

PRO₂ System Overview

PURE O₂ AERATION

Separation
Oxidation
Remediation

History - Super-Saturation Technology

- Wayne State University Patents
 Originating from Medical Application
- O TherOx Develops Medial Application for Dissolving Oxygen into blood plasma for cardiac remediation
- New Patents Developed for Wastewater applications under DynamOx (12 Years of field demonstrations)
- O Blissfield develops PRO₂ and is granted exclusive license from DynamOx, TherOx and Wayne State for wastewater applications.

PRO₂ System Hyperbaric Gasification IP

Wastewater Patents and Patents Pending:

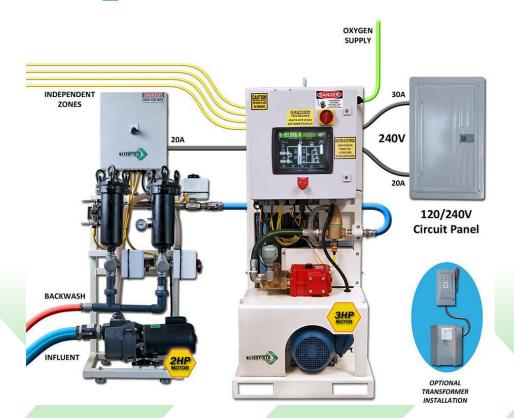
US 13/602,793 Apparatus and Method for Atomizing Fluid
US 12/64,663 Apparatus and Method for Gas Enriching a Liquid
US 7,008,535 Apparatus and Method for Oxygenating Wastewater

JP 2002-517196 Apparatus and Method for Oxygenating Wastewater (Japan; pending)
JP 2012-039888 Apparatus and Method for Oxygenating Wastewater (Japan; pending)
EP 1 313 548 Apparatus and Method for Oxygenating Wastewater (Belgium, Denmark,

France, Great Britain, Germany, Italy, Netherlands, Spain and Turkey)

US 7,294,278 Method for Oxygenating Wastewater

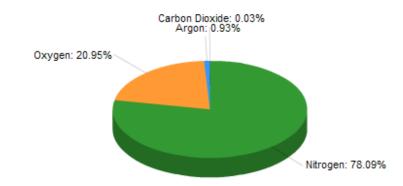
Industrial Patents:


US 5,569,180	Method for Delivering a Gas-Supersaturated Fluid to a Gas-Depleted Site and Use Thereof											
EP 0 767 632	Method for Delivering a Gas-Supersaturated Fluid to a Gas-Depleted Site											
	and Use Thereof (Belgium, France, Great Britain, Germany, Italy, Netherlands and Spain)											
JP 3,712,729	Method for Delivering a Gas-Supersaturated Fluid to a Gas-Depleted Site and Use Thereof (Japan)											
US 5,735,934	Method for Delivering a Gas-Supersaturated Fluid to a Gas-Depleted Site and Use Thereof											
110 / 0 / 1 000	AA III JULIU DURA KO E LA LELA											

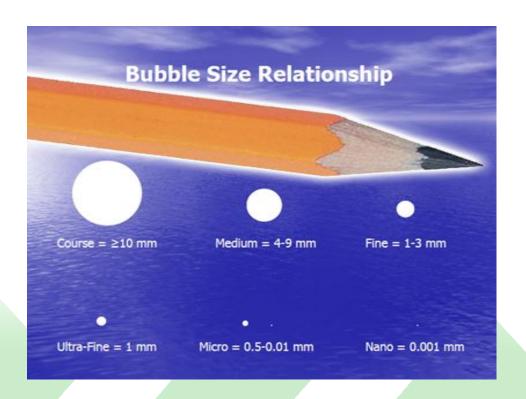
US 6,241,802 Method for Delivery of Gas-Enriched Fluids

PRO₂ System

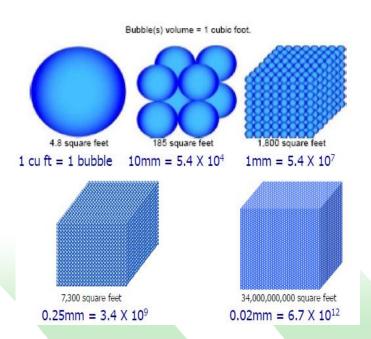
PRO₂ System Diagram



Composition of Air


chart by amCharts.com

Composition of Air



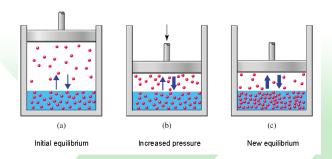
Component	Symbol	Volu	ume			
Nitrogen	N ₂	78.084%				
Oxygen	O ₂	20.947%				
Argon	Ar	0.934%	99.998%			
Carbon Dioxide	CO₂	0.033%				
Neon	Ne	18.2 parts per million				
Helium	He	5.2 parts per million				
Krypton	Kr	1.1 parts per million				
Sulfur dioxide	SO₂	1.0 parts per million				
Methane	CH ₄	2.0 parts per million				
<u>Hydrogen</u>	H ₂	0.5 parts per million				
Nitrous Oxide	N₂O	0.5 parts per million				
Xenon	Xe	0.09 parts per million				
Ozone	O ₃	0.07 parts per million				
Nitrogen dioxide	NO ₂	0.02 parts per millio				
Iodine	I ₂	0.01 parts per millio				
Carbon monoxide	СО	trace				
Ammonia	NH ₃	trace				

Bubble Size

Surface Area by Bubble Size

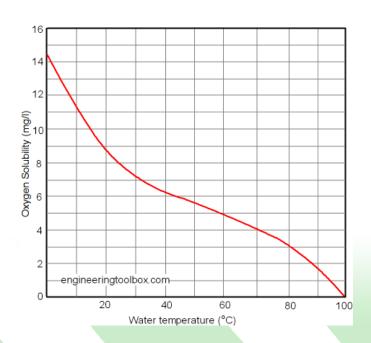
PRO₂ 216,000,000,000 + square feet .001-.0001 mm

Henry's Law


Henry's Law

The solubility of a gas is directly proportional to the gas pressure

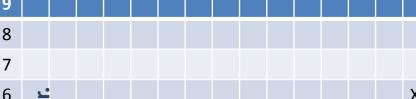
$$S_g = k_h P_g$$


- When the partial pressure of the solute above a solution drops, the solubility of the gas in the solution drops as well to maintain the equilibrium.
- This can be used to calculate the molar solubility of a gas.

Gas Solubility – Effect of Pressure

Table 1: Some forms of Henry's law and constants (gases in water at 298 K) ^[7]										
equation:	$k_{ m H,pc} = rac{p_{ m gas}}{c_{ m aq}}$	$k_{ m H,cp} = rac{c_{ m aq}}{p_{ m gas}}$	$k_{ m H,px} = rac{p_{ m gas}}{x_{ m aq}}$	$k_{ m H,cc} = rac{c_{ m aq}}{c_{ m gas}}$						
dimension:	$\left[\frac{L_{\rm soln} \cdot atm}{mol_{\rm gas}}\right]$	$\left[\frac{mol_{gas}}{L_{soln}\cdot atm}\right]$	$\left[\frac{atm \cdot mol_{soln}}{mol_{gas}}\right]$	dimensionless						
02	769.23	1.3 E-3	4.259 E4	3.180 E-2						
H ₂	1282.05	7.8 E-4	7.099 E4	1.907 E-2						
CO ₂	29.41	3.4 E-2	0.163 E4	0.8317						
N ₂	1639.34	6.1 E-4	9.077 E4	1.492 E-2						
He	2702.7	3.7 E-4	14.97 E4	9.051 E-3						
Ne	2222.22	4.5 E-4	12.30 E4	1.101 E-2						
Ar	714.28	1.4 E-3	3.955 E4	3.425 E-2						
co	1052.63	9.5 E-4	5.828 E4	2.324 E-2						

Dissolved Oxygen



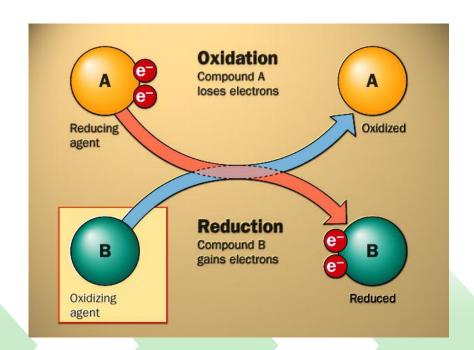
Definition: Oxygen dissolved in a body of water as an indication of the degree of health of the water and its ability to support a balanced aquatic ecosystem; also, the amount of free (not chemically combined) oxygen dissolved in water, wastewater, or other liquid, usually expressed in milligrams per liter, parts per million, or percent of saturation; abbr. DO

PRO₂ Technology

Supersaturated Carrier Fluid

- Industrial Oxygen
 - 93% Pure
- O OTE
 - 0 96%
- O OTR
 - 600mg/l @ 300psi .4#/gal./hr.
 - 400mg/l @ 200psi
 - O 200mg/l @ 100psi

Fluid Delivery Process OTR Lbs./Hr. @ 300psi

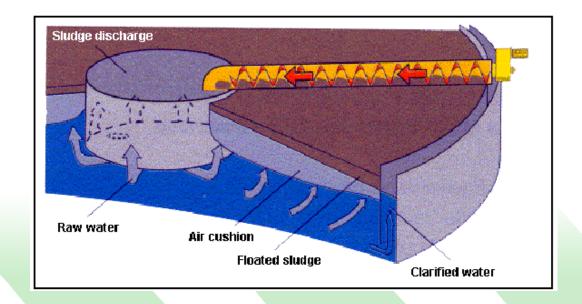

Chemical Remediation Oxidation and Redox

Redox (*red*uction-*ox*idation) reactions include all <u>chemical reactions</u> in which atoms have their <u>oxidation state</u> changed - that is, redox reactions involve the transfer of <u>electrons</u> between species.

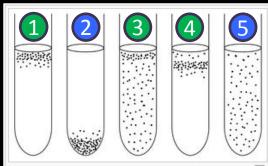
This can be either a simple redox process, such as the oxidation of carbon to yield carbon dioxide (CO₂)

The term "redox" comes from two concepts involved with electron transfer: reduction and oxidation. [1] It can be explained in simple terms:

- •Oxidation is the *loss* of <u>electrons</u> or an *increase* in oxidation state by a molecule, atom, or ion.
- •**Reduction** is the *gain* of electrons or a *decrease* in oxidation state by a molecule, atom, or ion.

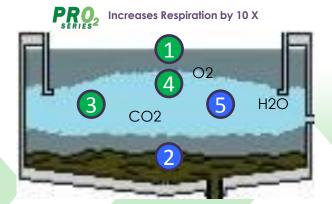

Fields of Use

- O Applications
 - Digesters / Aeration Ditches
 - Lagoons
 - Lift Stations
 - Sand Filters



Separation

The flocculants cause these materials to join together in clusters that are lighter than water and therefore float. Pollutants are concentrated in the material that accumulates on the surface, called the float. Other names for the float include DAF float. skimmings, or sludge.


Wastewater Remediation Digester Bacterial Community

Aerobic and anaerobic bacteria can be identified by growing them in a liquid culture:

- Obligate aerobic bacteria gather at the top of the test tube in order to absorb maximal amount of oxygen.
- 2: Obligate anaerobic bacteria gather at the bottom to avoid oxygen.
- 3: Facultative bacteria gather mostly at the top, since aerobic respiration is the most beneficial one; but as lack of oxygen does not hurt them, they can be found all along the test tube.
- Microaerophiles gather at the upper part of the test tube but not at the top. They require oxygen but at a low concentration.
- 5: Aerotolerant bacteria are not affected at all by oxygen, and they are evenly spread along the test tube.

- Aerobic Bacteria Respiration CO2 and H2O
- Anaerobic / Aero tolerant Bacteria Respiration O2 and H2O

PRO₂ System Quality of Municipal Decant

Before PRO₂

After PRO₂

Customers have reported results up to:

Ammonia: Reduced 86% Phosphorous: Reduced 75%

TKN: Reduced 73% TSS: Reduced 70%

Odor Elimination

There are a number of sources for odors within wastewater treatment and solids management facilities. Significant potential sources at treatment facilities include:

- Head works area
- Primary clarifiers
- Solids holding and thickening tanks
- Aerobic digesters
- Dewatering systems
- Solids loading areas

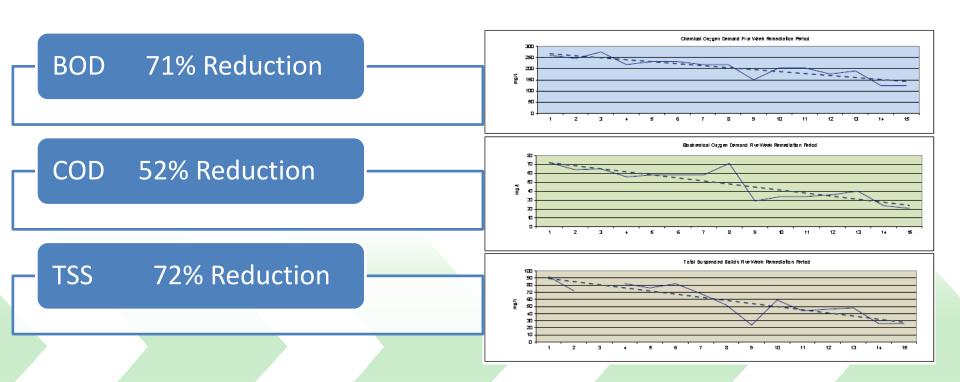
Portable PRO₂ System

Set-up in operation within hours of arrival

User friendly integrated system

Maintenance Lagoon Remediation

Actual Results in a Ten Day Period



Data Collection:					Change or		
	Pre	+7 Days	+10 Days	Reduction	% Reduction		
Organic Material Depth (in	n.) 8		3	5	62.5%		
Secchi (in.)	2	4 ₽0	4	2	100.0%		
pH (test strip)	6.5	-	6.8	0.3	4.6%		
DO (mg/l)	0.1		10	9.9	9900.0%		
Odor	Strong		None	Total	1		
TN (mg/l)	15.16	-	8.54	6.62	43.7%		
TKN (mg/l)	15.10	-	8.50	6.60	43.7%		
NOX (mg/l)	0.06	•	0.04	0.02			
TP (mg/l)	2.06	-	1.45	0.61	29.6%		

Truck Stop Lagoon Remediation

Actual Results in a Ninety Day Period

Technology Comparisons

3hp. for .5MGD

Days

PRO₂ System PRO2-154 Operating Costs

Oxygen Cost between \$0.05 - \$0.47 / hr. @ 15 gpm

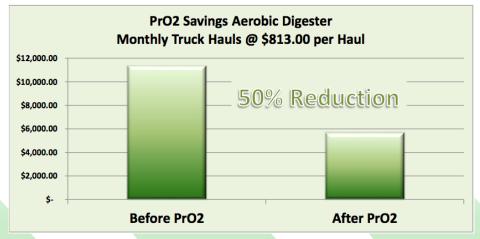
```
Gas Cylinder (251scf) $0.93 / m3 = $0.65 / hr.

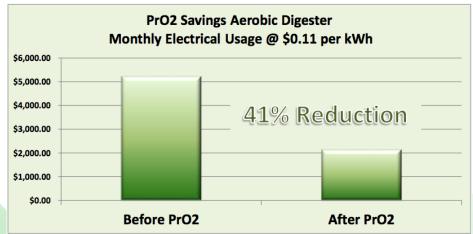
Small Liquid tank $0.30 / m3 = $0.50 / hr.

Large Liquid tank $0.20 / m3 = $0.45 / hr.

Generator $0.10 / m3 = $0.30 / hr.
```

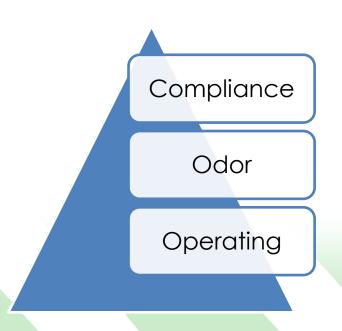
Electrical Cost @ \$0.11 / kWh \$0.25 / hr. @ 15 gpm


Unit: PRO2-15 H/P 3 Cost Per kWh \$0.11 = \$0.245./ hr.


Total Budgetary Cost Using LOX @ 15 gpm

\$0.75 / hr.

Digester Operation Savings


PRO2 Series Bio2 Accelerator															
<u>State</u>	Location	Type	Size MGD	Install Date	Machine No	VNC id	Energy Savings	Energy Savings / Hr.	Hauling Savings	Total Op Savings	<u>Hours</u>	Gallons	<u>Date</u>	<u>GPM</u>	Decant
Florida	Apopka	Municipal	4.5	1/9/2012	0005	166.140.145.233	\$178,990.07	\$14.11	\$153,657.00	\$332,647.07	12,686	6,304,455	5/16/2014	8.28	
Michigan	Blissfield	Municipal	1	6/6/2011	0003	166.140.140.37	\$20,120.95	\$8.20	\$91,692.00	\$111,812.95	2,453	1,256,354	5/4/2014	8.54	

Typical Savings and Benefits

- O Electrical
 - o 50 to 60%
- O Hauling
 - o 20 to 30%
- Equipment maintenance and runtime
- Odor
- O Improved Decant
 - Quality
 - Quantity
 - o Time reduced 50 to 80%
- O Polymer
 - o 30 to 50%

PRO₂ System Human Machine Interface - HMI

Touch Screen

The controls for the PRO₂
System are touch screen, and PLC based.

 Password protected with 4 levels of access.

PRO₂ System Product Line and Maximum Delivery

O₂ Delivery

- o 2 gpm 163,200 mg/hr.
- o 5 gpm 408,000 mg/hr.
- o 15 gpm 1,224,000 mg/hr.

5 GPM

15 GPM

PRO₂ System Optional Remote Communications

The PRO₂ system can be controlled and monitored remotely through a cellular modem or the Internet. It is Smart Phone, Tablet, Laptop and PC accessible, with a SCADA connection for integrated monitoring.

(641) 275-5405

7260 Highway F70 West P.O. Box 720 Monroe, IA 50170