t−1(Qt−1) ≥ ∑T+1
s=t ūs if and only if Q t−1 ≥ Q∗

t−1. This completes
the inductive step and also the proof of part 1 of Proposition 2.

Part 2: Increasing Effort. Given the result from part 1, the planner’s prob-
lem is

max
{e t }T+1

t=1

S̃0(0; e1, . . . , e T+1),

where, for all t ∈ {0, 1, . . . , T},

S̃t (Qt ; e t+1, . . . , e T+1)

=
∫ ∞

Q∗
t+1

S̃t+1(Qt+1; e t+2, . . . , e T+1)g(Qt+1 − Qt − e t+1) d Qt+1

+
[

G
(
Q∗

t+1 − Qt − e t+1
) T+1∑

s=t+2

ūs

]
− C (e t+1); (A1)

S̃T+1(QT+1) = V (QT+1) and Q∗
T+1 = −∞; (A2)

(∀t ∈ {1, 2, . . . , T})
(

S̃t
(
Q∗

t ; e t+1, . . . , e T+1
) =

T+1∑
s=t+1

ūs

)
. (A3)

The FOCs for the efficient effort levels {e ∗
t }T+1

t=1 in the planner’s problem
are

(∀t ∈ {1, 2, . . . T + 1})
(

∂ S̃0

∂e t

(
0; e ∗

1, . . . , e ∗
T+1

) = 0

)
. (A4)

In what follows, I omit the arguments of S̃t for better readability; thus, S̃t

is used as shorthand for S̃t (Qt ; e t+1, . . . , e T+1).
Recall that the proof of Proposition 2 began by showing that S̃t depends

only on Qt and effort levels from period t + 1 onwards. Using this observa-
tion and taking the derivative of equation (A1), we see that, for all t ∈ {0,
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1, . . . , T},

∂ S̃t

∂e s
=




0 if s ≤ t∫ ∞

Q∗
t+1

∂S̃t+1

∂Qt+1
g(Qt+1 − Qt − e t+1) dQ t+1

− C ′(e t+1) if s = t + 1∫ ∞

Q∗
t+1

∂S̃t+1

∂e s
g(Qt+1 − Qt − e t+1) dQ t+1 if s ≥ t + 2.

(A5)

Now, let S∗
t denote S̃t evaluated at efficient effort levels, that is, let S∗

t ≡
S̃t (Qt ; e ∗

t+1, . . . , e ∗
T+1). Applying equation (A5) repeatedly and evaluating at

the efficient effort levels shows that
∂S∗

0

∂e t
= At − αtC ′(e ∗

t

)
, (A6)

where

At =
∫ ∞

Q∗
1

. . .

∫ ∞

Q∗
t

∂S∗
t

∂Qt

t∏
s=1

g
(
Qs − Qs−1 − e ∗

s

)
dQ t . . . dQ 1 (A7)

and

αt =
∫ ∞

Q∗
1

. . .

∫ ∞

Q∗
t−1

t−1∏
s=1

g
(
Qs − Qs−1 − e ∗

s

)
dQ t−1 . . . dQ 1. (A8)

By differentiating equation (A1), integrating by parts, applying equation
(A3) and evaluating at the efficient effort levels, we see that, for all t ∈ {0,
1, . . . T},

∂S∗
t

∂Qt
=

∫ ∞

Q∗
t+1

∂S∗
t+1

∂Qt+1
g
(
Qt+1 − Qt − e ∗

t+1

)
dQ t+1.

Plugging this into equation (A7) shows that At = At+1 for all t ∈ {0, 1, . . . T};
that is, the sequence {At}T

t=1 is in fact constant.
By equations (A6) and (A4), for all t ∈ {0, 1, . . . T},

At − αtC ′(e ∗
t

) = 0 = At+1 − αt+1C ′(e ∗
t+1

)
.

Since At = At+1, this reduces to

C ′(e ∗
t+1

)
C ′(e ∗

t
) = αt

αt+1
. (A9)

But, by equation (A8),

αt+1 =
∫ ∞

Q∗
1

. . .

∫ ∞

Q∗
t−1

(1 − G(Q∗
t − Qt−1 − e ∗

t ))
t−1∏
s=1

g(Qs − Qs−1 − e ∗
s ) dQ t−1 . . . dQ 1

<

∫ ∞

Q∗
1

. . .

∫ ∞

Q∗
t−1

t−1∏
s=1

g(Qs − Qs−1 − e ∗
s ) dQ t−1 . . . dQ 1 = αt ,
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where the inequality holds because all terms are positive and (1 − G(Q∗
t −

Q t−1 − e ∗
t )) < 1.

Therefore, for all t , α t+1 < α t , which (by equation (A9)) implies that
C ′(e ∗

t+1) > C ′(e ∗
t ). Since costs are convex, this means that e ∗

t+1 > e ∗
t , which

completes the proof. �

Proof of Corollary 2. Let X ≡ {q1 : S∗(q1) ≥ ū2} be the social planner’s
continuation set: It is efficient to allow an agent with output q1 to advance
to the second stage if and only if q 1 ∈ X. Let P 1 = Pr(X). I show that X is
in fact an interval.

Continuation surplus is

S∗(q1) = E2V (q1 + e2(q1) + ε2) − C (e2(q1)).

The social planner solves

max
e1,e2(·)

∫
X

S∗(q1)g(q1 − e1) dq1 + (1 − P1)ū2 − C (e1).

Maximizing the integral pointwise yields

e2(q1) ∈ arg max S∗(q1)

for almost every q 1 ∈ X. For each such q1, the Envelope Theorem implies

S∗′(q1) = E2V ′(q1 + e2(q1) + ε2).

Since V ′ > 0, S∗′(q 1) > 0. So, the ex post social value of an agent increases
in his first-stage output. Since S∗(·) is continuous, there exists a q ∗ such that
S∗(q ∗) = ū2 (by the Intermediate Value Theorem). Since S∗(·) is strictly
increasing, this means that X = {q 1 : q 1 ≥ q ∗}. �

Proof of Proposition 3. It was shown in Corollary 2 that the continuation
surplus function S∗(q1) = S(q1, e ∗

2) and its derivative are

S∗(q1) = S
(
q1, e ∗

2

) = E2V
(
q1 + e ∗

2(q1) + ε2
) − C

(
e ∗

2(q1)
)
; (A10)

S∗′(q1) = E2V ′(q1 + e ∗
2(q1) + ε2

) (
for q1 ≥ q ∗). (A11)

Also by Corollary 2, the planner’s problem is

max
e1,e2(·),q

∫ ∞

q
S(q1, e2(q1))g(q1 − e1) dq1 + (1 − P1)ū2 − C (e1),

where P 1 = 1 − G(q − e 1).
The first-order conditions with respect to q , e 2(·), and e1 are

S∗(q ∗) = ū2; (A12)

∂S
(
q1, e ∗

2(q1)
)

∂e2(q1)
= 0

(
for q1 ≥ q ∗); (A13)

C ′(e ∗
1

) = −
∫ ∞

q ∗
S∗(q1)g ′(q1 − e ∗

1

)
dq1 − g

(
q ∗ − e ∗

1

)
ū2, (A14)
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where S∗(q1) = S(q1, e ∗
2(q1)). Substituting S∗(q ∗) = ū2 from equation

(A12) into equation (A14) and integrating by parts gives

C ′(e1) =
∫ ∞

q ∗
S∗′(q1)g(q1 − e1) dq1. (A15)

In what follows I write e t for e ∗
t for visual clarity. Taking the derivative of

equation (A10) with respect to e2 and combining with equation (A13) shows
that (for q 1 ≥ q ∗)

∂S (q1, e2(q1))
∂e2(q1)

= E2V ′(q1 + e2(q1) + ε2) − C ′(e2(q1)) = 0.

Combining this with equation (A11) yields (for q 1 ≥ q ∗)

S∗′(q1) = C ′(e2(q1)).

Multiply both sides by g(q 1 − e 1) and integrate over [q ∗, ∞) to get∫ ∞

q ∗
S∗′(q1)g(q1 − e1)dq1 =

∫ ∞

q ∗
C ′ (e2(q1)) g(q1 − e1)dq1.

Combining with equation (A15) yields

C ′(e1) =
∫ ∞

q ∗
C ′ (e2(q1)) g(q1 − e1)dq1.

Divide both sides by P 1 to get

E
[
C ′(e2(q1))

∣∣ q1 ≥ q ∗] = C ′(e1)
P1

> C ′(e1).

When C ′′′ ≤ 0, Jensen’s inequality gives

C ′(
E

[
e2(q1)

∣∣ q1 ≥ q ∗]) ≥ E
[
C ′(e2(q1))

∣∣ q1 ≥ q ∗] > C ′(e1),

and increasing costs imply

e1 < E
[
e2(q1)

∣∣ q1 ≥ q ∗]. �

Proof of Proposition 4. As before, the continuation surplus function,
S∗(q1) = S(q1, e ∗

2), and its derivative are

S∗(q1) = S
(
q1, e ∗

2

) = E2V
(
q1 + e ∗

2(q1) + ε2
) − C

(
e ∗

2(q1)
)
; (A16)

S∗′(q1) = E2V ′(q1 + e ∗
2(q1) + ε2

) (
for q1 ≥ q ∗). (A17)

The planner solves

max
e1,e2(·),q

∫ ∞

q
S(q1, e2(q1))g(q1 − e1) dq1 +

∫ q

−∞
ū2(q1)g(q1 − e1) dq1 − C (e1).

The first-order conditions with respect to q , e 2(·), and e1 are

S∗(q ∗) = ū2(q ∗); (A18)
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∂S
(
q1, e ∗

2(q1)
)

∂e2(q1)
= 0

(
for q1 ≥ q ∗); (A19)

C ′(e ∗
1

) = −
∫ ∞

q ∗
S∗(q1)g ′(q1 − e ∗

1

)
dq1 −

∫ q ∗

−∞
ū2(q1)g ′(q1 − e ∗

1

)
dq1, (A20)

where S∗(q1) = S(q1, e ∗
2(q1)). Integrating by parts gives∫ q ∗

−∞
ū2(q1)g ′(q1 − e1) dq1 +

∫ q ∗

−∞
ū′

2(q1)g(q1 − e1) dq1

= ū2(q ∗)g
(
q ∗ − e1

)
;∫ ∞

q ∗
S∗(q1)g ′(q1 − e1) dq1 +

∫ ∞

q ∗
S∗′(q1)g(q1 − e1) dq1

= −S∗(q ∗)g
(
q ∗ − e1

) (A18)= −ū2(q ∗)g
(
q ∗ − e1

)
.

Combine this with equation (A20) to get

C ′(e ∗
1) =

∫ ∞

q ∗
S∗′(q1)g

(
q1 − e ∗

1

)
dq1 +

∫ q ∗

−∞
ū′

2(q1)g
(
q1 − e ∗

1

)
dq1. (A21)

In what follows I write e t for e ∗
t for visual clarity. Taking the derivative of

equation (A16) with respect to e2 and combining with equation (A19) shows
that (for q 1 > q ∗)

∂S(q1, e2(q1))
∂e2(q1)

= E2V ′(q1 + e2(q1) + ε2) − C ′(e2(q1)) = 0.

Combining this with equation (A17) yields (for q 1 ≥ q ∗)

S∗′(q1) = C ′(e2(q1)).

Multiply both sides by g(q 1 − e 1) and integrate over [q ∗, ∞) to get∫ ∞

q ∗
S∗′(q1)g(q1 − e1) dq1 =

∫ ∞

q ∗
C ′(e2(q1))g(q1 − e1) dq1.

Combining with equation (A21) yields

C ′(e1) =
∫ ∞

q ∗
C ′(e2(q1))g(q1 − e1) dq1 +

∫ q ∗

−∞
ū′

2(q1)g(q1 − e1) dq1. (A22)

Now, ū2
′(q1) < C ′(e ∗

1)∀q1 < q ∗. Integrating over q 1 < q ∗ gives∫ q ∗

−∞
ū′

2(q1)g(q1 − e1) dq1 <

∫ q ∗

−∞
C ′(e1)g(q1 − e1) dq1 = (1 − P1)C ′(e1),

where P 1 = 1 − G(q ∗ − e 1) is the probability of clearing the target. Com-
bining with equation (A22) gives

P1C ′(e1) <

∫ ∞

q ∗
C ′(e2(q1))g(q1 − e1) dq1.
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Dividing both sides by P 1 gives

C ′(e1) < E
[
C ′(e2(q1))

∣∣ q1 ≥ q ∗].
If C ′′′ ≤ 0, Jensen’s inequality gives

C ′(e1) < E
[
C ′(e2(q1))

∣∣ q1 ≥ q ∗] ≤ C ′(
E

[
e2(q1)

∣∣ q1 ≥ q ∗]),
and increasing costs imply

e1 < E
[
e2(q1)

∣∣ q1 ≥ q ∗]. �

Proof of Proposition 5. Fix a contract (α1, α2, β(·), q p). The agent’s con-
tinuation utility is

U (q1, e2) = E2[u(β(q1 + e2 + ε2)V (q1 + e2 + ε2) + α2)] − C (e2).

The agent solves

max
e1,e2,qa

∫ ∞

τ

U (q1, e2)g(q1 − e1) dq1 + G(τ − e1)ūa
2 − C (e1) + u(α1).

Let ẽ t denote the agent’s optimal (equilibrium) effort choices. Given τ =
q a , the first-order conditions are

U (qa, ẽ2) = ūa
2; (A23)∫ ∞

qa

∂U
∂q1

(q1, ẽ2)g(q1 − ẽ1) dq1 = C ′(ẽ1); (A24)

∫ ∞

qa

∂U
∂e2

(q1, ẽ2)g(q1 − ẽ1) dq1 = 0. (A25)

Notice that
∂U
∂q1

(q1, e2) = ∂U
∂e2

(q1, e2) + C ′(e2),

implying

C ′(ẽ1) =
∫ ∞

qa

∂U
∂q1

(q1, ẽ2)g(q1 − ẽ1) dq1

=
∫ ∞

qa

[
∂U
∂e2

(q1, ẽ2) + C ′(ẽ2)
]

g(q1 − ẽ1) dq1

(A25)=
∫ ∞

qa

C ′(ẽ2)g(q1 − ẽ1) dq1 = [1 − G(qa − ẽ1)]C ′(ẽ2) < C ′(ẽ2),

so that if C ′′ > 0, then ẽ1 < ẽ2. �
LEMMA 3. If ϕ̄ is everywhere differentiable and everywhere nonzero, then it satisfies

the strict MLRP if and only if the function L̂(x) ≡ ϕ̄y (x | y)
ϕ̄(x|y) is increasing in x for all

y in the support of Ỹ .
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Proof of Lemma 3. First note that in this case, LR(x1,x0)(y) is everywhere
strictly increasing in y if and only if its first derivative is everywhere positive.
Thus:

(MLRP) ⇔ (∀x1 > x0; ∀y)
(

∂

∂y

(
ϕ̄(x1 | y)
ϕ̄(x0 | y)

)
> 0

)

⇔ (∀x1 > x0; ∀y)
(

ϕ̄y (x1 | y)ϕ̄(x0 | y) − ϕ̄(x1 | y)ϕ̄y (x0 | y)
ϕ̄(x0 | y)2

> 0
)

⇔ (∀y ; ∀x1 > x0)
(

ϕ̄y (x1 | y)
ϕ̄(x1 | y)

>
ϕ̄y (x0 | y)
ϕ̄(x0 | y)

)
. �

Proof of Lemma 1. By Lemma 3 above, the function

L̂(x) ≡ ϕ̄y (x | y)
ϕ̄(x | y)

is strictly increasing for all y in the support of Ỹ .
By Bayes’s Rule,

ϕ̄(x | y) = ξ̄(y | x)ϕ(x)∫
S
ξ̄(y | x ′)ϕ(x ′) dx′

,

where ϕ denotes the unconditional density function of X̃, ξ̄ denotes the
conditional density of Ỹ given the realization of X̃, and S = supp(X̃).

Now

ϕ̄y (x | y)

=
ξ̄ ′(y | x)ϕ(x)

∫
S
ξ̄(y | x ′)ϕ(x ′) dx′ − ξ̄(y | x)ϕ(x)

∫
S
ξ̄ ′(y | x ′)ϕ(x ′) dx′

(∫
S
ξ̄(y | x ′)ϕ(x ′) dx′

)2 .

Integrating over S gives ∫
S
ϕ̄y (x | y) dx = 0. (A26)

So ϕ̄y assumes both positive and negative values, and therefore so does L̂. Let
x
¯
, x̄ be the lower and upper limits of S, respectively (they may be ±∞). By

(MLRP), L̂ is strictly increasing, so there exists an x∗ such that {x : L̂(x) <

0} = (x
¯
, x∗) and {x : L̂(x) > 0} = (x∗, x̄). By definition of L̂(x), ϕ̄y > 0 if

and only if L̂(x) > 0. Hence {x : ϕ̄y (x | y) < 0} = (x
¯
, x∗) and {x : ϕ̄y (x | y) >

0} = (x∗, x̄). Rewrite equation (A26) as∫ x̄

x∗
ϕ̄y (x | y) dx = −

∫ x∗

x
¯

ϕ̄y (x | y) dx. (A27)



876 K. RAY

Now, ϕ̄y (x | y) < 0 if x < x∗, so |ϕ̄y (x | y)| = −ϕ̄y (x | y) for x < x∗. Integrate
both sides over (x

¯
, x∗) and combine with equation (A27) to get

∫ x∗

x
¯

|ϕ̄y (x | y)|dx =
∫ x̄

x∗
ϕ̄y (x | y) dx. (A28)

Now z is strictly increasing, so

∫ x∗

x
¯

z(x)|ϕ̄y (x | y)|dx <

∫ x∗

x
¯

z(x∗)|ϕ̄y (x | y)|dx

=
∫ x̄

x∗
z(x∗)ϕ̄y (x | y) dx <

∫ x̄

x∗
z(x)ϕ̄y (x | y) dx.

Taking the left-hand side over to the right gives

0 <

∫ x̄

x∗
z(x)ϕ̄y (x | y) dx −

∫ x∗

x
¯

z(x)|ϕ̄y (x | y)|dx

=
∫ x̄

x∗
z(x)ϕ̄y (x | y) dx +

∫ x∗

x
¯

z(x)ϕ̄y (x | y) dx =
∫

S
z(x)ϕ̄y (x | y) dx. �

Proof of Lemma 2. Let � and φ be the unconditional cumulative and prob-
ability density function, respectively, of q̃1. Let �̄ and φ̄ be the conditional
cumulative and probability density function, respectively, of q̃1, given ã.

First, observe that

φ(q1) =
∫

A
φ̄(q1 | a) f (a) da (by definition); (A29)

�̄(q1 | a) = Pr(ã + e1 + ε̃1 < q1 | ã = a)

= G(q1 − e1 − a) (by definition); (A30)

φ̄(q1 | a) = g(q1 − e1 − a) (by equation A30); (A31)

f̄ (a | q1) = φ̄(q1 | a) f (a)
φ(q1)

(by Bayes’s Rule). (A32)

By equations (A29) through (A32),

f̄ (a | q1) = g(q1 − e1 − a) f (a)∫
A

g(q1 − e1 − a′) f (a′) da′
. (A33)
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Now,

(MLRP)
by def.⇔

(∀a1 > a0; ∀q1 ∈ R; ∀δ > 0)
(

f̄ (a1 | q1)
f̄ (a0 | q1)

>
f̄ (a1 | q1 − δ)
f̄ (a0 | q1 − δ)

)
by (A37)⇔

(∀a1 > a0; ∀q1 ∈ R; ∀δ > 0)

×
(

g(q1 − e1 − a1) f (a1)
g(q1 − e1 − a0) f (a0)

>
g(q1 − δ − e1 − a1) f (a1)
g(q1 − δ − e1 − a0) f (a0)

)
εi =q1−e1−ai⇔

(∀ε0 > ε1; ∀δ > 0)
(

g(ε0 − δ)
g(ε0)

>
g(ε1 − δ)

g(ε1)

)
. �

Proof of Proposition 6. The continuation surplus is

S(q1, e1, e2) =
∫

A

∫
R

V (q1 + a + e2 + ε2)g(ε2) f̄ (a | q1) dε2 da − C (e2).

Note that while e1 is a scalar under both coarse and detailed evaluations,
e2 is a scalar under coarse evaluations, but a nonconstant function of q1

under detailed evaluations. Let the efficient effort schedule be (e ∗
1, e ∗

2). Let
S∗(q 1) ≡ S(q 1, e ∗

1, e ∗
2).

Let X ≡ {q1 : S∗(q1) ≥ ū2} be the planner’s continuation set. That is, the
agent advances to the second stage if and only if q 1 ∈ X. Then the planner’s
problem is

max
e1,e2

∫
X

S(q1, e1, e2)φ(q1) dq1 + (1 − Pr(X))ū2 − C (e1),

where φ is as defined in the proof of Lemma 2. Again, note that e2 is a
function in the case of detailed evaluations.

Next, note that

∂

∂q1
S(q1, e1, e2) = W(q1, e1, e2) + Y(q1, e1, e2), (A34)

where

W(q1, e1, e2) =
∫

A

∫
R

V ′(q1 + a + e2 + ε2)g(ε2) f̄ (a | q1) dε2 da; (A35)

Y(q1, e1, e2) =
∫

A

∫
R

V (q1 + a + e2 + ε2)g(ε2) f̄ q1 (a | q1) dε2 da. (A36)

Since V ′ > 0, W(q 1, e 1, e 2) is everywhere positive. Furthermore, V ′ > 0
also implies that the function

z(a) ≡
∫

R

V (q1 + a + e2 + ε2)g(ε2) dε2
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increases in a. By Lemma 1, this means

Y(q1, e1, e2) =
∫

A
z(a) f̄ q1 (a | q1) da > 0.

Thus ∂
∂q1

S(q1, e1, e2) = W(q1, e1, e2) + Y(q1, e1, e2) > 0.

In the case of coarse evaluations, it immediately follows that S∗′(q1) =
∂

∂q1
S(q1, e ∗

1, e ∗
2) > 0.

In the case of detailed evaluations, the conclusion is not immedi-
ate, because S∗(q 1) also depends on e ∗

2(q 1), which in turn depends on
q1. However, the planner’s problem shows that optimality requires that
e ∗

2(q1) = arg maxe2
S(q1, e ∗

1, e2) for almost all q1. Therefore, by the Enve-
lope Theorem, even with detailed evaluations it is still true that S∗′(q1) =
∂

∂q1
S(q1, e ∗

1, e ∗
2) > 0.

Now S∗′ (q 1) > 0 with both coarse and detailed evaluations. Clearly S∗ is
continuous in both cases. By the Intermediate Value Theorem, there exists
a q ∗ such that S∗(q ∗) = ū2. Hence X = {q 1 : q 1 ≥ q ∗}. �

Proof of Proposition 7. By Proposition 6, the planner’s problem is

max
e1,e2,q

∫ ∞

q
S(q1, e1, e2)φ(q1) dq1 + �(q )ū2 − C (e1),

where

S(q1, e1, e2)

=
∫

A

∫
R

V (q1 + a + e2 + ε2)g(ε2) f̄ (a | q1) dε2 da − C (e2) (A37)

and � and φ are as defined in the proof of Lemma 2. Note that e2 is a function
of q1 in the case of detailed evaluations. Let the efficient argument values
be e ∗

1, e ∗
2, and q ∗. Denote S∗(q 1) ≡ S(q 1, e ∗

1, e ∗
2).

First, it is immediate from Proposition 6 (and can also be seen by taking
the first-order condition with respect to q in the planner’s problem) that

S∗(q ∗) = ū2. (A38)

The first-order condition with respect to e1 (under both coarse and de-
tailed evaluations) is

C ′(e ∗
1

) = T1 + T2 + T3,

where

T1 =
∫ ∞

q ∗

∂

∂e1
S∗(q1)φ(q1) dq1; (A39)

T2 =
∫ ∞

q ∗
S∗(q1)

∂

∂e1
φ(q1) dq1; (A40)

T3 = ∂

∂e1
�(q ∗)ū2. (A41)
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Now,

∂

∂e1
S∗(q1)

(A37)=
∫

A

∫
R

V
(
q1 + a + e ∗

2 + ε2
)
g(ε2)

∂

∂e1
f̄ (a | q1) dε2 da

(A33)= −
∫

A

∫
R

V
(
q1 + a + e ∗

2 + ε2
)
g(ε2) f̄ q1 (a | q1) dε2 da

(A36)= −Y
(
q1, e ∗

1, e ∗
2

)
,

so that

T1 = −
∫ ∞

q ∗
Y

(
q1, e ∗

1, e ∗
2

)
φ(q1) dq1. (A42)

Inserting equation (A31) into equation (A29) and taking derivatives, we
see that

∂

∂e1
�(q1) = −φ(q1) and

∂

∂e1
φ(q1) = −φ′(q1). (A43)

Plugging equation (A43) into equations (A40) and (A41), integrating by
parts and applying equation (A38) gives

T2 + T3 =
∫ ∞

q ∗
S∗′(q1)φ(q1) dq1. (A44)

In the proof of Proposition 6, under both coarse and detailed evaluations,

S∗′(q1) = ∂

∂q1
S
(
q1, e ∗

1, e ∗
2

) = W
(
q1, e ∗

1, e ∗
2

) + Y
(
q1, e ∗

1, e ∗
2

)
,

where the functions W and Y are as given in equations (A35) and (A36).
Plugging this into equation (A44) and adding to equation (A42), we

obtain

C ′(e ∗
1

) =
∫ ∞

q ∗
W

(
q1, e ∗

1, e ∗
2

)
φ(q1) dq1. (A45)

To complete the proof of the proposition, we need to consider the cases
of coarse and detailed evaluations separately.

Part 1: Coarse Evaluations. Under coarse evaluations, the first-order con-
dition with respect to e2 is∫ ∞

q ∗

∂

∂e2
S∗(q2)φ(q1) dq1 = 0.

Expanding this using equation (A37) and applying equation (A35) gives∫ ∞

q ∗

[
W

(
q1, e ∗

1, e ∗
2

) − C ′(e ∗
2

)]
φ(q1) dq1 = 0.

Together with equation (A45), this becomes

C ′(e ∗
1

) = (1 − �(q ∗))C ′(e ∗
2

)
< C ′(e ∗

2

)
.
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Increasing costs now imply e 1 < e 2. �
Part 2: Detailed Evaluations. Under detailed evaluations, optimizing over

e 2(·) yields, for almost all q 1 ≥ q ∗,

∂

∂e2
S
(
q1, e ∗

1, e ∗
2

) = 0.

Expanding this using equation (A37), the condition becomes (for almost
all q 1 ≥ q ∗)

C ′(e ∗
2(q1)

)
=

∫
A

∫
R

V ′(q1 + a + e ∗
2 + ε2)g(ε2) f̄ (a | q1) dε2 da

(A35)= W
(
q1, e ∗

1, e ∗
2

)
.

Multiplying both sides by φ(q 1) and integrating over [q ∗, ∞) gives∫ ∞

q ∗
C ′(e ∗

2(q1)
)
φ(q1) dq1 =

∫ ∞

q ∗
W

(
q1, e ∗

1, e ∗
2

)
φ(q1) dq1

(A45)= C ′(e ∗
1

)
.

Dividing both sides by 1 − �(q ∗) gives

E
[
C ′(e ∗

2(q1)
) ∣∣ q1 ≥ q ∗)] = C ′(e1)

1 − �(q ∗)
> C ′(e1).

When C ′′′ ≤ 0, Jensen’s inequality gives

C ′(
E

[
e2(q1)

∣∣ q1 ≥ q ∗]) ≥ E
[
C ′(e2(q1))

∣∣ q1 ≥ q ∗] > C ′(e1),

and increasing costs imply

e1 < E
[
e2(q1)

∣∣ q1 ≥ q ∗]. �
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