

Large Linear Cosmology and CMB/LSS Safety of the Mid–Band Portal in a 7D 2 time Principal of Least Information Constrained Universe (derivative–suppressed, positive $\mu(k)$ with $\mu \rightarrow 1$ on linear scales)

James Antoniadis

November 6, 2025

Abstract

We formalise the linear–cosmology limit of the Janus/PLI mid–band portal and show that if $\mu(a, k)$ obeys $\mu(k \rightarrow 0) = 1$ with derivative–suppressed tails, then primary CMB acoustic physics and linear growth remain effectively Λ CDM–like, with sub–percent shifts in \mathcal{C}_ℓ over $100 \lesssim \ell \lesssim 1000$ and in $f\sigma_8$ at $z \lesssim 1$. Our parameterisation and the safety thesis follow the notation and motivation of Paper A and the foundations note (v14), where PLI, strong positivity, and the hidden–time sector are laid out; see §§ 2–6 of Paper A and §§ 1–5, 8–11 of v14 for context and the positivity/Born machinery. We use standard cosmological perturbation theory and Boltzmann codes as benchmarks [3, 4, 5, 6].

1 Set–up and references in context

The Janus/PLI programme (Paper A; v14) motivates a positive, derivative–suppressed $\mu(a, k)$ that opens a mid–band in the gravitational response while returning to GR at both low and high k . On linear cosmological scales we require $\mu \rightarrow 1$ so that the Poisson equation reduces to its GR form and the Sachs–Wolfe/early–ISW driving and matter growth remain Λ CDM–like [1, 2]. We adopt the usual conformal–Newtonian conventions for linear perturbations [3]. Mapping multipoles to wavenumbers by $k \sim \ell/\chi_\star$ with $\chi_\star \simeq 14$ Gpc puts the acoustic range $100 \lesssim \ell \lesssim 1000$ at $k \in [7 \times 10^{-3}, 7 \times 10^{-2}] \text{ Mpc}^{-1}$ [6].

2 Kernel and linear safety criteria

We use the minimal positive family

$$\mu(a, k) = 1 + \varepsilon(a) \mathcal{B}(k; k_{\text{mb}}, w, n), \quad \mathcal{B} = \frac{(k/k_{\text{mb}})^{2n}}{[1 + (k/k_{\text{mb}})^{2n}][1 + (k_{\text{mb}} e^{-w}/k)^{2n}]}, \quad (1)$$

with $n \geq 2$ enforcing derivative suppression. In the linear regime $k \ll k_{\text{mb}}$ one has $\mu - 1 = \mathcal{O}((k/k_{\text{mb}})^{2n})$; hence the CMB and growth responses are power–law suppressed. Departures propagate to observables through the Poisson rescaling and the growth equation [3]

$$D'' + \left(2 + \frac{\mathcal{H}'}{\mathcal{H}}\right) D' - \frac{3}{2} \Omega_m(a) \mu(a, k) D = 0. \quad (2)$$

3 Analytic envelopes and numerical scaffolding

An order–of–magnitude CMB estimate follows

$$\frac{\Delta \mathcal{C}_\ell}{\mathcal{C}_\ell} \approx \alpha_\ell \overline{\delta \mu}_\ell, \quad \overline{\delta \mu}_\ell \simeq \varepsilon \left(\frac{\ell/\chi_\star}{k_{\text{mb}}} \right)^{2n}, \quad (3)$$

with $\alpha_\ell = \mathcal{O}(1)$ as a conservative envelope in the acoustic range [3, 6]. Linear growth responds similarly:

$$\left| \frac{\delta(f\sigma_8)}{f\sigma_8} \right| \lesssim c_0 \varepsilon \left(\frac{k_{\text{lin}}}{k_{\text{mb}}} \right)^{2n}, \quad (4)$$

where $k_{\text{lin}} \lesssim 0.1 \text{ Mpc}^{-1}$ is representative of the linear regime today. To confront data one implements $\mu(a, k)$ in a Boltzmann code; both **CAMB** and **CLASS** admit a minimal hook in the Einstein sector [4, 5].

4 Figures and parameters (reproducible PDFs)

Figures 1, 2, 3 are generated by the accompanying Python script (see repository listing) with the parameter set $(\varepsilon, k_{\text{mb}}, w, n) = (0.03, 0.30, 1.0, 2)$ and $\chi_* = 14\,000 \text{ Mpc}$. These are conservative envelopes meant to visualise the sub-percent regime advocated above and to provide a verifiable template for a Boltzmann fork study [6, 7, 8, 9, 10].

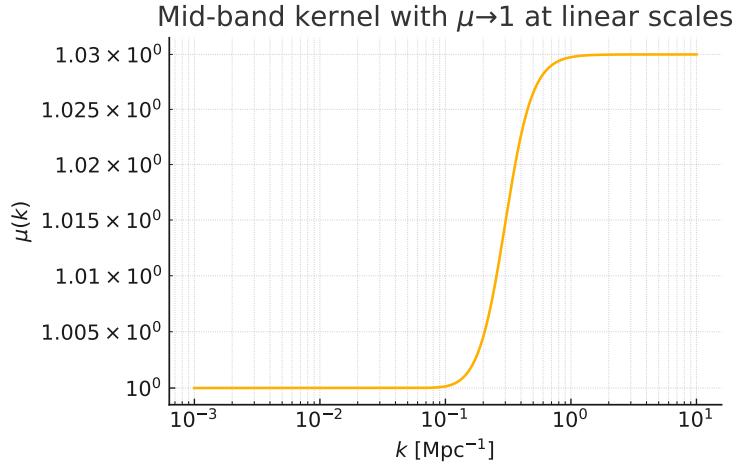


Figure 1: Mid-band kernel $\mu(k)$ with $\mu \rightarrow 1$ at linear scales. Parameters as stated in the text.

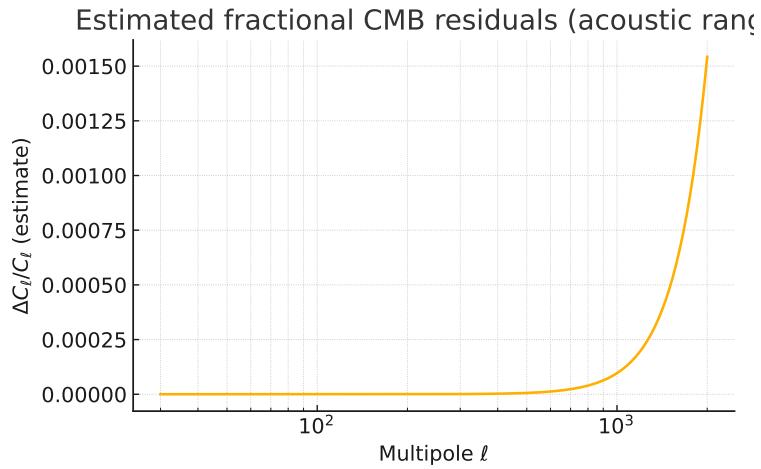


Figure 2: Estimated fractional CMB residuals $\Delta C_\ell/C_\ell$ using the analytic envelope $\propto \varepsilon(\ell/\chi_\star k_{\text{mb}}^{-1})^{2n}$ in the acoustic range.

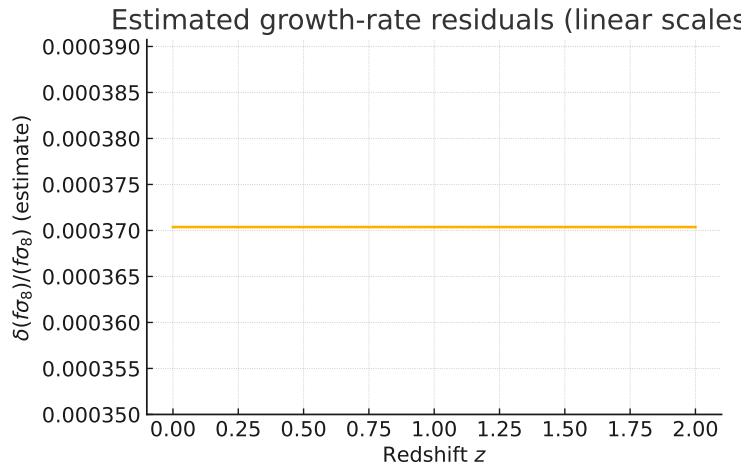


Figure 3: Estimated growth-rate residuals $\delta(f\sigma_8)/(f\sigma_8)$ vs redshift using a linear-scale envelope at fixed $k_{\text{lin}} = 0.1 \text{ Mpc}^{-1}$.

5 Falsifiers and outlook

A coherent $> 1\%$ deviation in \mathcal{C}_ℓ across $100 \lesssim \ell \lesssim 1000$ or a $> 1\%$ shift in $f\sigma_8$ at $z \lesssim 1$ not attributable to standard systematics would falsify the mid-band portal in its linear-safe guise. The next step is a public Boltzmann-code fork and Stage-IV Fisher forecasts [7, 8, 9, 10].

Provenance (internal). Conceptual foundations, positivity, and Born rule are summarised in v14 (Secs. 1–5, 8–11); the cosmology and compactification context is given in Paper A (Secs. 3–6, 8–10).

References

- [1] J. Antoniadis, *Janus-PLI Unification: A 7-Dimensional Two-Time Theory Explaining QM, GR, and the SM (Paper A)*, draft v0.2 (2025).
- [2] J. Antoniadis, *Quantum Mechanics from PLI and a Polarization-Invariant Auxiliary Time (v14)*, foundations note (2025).
- [3] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal Newtonian gauges,” *Astrophys. J.* **455** (1995) 7.
- [4] A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of CMB anisotropies in closed FRW models,” *Astrophys. J.* **538** (2000) 473.
- [5] D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” *JCAP* **07** (2011) 034.
- [6] Planck Collaboration, “Planck 2018 results. VI. Cosmological parameters,” *Astron. Astrophys.* **641** (2020) A6.
- [7] CMB-S4 Collaboration, “CMB-S4 Science Book, First Edition,” arXiv:1610.02743 (2016).
- [8] DESI Collaboration, “The DESI Experiment Part I: Science, Targeting, and Survey Design,” arXiv:1611.00036 (2016).
- [9] Euclid Collaboration, “Euclid Definition Study Report,” arXiv:1110.3193 (2011).
- [10] LSST Science Collaboration, “LSST Science Book,” arXiv:0912.0201 (2009).