
Fighting the West Nile Virus

Cameron Cruz, Aayush Agrawal
Stanford University

{camcruz, aayush2k} @stanford.edu

Abstract

Mosquito carriers of the West Nile Virus have spread the
disease throughout Chicago for the last 15 years. Although
efforts are in place to perform laboratory tests on mosquito
traps, the turnaround time is far too long. Thus, we pro-
pose making same-day predictions using a neural network
- a model chosen after experimenting with logistic regres-
sion, decision trees, random forests, and support vector ma-
chines. In this paper, we discuss the process we used to
build all of our models, and assess their accuracy. Finally,
we derive insights from our best model (neural network) and
analyse its results.

1. Introduction

Every year, around a million people die from mosquito-
borne diseases including malaria and West Nile Virus
(WNV). As a result, city health institutions must be able to
detect the presence and movement of mosquitoes with the
ability to carry these deadly diseases. Currently, cities like
Chicago use mosquito traps and manual laboratory testing
to detect WNV carriers. However, this system demands sig-
nificant manual effort and has a turnaround time of about a
week, costing the city resources and lead time that could be
used to address mosquitoes carrying WNV.

1.1. Task Definition

Thus, our goal was to reduce this lead time - allowing
Chicago to place preventative measures quicker. We con-
cluded that the ability to make same-day predictions on
where mosquitoes carrying WNV will appear did just that.
As a result, we had the task of modelling the presence of
WNV in Chicago over time. For the sake of thoroughness,
we tried many models including logistic regression (with
L1 Lasso Penalty), decision trees, random forests, support
vector machines, and neural networks. From the fits - espe-
cially the most accurate ones, we gathered insights on WNV
as well.

2. Literature Review

Most of the literature related to mosquito-borne diseases
is understandably more centered on the identification of
mosquitoes. This is a valiant goal, as there are certain
species that are genetically predisposed to having certain
diseases. Most projects with the same used convolution
neural networks to identify mosquitoes known for carry-
ing malaria, Zika, and dengue [7]. However, such projects
are outside of the scope of our investigation; if anything,
identifying mosquitoes quickly would serve as an interest-
ing follow-up.

More recently, computer scientists have been using AI to
track disease spread in humans. While this is not synony-
mous with our project - as we were more interested with
tracking the disease before it infects humans, the type of
data being analyzed is very similar. The paper that caught
our eye was 2015 study in which researchers were able to
implement a dynamic neural network for predicting the risk
of Zika in real time [1]. This is because of the parallels
to our WNV investigation in Chicago, as the researchers
wanted to use temporal and geo-spatial data about Zika
cases for the purpose of allocating preventative surveillance
resources. A Nonlinear AutoRegressive neural network
with eXogenous inputs (NARX) was used, and proved to be
an accurate predictor with 85% test accuracy. However, we
were not inspired to use the same model as the researchers
had access to much more varied data (including socioeco-
nomic and airline travel data) that would necessitate a much
more flexible model than ours.

We were also able to find a study that extremely similar
to ours. Researchers from the University of North Dakota
were also motivated to tackle WNV, and thus decided to
model the occurrences of mosquitoes which are predisposed
to WNV in North Dakota over a 10 year period [3]. No-
tice that while the project is similar to ours, it deals with
a much more relaxed problem - as it is only tracking the
number of mosquitoes, not the actual positive readings of
WNV. The researchers used Partial Least Squares Regres-
sion (PLSR) on mosquito capture data as well as meteoro-
logical data such as rainfall, temperature, precipitation, and
relative humidity. We were inspired by the sheer amount

1



of work also done during the pre-processing stage, includ-
ing normalizing and organizing the different data sources.
Additionally, we were still interested in using more com-
plex models than PSLR because wanted to model a more
complex relationship - one that also dealt with the actual
appearance of WNV as well.

3. Approach

3.1. Data

We use West Nile Virus Prediction data set curated by
Kaggle for our experiments. This data set consists of data
from the Chicago Department of Public Health (CHPH)
[9]. Every week, the CDPH tests various mosquito traps
located around the city for the presence of West Nile Virus
(WNV). Each observation in the trap testing data set con-
tains the location of the mosquito trap, the trap ID, the
mosquito species captured, the number of mosquitoes, the
date/time the trap was tested, and a ground truth label in-
dicating whether a mosquito in the trap tested positive for
WNV.

Instead of only using this data set, we also decided to
use weather data provided by the National Oceanic and At-
mospheric Administration (NOAA) [4]. We were inspired
by the literature review, and specifically the North Dakota
study about WNV. The weather data includes readings from
two weather stations at the Chicago O’Hare International
Airport and Chicago Midway International Airport. This
weather data includes information on surrounding tempera-
ture, precipitation, dew point, pressure, etc.

As a result, we had data from around 100 traps through-
out Chicago from 2007 to 2014, including weather data for
those days. There were about 10,000 total observations to
train and test on; however, our data was unbalanced. 95%
of the data points show no presence of WNV, meaning that
only 5% of data points are positive for WNV.

3.1.1 Pre-processing

We processed the data in many ways in order to give our
model the best chance of success. As we had weather data
from two stations, we ensured that we were using data from
the closest weather station for each trap. Additionally, we
normalized all of the variables by subtracting by mean and
dividing by standard deviation. This step was particularly
important for the latitude and longitude as although the dif-
ferences in the data can be extremely small, they actually
could translate to differences in city blocks. After that, we
also separated the species column in the mosquito trap data
into separate Boolean features in order to better see rela-
tionships between specific species and other predictors.

3.1.2 Correlation Analysis

After the pre-processing, we wanted to create a correlation
matrix for our predictors in order to gain an understanding
of their pairwise correlation.

Figure 1: Correlation Map

Most of our predictors were uncorrelated; however, there
were a few pairwise relationships that indicated quite high
levels of correlation. At first, it seemed surprising that lati-
tude and longitude were correlated. However, we soon real-
ized that this was because the latitudes and longitudes were
fixed on the mosquito traps. Thus, the locations were not
random, and it would have been possible to predict the lati-
tude from the longitude - or vice versa. Others included the
correlation between sunset and sunrise (which is fairly intu-
itive), and the correlation between heat and the various rep-
resentations of temperature (Dew Point Temperature, Wet-
Bulb Temperature, etc.).

After removing correlated variables like the various tem-
perature readings, we were done processing the data.

3.2. Models

After analyzing and processing our data, we fit various
models to the mosquito and weather data.

3.2.1 Baseline: Logistic Regression

For our baseline, we decided to perform simple logistic re-
gression using the GPS coordinates of the mosquito traps,
month and day, and multiple weather statistics as features
[11]. We can say that for a trap at a particular location, the
linear classifier assesses if the season/time of the year and
weather conditions are conducive for mosquitoes carrying
WNV.



Commonly used to model the probability of a binary out-
put, LR was used in our case to predict whether or not WNV
would be present. Specifically, the logistic function is used
to model the probability - shown below with arbitrary X in-
puts and beta coefficients:

p(X) =
eβ0+β1X

1 + eβ0+β1X

Using thresholding, we can designate a minimum prob-
ability needed to predict that Y=1. In order to make these
predictions with the beta variables, LR learns the beta coef-
ficients from the training set.

3.2.2 Decision Tree

Approaching the problem by prioritizing interpretability
and insight-derivation, we also decided to use decision trees
[6]. They model sequential, hierarchical decisions by split-
ting the predictor space into distinct and non-overlapping
regions and using the most commonly occurring class as
predictions. The quality of split is evaluated by classifica-
tion error rate, which is a function of the number of times a
prediction is made wrong.

3.2.3 Random Forest

We also used Random Forest (RF) [2]. RF is an example of
an ensemble learning method, which means that it improves
its performance by using many learning algorithms. The
algorithm works by first creating many decision trees during
training time. After determining the mode of the classes of
each trees , it outputs the class (WNV present or not in our
case). RF is known for fixing a common issue of decision
trees - namely, overfitting to the training set.

3.2.4 Support Vector Machines

Additionally, we also experimented with support vector ma-
chines [10]. Formally, they construct one or more hyper-
planes (flat affine subspace of dimension p-1) which can be
used for prediction. The general separation to aim for is a
hyperplane that is able to separate the training points from
each other by classification; however, the SVM allows non-
linear class boundaries by using kernels which are linear,
polynomial, and radial.

3.2.5 Neural Network

Finally, we tried neural networks [5]. They are defined as a
system of interconnected, layered elements (nodes) known
as neurons that process information using state responses to
inputs. Values introduced in the input layer are distributed
through to the hidden layers present in the network, influ-
enced by a set of weights, biases, and activation function

(sigmoid, ReLu, etc.). Eventually, after the complete ’for-
ward pass’, the final hidden layer is connected to the output
layer which has a single neuron in our case (WNV present
or not).

3.3. Evaluation Metrics

For each of the models, we record AUC, preci-
sion, recall, and F1-score [8]. AUC is the area un-
der the ROC curve, which is a line showing the perfor-
mance of a classification model. Precision is defined as

truepositives
truepositives+falsepositives where true positives are accu-
rate positive predictions and false positives are actual neg-
ative results that are predicted as positive; it measures how
often a positive prediction is actually positive. Recall is de-
fined as truepositives

truepositives+falsenegatives where false negatives
are actual positive results that are predicted as negative; it
measures how often positive results are predicted correctly
as positive. Finally, the F-1 score is the harmonic mean of
the precision and recall, defined as: 2∗precision∗recall

precision+recall .
As the stakes are so high in our problem - we don’t want

to miss a true positive, we decided to favor recall to preci-
sion when evaluating the models.

4. Results
4.1. Experimental Setup

After manual hyperparameter tuning, we found best re-
sults with 3-layer Fully Connected neural network with
dropout in all layers. The neural network was implemented
using Keras. We used scikit-learn for Logistic Regression,
Decision Tree, Random Forest, and SVM models. Addi-
tional engineering was for data parsing, preprocessing, and
augmentation. We provide a link to our CodaLab worksheet
for reproducibility:
https://worksheets.

codalab.org/worksheets/
0x65b605b88c0d471eaec8355d0134617b

4.2. Experiments Addressing Class Imbalance

As mentioned in Section 3.1, our dataset has extreme
class imbalance. 95% of observations belong to the class
WnvPresent = 0, and there are only 5% of observations
where WnvPresent = 1. To address this, we experi-
mented with data augmentation and weighted loss functions
discussed in section 3.3.

It is common practice when using images as input data
to apply various augmentations such as random cropping,
flipping, adding noise, etc. These are successful since of-
tentimes the original image is still easily perceptible despite
the additional transforms. However, in our case we have
much smaller feature vectors with both continuous and cat-
egorical variables. When exploring literature on data aug-
mentation in this space, we were unable to find a clear, re-

https://worksheets.codalab.org/worksheets/0x65b605b88c0d471eaec8355d0134617b
https://worksheets.codalab.org/worksheets/0x65b605b88c0d471eaec8355d0134617b
https://worksheets.codalab.org/worksheets/0x65b605b88c0d471eaec8355d0134617b


liable strategy for augmenting mixed continuous and cate-
gorical feature vectors without running the risk of changing
the appropriate class assignment.

The method we implemented takes advantage of the
NumMosquitos feature. This feature indicates the num-
ber of mosquitoes that were found in the trap when it was
checked. This feature appeared to be uncorrelated with any
other features. However, we believe that if a trap tests posi-
tive for WNV, it is likely many other mosquitos in the same
trap have WNV as well. We decided to augment the data
by assuming every other mosquito in the trap also is car-
rying WNV or is not carrying WNV. This assumption is
reflected in our augmentation: we duplicate an example
such that the number of copies in the training set is equal
to NumMosquitos.

After performing this augmentation, the classes were
90% WnvPresent = 0 and 10% WnvPresent = 1.

Another strategy we found was to upweight the loss term
computed for the positive class in our loss functions for var-
ious models. The weights we used were computed from the
inverse class frequencies according to the training set. For
example, weighted binary cross-entropy (BCE) is computed
as follows:

a[labels ∗ −log(p̂] + β[(1− labels) ∗ −log(1− p̂]

This weighted loss function strategy was found to be a
very effective approach to addressing our class imbalance
issue.

For the sake of simplicity we only present results com-
paring these techniques when applied to the neural network,
and found performance differences were consistent with
other models as well.

AUC Precision Recall F1

Plain NN 0.854 0.30 0.05 0.09
Data Aug-
mentation 0.693 0.20 0.16 0.17

Weighted
BCE 0.851 0.12 0.90 0.21

Data Aug +
Weighted
BCE

0.700 0.17 0.28 0.21

Table 1: Performance of different solutions to large class
imbalance. Metrics reported on the validation set for the
WnvPresent=1 class only.

According to 1, the best strategy for addressing the class
imbalance problem was using the weighted loss function,
achieving the best AUC and recall scores. We follow this
approach in our experiments below.

We also tried using a smaller subset of WnvPresent =
0 examples, but performance was either the same or worse
than applying our data augmentation method.

4.3. Experiments with Different Models

The Neural Network achieved the highest AUC and Re-
call compared to the three other methods. We attribute this
to the complexity of the neural network compared to the
other methods we implemented.

AUC Precision Recall F1

LR
(Baseline) 0.809 0.13 0.78 0.23

RF 0.809 0.33 0.33 0.33
SVM 0.835 0.14 0.78 0.24
NN 0.851 0.12 0.90 0.21

Table 2: Performance of different machine learning models.
Metrics reported on the validation set for the WnvPresent=1
class only.

5. Analysis
5.1. Interpretation of Results

By using the respective weighted loss function for each
model in our experiments, we managed to achieve decent
AUC and Recall. However, we see that precision is rela-
tively low across all our methods. Such results indicate that
using the weighted loss functions causes the models start to
over-predict the positive class. This speaks to the classical
precision/recall tradeoff experienced in machine learning.
As discussed, we favor recall over precision due to the rel-
ative infrequency of WNV occurrences. However, we be-
lieve that additional data could close this precision-recall
gap. Unfortunately, when looking to access CDPH data for
more recent years outside this Kaggle dataset, the location
data of traps is obfuscated and requires additional permis-
sions for use from the City of Chicago.

5.2. Feature Importance with L1 Penalty

To understand which features our baseline model found
to be strong indicators of WNV, we looked at the feature
weights from the logistic regression model found when us-
ing the L1 penalty. When using L1, the weights for a par-
ticular feature can become 0, indicating 0 importance. We
see that WetBulb, Month, and DewPoint seem to be the top
3 important features. WetBulb is a measure of temperature
measured using a thermometer covered in damp cloth, so
this indicates the combination of temperature and humidity
is an important predictor for WNV. Dew point is the temper-
ature at which air must be cooled to be saturated with water



vapor, again another measure of an interation between hu-
midity and temperature. Subsequently, Month indicates that
seasonality is important to the model – summer months are
likely to have more WNV occurrences than winter months.

Figure 2: Histogram comparing the importance of different
features to the Logistic Regression model found when using
the L1 Regularization penalty.

5.3. Ablation Study with NN

In the ablation study, we tried removing features such
as latitude and longitude, species, weather, and date. We
found that all the variables were extremely important neural
network because performance drops all around for each of
the experiments. As a result, we did not remove any features
from the neural network.

6. Conclusion
According to prior results and analysis, the neural net-

work proved to be the best predictor for the WNV in
Chicago. Although its AUC score is not great, we valued re-
call over any other evaluation metric as we wanted to make
sure that positive cases were found.

We began with the problem of having to make same-day
predictions for the presence of WNV in Chicago, present-
ing with mosquito trap and weather data. After that, we

AUC Precision Recall F1

All
Features 0.85 0.14 0.84 0.24

Without
Lat/Long 0.84 0.10 0.93 0.17

Without
Species 0.84 0.11 0.95 0.19

Without
Weather 0.84 0.12 0.90 0.21

Without
Date 0.85 0.12 0.91 0.21

Table 3: Ablation study focusing on removing location,
species, weather, and date related features. This was done
using the NN with weighted BCE.

decided to pre-process the data in order to take take of is-
sues regarding normalization, Boolean features, and corre-
lation between variables. Subsequently, we began the pro-
cess of fitting a number of models, including logistic regres-
sion (our baseline), decision trees, random forests, support
vector machines, and neural networks. We made variance
design decisions for each model, ranging from using the L1
Lasso penalty for logistic regression to using an unbalanced
loss function from the neural net that weighted positive re-
sults heavier. Our results showed that the neural network
had the best AUC and recall, which was enough to make it
our best model for the problem. Within the neural network,
we also carried out an ablation study that helped to improve
our model even further.

In terms of future work, we believe that further improve-
ments can be made on our model with the introduction of
new data involving transportation, how often and what loca-
tions the city was spraying for mosquitoes, and fine-grained
weather that is able to separate data points better. In terms
of expanding the scope of the project, we also would con-
sider implementing a convolution neural network with the
task of identifying mosquitoes that are predisposed to have
WNV (as previously mentioned). It is the next logical step
in fighting WNV, and thus would be an important consider-
ation as future work.

6.1. Acknowledgements

We would like to acknowledge Susanna Maria Baby,
who has provided helpful guidance throughout this process.
Finally, we also thank Percy Liang and Dorsa Sadigh and
the rest of the teaching staff.

References
[1] M. Akhtar, M. U. Kraemer, and L. M. Gardner. A dynamic

neural network model for predicting risk of zika in real-time.
bioRxiv, page 466581, 2019. 1



[2] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001. 3

[3] M. Campion, C. Bina, M. Pozniak, T. Hanson, J. Vaughan,
J. Mehus, S. Hanson, L. Cronquist, M. Feist, P. Ranganathan,
et al. Predicting west nile virus (wnv) occurrences in north
dakota using data mining techniques. In 2016 Future Tech-
nologies Conference (FTC), pages 310–317. IEEE, 2016. 1

[4] Z. Guo, N. H. Wilson, and A. Rahbee. Impact of weather on
transit ridership in chicago, illinois. Transportation Research
Record, 2034(1):3–10, 2007. 2

[5] S. Haykin. Neural networks: a comprehensive foundation.
Prentice Hall PTR, 1994. 3

[6] D. M. Magerman. Statistical decision-tree models for pars-
ing. In Proceedings of the 33rd annual meeting on Associa-
tion for Computational Linguistics, pages 276–283. Associ-
ation for Computational Linguistics, 1995. 3

[7] D. Motta, A. Á. B. Santos, I. Winkler, B. A. S. Machado,
D. A. D. I. Pereira, A. M. Cavalcanti, E. O. L. Fonseca,
F. Kirchner, and R. Badaró. Application of convolutional
neural networks for classification of adult mosquitoes in the
field. PloS one, 14(1):e0210829, 2019. 1

[8] D. M. Powers. Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation.
2011. 3

[9] M. O. Ruiz, E. D. Walker, E. S. Foster, L. D. Haramis, and
U. D. Kitron. Association of west nile virus illness and urban
landscapes in chicago and detroit. International Journal of
Health Geographics, 6(1):10, 2007. 2

[10] J. A. Suykens and J. Vandewalle. Least squares support vec-
tor machine classifiers. Neural processing letters, 9(3):293–
300, 1999. 3

[11] R. E. Wright. Logistic regression. 1995. 2



7. Appendix

Figure 3: Simple Decision Tree with max depth = 5.

Figure 4: Example of processed mosquito trap data

Figure 5: Example of processed Chicago weather data

7.1. Links to Code and Codalab

https://github.com/cameroncruz/
cs221-virus-prediction

https://github.com/cameroncruz/cs221-virus-prediction
https://github.com/cameroncruz/cs221-virus-prediction

