

PROJECT	2022.0193 – Angiography Room	DATE 5/31/2022	by CL

Equipment Support

Anchorage:

Per ACI 318-14 17.2.3.4 where the seismic component of the strength level earthquake force applied to a single anchor or group of anchors is equal to or less than 20 percent of the total factored anchor force associated with the same load combination, overstrength is not required. If required, overstrength only applies to the horizontal component per ACI 318-14 and ASCE 7-16.

Per the Non-Structural Component Seismic Forces:

Fp_coeff=0.260

Based on the load combination 1.2D+Ev+Eh+L and assuming the total equipment load acts as a live load the seismic force would be larger than 20% of the factored load (assuming entire equipment load on one anchor group). Therefor, overstrength applies.

Hilti Option:

Hilti Kwik bolt TZ

Decise perometer	Sumbol	Unite						Anchor	Diameter	·				
Design parameter	Symbol	Units	1/4	1/4 3/8				1/2				/8	3/4	
Effective min. embedment ¹	h _{ef}	in.	1-1/2	1-1/2	2	2-1/2	1-1/2	2	2-1/2	3-1/4	2-3/4	4	3-1/4	3-3/4 ⁹
Minimum hole depth	ho	in.	2	2	2-3/4	3-1/4	2-1/4	2-3/4	3-1/4	4-1/4	3-3/4	4-3/4	4-1/4	4-3/4
	Loads According to Figure 5A													
Minimum concrete thickness over upper flute 4	h _{min,deck}	in.	2-1/2		2-1/2			2-1	/2		2-	1/2	2-1/2	3-1/4
Pullout strength, uncracked concrete 5,6	N _{p,deck,uncr}	lb	1,725	1,855	2,625	2,995	1,855	2,750	3,745	4,715	4,415	5,815	3,800	4,795
Pullout strength, cracked concrete 5,6	Np,deck,or	lb	515	1,625	2,295	2,405	1,650	2,135	3,275	3,340	3,930	4,395	3,325	3,730
Pullout strength, seismic ^{5,7}	N _{p,deck,eq}	lb	515	1,625	2,295	2,405	1,650	2,135	3,275	3,340	3,930	4,395	3,325	3,730
Steel strength in shear ⁸	Vsa,deck	lb	1,630	1,355	2,120	2,120	1,790	2,260	3,555	4,345	3,815	6,150	4,085	7,865
Steel strength in shear, seismic 7	V _{sa,deck,eq}	lb	1,630	1,355	2,120	2,120	1,790	2,260	3,555	4,345	3,815	6,150	4,085	7,865

TABLE 8—HILTI KB-TZ2 CARBON STEEL ANCHORS TENSION AND SHEAR DESIGN DATA FOR INSTALLATION IN THE SOFFIT OF 3000 PSI, LIGHTWEIGHT CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES FOR HAMMER AND CORE DRILLED INSTALLATIONS ^{1,2,3}

PROJECT DATE 5/31/2022 BY CL 2022.0193 - Angiography Room **Equipment Support** Simpson option: Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry SIMPSON Strong-Bolt[®] 2 Design Information — Concrete Strong-Tie Carbon-Steel Strong-Bolt 2 Tension and Shear Strength Design Data IBC for the Soffit of Concrete over Steel Deck Floor and Roof Assemblies^{1,2,6,8,9} Nominal Anchor Diameter (in.) **Carbon Steel** Units Characteristic Symbol Lower Flute **Upper Flute** 3% 1⁄2 5% 3/4 3‰ h_{nom} 2 2 Nominal Embedment Depth in. 33% 23/4 41/2 33% 5% 41/2 2¾ h_{ef} 3 5 21⁄4 Effective Embedment Depth in. 1% 21/4 4 23/4 3% 1% Installation Torque Tinst ft.-lbf. 30 60 90 150 30 60 lb. 1,0407 2,6157 2.0407 3.6457 2.6157 Pullout Strength, concrete on steel deck (cracked)^{3,4} N_{p,deck,cr} 4.990 2.8157 1.3407 3.7857 3,1507 2,5807 3,8407 3,6857 6,5657 3,8007 Pullout Strength, concrete on steel deck (uncracked)3,4 N_{p.deck.uncr} lb. 1.765 2.2757 4.7957 Pullout Strength, concrete on steel deck (seismic)^{3,4} N_{p.deck.ea} lb. 1,0407 2,6157 2,0407 3,6457 2,6157 4,9907 2,8157 1,3407 3,7857 1,595 3,490 2,135 4,580 2,640 7,000 4,535 3,545 5,920 Steel Strength in Shear, concrete on steel deck5 V_{sa,deck} lb. Steel Strength in Shear, concrete on steel deck 3,690 3,490 1,920 2,375 6.300 3 5 4 5 5,330 Vsa,deck,eq lh. 1.595 4.120 (seismic)5

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17

or ACI 318-11 Appendix D, except as modified below.

 The steel deck profile must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi.

A seismic reduction of 75% is applied to the capacities per ACI. The smaller of the two brands is chosen (Note, 2"-*2.1/4" embed is chosen although actual will be greater. Embed based on 6Hef spacing requirement)

Phi_Vn=1920lbs*0.75=1440.000lbs

Phi_Nn=2040lbs*0.75=1530.000lbs

Number of Anchors N=4 Phi_Nn_group=Phi_Vn*N=**5760.000**lbs Phi_Vn_group= Phi_Nn*N=**6120.000**lbs

LRFD worst case loads

Overstrength=2

Vua=max(Overstrength*Equipment*Fp_coeff,1000lbs)=1000.000lbs

Nua=(max(Equipment+Overstrength*Equipment*Fp_coeff+0.2*SDS*Equipment,Dynamic_Equipment))=1597.841lbs

Combined Result per ACI 17.6.3 (Combined <1.2 is pass):

Result=Nua/Phi_Nn_group+Vua/Phi_Vn_group=0.441

Less than 1.2 so the anchor is okay for the demands.

PROJECT	2022.0193 – Angiography Room	DATE 5/31/2022	BY	CL	
---------	------------------------------	----------------	----	----	--

Equipment Support

Unistrut Support:

2 P1000T are provided at the top. P9000 and P9200 telestruts are the vertical hangers. P5501 or P1001 are finish rails. P1000 or P5501 are lash rails with P9000 or P1000 diagonal braces.

P1000/P1001 - ELEMENTS OF SECTION

Parameter	P100	0	P1001		
Area of Section	0.555	ln ²	1.111	ln ²	
Axis 1-1					
Moment of Inertia (I)	0.185	In ⁴	0.928	ln4	
Section Modulus (S)	0.202	ln ³	0.571	ln ³	
Radius of Gyration (r)	0.577	In	0.914	In	
Axis 2-2					
Moment of Inertia (I)	0.236	ln⁴	0.471	ln⁴	
Section Modulus (S)	0.290	ln ³	0.580	ln ³	
Radius of Gyration (r)	0.651	In	0.651	In	

P1000_Area=0.555in^2

P1000_lx=0.185in^4

P1000_Sx=0.202in^3

P1000_rx=0.577in

P1000_ly=0.236in^4

P1000_Sy=0.290in^3 P1000_ry=0.651in

Allowable moment:

P1000_Ma=5070lbs_in

P1001_Area=1.111in^2 P1001_Ix=0.928in^4 P1001_Sx=0.571in^3 P1001_rx=0.914in P1001_Iy=0.471in^4 P1001_Sy=0.580in^3 P1001_ry=0.651in

Allowable moment: P1001_Ma=14360lbs_in

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

by CL

Equipment Support

P5000/P5001 - ELEMENTS OF SECTION

Parameter	P50	00	P50	01
	0.897	ln ²	1.793	ln ²
Moment of Inertia (I)	1.098	ln ⁴	6.227	ln⁴
Section Modulus (S)	0.627	ln ³	1.916	ln ³
Radius of Gyration (r)	1.107	In	1.864	In
Moment of Inertia (I)	0.433	ln ⁴	0.866	ln⁴
Section Modulus (S)	0.533	ln ³	1.066	ln ³
Radius of Gyration (r)	0.695	In	0.695	In
	Parameter Moment of Inertia (I) Section Modulus (S) Radius of Gyration (r) Moment of Inertia (I) Section Modulus (S) Radius of Gyration (r)	ParameterP500.897Moment of Inertia (I)1.098Section Modulus (S)0.627Radius of Gyration (r)1.107Moment of Inertia (I)0.433Section Modulus (S)0.533Radius of Gyration (r)0.695	ParameterP50000.897In2Moment of Inertia (I)1.098Section Modulus (S)0.627In3Radius of Gyration (r)1.107InMoment of Inertia (I)0.433In4Section Modulus (S)Section Modulus (S)0.533In3Radius of Gyration (r)Radius of Gyration (r)0.695	Parameter P5000 P50 0.897 In² 1.793 Moment of Inertia (I) 1.098 In ⁴ 6.227 Section Modulus (S) 0.627 In³ 1.916 Radius of Gyration (r) 1.107 In 1.864 Moment of Inertia (I) 0.433 In ⁴ 0.866 Section Modulus (S) 0.533 In³ 1.066 Radius of Gyration (r) 0.695 In 0.695

P5000_Area=0.897in^2

P5000_lx=1.098in^4 P5000_Sx=0.627in^3 P5000_rx=1.107in P5000_ly=0.433in^4 P5000_Sy=0.533in^3 P5000_ry=0.695in

Allowable moment:

P5000_Ma=15770lbs_in

P5001_Area=1.793in^2 P5001_Ix=6.227in^4 P5001_Sx=1.916in^3 P5001_rx=1.864in P5001_Iy=0.866in^4 P5001_Sy=1.066in^3 P5001_ry=0.695in

Allowable moment: P5001_Ma=48180lbs_in

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

BY CL

Equipment Support

P5500/P5501 - ELEMENTS OF SECTION

F	Parameter	P55	00	P5501		
Area of Section		0.726	ln ²	1.452	ln ²	
Axis 1-1						
	Moment of Inertia (I)	0.522	ln ⁴	2.805	ln⁴	
	Section Modulus (S)	0.390	ln ³	1.151	ln ³	
	Radius of Gyration (r)	0.848	In	1.390	In	
Axis 2-2						
	Moment of Inertia (I)	0.334	ln ⁴	0.669	ln⁴	
	Section Modulus (S)	0.411	ln ³	0.823	ln ³	
	Radius of Gyration (r)	0.679	In	0.679	In	

P5500_Area=0.726in^2

P5500_lx=0.522in^4 P5500_Sx=0.390in^3 P5500_rx=0.848in P5500_ly=0.334in^4 P5500_Sy=0.411in^3 P5500_ry=0.679in

Allowable moment:

P5500_Ma=9820lbs_in

P5501_Area=1.452in^2 P5501_Ix=2.805in^4 P5501_Sx=1.151in^3 P5501_rx=1.390in P5501_Iy=0.669in^4 P5501_Sy=0.823in^3 P5501_ry=0.679in

Allowable moment: P5501_Ma=28940lbs_in

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

BY CL

Equipment Support

P9000/P9200 - ELEMENTS OF SECTION

P	arameter	P90	00	P92	00
Area of Section		0.387	ln ²	0.489	ln ²
Axis 1-1					
	Moment of Inertia (I)	0.166	ln ⁴	0.279	In ⁴
	Section Modulus (S)	0.205	ln ³	0.297	ln ³
	Radius of Gyration (r)	0.655	In	0.755	In
Axis 2-2					
	Moment of Inertia (I)	0.166	ln ⁴	0.279	In ⁴
	Section Modulus (S)	0.205	ln ³	0.297	ln ³
	Radius of Gyration (r)	0.655	In	0.755	In

P9000_Area=0.387in^2 P9000_Ix=0.166in^4

P9000_Sx=0.205in^3 P9000_rx=0.655in P9000_ly=0.166in^4 P9000_Sy=0.205in^3 P9000_ry=0.655in

Allowable moment:

P9000_Ma=5150lbs_in

P9200_Area=0.489in^2 P9200_Ix=0.279in^4 P9200_Sx=0.297in^3 P9200_rx=0.755in P9200_Iy=0.279in^4

P9200_Sy=0.297in^3 P9200_ry=0.755in

Allowable moment: P9200_Ma=7480lbs_in

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

by CL

Equipment Support

For table values, apply beam conversion factors per Unistrut:

CONVERSION FACTORS FOR BEAMS WITH VARIOUS STATIC LOADING CONDITIONS

All Beam Load tables are for single-span (simple) beams supported at the ends. These can be used in the majority of the cases. However, there are times when it is necessary to know what happens with other loading and support conditions. Some common arrangements are shown below. Simply multiply the values from the Beam Load tables by factors given below

Load and Support Condition	Load Factor	Deflection Factor
1. Simple Beam,	1.00	1.00
2. Simple Beam, Concentrated Load at Center	.50	.80
3. Simple Beam, Two Equal Concentrated Loadcs at 1/4 pts	1.00	1.10
4. Beam Fixed at Both Ends, Uniform Load	1.50	.30
5. Beam Fixed at Both Ends, Concentrated Load at Center	1.00	.40
6. Cantilever Beam, Uniform Load	.25	2.40
7. Cantilever Beam, Concentrated Load at End	.12	3.20
8. Continuous Beam, Two Equal Spans, Uniform Load on One Span	1.30	.92
9. Continuous Beam, Two Equal Spans, Uniform Load on Both Ends	1.00	.42
10. Continuous Beam, Two Equal Spans, Concentrated Load at Center of One Span	.62	.71
11. Continuous Beam, Two Equal Spans,	.67	.48

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

^{by} CL

Equipment Support

LATERAL BRACING LOAD REDUCTION CHARTS

Sp	an					Sing	le Cha	nnel									Doul	ole Cha	annel				
Ft. (m)	In. (cm)	P1000	P1100	P2000	P3000	P3300	P4000	P4100	P4400	P4520	P5000	P5500	P1001	P1101	P2001	P3001	P3301	P4001	P4101	P4401	P4521	P5001	P5501
2 (0.61)	24 (61)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3 (0.91)	36 (91)	0.94	0.89	0.88	0.96	1.00	0.94	0.98	1.00	1.00	0.85	0.89	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4 (1.22)	48 (122)	0.88	0.78	0.75	0.91	1.00	0.88	0.94	0.98	1.00	0.70	0.77	1.00	0.98	0.98	1.00	1.00	0.98	1.00	1.00	1.00	0.97	0.98
5 (1.52)	60 (152)	0.82	0.68	0.61	0.88	0.98	0.83	0.91	0.96	1.00	0.55	0.67	0.97	0.93	0.92	0.98	1.00	0.93	0.96	1.00	1.00	0.90	0.93
6 (1.83)	72 (183)	0.78	0.59	0.48	0.84	0.97	0.79	0.89	0.94	0.98	0.44	0.58	0.93	0.87	0.85	0.95	0.97	0.88	0.92	0.97	0.97	0.83	0.87
7 (2.13)	84 (213)	0.75	0.52	0.41	0.82	0.96	0.75	0.86	0.92	0.97	0.38	0.51	0.89	0.82	0.78	0.92	0.95	0.83	0.89	0.95	0.95	0.76	0.81
8 (2.44)	96 (244)	0.71	0.47	0.35	0.79	0.94	0.72	0.84	0.91	0.96	0.33	0.46	0.85	0.76	0.71	0.88	0.92	0.79	0.85	0.92	0.92	0.68	0.76
9 (2.74)	108 (274)	0.69	0.43	0.32	0.77	0.93	0.69	0.82	0.89	0.95	0.30	0.42	0.81	0.70	0.64	0.85	0.90	0.74	0.81	0.90	0.90	0.61	0.70
10 (3.05)	120 (305)	0.66	0.40	0.29	0.75	0.92	0.66	0.80	0.87	0.94	0.28	0.40	0.78	0.65	0.57	0.82	0.87	0.69	0.78	0.87	0.87	0.54	0.64
12 (3.66)	144 (366)	0.61	0.36	0.25	0.70	0.89	0.60	0.76	0.84	0.91	0.24	0.36	0.70	0.54	0.45	0.76	0.82	0.60	0.71	0.82	0.83	0.43	0.53
14 (4.27)	168 (427)	0.55	0.32	0.23	0.66	0.86	0.55	0.73	0.81	0.89	0.22	0.32	0.63	0.45	0.38	0.70	0.78	0.51	0.64	0.77	0.78	0.35	0.45
16 (4.88)	192 (488)	0.51	0.30	0.21	0.62	0.84	0.50	0.69	0.78	0.87	0.21	0.30	0.56	0.39	0.32	0.64	0.73	0.44	0.57	0.72	0.73	0.30	0.39
18 (5.49)	216 (549)	0.47	0.28	0.19	0.58	0.81	0.47	0.65	0.75	0.84	0.19	0.28	0.49	0.34	0.28	0.58	0.68	0.39	0.50	0.67	0.68	0.27	0.34
20 (6.10)	240 (610)	0 44	0.26	0.18	0.54	0.78	0.43	0.61	0.72	0.82	0.18	0.26	0.44	0.31	0.25	0.52	0.63	0.35	0.45	0.62	0.63	0.24	0.30

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

BY CL

Equipment Support

CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH

Channel	Area In² <i>(cm²)</i>	Weight lbs/ft <i>(kg/m)</i>	l In⁴ <i>(cm⁴)</i>	s In³(cm³)	Allow. Moment In-Ibs <i>(N•m)</i>
D5001	1.793	6.10	6.227	1.916	48,180
P0001	11.57	9.1	259.2	31.4	5,440
D1004A	1.965	6.68	4.068	1.669	41,980
P1004A	12.68	9.9	169.3	27.4	4,740
D5501	1.452	4.94	2.805	1.151	28,940
F0001	9.37	7.3	116.8	18.9	3,270
P1001C41	2.221	7.55	1.856	1.142	28,720
F1001C41	14.33	11.2	77.2	18.7	3,250
P5000	0.897	3.05	1.098	0.627	15,770
F3000	5.78	4.5	45.7	10.3	1,780
P1001	1.111	3.78	0.928	0.571	14,360
FIUUT	7.16	5.6	38.6	9.4	1,620
D1101	0.835	2.84	0.733	0.451	11,340
FIIVI	5.39	4.2	30.5	7.4	1,280
P3001	1.000	3.40	0.591	0.430	10,810
F 300 T	6.45	5.1	24.6	7.0	1,220
P5500	0.726	2.47	0.522	0.390	9,820
F 3300	4.68	3.7	21.7	6.4	1,110
P2001	0.684	2.32	0.618	0.381	9,570
F2001	4.41	3.5	25.7	6.2	1,080
P 0200	0.489	2.23	0.279	0.297	7,480
F 9200	3.16	3.3	11.6	4.9	850
P4401	0.849	5.77	0.26	0.26	6,410
14401	5.48	8.5	10.6	4.2	725
A1001	0.609	2.07	0.302	0.242	6,070
A1001	3.93	3.1	12.6	4.0	690
Panno	0.387	1.88	0.166	0.205	5,150
1 3000	2.50	2.8	6.9	3.4	580
P1000	0.555	1.89	0.185	0.202	5,070
F 1000	3.58	2.8	7.7	3.3	570

PROJECT 2022.0193 – Angiography Room DATE 5/31/2022 BY CL

Equipment Support

P1000 - BEAM LOADING

	Max. Allowable	Defl. at Uniform	Uniform	Loading at D	eflection
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs
24	1,690	0.06	1,690	1,690	1,690

For the P1000 T at the top connection

P_allowable=0.85*0.5*1690lbs=718.250lbs

deflection =0.85*0.8*0.06in=**0.041**in

Actual deflection based on load, 2 channels and interpolation:

deflection*(Equipment)/(P_allowable*2)=0.026in

0.109 (7/64") is the limit for the equipment.

Understanding that the load applied is the maximum The P1000T is okay for 718lbs each or 1436lbs total (4 connections engaged)

DCR=(max(Dynamic_Equipment,Equipment+0.7*Equipment*Fp_coeff+0.7*0.2*SDS*Equipment))/(1436lbs*4)=0.222

The P1000T channels will be connected to the anchors with P1047.

3/4"

7⁄8"

P2471

P2490

¹³⁄16"

¹⁵/₁₆"

15 (6.8)

14 (6.4)

PROJECT 2022.0193 – Angiography Room DATE 5/31/2022	BY CL
---	-------

Equipment Support

The typical bolt for the system will be $\frac{1}{2}$ "Ø with P1010 channel nuts. Each channel nut can take 2000lbs pull-out and 1500lbs slip.

MAXIMUM ALLOWABLE PULL-OUT AND SLIP LOADS

Channel	Channel Nut Size- Thread	Gauge	Allowable Pull-Out Strength Lbs <i>(kN)</i>	Resistance to Slip Lbs <i>(kN</i>)	Torque Ft-Lbs <i>(N•m)</i>
	76" - 0	12	2,500	1,700	*125
	78 - 9	12	11.12	7.56	170
	34" 10	10	2,500	1,700	*125
	94 - 10	12	11.12	7.56	170
P1000 P3000	5/" 11	10	2,500	1,500	*100
	978 - 11	12	11.12	6.67	135
	1⁄6" - 13	12	2,000	1,500	50
P4400	72 - 13	12	8.90	6.67	70
P4526	740" - 14	12	1,400	1,000	35
P5000 P5500	710 - 14	12	6.23	4.45	50
	³ ⁄⁄°' - 16	12	1,000	800	19
	/0 - 10	12	4.45	3.56	25
	⁵ /16" - 18	12	800	500	11
	/10 - 10	12	3.56	2.22	15
	14" - 20	12	600	300	6
	74 - 20	12	2.67	1.33	8

CHANNEL NUT WITH SPRING

E EG, HG

Part Number	Nut Thr	Size ead	Wt/100 pcs Lbs <i>(kg)</i>	Use With
P1006-0832	#8	-32	7 (3.2)	
P1006-1024	#10	-24	7 (3.2)	
P1006-1420	1⁄4"	-20	7 (3.2)	P1000,
P1007	⁵ ⁄16"	-18	6 (2.7)	P1100, P2000,
P1008	³ ⁄8"	-16	10 (4.5)	P3000
P1009	⁷ ⁄16"	-14	9 (4.1)	
P1010	1⁄2"	-13	12 <i>(5.4)</i>	

Demand capacity ratio of at least 2 nuts in tension sustaining all load

 $DCR = (Equipment + 0.7*Equipment*Fp_coeff + 0.7*0.2*SDS*Equipment)/(2000 lbs*2) = \textbf{0.307}$

Demand capacity ratio of at least 2 nuts in shear sustaining all load (USE 2 CHANNEL NUTS MIN)

DCR=(Equipment+0.7*Equipment*Fp_coeff+0.7*0.2*SDS*Equipment)/(1500lbs*2)=0.409

REAVELEY Engineers

PROJECT	2022.0193 – Angiography	/ Room		DATE 5	/31/2022	by CL
	Equipment Support					
	Threaded Rod Check:					
	Connecting Member	Fy =	36	ksi		
	C C	Fu =	58	ksi		
		t =	1/4	in		
			· ·			
	Bolts	Bolt Grade =	Gr36]		
		Fy =	36	ksi		
		Fu =	58	ksi		
		Threads =	Included	from sh	near plane	
		Fnt =	43.5	ksi		
		Fnv =	26.1	ksi		
		D =	1/2	in	Fastener D	iameter
	No	ominal Bolt Area =	0.196	in^2		
		Hole Type =	STD			
		oversize by =	1/16	in		
		Hole D =	9/16	in	Hole size p	erpendicular to the force
	9	Slot Hole Length =	9/16	in		
	Minim	um Bolt Spacing =	1.3	in		
	Maxim	um Bolt Spacing =	6.0	in	Not Exterio	or
		C2 =	0	in		
	Minimu	n Edge Distance =	3/4	in		
	Maximu	n Edge Distance =	3	in		
		Bolt Spacing, S =	3.00	in		
		Edge Distance =	0.50	in		
	6 Tonsilo and Shoor St	rangth of Polto and	Throadod	Darte		
	o. Tensile and silear st	m –		arts		
		Ψ- ΦPn Tonsion -	0.75 6 <i>4</i> 1	kin		
		ΦRil Tellsion =	2 9/	kin		
	đ		7 69	kin		
	4		1.05	ΝP		
	7. Combined Tension a	nd Shear in Bearing	g Type Conr	ections		
		frv =	5.09	ksi		
		F'nt =	43.5	ksi		
	Available Tens	ile Strength, ΦRn =	6.41	kip		

											.,
ROJECT	20	22.0193 – /	Angiograph	ny Room			DATE	5/31/202	2	B'	Y CL
	Ec	quipment S	Support								
	Pla	te Check:	:								
	Imposed weight on one plate is 2788lbs or less Pu=2788lbs										
	L=9	L=9in									
	Mu	=Pu*L/4= 6	6.273 kip in								
	Mu	=0 523kin	ft								
	Eor	- 0.323 Kip_	_IL nlata tha l		oo than 1		provided t	hat mara	than and r	olata will b	o opened and load in
	less	s than Pu	above.		55 tildil 1.	UJ. UKAY	provided i	nat more			e engaged and load is
	REAVELEY Bectangular Plato Flovuro										re
		E	ngineers					otungu		AISC 260	E1 1
										AISC 300 1	
		PROJECT	NAME: Unis	trut Suppo	rt			EN	GINEER:		
		DESCR	IPTION: Top	Plate					DATE:		
			φ: <mark>0.9</mark>								
			F _y : <mark>36 ks</mark> i								
			E: 29000 ks	si							
		I	Mu: 0.523 ki	p-ft							
			L: 1.5 in								
									11-14-1	Lin A	
		1						Ev-26 kci	Units:	кір-тт	
						Hei	aht	ry-30 KSI			
			1/2 in	3/4 in	1 in	1 1/4 in	1 1/2 in	1 3/4 in	2 in	2 1/4 in	
		3 in	0.51	1.14	2.03	3.16	4.56	6.20	8.10	10.25	
		3 1/4 in	0.55	1.23	2.19	3.43	4.94	6.72	8.78	11.11	
		3 1/2 in	0.59	1.33	2.36	3.69	5.32	7.24	9.45	11.96	
		3 3/4 in	0.63	1.42	2.53	3.96	5.70	7.75	10.13	12.81	
		4 in	0.68	1.52	2.70	4.22	6.08	8.27	10.80	13.67	
		4 1/4 in	0.72	1.61	2.87	4.48	6.45	8.79	11.48	14.52	
		4 1/2 in	0.76	1.71	3.04	4.75	6.83	9.30	12.15	15.38	
		4 3/4 in	0.80	1.80	3.21	5.01	7.21	9.82	12.83	16.23	
		5 in	0.84	1.90	3.38	5.27	7.59	10.34	13.50	17.09	
	idth	5 1/4 in	0.89	1.99	3.54	5.54	7.97	10.85	14.18	17.94	
		5 1/2 in	0.93	2.09	3.71	5.80	8.35	11.37	14.85	18.79	
		5 3/4 in	0.97	2.18	3.88	6.06	8.73	11.89	15.53	19.65	
		0 IN 6 1/4 in	1.01	2.28	4.05	0.33 6 E 0	9.11	12.40	16.20	20.50	
		6 1/2 in	1.00	2.31	4.22	0.59	5.45 0.07	12.92	17.55	21.30	
		$6 \frac{3}{4}$ in	1.10	2.47	4.39	0.80	9.87 10.25	13.44	18.23	22.21	
		7 in	1.14	2.50	4.30	7.12	10.20	14.47	18 90	23.07	
		7 1/4 in	1.10	2.00	4.73	7.50	11 01	14.47	19.50	23.32	
		7 1/2 in	1.22	2.75	5.06	7.03	11.39	15.50	20.25	25.63	
		7 3/4 in	1.27	2.03	5.00	8 17	11 77	16.02	20.23	26.48	
			1.01	2.34	0.20	0.17	11.77	10.02	20.00	20.40	

Equipment Support			,		
Flare bevel of Unistrut welds to sta	el				
📕 🗭 REAVELEY	7			Flave Bayel Creave We	ام ا
Engineers				Flare Bevel Groove we	ια
				AISO	C J2
PROJECT NAME: Unistrut	: Support Co	ondition		ENGINEER: CL	
LOCATION:				DATE: 2022-05-25	
Simply Loaded Weld Capacity Calc	ulation		_		
Load in Shear (into page)	Vu =	0	kips	Base 2	
Load in Tension	Pu =	0	kips	t2	
Load used for DCR	Ru =	5	kips	+ r	
Weld Type	FEXX =	<u>60</u>	ksi	· · ·	
Radius Curve	r =	9/43	in	Pres 1	
				Base 1	
			_3		
Base 1 Thickness	t1 =	9/86	lin		
Base 1 Total Width	w1 =	3	in		
Base 1 Material Yeild Strength	Fy1 =	36	ksi		
Base 1 Material Ulitmate Strength	Fu1 =	58	ksi		
Base 2 Thickness	t2 =	1/4	in		
Base 2 Total Width	w2 =	3	in		
Base 2 Material	Fy2 =	36	ksi		
Base 2 Material Ulitmate Strength	Fu2 =	58	ksi		
Weld Capacity Check	-	0 2002	in	Table 8 2 8 12 2 SMAW only	
	r – E –	0.2052	in OR		
	с- ф-	0.000		Table 12 5	
Shear I RED Factor	Ψ-	0.75		Table 12.5	
Weld Area	Awe =	0.20	in^2	12.1a	
Stress	Enw =	36	ksi	Table 12.5	
Capacity	Rn =	7.1	kips	AISC J2.4a	
Weld Capacity in Tension	ΦRn =	5.6	kips		
· · · · · · · · · · · · · · · · · · ·	φ. Φ.D.n. =	5.3	kips		
Weld Capacity in Shear	Ψκιι -				

1,910

**

**

PROJECT BY CL DATE 5/31/2022 2022.0193 - Angiography Room **Equipment Support Unistrut Axial Capacities:** P9000 - COLUMN LOADING P9200 - COLUMN LOADING Typical Post Maximum Maximum Allowable Allowable Maximum Column Load Applied at C.G. Maximum Column Load Applied at C.G. Unbraced Load Unbraced Load K = 0.65 K = 0.80 K = 0.65 K = 0.80 at Slot Face K =1.0 K = 1.2 Height at Slot Face K =1.0 K = 1.2 Height Lbs Lbs Lbs Lbs Lbs In Lbs Lbs Lbs In Lbs Lbs 24 3,640 8,570 8,330 8,040 24 4,620 11,120 10,980 10,740 10,460 8,730 36 3,540 8,360 8,040 7,530 6,950 36 4,530 10,770 10,460 9,950 9,370 7,340 7,880 6,530 10,300 8,940 8,030 48 3,400 5,660 48 4,390 9,760 7,290 6,530 9,720 60 3,210 5,440 4,360 60 4,220 8,940 7,800 6,590 72 2,990 6,640 5,660 4,360 3,160 72 4,000 9,050 8,030 6,590 5,180 2,730 4,790 3,340 2,320 8,320 7,080 5,410 3,890 84 5,940 84 3,750 96 2,430 5.220 3.940 1,780 96 3,460 7,560 6,110 2.980 4,520 3,160 2,020 6,770 3,390 2,360

8ft diagonal 10ft diagonal

**

2,560

1,780

The maximum allowable load for a vertical post is 5440lbs which is far greater than the imposed equipment load. Okay by observation.

108

120

144

168

3,140

2,790

2,170

1,720

5,180

4,290

2,980

2,190

1,910

**

5,990

4,510

3,320

1,400

**

**

P1000 - COLUMN LOADING

2,110

1,820

1,390

3,840

2,690

108

120

144

Unbraced	Max. Allowable Load at	Maxim	um Column I	Load Appli	ed at C.G.
Height In	Slot Face Lbs	K = 0.65 Lbs	K = 0.80 Lbs	K =1.0 Lbs	K = 1.2 Lbs
24	3,550	10,740	9,890	8,770	7,740
36	3,190	8,910	7,740	6,390	5,310
48	2,770	7,260	6,010	4,690	3,800
60	2,380	5,910	4,690	3,630	2,960
72	2,080	4,840	3,800	2,960	2,400
84	1,860	4,040	3,200	2,480	1,980
96	1,670	3,480	2,750	2,110	1,660
108	1,510	3,050	2,400	1,810	**
120	1,380	2,700	2,110	**	**
144	1,150	2,180	1,660	×	**
					<u> </u>

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

BY CL

Equipment Support

P5000 - COLUMN LOADING

Unbraced	Maximum Allowable Load	Maxim	um Column L	oad Applied	l at C.G.
Height In	at Slot Face Lbs	K = 0.65 Lbs	K = 0.80 Lbs	K =1.0 Lbs	K = 1.2 Lbs
24	5,650	16,870	15,180	12,850	10,600
36	4,690	13,140	10,600	7,650	5,660
48	3,560	9,550	6,860	4,790	3,660
60	2,730	6,680	4,790	3,450	2,710
72	2,160	4,980	3,660	2,710	2,170
84	1,760	3,950	2,960	2,240	1,820
96	1,500	3,270	2,500	1,930	1,580
108	1,310	2,800	2,170	1,690	1,390
120	1,170	2,450	1,930	1,510	**
144	980	1,980	1,580	**	**
168	850	1,670	1,340	**	**

P5500 - COLUMN LOADING

Unbraced	Maximum Allowable Load	Maximu	ım Column L	.oad Applied	d at C.G.
Height In	at Slot Face Lbs	K = 0.65 Lbs	K = 0.80 Lbs	K =1.0 Lbs	K = 1.2 Lbs
24	4,640	13,840	12,570	10,840	9,190
36	3,970	11,050	9,190	7,030	5,370
48	3,180	8,420	6,390	4,620	3,630
60	2,550	6,250	4,620	3,450	2,780
72	2,120	4,790	3,630	2,780	2,260
84	1,810	3,890	3,010	2,330	1,910
96	1,580	3,290	2,580	2,020	1,650
108	1,400	2,860	2,260	1,770	1,440
120	1,270	2,530	2,020	1,580	**
144	1,060	2,070	1,650	**	**
168	920	1,750	1,380	**	**

If P1000 columns were used, the maximum load would be 3630lbs allowable.

Vertical Hanger Capacity (Using P1000 with minimum value of options)

DCR=(max(Dynamic_Equipment,Equipment+0.7*Equipment*Fp_coeff+0.7*0.2*SDS*Equipment))/3630lbs=0.351

For a diagonal brace, the maximum allowable axial load at 9ft

P1000T=1810lbs*0.85=1538.500lbs

P9000=2020lbs

DCR=sqrt((max(Dynamic_Equipment,Equipment+0.7*Equipment*Fp_coeff+0.7*0.2*SDS*Equipment))^2+(max(10001 bs, max(Dynamic_Equipment,0.7*Equipment*Fp_coeff)))^2)/min(P1000T,P9000)=**1.171**

Provide a minimum 2 diagonal braces

2. Safety Factor = 3.0 based on static testing to the ultimate strength of connection.

3. 1/2" Unistrut Channel Nut and Cap Screw torqued to 50 ft-lbs required for installation.

4. Deflection is the straight line interpolation of the average deflection readings at 2,000 lbs and 3,000 lbs. Deflection is measured in the direction of the Tension Load.

DCR=(max(Dynamic_Equipment,Equipment+0.7*Equipment*Fp_coeff+0.7*0.2*SDS*Equipment))/2800lbs=**0.455** Deflection=0.092in*(max(Dynamic_Equipment,Equipment+0.7*Equipment*Fp_coeff+0.2*0.7*SDS*Equipment))/(2800lbs*4)=**0.010**in

Alternative is acceptable.

<image/>	PROJECT 2022.0193 – Angiography Room	DATE 5/31/2022	BY CL
The tash rail connection is as follows.	Equipment Support		
P2473 EEG, GR, HG	The lash rail connection is as follo	ows.	
P2473 $E EG, GR, HG$			
P1001A3 (shown) or P5501 4 7/8" (123.8) 1 55/4" (47.2)	P2473	EG, GR, HG	
P1001A3 (shown) or P5501 $4 \frac{7}{6}$ " (123.8) $1 \frac{5}{6}4$ " (47.2)			
or P5501 4 7%" (123.8) 1 ⁵⁵ /64" (47.2)	P1	1001A3 (shown)	
47/8" (123.8) 155/64" (47.2)	or	P5501	
$\begin{array}{c} 4 & 7/8" \\ (123.8) \\ 1 & 55/64" \\ (47.2) \end{array}$			
$\begin{array}{c} 4 & 7 \\ (123.8) \\ 1 & 5 \\ (123.8) \\ 1 & 5 \\ (47.2) \end{array}$			
$\begin{array}{c} 4 \frac{7}{6}"\\(123.8)\\ \hline \\ 1 \frac{55}{64}"\\(47.2)\end{array}$	T		
$\begin{array}{c} 4 7 \\ (123.8) \\ 1 \\ 1 \\ 55 \\ 64'' \\ (47.2) \end{array}$			
(123.8) $1^{55}/_{64}"$ (47.2)	4 7%"		
1 ⁵⁵ / ₆₄ " (47.2)	(123.8)		
1 ⁵⁵ ⁄ ₆₄ " (47.2)			
1 ⁵⁵ ⁄ ₆₄ " (47.2)			
(47.2)	1.556."		
	(47.2)		
Channel nuts are alreaded in the imposed leads	Channel puts are already for the imp	posed loads	

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

BY CL

Equipment Support

Horizontal Beam Checks:

P1001 - BEAM LOADING

	Max. Allowable	Defl. at Uniform	t Uniform Loading at Deflectio				
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs		
24	3,500*	0.02	3,500*	3,500*	3,500*		
36	3,190	0.07	3,190	3,190	3,190		
48	2,390	0.13	2,390	2,390	2,390		
60	1,910	0.20	1,910	1,910	1,620		
72	1,600	0.28	1,600	1,600	1,130		
84	1,370	0.39	1,370	1,240	830		

P5501 - BEAM LOADING

	Max Allowable	Defl. at Uniform	Uniform	Loading at D	eflection
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs
24	5,220*	0.01	5,220*	5,220*	5,220*
36	5,220*	0.04	5,220*	5,220*	5,220*
48	4,820	0.08	4,820	4,820	4,820
60	3,860	0.13	3,860	3,860	3,860
72	3,220	0.19	3,220	3,220	3,220
84	2,760	0.26	2,760	2,760	2,500

P5001 - BEAM LOADING

	Max Allowable	Defl. at Uniform	Uniform	Loading at D	eflection
Span In	Uniform Load Lbs	Load In	Span/180 Lbs	Span/240 Lbs	Span/360 Lbs
24	6,890*	0.01	6,890*	6,890*	6,890*
36	6,890*	0.02	6,890*	6,890*	6,890*
48	6,890*	0.05	6,890*	6,890*	6,890*
60	6,420	0.10	6,420	6,420	6,420
72	5,350	0.14	5,350	5,350	5,350
84	4,590	0.19	4,590	4,590	4,590

PROJECT	2022.0193 – Angiography Room	DATE 5/31/2022	BY CL
	Equipment Support		
	For a 4ft maximum span with point load at center:		
	P5501:		
	P5501_Allowable=4820lbs*0.5*0.98= 2361.800 lbs		
	P5501_Deflection=0.08in*0.8*0.98= 0.063 in		
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SD	S*Equipment))/P5501_Allowable	e=0.539
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipm ynamic_Equipment/P5501_Allowable+900lbs/20510lbs)=	ent)/P5501_Allowable+0.7*Equi : 0.583	pment*Fp_coeff/20510lbs,D
	Deflection=P5501_Deflection*(Dynamic_Equipment)/P55 Deflection is less than 1/16"	01_Allowable= 0.034 in	
	P5001:		
	P5001_Allowable=6890lbs*0.5*0.97= 3341.650 lbs		
	P5001_Deflection=0.05in*0.8*0.97= 0.039 in		
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SD	S*Equipment))/P5001_Allowable	∋=0.381
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipm ynamic_Equipment/P5001_Allowable+900lbs/22470lbs)=	ent)/P5001_Allowable+0.7*Equi : 0.421	pment*Fp_coeff/22470lbs,D
	Deflection=P5001_Deflection*(Dynamic_Equipment)/P50	01_Allowable= 0.015 in	
	P1001:		
	P1001_Allowable=2390lbs*0.5*1.0= 1195.000 lbs		
	P1001_Deflection=0.13in*0.8*1.0= 0.104 in		
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SD	S*Equipment))/P1001_Allowable	e=1.066
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipm ynamic_Equipment/P1001_Allowable+900lbs/15520lbs)=	ent)/P1001_Allowable+0.7*Equi : 1.124	pment*Fp_coeff/15520lbs,D
	Deflection=P1001_Deflection*(Dynamic_Equipment)/P10	01_Allowable= 0.111 in	

PROJECT	2022.0193 – Angiography Room	DATE	5/31/2022		by CL
	Equipment Support				
	For a 5ft maximum span with point load at center:				
	P5501:				
	P5501_Allowable=3860lbs*0.5*0.93= 1794.900 lbs				
	P5501_Deflection=0.13in*0.8*0.93= 0.097 in				
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SDS	S*Equ	ipment))/P55	01_Allowable	e=0.710
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipment+0.2*SDS*Equipment+0.2*SDS*Equipment+0.	ent)/P	5501_Allowat	ole+0.7*Equip	pment*Fp_coeff/20510lbs,D
	ynamic_Equipment/P5501_Allowable+900lbs/20510lbs)=	0.754			
	Deflection=P5501_Deflection*(Dynamic_Equipment)/P55	01_AI	lowable=0.069	Jin	
	P5001:				
	P5001_Allowable=6420lbs*0.5*0.90= 2889.000 lbs				
	P5001_Deflection=0.10in*0.8*0.90= 0.072 in				
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SDS	S*Equ	ipment))/P50	01_Allowable	e=0.441
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipme	ent)/P	5001_Allowat	ole+0.7*Equip	pment*Fp_coeff/22470lbs,D
	ynamic_Equipment/P5001_Allowable+900lbs/22470lbs)=	0.481			
		04 41		•	
	Deflection=P5001_Deflection*(Dynamic_Equipment)/P50		iowable=0.032	Zin	
	P1001-				
	P1001 Allowable 1010 be*0 5*0 07-026 350 be				
	P1001_Allowable=1910bbs 0.5 0.97 - 320.350 bbs				
	P 1001_Deflection=0.2iff 0.6 0.97=0.135iff				
	DCD-(max/Dynamic Equipment Equipment+0.7*0.2*SD)	S*Eau	(inmont))/P10	01 Allowable	-1 975
		5 Lqu			-1.375
	Combined DCR=max//Equipment+0.7*0.2*SDS*Equipme	ont)/D		olo+0 7*Equir	nment*En_coeff/15520lbs_D
	ynamic Equipment/P1001 Allowable+900lbs/15520lbs)=	1.433			
	Deflection=P1001 Deflection*(Dynamic Equipment)/P10	01 AI	lowable=0.213	Bin	
		_			

PROJECT	2022.0193 – Angiography Room	DATE	5/31/2022		by CL
	Equipment Support				
	For a 3ft maximum span with point load at center:				
	P5501:				
	P5501_Allowable=5220lbs*0.5*0.98= 2557.800 lbs				
	P5501_Deflection=0.04in*0.8*1= 0.032 in				
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SDS	S*Equ	ipment))/P5501_/	Allowable	≥= 0.49 8
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipme	ent)/P	5501_Allowable+(0.7*Equip	pment*Fp_coeff/20510lbs,D
	ynamic_Equipment/P5501_Allowable+900lbs/20510lbs)=0	0.542			
	Deflection=P5501_Deflection*(Dynamic_Equipment)/P550	01_AI	lowable= 0.016 in		
	P5001:				
	P5001_Allowable=6890lbs*0.5*0.97= 3341.650 lbs				
	P5001_Deflection=0.02in*0.8*1= 0.016 in				
	DCR=(max(D))namic Equipment Equipment+0.7*0.2*SDS	S*Eau	(inment))/P5001 /	Allowable	-0 381
		J Lqu		liowable	-0.301
	Combined DCR=max((Equipment+0.7*0.2*SDS*Equipme	ent)/P	5001 Allowable+	0.7*Equir	oment*Ep_coeff/22470lbs.D
	ynamic_Equipment/P5001_Allowable+900lbs/22470lbs)=	0.421			r,-
	Deflection=P5001_Deflection*(Dynamic_Equipment)/P500	D1_AI	lowable= 0.006 in		
	P1001:				
	P1001_Allowable=3190lbs*0.5*1.0= 1595.000 lbs				
	P1001_Deflection=0.07in*0.8*1.0= 0.056 in				
	DCR=(max(Dynamic_Equipment,Equipment+0.7*0.2*SDS	S*Equ	ipment))/P1001_A	Allowable	;=0.799
	Combined_DCR=max((Equipment+0.7*0.2*SDS*Equipment/P1001_Allowable+000lbs/15520lbs)=	ent)/P	1001_Allowable+(0.7*Equip	oment*Fp_coeff/15520lbs,D
		0.007			
	Deflection=P1001 Deflection*(Dynamic Equipment)/P100	ר 1 ∆ו	lowable=0 045ip		
		,	10Wabic= 0.040 111		

PROJECT 2022.0193 – Angiography Room	DATE 5/31/2022	BY CL
Equipment Support		
The actual maximum spacing is 5'-0" or	less.	
The following calculation is presented as	s if the load is at ¼ points	
Span=4ft		
M=(max(Dynamic_Equipment,Equipmer	nt+0.7*0.2*SDS*Equipment))*0.25*Span*0	.75*Span/Span= 11466.000 lbs_in
P=max(0.7*Equipment*Fp_coeff,900lbs)= 900.000 lbs	
P5501:		
Ma=P5501_Ma= 28940.000 lbs_in		
Flexure:		
DCR=M/Ma= 0.396		
Combined_DCR=M/Ma+P/20510lbs= 0.4	440	
P5501 Finish Rails okay		

PROJECT	2022.0193 – Angiography Room	DATE 5/31/2022	BY CL
	Equipment Support		
	Lateral Bracing:		
	Maximum lateral load is 350lbs		
	Maximum allowable seismic lateral load:		
	Fp=0.7*Equipment*Fp_coeff= 168.383 lbs		
	Induced horizontal load is greater than seismic load. Use	1000lbs as conservative option	
	Lateral_Load=max(1000lbs,Fp,350lbs)= 1000.000 lbs		
	Load at diagonal		
	Eu=sqrt((Lateral_Load)^2+(Lateral_Load)^2)=1.414kip		
	Using a P1000 brace with a 9ft span		
	DCR-EU/1010105-0.701		
	Using a P1000T brace with a 9ft span		
	DCR=Eu/(1810lbs*0.85)= 0.919		
	If span is up to 10ft, use P9000		
	DCR=Eu/1640lbs= 0.862		
	Bolt and nut capacity		
	DCR=Eu/1500lbs= 0.943		
	Bracing is okay.		
	Optionally use P1000 as lash rails (5ft span).		
	Axial Capacity		
	DCR=Lateral_Load/3630lbs=0.275		
	Optionally use P1000T as lash rails (5ft span):		
	Axial Capacity		
	DCR=Lateral_Load/(3630lbs*0.85)=0.324		

كالممع معانمهما والم				
other optional dia	gonal connectio	n types:		
DESIGN LOADS GENERAL SPECI			DNS MAT	FERIALS & FINISHES
Tension				
/_	Angle	Design Loads - P1546, P2094	thru P2100	
Part Number	Angle	Average Ultimate Tension (lbs)	Design Tension Load (lbs)	Average Deflection at Design Tension Load
P2094	82-1/2°	7,000	1,500	0.046"
P2095	75°	7,200	1,500	0.081"
P2096	67-1/2°	6,900	1,500	0.046"
P2097	60°	6,500	1,500	0.079"
P2098	52-1/2°	6,300	1,500	0.059"
P1546	45°	6,200	1,500	0.081"
P2099	37-1/2°	6,800	1,500	0.171"
P2100	37-1/2°	5.700	1.500	0.169"
1. Design loads only a 2. Average Safety Fac	pply to UNISTRUT bran ctor = 4.0 based on stat uts with a Safety Facto	d products. Look for "UNISTRUT" ic testing to the ultimate strengt = 3.0.	on the part. h of connection. Design Lo installation.	pads are limited to 1,500 lbs for Slip
Load of Channel Nu 3. 1/2" Unistrut Chann SEISMIC DES	IGN LOADS	GENERAL SPECIFIC	CATIONS M	ATERIALS & FINISHES

- 1. Seismic Design Loads only apply to UNISTRUT brand products. Look for "UNISTRUT" on the part.
- 2. Seismic Design Loads are based on FM1950-10 dynamic testing with 12 ga. channel and a safety factor of 1.5.
- 3. 1/2" Unistrut Channel Nut and Cap Screw torqued to 50 ft-lbs required for installation.
- 4. Seismic Design Loads apply only to the P1354AW EG fitting. The "W" in the part number designates that the hinge has welds to
- increase strength. 5. Reference page 5c.1 of Unistrut OPM-0295-13.

PROJECT BY CL DATE 5/31/2022 2022.0193 - Angiography Room **Equipment Support DESIGN LOADS** GENERAL SPECIFICATIONS **MATERIALS & FINISHES** Tension Tension P1843 & P1843W P1354 & P1354W P/N Ave. Ultimate Tension (lbs) Design Tension Load (lbs) Angle 0° 4,700 1,500 P1843 45° 4,300 1,400 **0°** 4,800 1,600 P1354 45° 4,400 1.400 **0°** 10,000 1,500 P1843W 45° 7,000 1,500 **0°** 11,600 3,000 P1354W 45° 7.100 2.300 Notes: 1. Design loads only apply to UNISTRUT brand products. Look for "UNISTRUT" on the part. 2. Design loads are based on static testing with a Safety Factor = 3.0 to the ultimate strength of connection. 3. 1/2" Unistrut Channel Nut and Cap Screw torqued to 50 ft-lbs required for installation. 4. Some design loads limited to 1,500 lbs for Slip Load of Channel Nuts. 5. The "W" in the part number designates that the hinge has welds to increase strength. **Channel Thickness** 14 ga. 16 ga. Load - P1026 12 ga. Lbs 1,500 1.000 750 kΝ 6.67 4.45 3.34 LOAD **Channel Thickness** Load - P1026 12 ga. 14 ga. 16 ga. Lbs 1,000 650 500 kΝ 4.45 2.89 2.22 - LOAD

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

by CL

Equipment Support

DESIGN LOADS

GENERAL SPECIFICATIONS

		Channel Thickness			
Load - P1068		12 ga.	14 ga.	16 ga	
	Lbs	500	500	500	
LOAD	kN	2.22	2.22	2.22	

Notes:

- 1. Design loads only apply to Unistrut brand products. Look for "UNISTRUT" on the part.
- 2. Both ends of beam must be supported.
- 3. Load data is based on a P1010 nut and 1/2" bolt.
- 4. Safety factor = 2.5 based on ultimate strength of connection.

PROJECT 2022.0193 – Angiography Room

DATE 5/31/2022

by CL

Equipment Support

Out of plane deflection between lateral supports:

P1000/P1001 - ELEMENTS OF SECTION

Parameter	P100	0	P100	1
Area of Section	0.555	ln ²	1.111	ln ²
Axis 1-1				
Moment of Inertia (I)	0.185	ln ⁴	0.928	ln ⁴
Section Modulus (S)	0.202	ln ³	0.571	ln³
Radius of Gyration (r)	0.577	In	0.914	In
Axis 2-2				
Moment of Inertia (I)	0.236	In ⁴	0.471	ln⁴
Section Modulus (S)	0.290	ln ³	0.580	ln³
Radius of Gyration (r)	0.651	In	0.651	In

P5500/P5501 - ELEMENTS OF SECTION

Parameter		Р	5500	P5	501
Area of Section		0.726	i In ²	1.452	ln ²
Axis 1-1					
	Moment of Inertia (I)	0.522	2. In ⁴	2.805	In ⁴
	Section Modulus (S)	0.390	ln ³	1.151	ln ³
	Radius of Gyration (r)	0.848	ln In	1.390	In
Axis 2-2					
	Moment of Inertia (I)	0.334	In ⁴	0.669	In ⁴
	Section Modulus (S)	0.411	ln ³	0.823	ln ³
	Radius of Gyration (r)	0.679) In	0.679	In

Lateral_Load_Deflection=350lbs

Out of plate deflection between lateral supports For P5501 Span=5ft E=29000ksi

I=0.669in^4

1-0.00911.4

Deflection=(Lateral_Load_Deflection /2*(Span)^3)/(48*E*I)=**0.041**in Less than 1/16" Okay

For P1001

E=29000ksi

I=0.471in^4

Deflection=(Lateral_Load_Deflection /2*(Span)^3)/(48*E*I)=0.058in

Equipment Drawings for Reference Only

	FOR CA	LCULATION P	<section-header></section-header>		GEHa			
	11/May/2022		Final (DC-340464)			Interr	nountain M Murray USA	edic ر, UT م
REV 01 - C1 02 - C2 03 - A1 04 - A2 05 - A3 06 - A4 07 - A5 08 - A6 09 - S1 10 - S2 11 - S3 12 - S4 13 - S5 14 - M	DATE - Cover Sheet - Disclaimer - Site Readin - General Notes - Equipment Layout - Equipment Details (1) - Equipment Details (2) - Delivery - Structural Notes - Structural Layout - Structural Details (1) - Structural Details (2) - Structural Details (3) 1 - HVAC	ess	16 - E2 - Electrical Layout (2) 17 - E3 - Electrical Elevations 18 - E4 - Power Requirements 19 - E5 - Interconnections 20 - E6 - Power requirements (Light Signaling)		G NNOVA	E Health A IGS 520,	care /530/540 FINAL S	/33 TUD
15 - E1 A ma	- Electrical Notes Indatory component of the	is drawing set is the GE Healthcare Pre Insta incomplete documentation requi	Illation manual. Failure to reference the Pre Installation manual will result ir red for site design and preparation. e accessed on the web at: www.gehealthcare.com/siteplanning	Dra	iwn by JM	Verified by JM	Concession	S.0
GE doe set of dimens	es not take responsibility f final issue drawing. GE sions are in millimeters ur	or any damages resulting from changes on cannot accept responsibility for any dama nless otherwise specified. Do not scale from due to scaling fro	drawings made by others. Errors may occur by not referring to the comple age due to the partial use of GE final issue drawings, however caused. n printed pdf files. GE accepts no responsibility or liability for defective wo om these drawings.	te All rk A3	Scale 1/4"=1'-0"	IGS-M2	File Name	DWG

801-599-6221 Michael.hatch@ge.com						
30 WITH AUTORIGHT						
S.O. (GON)	PIM Manual	Rev				
5120436	5813633-8EN	3				
Date Sheet						
G	11/May/2022	01/20				
· · · · · ·						

Michael Hatch

JT

dical Center

DISCLAIMER

FOR CALCULATION PACKET REFERENCE ONLY

- GE is not responsible for the installation of developers and associated equipment, lighting, cassette trays and protective screens or derivatives not mentioned in the order.
- The final study contains recommendations for the location of GE equipment and associated devices, electrical wiring and room arrangements. When preparing the study, every effort has been made to consider every aspect of the actual equipment expected to be installed.
- The layout of the equipment offered by GE, the dimensions given for the premises, the details provided for the pre-installation work and electrical power supply are given according to the information noted during on-site study and the wishes expressed by the customer.
- The room dimensions used to create the equipment layout may originate from a previous layout and may not be accurate as they may not have been verified on site. GE cannot take any responsibility for errors due to lack of information.
- Dimensions apply to finished surfaces of the room.
- Actual configuration may differ from options presented in some typical views or tables.
- If this set of final drawings has been approved by the customer, any subsequent modification of the site must be subject to further investigation by GE about the feasibility of installing the equipment. Any reservations must be noted.
- The equipment layout indicates the placement and interconnection of the indicated equipment components. There may be local requirements that could impact the placement of these components. It remains the customer's responsibility to ensure that the site and final equipment placement complies with all applicable local requirements.
- All work required to install GE equipment must be carried out in compliance with the building regulations and the safety standards of legal force in the country concerned.
- These drawings are not to be used for actual construction purposes. The company cannot take responsibility for any damage resulting therefrom.

CUSTOMER RESPONSIBILITIES

- It is the responsibility of the customer to prepare the site in accordance with the specifications stated in the final study. A detailed site readiness checklist is provided by GE. It is the responsibility of the customer to ensure all requirements are fulfilled and that the site conforms to all specifications defined in the checklist and final study. The GE Project Manager of Installation (PMI) will work in cooperation with the customer to follow up and ensure that actions in the checklist are complete, and if necessary, will aid in the rescheduling of the delivery and installation date.
- Prior to installation, a structural engineer of record must ensure that the floor and ceiling is designed in such a way that the loads of the installed system can be securely borne and transferred. The layout of additional structural elements, dimensioning and the selection of appropriate installation methods are the sole responsibility of the structural engineer. Execution of load bearing structures supporting equipment on the ceiling, floor or walls are the customer's responsibility.

RADIO-PROTECTION

Suitable radiological protection must be determined by a qualified radiological physicist in conformation with local regulations. GE does not take responsibility for the specification or provision of radio-protection.

THE UNDERSIGNED, HEREBY CERTIFIES THAT I HAVE READ AND APPROVED THE PLANS IN THIS DOCUMENT. DATE NAME SIGNATURE

GLOBAL SITE READINESS CHECKLIST (DI) DOC1809666 Rev. 7 Site Ready Checks at Installation **EHS Site Requirements** Overall access route to the scan room free from obstruction / high hazards. Enough space to store tools, equipment, parts, install waste and the general area free from obstruction and trip hazards. Enough necessary facilities for the GE employees available. No 3rd parties working in the area that may affect the safety of the installation activity. Area free from any chemical, gas, dust, welding fume exposure and has painting been completed and dry. All emergency routes identified, signed and clear from obstruction. Accessible single source lockable panel that LOTO can be applied to for GE equipment installation (MDP and/or PDU). There are no other conditions or hazards that you have observed or have been made aware of by the customer or contractors on site. **Required for Mechanical Install start** Room dimensions, including ceiling height, for all Exam, Equipment/Technical & Control rooms meets GE specifications. Ceiling support structure, if indicated on the GE drawing, is in the correct location and at the correct height according to the Original Equipment Manufacturer specifications. Levelness and spacing has been measured, and is ready for the installation of any GE supplied components. Overhead support Structure (unistrut) has been confirmed with customer/contractor to meet required GE provided criteria. Finished ceiling is installed. If applicable ceiling tiles installed per PMI discretion. Floor levelness/flatness is measured and within tolerance, and there are no visible defects per GEHC specifications. Entry door threshold meets PIM requirement Floor Strength and thickness have been discussed with customer/contractor and they have confirmed GE requirements are met. Rooms that will contain equipment, including staging areas if applicable, are construction debris free. Precautions must be taken to prevent debris from entering rooms containing equipment. Cable ways (floor/wall/ceiling/Access Flooring) are available for installation of GE cables are of correct length and diameter. Cable ways routes per GE Final drawings and cable access openings areas installed at a time determined by GEHC PM. Surface floor duct can be installed at time of system installation. Adequate room illumination installed and working. Customer supplied countertops where GE equipment will be installed are in place. Vascular baseplates preparation complete per GE requirements. For IGS 730/740: Floor finish is according to the GE Specifications and protection is installed . Specifications for concrete substrate & Monopur 7 mm flooring have been met. Table baseplate installed and flush to the finished floor. For IGS 730/740: Room Interventional Reference Point (RIRP) value has been defined with the customer. Either 1120mm, 1278 mm or 1508 Ensure that all third party suppliers are identified and have been informed about the project dates and how they need to proceed in accordance with their needs for interfacing to our equipment. **Required for Calibration start** HVAC systems Installed, and the site meets minimum environmental operational system requirements. System power & grounding (PDB/MDP) is available as per GE specifications. System power & grounding (PDB/MDP) is installed at point of final connection and ready to use. Lock Out Tag Out is available. PMI to confirm all feeder wires and breaker are size appropriately. EPO installed if needed. PMI to confirm with electrician all power and signal cables are well terminated ensuring there are no loose connections. Network outlets installed. Computer network available and working. Lead doors and windows complete or scheduled to be installed. If applicable, radiation protection (shielding) finished & radioprotection regulatory approval for installation obtained.

Note: The details shown here are only an extract from DOC1809666. For the complete document please contact your PMI.

mm.

CONNECTIVITY REQUIREMENTS

ELECTROMAGNETIC INTERFERENCE

Service Connectivity for new systems will be based on the Insite-RSVP Platform which allows to configure a direct Internet connection to the RSvP Server (routers/VPN tunnel no more mandatory). Communication with the RSvP server will be outbound only and require using Transport Layer Security (TLS) over TCP port 443. This is commonly known as an HTTPS (HTTP-Secure) connection.

There will be several ways to connect the system to the RSvP Enterprise Server. See below the main options that might not be all available or authorized at your site depending on actual network constraints or local regulations.:

- The system allows for DNS configuration or proxy server-based connection to the Internet.
- Connection thru a GE Proxy will be possible in the future.
- In the case the customer does not accept the above connection protocol or regulatory reasons prevent using these types of configurations, the local/regional connectivity teams can provide help to connect through SSL/TLS proxy IP over the site-to-site VPN.

To make the system connectivity operational before the system installation is finished, ensure the connectivity solution is defined as early as possible during the pre-installation process and proper information are exchanged between the customer Network Administrators and GEHC Sales and/or Service representatives.

For more information please refer to the latest version of the Pre Installation Manual.

CUSTOMER SITE READINESS REQUIREMENTS

- Any deviation from these drawings must be communicated in writing to and reviewed by your local GE Healthcare installation project manager prior to making changes.
- Make arrangements for any rigging, special handling, or facility modifications that must be made to deliver the equipment to the installation site. If desired, your local GE Healthcare installation project manager can supply a reference list of rigging contractors.
- New construction requires the following;
 - 1. Secure area for equipment,
 - 2. Power for drills and other test equipment,
 - 3. Capability for image analysis,
 - 4. Restrooms.
- Provide for refuse removal and disposal (e.g. crates, cartons, packing)
- For CT, MR, PET/CT, and SPECT systems it is required to minimize vibrations within the scan room. It is the customer's responsibility to contract a vibration consultant/engineer to implement site design modifications to meet the GE vibration specification. Refer to the system pre-installation manual for vibration specifications.

The IGS System is intended for use in the electromagnetic environment specified below. The Customer or the user of the System should assure that it is used in such an environment.

EMISSIONS	TEST COMPLIANCE	E
Radio–Frequency	Group1 Class A limits	The IGS System uses Radi its Radio Frequency emiss interference in nearby ele
CISPR11		The IGS System is suitable directly connected to the buildings used for domest
Harmonic emissions IEC 61000–3–2	Not applicable	The IGS System is suitable directly connected to the buildings used for domest
Voltage fluctuations/ flicker emissions IEC 61000–3–3	Not applicable	The IGS System is suitable directly connected to the buildings used for domest

ELECTROMAGNETIC ENVIRONMENT

lio Frequency energy only for its internal function.Therefore, ssions are very low and are not likely to cause any lectronic equipment.

le for use in all establishments other than domestic and those e public low-voltage power supply network that supplies stic purposes.

le for use in all establishments other than domestic and those e public low-voltage power supply network that supplies stic purposes.

le for use in all establishments other than domestic and those e public low-voltage power supply network that supplies stic purposes.

FOR CALCULATION PACKET REFERENCE ONLY

		LEGENI)				
Α	GE Su	ipplied	D	Available from GE			
В	GE Su	pplied/contractor installed	E	Equi	Equipment existing in room		
C	Custo	mer/contractor supplied and installed	*	Item	Item to be reinstalled from another site		
вү	ITEM	DESCRIPTION	M HE OUT (bi	AX AT PUT tu)	WEIGHT (lbs)	MAX HEAT OUTPUT (W)	WEIGHT (kg)
Α	1	Operator console	34	41	19.6	100	9
Α	2	C-FRT Cabinet	73	70	1226	2160	556
Α	3	System Interface Cabinet (PDU)	17	06	642	500	291
Α	4	Detector conditioner	7:	17	32	210	14.5
Α	5	COOLIX 4100 tube chiller	236	546	265	6930	120
В	6	Main Disconnect Panel	20)5	49	60	22
Α	7	8kVA UPS	17	60	185	520	84
Α	8	Xray buzzer	-		1	-	0.5
Α	9	LC gantry	5528		1733	1620	786
Α	10	Tilting table		-	2242	-	1017
Α	11	Monitor suspension short bridge		-	-	-	-
Α	12	Longitudinal stationary rail	-		68	-	31
А	13	Large Display Monitor with two backup monitors	341		645	100	293
А	14	Mavig YLED lamp with transformer on 2.5m ceiling track		-	143	-	65
В	15	Light signaling control box		-	26	-	12
С	16	Cable drape rail					
С	17	Storage cabinet					
С	18	Control wall to ceiling with lead glass viewing window.					
С	19	Shelf - customer to provide adequate wall support					
С	20	Counter top for equipment- provide grommeted openings as required to route cables					
с	21	Minimum door opening for equipment delivery is 46 in. w x 87 in. h [1160mm x 2200mm], contingent on a 96 in. [2438mm] corridor width					
		1					

FINISHED FLOOR TO FALSE CEILING

For Accessory Sales: (866) 281-7545 Options 1, 2, 1, 2 or mail to: gehcaccessorysales@ge.com 04/20 |1/4"=1'-0"|Rev A|Date 11/May/2022 | A2 - Equipment Layout

EXAM ROOM HEIGHT

9'-5"

07/20

DELIVERY

FOR CALCULATION PACKET REFERENCE ONLY THE TECHNICAL ROOM NEED EXTRA SPACE FOR TOOLS AND DOCUMENTATION

- Provide an area adjacent to the installation site for delivery and unloading of the GE equipment. •
- Ensure that the dimensions of all doors, corridors, ceiling heights are sufficient to accommodate the • movement of GE equipment from the delivery area into the definitive installation room.
- Ensure that access routes for equipment will accommodate the weights of the equipment and any • transportation, lifting and rigging equipment.
- Ensure that all necessary arrangements for stopping and unloading on public or private property not • belonging to the customer have been made.

DIMENSIONS OF DELIVERY						
EQUIPMENT	DIMENSIONS			WEIGHT		
	LENGTH	2820 mm	111 in	1060 kg	2340 lb	
GANTRY (SHIPPING DOLLY)	WIDTH	1230 mm	48.4 in			
	HEIGHT	2000 mm	79 in			
	LENGTH	2150 mm	84.6 in	750 kg	1653 lb	
AND COVERS (ON PALLET)	WIDTH	1000 mm	39.4 in			
	HEIGHT	1160 mm	45.7 in			
	LENGTH	850 mm	34 in	630 kg	1388 lb	
C-FRT CABINET (ON PALLET)	WIDTH	1500 mm	59 in			
	HEIGHT	2200 mm	87 in			

RECOMMENDED AREA IN THE TECHNICAL ROOM

- GE recommend an extra area of 2.0 x 1.0 m (78.7 x 39.4 in) for storage of tools and documentation for the • system
- This area doesn't need to be inside the technical room, but in a closer space from the system •

SHIPPING DOLLY FOR LC GANTRY

SHIPPING WEIGHT: 1060 kg [2337 lb].

DIMENSIONS					
	HEIGHT	WIDTH	LENGTH		
Full configuration	1870-2000 mm [73.6 - 78.7 in]*	1230 mm [48.4 in]	2820 mm [111.0 in]		
Left top handle removed and right top handle inside	1870-2000 mm [73.6 - 78.7 in]*	1160 mm [45.7 in]	2820 mm [111.0 in]		
Short lifts configuration	2000 mm [78.7 in]	1160 mm [45.7 in]	2300 mm [90.5 in]		
NOTE	* Height can be adjusted: ONLY when necessary on delivery path and IF floor rolling surface is flat and leveled (no obstacle), Dolly can be lowered down by 120-130 mm (it means dolly horizontal bars are at 10 mm from floor surface, to prevent any damage on gantry).				

SCALE 1:50

STRUCTURAL NOTES

FOR CALCULATION PACKET REFERENCE ONLY

- All steel work and parts necessary to support ceiling mounted tube hanger or other equipment are to be supplied by the customer or his contractors. The unistrut or equivalent structure should run continuous with no fittings extending below face of unistrut channel, run wall to wall, be parallel, square and in the same horizontal plane flush with finished ceiling. The system is to be cross braced vertically, horizontally and diagonally to allow no movement and a maximum of 1,58mm(1/16") deflection. (10) 12,7mm (1/2") dia. X 38,1mm (1 1/2") long bolts with unistrut 12,7mm (1/2") nuts with springs are to be provided by customer or his contractors for each stationary and auxillary support rail. Closure strips shall be provided for areas of unistrut exposed and without mounting units.
- Methods of support for the steelwork that will permit attachment to structural steel or through bolts in ٠ concrete construction should be favored. Do not use concrete or masonry anchors in direct tension.
- All units that are wall mounted or wall supported are to be provided with supports where necessary. Wall supports are to be supplied and installed by the customer or his contractors. See plan and detail sheets for suggested locations and mounting hole locations.
- All ceiling mounted fixtures, air vents, sprinklers, etc. To be flush mounted, or shall not extend more than 6,35mm (1/4") below the finished ceiling.
- Control walls with tube hanger passage above shall be constructed to 2130mm (7'-0") high.
- Floor slabs on which equipment is to be installed must be level to 3,17mm (1/8") in 3050mm (10'-0")
- Minimum floor thickness of 203mm (8").
- Dimensions are to finished surfaces of room.
- Customers contractor must provide all penetrations in post tension floors.
- Customers contractor must provide and install any non-standard anchoring. Documents for standard anchoring methods are included with GE equipment drawings for geographic areas that require such documentation.
- Customers contractor must provide and install hardware for "through the floor" anchoring and/or any bracing under access floors. This contractor must also provide floor drilling that cannot be completed because of an obstruction encountered while drilling by the GE installer such as rebar etc.
- It is the customer's responsibility to perform any floor or wall penetrations that may be required. The customer is also responsible for ensuring that no subsurface utilities (e.g., electrical or any other form of wiring, conduits, piping, duct work or structural supports (i.e. post tension cables or rebar)) will interfere or come in contact with subsurface penetration operations (e.g. drilling and installation of anchors/screws) performed during the installation process. To ensure worker safety, GE installers will perform surface penetration operations only after the customer's validation and completion of the "GE surface penetration permit"

FOR CALCULATION PACKET REFERENCE ONLY

IF ACCESS IS NOT READILY AVAILABLE IT IS RECOMMENDED TO PROVIDE A TRAPDOOR IN THE CEILING TO ALLOW SERVICE ACCESS FOR CABLE MANAGEMENT.

Intermountain Medical Center

TRUCTURAL	ΙΑΥΟΠΤ	ITEM	пст
INDUIUNAL	LATOUT	I I EIVI	LIJI

(GE SUPPLIED / CONTRACTOR INSTALLED)

(CUSTOMER SUPPLIED / CONTRACTOR INSTALLED)

Structural support in ceiling for fastening ceiling supported equipment. Supports to run continuous with no fittings extending below face of channel, run wall to wall, be parallel, square, and in the same horizontal plane, flush with the finished ceiling. Rails are mounted to these supports every 2'-2" and require 350 lbs. (597 lbs. In seismic regions) per bolt load. Methods of support that permit attachment to structural steel or through bolts in concrete should be favored. Do not use screw anchors in direct tension.

installed structural supports

Contractor supplied and installed finished ceiling (ceiling & supports must not extend below face of structural supports)

GE supplied spring nuts with bolts GE supplied cable drape rail

MAVIG SUSPENSION MOUNTING METHOD

MONITOR SUSPENSION RAIL MOUNTING SPECIFICATIONS

Weight up to: 94 kg [207 lb] (75 kg [165 lb] system + 19 kg [42 lb] track)

The required factor of safety is "4" for attaching to Unistrut or equivalent rails and "6" for attaching to the concrete ceiling.

CONSULT MAVIG INSTALLATION MANUAL REV: POR03001 TO DESIGN AND MOUNT THE CEILING SUPPORT.

SCALE 1:20

SUSPENSION COLUMN LENGTHS AND INSTALLATION DETAILS

- All design and pre-installation activity must be done in accordance of the MAVIG Installation manual
- Contact your GE Project Manager for OEM documentation
- Installation of mounting plate performed by GE or a GE sub-contractor

NOT TO SCALE

CEILING SUSPENSION DISCLAIMER

When a 23 daN force is applied vertically upward,

mounting point, the attachment interface must not

When a 135 daN force is applied vertically downward,

or horizontally at any stationary rail mounting point,

the attachment interface must not deflect more than

Safety and precautionary comments:

two persons perform the installation.

responsibility of the structural engineer.

660.4 ±1.5 mm

[26 ±1/16 in]

downward or horizontally at any stationary rail

deflect more than 1.5 mm [1/16 in]

1.5 mm [1/16 in]

mounting points

Cable takeup support rail

Stationary rail mounting

points must be parallel

within ±3 mm [±1/8 in]

unstable condition of the system. safety or reliability of the system, product modifications require written authorization from MAVIG. cases) by the structural company. WARNING:

It is prohibited to alter the length of the ceiling column or remove any securing screws. FOR CALCULATION PACKET REFERENCE ONL

Each stationary rail must be mounted by bolts supplied or by 12 mm [1/2 in] as metric bolts. The maximum load per bolt must not exceed 1557 N [350 lbs] and each mounting bolt must not "PULL OUT" or otherwise fail under a vertically downward dead load of 6228 N [1400 lbs].

Only gualified, licensed technicians can perform electrical connections, installation, removal and repair. It is strongly recommended that at least

Installing the system: Prior to installation, a structural engineer must confirm that the mounting structure is strong enough to provide proper support for the entire system and any attached end devices. Installation must be completed according to local building codes.

Determination of required installation hardware and torque values for installation of the ceiling column and ceiling track is the sole

Ceiling mounted systems must be installed properly. Failure to follow the instructions provided may lead to a potentially dangerous and

GE and/or MAVIG is not responsible for unauthorized modifications made to the system or use of the system for unintended purposes. GE and/or MAVIG cannot be held liable for improper operation and modifications. Since improper modifications may impair proper operation,

Under GE responsibility or under Customer responsibility, for all pre-installations, whatever is the supporting structure (bridge, chair, Unistrut channel, other channels, direct anchorage in concrete, transversal beam, etc. ...) a certificate must be obtained from a structural engineer.

This certificate shall include the definition of fasteners and of their tightening torque, especially for the non-standard cases described in MAVIG PIM and for which the standard anchoring/screws delivered with product shall not be used but shall be defined (and implemented in most

S5 - Structural Details (3)

| 13/20