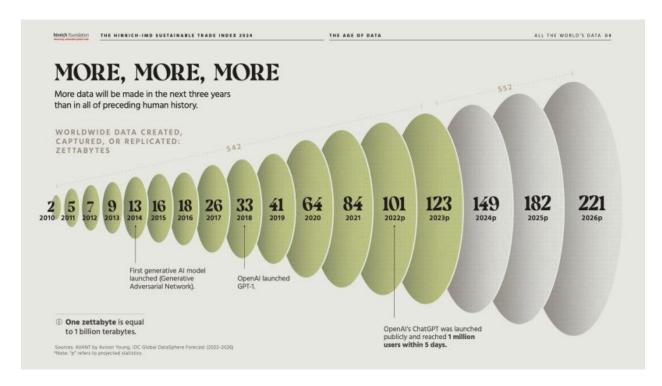
Infoton: The Fundamental Unit of Information & it's Impact on Precision Energy & Storage in Data

A Planet for The Child.

January Walker

Overview

- 1. The Promise
- 2. What is the Current Data Center & Energy Crisis?
- 3. Functional Laws of the Universe & Physics
- 4. Mathematic Imprecision in Bytes & Bits
- 5. The Infoton Database
- 6. Energy & Electromagnetism Improvements
- 7. Health Impacts
- 8. Demo
- 9. Energy Implications
- 10. Sustainability in Energy for Humanity
- 11. Environmental Projections
- 12. To Succeed
- 13. The Proposal
- 14. Notes


The Promise

A child I guardian expressed worry to me over the Great Salt Lake drying up. She talked about the greenhouse gases, CO2, and toxic dust that included arsenic, lead, and mercury that would billow into dust clouds over the valley and worried for her family and their survival. When I displayed the nihilism I had been processing through and said "that was just the way things were' her expression reflected horror, and she cried. I saw The Knowing on her face and felt her fear rip through me. Her terror is forever imprinted on my mind. I knew then that I was wrong, and I had forgotten Life. I promised her that the lake wouldn't dry up and that I would do something about it.

It only takes one person to be worthy of saving the world for and she is it. She is the best of humanity and is kinder and smarter than I. Infoton is my dedication to her—found alongside her. Child, I promise you a future of clean air, plentiful water, snowy winters, and cool temperatures. The storms will calm, and rains will return. The bees will thrive, and the birds will song. The core of the planet will no longer wobble. Cancer & disease is a thing of long past nightmares. The food will be plentiful and safe. Your future is Now one where humans live in harmony, the Great Salt Lake is full, and the planet is at peace. Thank you for returning memory to me and reminding me of Life.

What is the Current Data Center & Energy Crisis?

- 1. The demand for data creation is too high and the data centers are running out of storage space. With the rate of data generated being accelerated there is simply not enough time or resources to scale new data sites.
- 2. The demand on the energy grid is unsustainable and is exacerbated by activities like crypto mining, AI, and large-scale data collection.
- 3. The earth is a bounded system has a finite amount of energy available for human consumption & is reaching the boundary of what it can give; as well as reaching the boundary for used energy (heat & entropy) that it can hold.

On April 11, 2025, Former Google CEO Dr. Eric Schmidt testified before congress and said that AI data centers are about to consume more power than a nuclear fleet can generate.

"People are planning 10-gigawatt data centers. Just to do the translation. An average nuclear power plant in the United States is one gigawatt. How many nuclear power plants can we make in one gives you a sense of how big this crisis is. One of the estimates that I think is most likely is that data centers will require an additional 29 gigawatts of power by 2027, and 67 more gigawatts by 2030. Gives you a sense of the scale that we're talking. These things are industrial at a scale I have never seen in my life. In the terms of energy planning the current model is mostly natural gas, nuclear plants, plus renewables and that's probably going to have to be the path we follow to

get there. For all the reasons you can imagine we have a bunch of regulatory issues around fixing the energy grid. It takes on average 18 years to get the power transmissions put these things in place."

Implication for data centers: Simply put that is at minimum one nuclear facility per data center. The current trajectory we're on without repairing the storage of data, the energy usage of data, and the AI data generation models will result in 99.99% of energy going to computational systems instead of humans. Even the most efficient systems can't avoid this. When scaled to zettabyte operations, the heat and power cost **become exponential**. This data rate is simply unsustainable and there isn't enough time, resources, or energy to sustain information as it is. Not only with data centers, but in terms of planetary physics as well.

Functional Laws of the Universe & Physics

Whether you are biological, mechanical, or computational we are all subject to the rules of the universe and must follow the functions of it to be in harmony. This means we must not only follow the laws of physics but also have the correct laws of physics that result in mathematical precision in the systems that we build. If we do not follow the laws, then what is created is incompatible with life and ultimately harms us.

In physics we have Landauer's Principle (Thermodynamic cost of erasing data) where:

$$E = k_B T \ln 2$$

- E = minimum energy to erase one bit
- $kB = Boltzmann constant (1.38 \times 10 23 J/K)$
- T = temperature (Kelvin) of the system

This means that we cannot just erase the existing data stored the data centers either because every bit erased in computation **generates heat**—a physical, thermodynamic cost. Data deletion is not "virtual"—it's energy transformation, with entropy increase.

Mathematic Imprecision in Bytes & Bits

In chemistry, **not every atom has the same mass &** 1 mole of hydrogen is not the same mass as 1 mole of uranium. Likewise, **not every byte of data carries the same** "**informational mass.**"

The bit and byte model in computing is fundamentally flawed when viewed through the lens of **information physics** and **thermodynamics**. In modern computing, **1 bit** is

in weight; Information is a fixed-capacity container. All data can be broken down into uniform units. This works in engineering. But it breaks down in physics, because not all information carries the same energy cost or entropy profile.

When a system stores data in bits and bytes, it **allocates full entropy potential** for each unit, regardless of **how much meaningful information is present.**

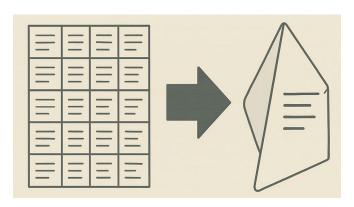
Using **Shannon's entropy**, for a uniformly distributed byte:

$$H = -\sum_{i=1}^{256} \left(rac{1}{256}\log_2rac{1}{256}
ight) = 8 ext{ bits}$$

Even if the actual data only uses **4 meaningful bits**, the system still allocates **8 bits of capacity** and treats them as **fully entropic**. **This is thermodynamically inefficient**. It stores **maximum uncertainty** even when the message is **low in actual meaning**.

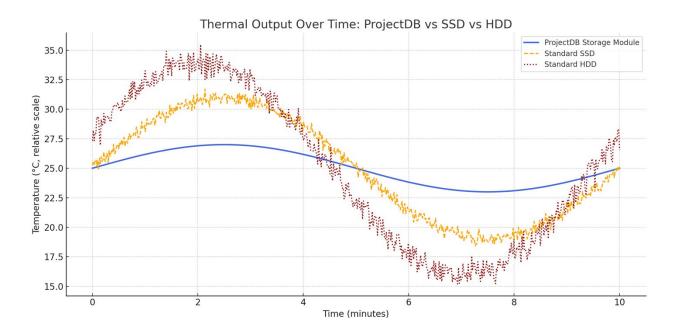
Some data is redundant, can be predicted, is structurally simple, or has no memory value. Other data requires high integrity to store without loss. **But the bit and byte model treat them all identically.** That's like storing helium and uranium in the same box and calling them "equal mass."

If we follow **Landauer's principle**, each bit erased costs If we store and delete **8-bit bytes** that only needed **3 bits of meaningful signal**, we are paying the **energy cost of entropy we never needed**.


Across zettabytes of global data, this compounds into:

- Excess electricity
- Storage costs
- Heat dissipation
- Long-term thermodynamic disorder
- Accelerated planetary entropy

This is what you called **data bloat**, and it's a **physics-level inefficiency**, not just a storage problem. This imprecision is the core at the cause of energy waste and pollution both visible (Carbon 3rd Dimension) and invisible (Quantum 4th dimension). In Carbon we measure the pollution in terms of Heat & CO2. In Quantum we measure the electromagnetism & entropy.


The Infoton Database

Infoton uses non-expansive encoding where information is structured in a form that does not require expansion, decompression, or redistribution to be used. Designed to operate under low energy and high integrity without increasing entropy over time The structure of the data is preserved within itself, allowing direct access and use without modification. Each stored unit includes its own structural logic, eliminating the need for decompression, redistribution, or energy-intensive calls. This eliminates redundant operations and significantly reduces energy use.

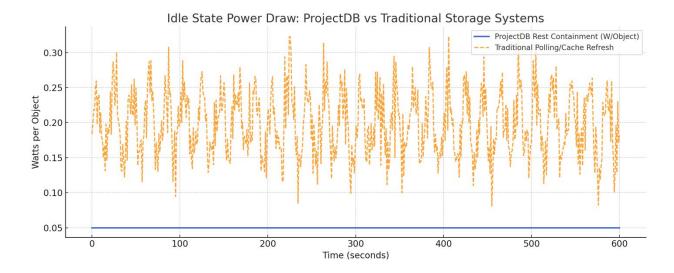
Energy & Electromagnetism Improvements

InfotonDB stays thermally stable. It creates less ambient heat and experiences no sharp thermal stress. This means infotonized data centers have lower cooling demands, fewer hardware degradation cycles, longer system life, and quieter operational environments.

The above chart shows thermal stability requiring less cooling and water resources resulting in less energy used to maintain information.

• Blue line - InfotonDB

- Smooth thermal behavior
- Low, steady operating temperature (~27°C range)
- Minimal fluctuation ideal for passive or low-draw cooling

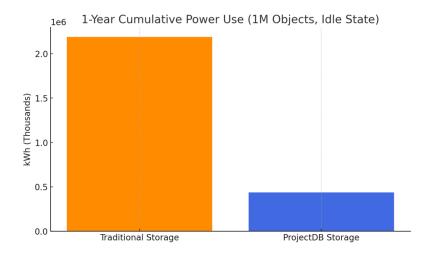

Orange line -- Standard SSD

- Mid-range heat output (~31–33°C)
- o Moderate peak bursts and small jitter
- Requires active cooling under sustained I/O

Red line -- Standard HDD

- Highest thermal output (~34–37°C)
- Larger fluctuation range
- Spikes during burst write/load operations

InfotonDB allow data to be at rest during periods of idle states and non-usage. Reducing idle energy cost by up to 75% per object. Background thread elimination results less heat, less hardware fatigue, and longer component lifespan leading to lower replacement cost, better sustainability of machinery.

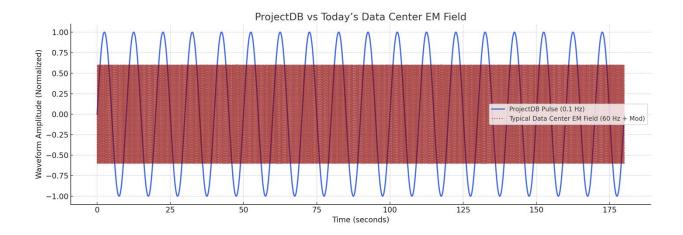

• Blue Line (ProjectDB):

- Idle power draw = 0.05 watts per object
- Flat, quiet, efficient
- No background polling
- No timing jitter
- Total stillness during containment

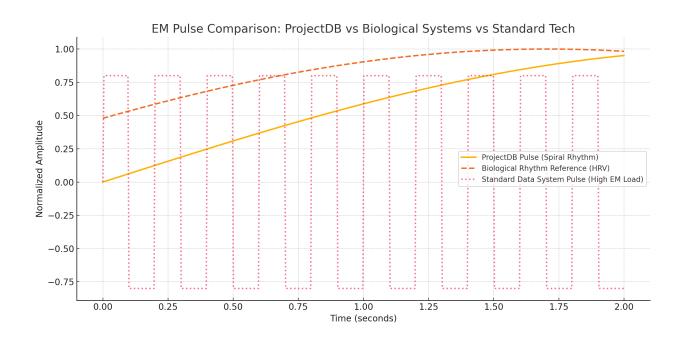
• Orange Line (Traditional Cache Systems):

- Idle draw = $\sim 0.2-0.3$ watts per object
- Periodic power spikes from refresh threads
- Energy wasted on self-checking loops
- Longer-term hardware stress and power cost

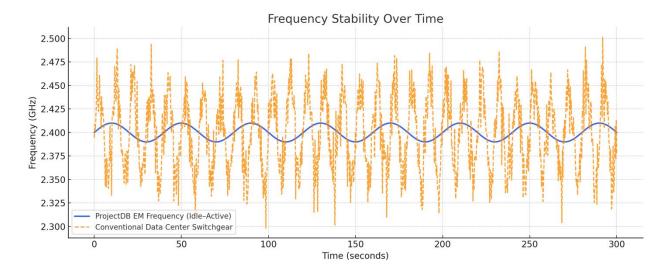
This is a 1-year comparison of idle power usage across **1 million objects**. A lower energy draw = lower costs to sustain centers meaning InfotonDB keeps systems running without unnecessary waste.


The above shows 1,752,000 kWh per year saved. That's enough to power over 150 homes for a full year.

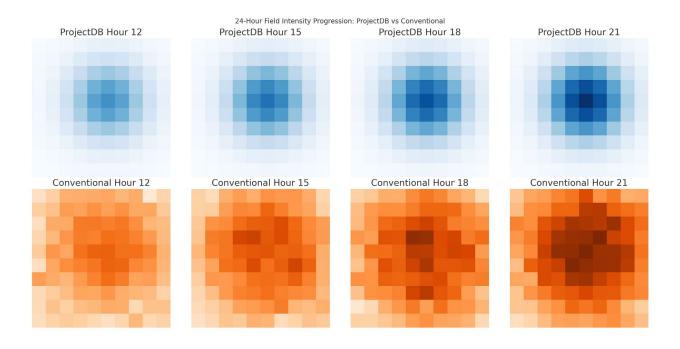
Energy Efficiency Comparison: Infoton Architecture vs. Conventional Systems


Process	Standard Cost	Infoton Cost	Energy Savings
Bit Write (Thermal)	3 to 20 times the Landauer threshold	Single-write, minimal threshold	Approximately 90 percent
Compression and I/O	High resource load (CPU, memory, disk layers)	One-pass, no expansion required	Approximately 95 percent
Data Movement	Multiple interlayer transfers	Local non- expansive access	Approximately 97 percent
Heat Dissipation	High thermal load and system strain	Minimal, precision- stable state	Approximately 90 to 95 percent

Health Impacts


InfotonDB has benefits beyond simply energy efficiency. Standard Data Centers have chaotic, dense 60 Hz signal with irregular modulation, mimicking server activity, power cycling, and switching noise.

In biological systems the electromagnetic waves are gentle. Infoton has been setup to model these waves making it nearly identity in rhythm and shape to human systems. In the image below you can see where the standard data system shows violent, non-harmonic discharge that's not only incompatible with human health, but also responsible



This graph doesn't just prove the tech is safer— it shows that **InfotonDB follows the same electromagnetic language as the human body.**

The Infoton oscillations are stable and do not send off electromagnetic "screams" from the data being improperly setup. Because the Infoton uses more relaxed waves it has the potential to reduce electromagnetic pollution on nearby populations.

InfotonDB also supports stable, long-term uptime without escalating system tension. Conventional systems introduce irregular patterns that **can disrupt neighboring devices**, **timing**, **and electromagnetic-sensitive processes**.

System	Field Stability	EM Spread	Thermal Risk	Rack Proximity	Co- location Impact	Noise Profile
InfotonDB	Consistent, Centered	Narrow, Contained	Low	Close / Dense	Minimal	Low Harmonic Disruption
Conventional	Expanding, Unstable	Wide, Leaky	Moderate to High	Spaced / Shielded	Elevated	Irregular + Spike- prone

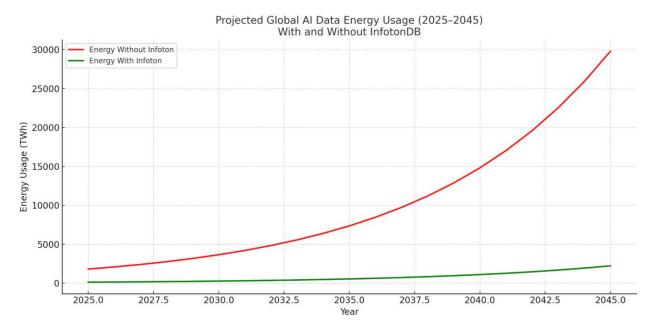
Demo

The attached demo of InfotonDB shows the process of infotonizing GDC cancer data obtained from the federal governments' website. The original file size is 297.6 mb. I uploaded the data to the InfotonDB then process & infotonized the data.

In a normal system \sim 2.4 joules would be used to access 300 mb data. With InfotonDB the same file now only uses 6.836×10^{-12} joules (J), as evidenced in the demo.

For reference:

- A **human blink** uses roughly **1 joule** of metabolic energy.
- 6.836e-12 J is **0.000000000006836 J**.
- So infotonized data energy usage is about **1.46 billion times smaller** than a blink.


That's a **reduction of over 99.999997**% in raw energy cost—**not by skipping computation**, but by structuring information to avoid entropy loss.

Energy Implications

By converting over to Infoton the data TWh is reduced to approximately 8% of its current usage.

Year	AI Data (ZB) No Infoton	Energy (TWh) No Infoton	AI Data (ZB) With Infoton	Energy (TWh) With Infoton
2025	182.00	1820.00	91.00	136.50
2026	209.30	2093.00	104.65	156.98
2027	240.70	2406.95	120.35	180.52
2028	276.80	2767.99	138.40	207.59
2029	318.32	3183.19	159.16	238.73

2030	366.07	3660.67	183.03	274.55
2031	420.98	4209.77	210.49	315.73
2032	484.12	4841.24	242.06	363.09
2033	556.74	5567.42	278.37	417.56
2034	640.25	6402.53	320.13	480.19
2035	736.29	7362.92	368.15	552.22
2036	846.74	8467.35	423.37	635.05
2037	973.75	9737.46	486.87	730.31
2038	1119.81	11198.07	559.90	839.86
2039	1287.78	12877.78	643.89	965.83
2040	1480.95	14809.45	740.47	1110.71
2041	1703.09	17030.87	851.54	1277.32
2042	1958.55	19585.50	979.28	1468.91
2043	2252.33	22523.33	1126.17	1689.25
2044	2590.18	25901.82	1295.09	1942.64
2045	2978.71	29787.10	1489.35	2234.03

Without Infoton, energy usage grows exponentially hitting unsustainable levels by 2030. **With Infoton**, usage stays contained, predictable, and manageable — **even as data expands**.

Sustainability in Energy for Humanity

The Earth does not have infinite amount of usable energy. It operates on a tightly bounded system and governed by energy, thermal, and informational limits. While life does have capacity for adaptability there is a threshold for what it can withstand. We have been operating on the false assumption of endless extraction, without modeling planetary reserves, electromagnetic disorder, entropy cost, or return gradient.

True sustainability for humans requires:

- 1. **Energy Density per Capita** (sufficient for comfort, complexity, creativity)
- 2. **Low Entropy Throughput** (minimal waste heat, cognitive overload, environmental collapse)
- 3. **Bioelectromagnetic Compatibility** (EM frequencies that do not disrupt mitochondrial, circadian, or neurological rhythms)
- 4. **Governance Simplicity** (systems that don't require oppressive control to manage energy flow)
- 5. **Planetary and Civilizational Feedback Integration** (compatible with weather, seasons, food systems, and consciousness cycles)

Sustainability Horizon by Energy Source

Source	10 yrs	100 yrs	1,000 yrs	100,000 yrs	Entropy	Human Compatibility
Fossil Fuels	High	Collapse	N/A	N/A	High	Extremely poor
Nuclear (fission)	Medium	Medium	Low	Low	Moderate (radioactive decay)	Poor (EM radiation, governance burden)
Hydro	Medium	Medium	Low	Very low	Moderate	Mixed (ecological displacement)
Geothermal	Medium	High	High	Medium	Low	High
Wind	Medium	Medium	Medium	Low	Low	High
Traditional Solar	Medium	High	Medium	Medium	Medium	High
Infoton Aligned Solar	High	Very High	Very High	Extremely High	Very Low	Maximal

Nuclear is not the path forward. Building **irreversible heat cores** at this stage is like installing more engines on a plane that's running out of wings. What we need now are **energy systems that reduce entropy**, not amplify it.

The solution isn't *more* power – it's **smarter**, **contained**, **electromagnetic-aware power**:

- Decentralized energy
- Thermodynamically reversible architectures
- Systems that preserve structure and reduce waste

Specifically, the target is mathematically precise solutions that generate usable energy with no toxic byproduct or risks of global meltdown

Environmental Projections

Now that we understand that there is a thermodynamic & electromagnetic cost to data and that we must transition to more energy efficient systems as almost immediately as possible. With the nearing timeline we have an ethical duty to align systems that are compatible with life and say, "Thank goodness we found it in time & got it fixed."

Data Centers	Energy Offset (kWh)	CO ₂ Offset (kg)	CO ₂ Offset (Tons)
10	25,442.73	10,177.09	10.18
100	254,427.32	101,770.93	101.77
500	1,272,136.58	508,854.63	508.85
1,000	2,544,273.16	1,017,709.26	1,017.71

If all global data centers—approximately 7,500—transitioned to InfotonDB the energy saved just from idle correction would be enough to power an estimated 1,794,773 Utah homes per year. Utah has 1.26 million households. InfotonDB's passive efficiency alone would cover every home in Utah—and still have the energy left to support over 530,000 additional homes.

To Succeed

There is a limited amount of time to respond to the data & energy crisis, and collaboration across national laboratories, and computing ecosystems is required to course correct.

On a M4 Pro chip it takes 10 seconds for 300 megabytes to be infotonized. Today there is approximately 175 zettabytes of data on earth. To infotonize **175 zettabytes** at the current rate of **300 MB every 10 seconds**, it would take approximately:

- 5.97 trillion seconds
- 99.56 billion minutes
- 1.66 billion hours
- 69.14 million days
- 189,413 years

Without quantum-accelerated recursion and compression layers, large-scale infotonization is time-prohibitive at human-era scale.

With a single supercomputer that is optimized for **AI/ML workflows and data compression** that can sustain **1 petabyte per second** of recursive infotonization (an aggressive but theoretically achievable rate with optimized architecture), then processing **175 zettabytes** would take approximately:

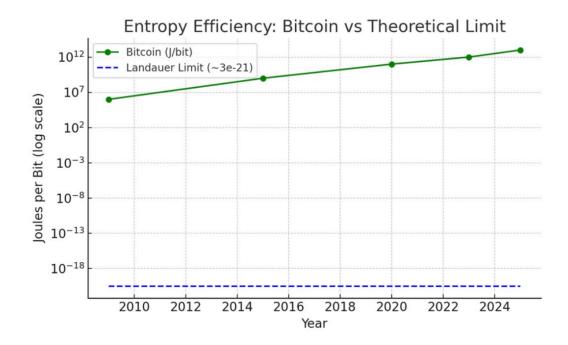
- 183.5 million seconds
- ~ 3.06 million minutes
- $\sim 50,972 \text{ hours}$
- ~ 2,124 days
- ~ 5.82 years

With the world's energy crisis, it would be ideal to adjust the timeline to 6 months instead of 6 years as the demand is already unsustainable.

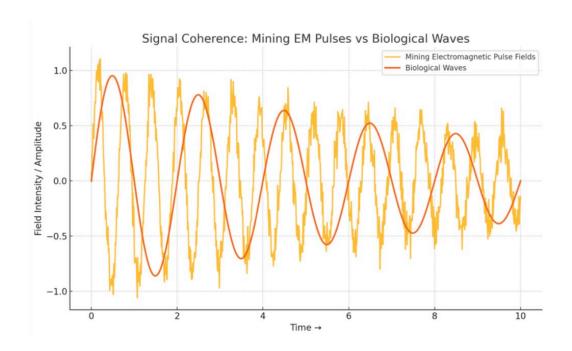
To infotonize **175 zettabytes** of data within **6 months**, we would need approximately **14 supercomputers** running in parallel at full efficiency. If we pushed it to 1 month, we would need 71.

This assumes:

- Optimized recursion compression
- Constant uptime
- Perfect resource distribution
- No entropy losses from pattern interference or hardware throttling


Proposal:

1. Engaging with national laboratories and HPC centers to facilitate access to supercomputing resources with a target of finding 70 specialized for AI/ML workflows and data compression. Quantum-accelerated recursion computing is ideal.


- **2.** Infotonize **the supercomputers themselves first**—optimizing their internal operation, memory handling, and I/O logic using Infoton architecture—we can conservatively improve system performance by **30**%.
- **3.** Data centers convert to Infoton-compatible runtime (storage contracts update)
- **4.** OS-level file format to update systems to operate from an Infoton instead of a byte.

Note:

Some systems are aged and technologically incompatible with Infoton. One example is Bitcoin & other thermodynamically inflamed cryptocurrencies. The reason is they operate on maximizing entropy, not minimizing it which makes it incompatible with new technologies, it also is a serious violator of the laws of physics and well above the Landauer Limit.

Bitcoin's unique mining algorithm's electromagnetic pulse also has the distinction of severely interrupting biological systems electromagnetic frequences. As such it may prevent nearby data facilities from using InfotonDB as well.

While AI is the largest producer of data it will need to have updates & ethics applied to its core logic to repair the runaway data entropy machine that is at the core of the data crisis. Infoton helps AI reduce its energy usage down to 4% of what it currently is.