CT111, a novel trispecific PD-1 x CTLA-4 x VEGF single-domain antibody, synergistically targets exhausted T cells and promotes cooperative antitumor effects John Lee¹, Huiyuan Tang¹, Jia Yu², Weihong Wang¹, Leo Ng¹, Jing Yu², Yong Wang¹, Toya Nath Baral¹, Jiaguo Li², Xinhao Wang¹, Weimin Zhu², Qijun Qian², and Wenfeng Xu¹ ¹Chantibody Therapeutics Inc., Menlo Park, California, USA. ²Shanghai Cell Therapy Group Co., Ltd, Shanghai, China Poster 6068 #### Introduction **Background:** Dual PD-1 and CTLA-4 targeting immunotherapy shows enhanced therapeutic efficacy and is approved across multiple advanced solid tumor indications. In recent clinical trials, combined treatment of anti-PD-(L)1 with anti-VEGF have also been shown to improve clinical outcomes and overcome treatment resistance to either drugs alone. Bispecific antibodies targeting PD-(L)1/CTLA-4 and PD-(L)1/VEGF synergistically potentiates antitumor activity in preclinical models, and more recently, demonstrated enhanced clinical efficacy and tolerability. We developed a de novo, multi-targeting PD-1 x CTLA-4 x VEGF single domain trispecific antibody, CT111, with enhanced synergistic anti-tumor activity by combining the effects of dual immune checkpoint and VEGF blockade. ## CT111 is a Novel VHH-based Trispecific Antibody Against Three Clinically-Validated Targets MOA design for CT111 is to effectively block and re-invigorate multiple anti-tumor processes within the cancer-immunity cycle as a single efficacious therapeutic. #### **Development of CT111** Ab discovery campaigns VHHMAb® platform trispecific designs anti-PD-1 VHHs top functional VHHs selected anti-CTLA-4 VHHs Ab structure linker design anti-VEGF VHHs | | | CT111 | |--|-----------|--| | | Structure | Comprises novel humanized PD-1, CTLA-4 and VEGF VHH hits selected for strong functional activities, low immunogenicity, absence of potential sequence liabilities, and optimal biophysical properties IgG1 Fc backbone with mutations to remove effector functions Bivalent design for each target Linker optimized Homodimer Ab for ease of manufacturing | | | Traits | High binding affinities and blocking activities against each target (comparable or superior to clinical BMKs) Leads selected based on in vitro functional cell-based assays vs BMKs High expression and optimal developability Top CT111 leads selected from 52 designs | ### **CT111** is Highly Differentiated with: ### 1. Unique and More Potent Anti-VEGF Blocker Anti-VEGF synergizes with PD-(L)1 inhibition to significantly enhance clinical efficacy. To our knowledge, current anti-VEGF bi/trispecifics, such as AK112, HC010, CS2009, and others in clinical development, incorporate bevacizumab's Fab domain. In contrast, our anti-VEGF VHH is unique and functionally more potent. This may translate to better VEGF inhibition as demonstrated in the HCC827 tumor model compared to AK112. ### 2. CTLA-4 and PD-1 Synergy Clinical data strongly supports rationale for synergistically combining anti-PD-(L)1 and anti-CTLA-4 especially as a multispecific Ab, such as cadonilimab (AK104) for certain tumor indications. CT111 comprises novel and highly functional anti-PD1 and anti-CTLA-4 VHHs that are equivalent or superior to clinical BMKs as demonstrated in immune cell assays that are sensitive to PD-1 and CTLA-4 inhibition. ### 3. Smaller Multispecific Antibody Size CT111 as a VHH-based Ab is significantly smaller than Fab- or scFv-based Abs (VHH being 70% and 40% smaller as antigen-binding units, respectively). In totality as a bivalent trispecific, CT111 (140 kDa) is significantly smaller than AK104/AK112 bispecific (200 kDa) and PD-1xCTLA-4xVEGF trispecifics, HC010 (230 kDa) and CS2009 (200 kDa). This could lead to improved tumor penetration, enhanced by anti-VEGF-mediated vascular normalization, allowing for deeper diffusion and more effective therapeutic efficacy. ## **CT111 Exhibits Strong Binding Affinity to Human and Cynomolgus IO Targets** # **CT111** Binds Sequentially and **Maintains Binding to All Three Targets** CT111-A binds sequentially to all three targets, indicating that the trispecific antibody can engage all targets simultaneously. as well as VHH-Fc mAbs from which binders were derived, # CT111 Binds to CHO Human and Cyno PD-1 and CTLA-4 Cells Both CT111-A and -B at high dose showed superior anti-tumor efficacy compared to AK104 (5x dose) and AK112 (1x dose). CT111 at 1/4th lower dose levels were equivalent to AK112. No significant BWL observed. # CT111 Effectively Blocks PD-1, CTLA-4, and VEGF Mediated Interactions Compared to Benchmark Antibodies in Cell-Based Assays ### CT111 Shows Superior Functional Activity in Primary Immune Assays CT111 mediates potent IL-2 secretion compared to AK104 across multiple donors in these assays. HCC827 treatment groups. (D) Representative FACS profiles for each treatment group are shown. (E) Percent Tregs within CD4⁺ T cell population, and (F) CD8+/Treg ratio are shown as mean ± SEM (n=4). * = p< 0.05, one-way ANOVA Tukey test # **CT111 Possesses Excellent Developability Characteristics** #### **Analytical SEC** Stability Polyreactivity Monomer (%) LMW species (%) Tm (°C) **BVP** score 2.85 62.2 CT111-A 99.37 Accelerated Freeze-Thaw Stability (40°C) * Recovery (3 cycles) * Mouse/Human (1 week, 37°C) CT111-A 102% recovered >97% intact Ab recovered Accelerated stability at 40°C and freeze-thaw Ab stability was measured by determining % recovery of monomer species by analytical SEC. Plasma stability was assessed by incubating CT111-A in mouse and human plasma for 1 week at 37°C. Intact trispecific was determined by ELISA ligand bridging assay. # CT111 Leads Exhibit Favorable PK in BALB/c Mice ➡ AK104 CT111-A ◆ CT111-B - CT111 is a novel VHH trispecific Ab that simultaneously and effectively targets PD-1, CTLA-4 and VEGF-A with high binding affinities to block cognate ligand interactions. Unlike VEGF-targeting multispecifics that is based on bevacizumab (e.g. AK112, HC010, CS2009), CT111 contains a more potent, de-novo anti-VEGF blocker. - CT111 shows potent activity against PD-1 and CTLA-4 to reverse exhaustion and promote T cell activation in primary immune cell assays, and to block VEGF-mediated signaling. - CT111 shows good biophysical attributes and developability with favorable PK in mice. - CT111 shows superior anti-tumor activity compared to AK104 and AK112 in the HCC827 humanized tumor model. Post analysis shows increased CD8⁺ T cell infiltration and activation in tumors. - Compared to AK112, CT111 shows unique attributes in decreasing Treg infiltration, similar to 5-fold molar excess of AK104, suggesting a role for targeting CTLA-4. Further investigation is in progress. - The data presented here demonstrate that CT111 is a unique, best-in-class PD-1 x CTLA-4 x VEGF IOtargeting trispecific antibody, making it a promising candidate for the treatment of solid tumors. INDenabling studies are currently in progress. - Scan QR code to download an electronic version of this and other Chantibody presentations - Contact email: wenfeng.xu@chantibody.com # CT111 Mediates Increased CD8⁺ T Cell Infiltration, Activation, and Decreased Intratumoral Treg Accumulation CT111 Demonstrates Superior Anti-Tumor Activity Compared to AK104 and AK112 in the HCC827 NSCLC HSC Humanized Tumor Model → AK104 high (14.5 mg/kg) 5x^{**} 1000- 800- 600- CD25 (PE) - ► AK112 *high* (14.7 mg/kg; 2.9 mg/kg) **1x*** CT111-A low (3 mg/kg; 0.5 mg/kg) 0.25x • CT111-B low (3 mg/kg; 0.5 mg/kg) **0.25x** CT111-B high (10 mg/kg; 2.0 mg/kg) 1x HCC827 tumors for the efficacy study were collected and processed for single cell FACS analysis to quantify absolute cell numbers of (A) intratumoral hCD8+ T cells, (B) activated CD103⁺/CD8⁺, and **(C)** CD137⁺/CD8⁺ T cells using absolute counting beads. Data is reported as mean \pm SEM (n=4). CT111-A at 1x dose mediated increased number of activated CD8+ TILs compared to vehicle and AK112-treated tumors. Increased CD8+ TIL infiltration was similarly observed with PD-1/CTLA-4 AK104 at 5x dose. # Conclusions