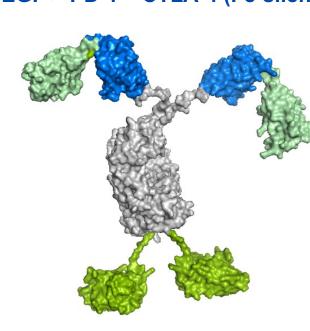
CT111, a PD-1 x CTLA-4 x VEGF trispecific antibody, demonstrates potent anti-tumor efficacy through synergistic immune checkpoint blockade and VEGF inhibition with cooperative avidity

John Lee¹, Leo Ng¹, Jia Yu², Jing Yu², Huiyuan Tang ¹, Bing Han², Weihong Wang¹, Yong Wang¹, Toya Nath Baral¹, Xinhao Wang¹, Jiaguo Li², Weimin Zhu², Qijun Qian², and Wenfeng Xu^{1*}

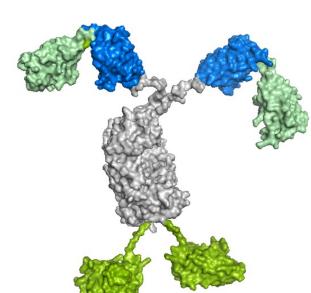
¹Chantibody Therapeutics Inc., Menlo Park, California, USA, ²Shanghai Cell Therapy Group Co., Ltd, Shanghai, China. *Correspondence: wenfeng.xu@chantibody.com

Abstract #976

Introduction


Background: PD-1, CTLA-4, and VEGF are clinically validated targets with complementary roles in suppressing anti-tumor immunity¹. PD-(L)1/VEGF and PD-(L)1/CTLA-4 bispecific antibodies show promising clinical benefits for certain solid tumors, and several on-going studies explore a tri-targeting multi-drug combination approach. Given the avidity and co-operative binding advantages for multispecific antibodies, combining anti-PD-1 (restore effector T cell activity), anti-CTLA-4 (T cell priming/proliferation), and anti-VEGF (inhibit tumor angiogenesis) may provide better biological synergy and clinical benefits. In this study, CT111, our lead PD-1 x CTLA-4 x VEGF trispecific antibody, was characterized to gain mechanistic insights into its functional attributes in synergistically blocking PD-1/CTLA-4-mediated immunosuppression and VEGF-induced tumor angiogenesis.

CT111 is a differentiated PD-1 x CTLA-4 x VEGF trispecific antibody


in the presence of VEGF

CT111 is engineered with balanced potency across three targets to achieve effective engagement and deliver efficacy and safety at a clinically practical dose Relative potency

VEGF > PD-1 ≈ CTLA-4 (Fc-silenced)

VEGF VHH potency is ~4-5x higher than bevacizumab, enabling tri-targeting at clinically relevant exposures at a single dose level* Cooperative VEGF binding significantly increases avidity to PD-1

Fc-silenced IgG1 to deliver checkpoint blockade with

- > Fc-mutations to significantly reduce ADCC/ADCP/CDC
- Lower risk of Fc-mediated irAEs (e.g. colitis, dermatitis, hypophysitis), especially for CTLA-4^{4,5}
- ➤ Target CTLA-4 on Tregs without depletion, preserving peripheral tolerance

TIL subsets (e.g. CD8+ TILs, Treg, T_{RM}, T_{conv})

Intercept transient, rapidly recycled CTLA-4 via high-affinity

Maximize effect in heterogeneous patient TIL pools by engaging PD-1-dominant effector T cells and CTLA-4-dominant Tregs

Potent VEGF blockade that amplifies PD-1/CTLA-4 engagement

and CTLA-4, translating to enhanced ligand blockade and dual

multimerization, which may mitigate aggregation in compartments

Balanced, high-affinity PD-1 and CTLA-4 arms to support dual

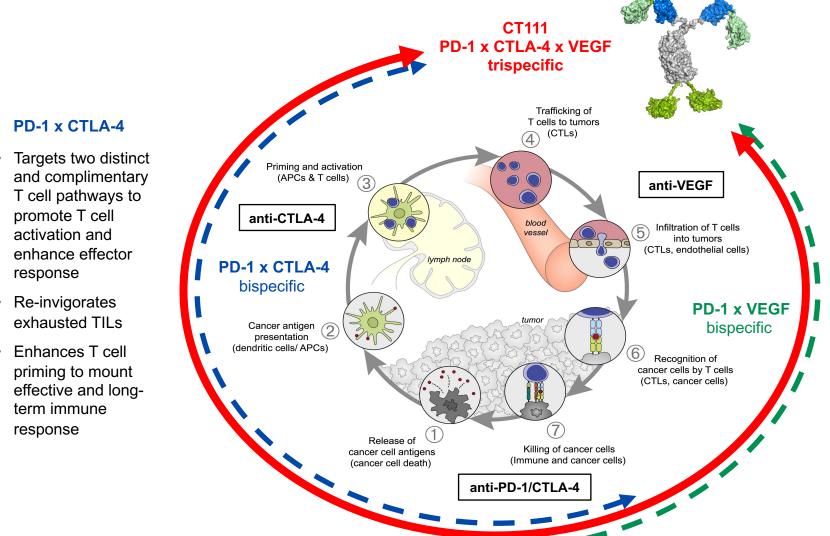
Coverage of single-positive or imbalanced expression across key

CT111 binds VEGF homodimer without higher-order

checkpoint synergy and tolerate target heterogeneity

with high local VEGF concentration^{2,3}

binding and sustained occupancy


Size for manufacturability and tumor penetration

- ➤ All-VHH trispecific homodimer (138 kDa) is significantly smaller and simpler than competitor multispecifics
- Translates to improved manufacturability/developability
- Smaller size may enhance tumor penetration; combined with potent anti-VEGF vascular normalization. CT111 can diffuse more

effectively in the TME * Clinical dosing of bevacizumab is 5-15 mg/kg Q2-3W versus pembrolizumab ~2-3 mg/kg (200 mg Q3W)

CT111 to effectively re-invigorate the cancer immunity cycle

CT111 engages multiple nodes of the cancer-immunity cycle across major T-cell subsets in different compartments

CT111 combines PD-1/CTLA-4 checkpoint blockade with VEGF inhibition

for dual-target synergy via VEGF-driven avidity

· VEGF-driven avidity to enhance anti-PD-1

PD-1 x VEGF

Adds anti-angiogenic

therapy with PD-1

checkpoint inhibition

Re-invigorates PD-1+

exhausted TILs

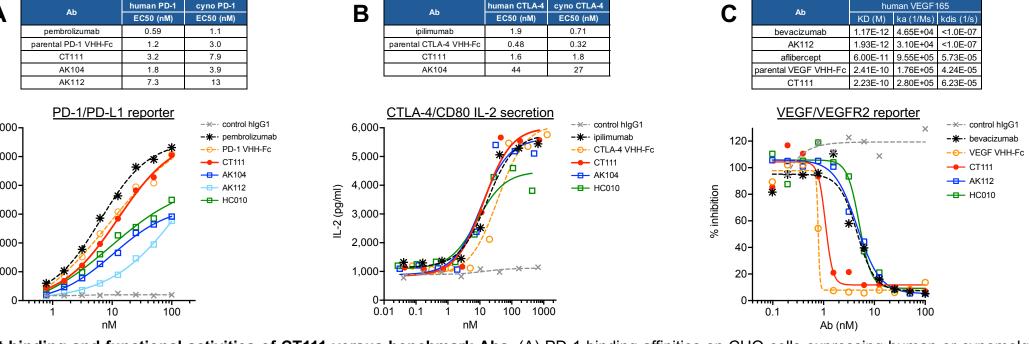
Normalizes tumor

vasculature and

Counters VEGF-

DCs, MDSCs)

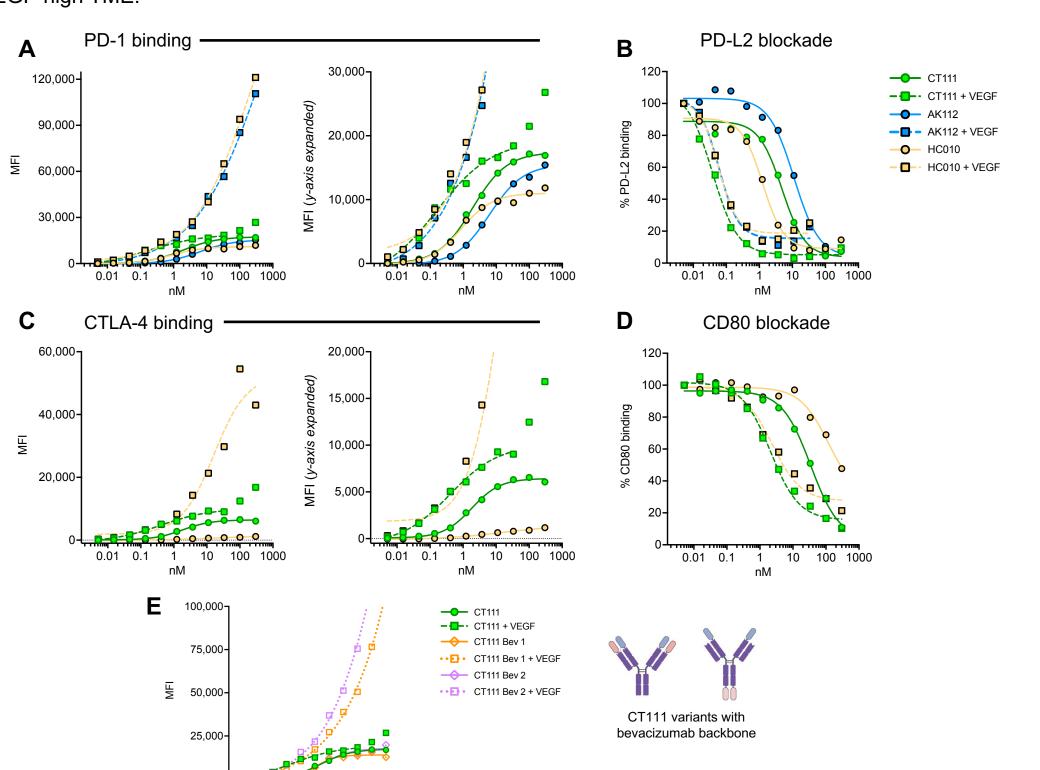
infiltration


promote immune cell

immunosuppression

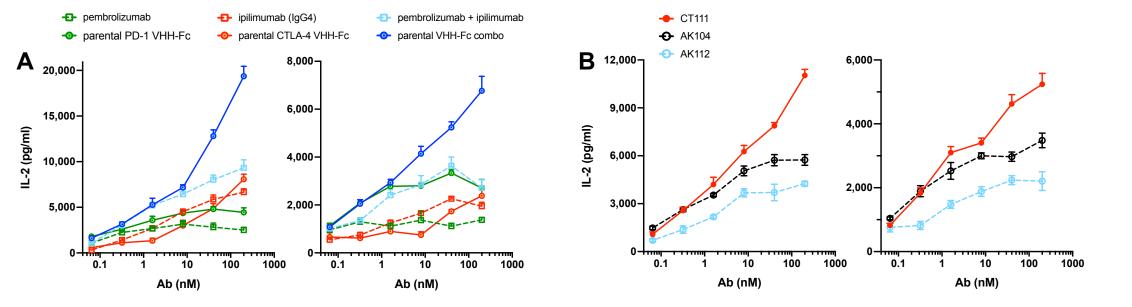
of immune cells (e.g.

CT111 demonstrates potent PD-1, CTLA-4, and VEGF binding and functional activities


- CT111 showed high-affinity binding to human and cynomolgus PD-1, CTLA-4, and VEGF, comparable to clinical benchmark and parental VHH Abs.
- CT111 effectively blocked PD-1/PD-L1 and CTLA-4/CD80 signaling with potencies matching or exceeding clinical competitors in cell-based assays.
- VEGF VHH inhibited VEGF/VEGFR2 signaling ~4-5x more potently than bevacizumab and its multispecific formats (AK112, HC010).

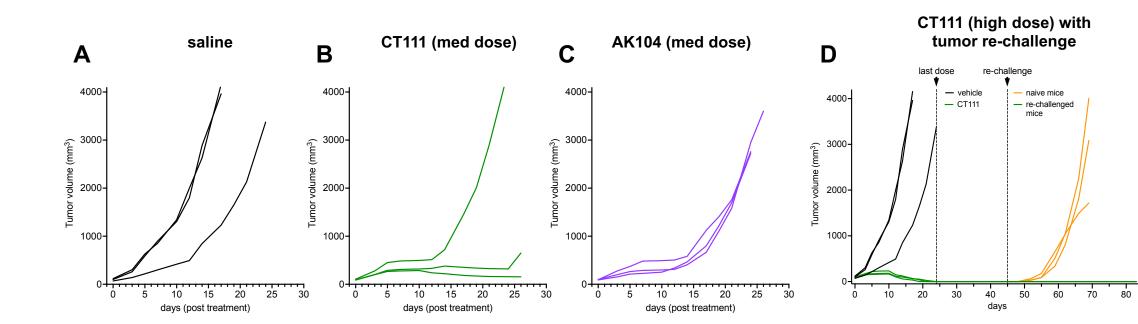
Target binding and functional activities of CT111 versus benchmark Abs. (A) PD-1 binding affinities on CHO cells expressing human or cynomolgus cells. (B) CTLA-4 binding affinities on CHO cells expressing human or cynomolgus CTLA-4. Lower panel: anti-CTLA-4 activity determined by measuring IL-2 secretion in CD80/CD28 co-culture assay with CTLA-4-Fc protein. (C) VEGF kinetics by BLI using the 1:1 fitting model. Lower panel: VEGF-blocking activity measured as inhibition of VEGF/VEGFR2 signaling in NFAT-luciferase reporter cells.

VEGF-driven avidity increases CT111 PD-1 / CTLA-4 engagement and PD-L2 / CD80 blockade


- CT111 complexes with VEGF homodimer and demonstrates strong avidity to PD-1 and CTLA-4 on cells with 12and 5-fold increased affinity, respectively.
- · Avidity translates to enhanced PD-L2 and CD80 inhibition by 129- and 16-fold, respectively.
- The VEGF-binding VHH mediates this avidity, analogous to bevacizumab-based multispecifics, without extensive formation of higher-order Ab/VEGF multimers reported for bevacizumab and related multispecific formats.
- Bevacizumab-based CT111 variants with the same PD-1 and CTLA-4 VHHs showed similarly high, non-saturating cell-surface loading on PD-1 cells.
- CT111 may support VEGF-driven avidity without higher-order aggregation to amplify PD-1/CTLA-4 engagement in VEGF-high TME.

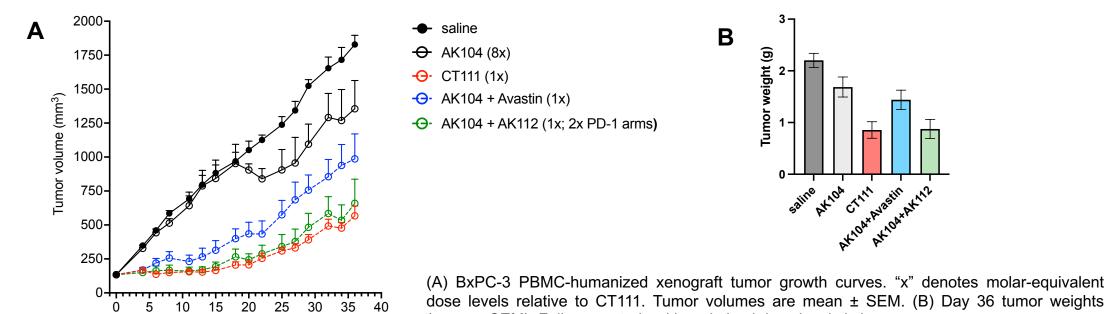
Effect of VEGF pre-complexation on multispecific Ab binding and ligand blockade. (A and C) Binding of CT111 and bevacizumab-based multispecifics with or without pre-complexed VEGF to CHO-PD-1 (A) and CHO-CTLA-4 cells (C). Bevacizumab-based Abs (AK112, HC010) showed much higher, nonsaturating MFI binding than CT111 (left plots), which exhibited markedly lower cell binding capacity (right plots with same data; y-axis magnified). The two highest non-saturating points after initial plateau were excluded from CT111 curve fitting. Pre-complexation with VEGF left-shifts the binding curves for all three Abs, indicating increased apparent affinity (lower EC₅₀). (B and D) Corresponding PD-L2 (B) and CD80 (D) blocking activities on CHO-PD-1 and CHO-CTLA-4 cells, respectively. Note: PD-L1 blocking activity for CT111 is also enhanced in the presence of VEGF (data not shown). (E) Comparison of CT111 versus bevacizumab-based variants, CT111 Bev 1 and CT111 Bev 2 (different optimized designs illustrated). Similar non-saturating, high MFI cell-surface binding on CHO-PD-1 cells were observed at higher Ab/VEGF concentrations in contrast to CT111.

CT111 demonstrates superior potency over AK104 and AK112 in primary immune assays


- CT111's component PD-1 and CTLA-4 VHHs, when combined, showed greater synergistic IL-2 secretion than pembrolizumab + ipilimumab combination in SEB-stimulated human PBMCs across donors.
- CT111 induced stronger IL-2 secretion than AK104 or AK112, demonstrating superior dual-checkpoint activity.

SEB-induced IL-2 production in human PBMCs. Human PBMCs from healthy donors were stimulated with SEB for 5 days in the presence of: (A) mono-targeting PD-1 and CTLA-4 Abs as single agents or as combination (CT111 parental VHHs vs pembrolizumab and ipilimumab IgG4 surrogate), or (B) multispecific Abs (CT111 vs clinical-grade AK104 and AK112). IL-2 in culture supernatants was measured as a functional readout for anti-PD-1/CTLA-4 synergy. Two representative donors, Donor 1 (*left*) and Donor 2 (*right*), are shown for panels (A) and (B).

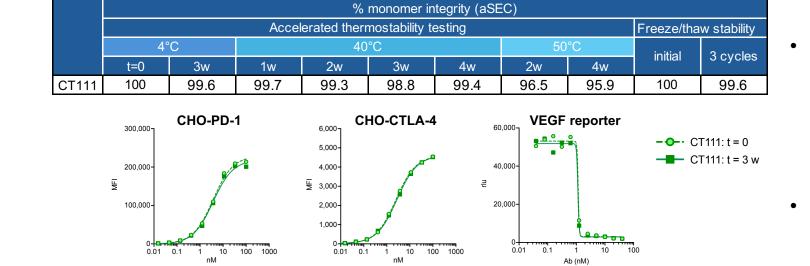
CT111 outperforms AK104 and drives complete regression with durable memory


- CT111 anti-PD-1/CTLA-4 activity was evaluated in a syngeneic model validated for dual-checkpoint activity (VEGF arm is non-functional in this model)
- In this pilot dose-finding study, CT111 showed dose-response activity (medium and high shown) with potent tumor regression. Superior activity in vivo was observed compared to AK104 at equivalent medium dose.
- CT111-A at high dose achieved complete responses in 3/3 mice for up to 3 weeks and complete rejection upon tumor re-challenge without treatment (Day 83). No significant body weight loss was observed for all groups, indicating good tolerability at tested doses (data not shown).

Individual tumor growth curves showing anti-PD-1/CTLA-4 activity in a syngeneic mouse model. Transgenic BALB/c-hPD-1/hPD-L1/hCTLA-4 mice bearing CT26-PD-L1 tumors were treated twice weekly (BIW, i.p.; n=3/group) with (A) saline, (B) CT111 at medium dose, or (C) AK104 (molar equivalent dose). (D) High-dose CT111 induced complete responses in 3/3 mice by Day 19-24 (final dose). After 3 weeks of no visible tumor re-growth, mice were re-challenged on the contralateral flank. Naive transgenic mice served as tumor-growth controls.

CT111 demonstrates strong antitumor activity versus clinical bispecific combinations in the PBMC-humanized BxPC-3 model

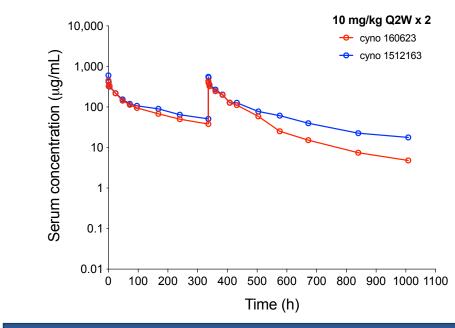
- CT111 was compared with tri-targeting clinical combinations, AK104+bevacizumab and AK104+AK112, in a pilot dose-finding study in the BxPC-3 PBMC-humanized xenograft (pancreatic adenocarcinoma; VEGF arm is
- CT111 showed strong anti-tumor activity, comparable to AK104+AK112 at 1x molar dose for CTLA-4 and VEGF and 2x for the PD-1 arms of AK104 and AK112, and outperformed AK104+bevacizumab at arm-matched molar dosing.
- As a single tri-targeting agent, CT111 showed equivalent or better anti-tumor activity than the clinical bispecific combinations. A follow-up study is in progress.


days (post treatment)

(mean ± SEM). Follow-up study with optimized dose levels is in progress

CT111 shows scalable high titer, yielding pure, stable, developable product

- CT111 showed excellent manufacturability with high expression titers (~3g/L) and high purity recovery.
- Formulation was optimized, and final material exhibited no apparent production liabilities.



- CT111 showed no degradation or aggregation after 4 weeks at 40°C or 50°C with intact PD-1 and CTLA-4 binding on CHO cells and VEGF-reporter activity after 3weeks at 40°C.
- CT111 was stable after three freeze-thaw cycles.

CT111 shows favorable PK profiles in cynomolgus monkeys

- CT111 exhibited IgG-like PK profiles at 10 mg/kg on repeat dosing in cynomolgus monkeys, with terminal half-lives ~8 days. Cmax were comparable across both doses indicating no accumulation.
- No ADA was detected in the two animals up to Day 42 (end of study).

Animal ID	Terminal t1/2 (day)	Dose	Cmax (µg/mL)	AUC(0-14d) (day*µg/mL)
160623	8.4	1	449	1283
		2	398	924
1512163	8.6	1	601	1471
		2	505	1133

Serum concentration-time profiles of CT111 in non-ADA positive male cynomolgumonkeys following administration of two IV doses of 10 mg/kg given 14 days apart Individual PK profiles are shown (n=2 animals) with summarized PK parameters.

Conclusion

- CT111 is a potential best-in-class PD-1 x CTLA-4 x VEGF trispecific with differentiated mechanisms of action and balanced activities at a single optimized dose to effectively restore priming, lift T-cell exhaustion, and normalize the tumor vasculature, while avoiding Fc-mediated toxicity.
- Cumulative data⁶ demonstrate key attributes for CT111:
 - Matched high-affinity binding to all three targets with potent ligand blockade (cell-based) competition and reporter assays), simultaneous target engagement (BLI6, VEGF-driven binding and blocking avidity to PD-1/CTLA-4), and translationally concordant cyno cross-reactivity
- VEGF VHH is ~4-5x more potent than bevacizumab. Engages the VEGF homodimer to increase PD-1 and CTLA-4 binding, with concordant enhancement of PD-L1/PD-L2 and CD80 blockade, without higher-order multimeric aggregation. CT111 is uniquely differentiated from bevacizumabbased multispecifics and is designed for balanced tri-target engagement.
- Potent, matched PD-1 and CTLA-4 activities with greater dual-checkpoint synergy in the SEB assay and PD-1/CTLA-4 transgenic tumor model compared to AK104. Achieves complete responses and durable tumor immunity on re-challenge, consistent with CTLA-4 role in priming and memory, with potential for longer-term benefit than PD-(L)1 x VEGF bispecifics.
- Stronger anti-tumor activity than AK104 and AK112 across different models⁶. In the HCC827 model, CT111 increased effector T cell infiltration/activation (CD137, CD103) and decreased intratumoral Tregs compared to AK112⁶.
- IgG-like disposition and adequate systemic exposure in cynomolgus monkeys for IND-enabling toxicology study
- Excellent manufacturability and developability traits: single-plasmid construct, high expression titer, streamlined purification, and high purity as demonstrated in two 1L transient scale-up productions
- As drug product, CT111 is highly thermostable in 4-week studies at 40°C and 50°C. No changes were observed after three freeze-thaw cycles.
- CT111 has advanced into CMC and IND-enabling phases.

References

3. Rudge JS, et al. Proc Natl Acad Sci U S A. 2007 Nov 13;10(47):18363–18370.

2. MacDonald DA, et al. Angiogenesis. 2016 Jul;19(3):389-406.

5. Iwama S, et al. Sci Transl Med. 2014 Apr 2;6(230):230ra45.

4. Bauche D, et al. J Immunother Cancer. 2020 Oct;8(2):e001584.

6. Lee J, et al. Cancer Research. 2025;85(8 Suppl 1)Abstract nr 6068.

1. Chen DS. & Mellman I. Immunity. 2013 Jul 25;39(1):1-10.

Further information Scan the QR code to download an electronic version of this and other Chantibody presentations.

Copies of this e-poster or associated supplementary materials obtained through QR codes are for personal use only and may not be reproduced without written permission of the

Contact email: wenfeng.xu@chantibody.com

Cancer-immunity cycle by Mellman et al., 20131

PD-1 x CTLA-4

and complimentary

T cell pathways to

promote T cell

enhance effector

activation and

response

Re-invigorates

exhausted TILs

priming to mount

Enhances T cell

term immune