

Project Manual | Volume 2 (Divisions 21-27)

Mountain View Hospital MRI Replacement Payson, Utah

Permit Set 9/13/2021

TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 3100 Available Project Information
 - ETS Lindgren Information existing RF shielding drawings
- 00 4000 Bid Form
- 00 5200 Agreement Form
- 00 7200 General Conditions
- 07 3000 Supplemental Conditions

DIVISION 01 - GENERAL REQUIREMENTS

- 01 1000 Summary
- 01 2100 Allowances Light Graphics
- 01 2300 Alternates Entrance Door
- 01 2500 Substitution Procedures
- 01 2600 Contract Modification Procedures
- 01 2900 Payment Procedures
- 01 3100 Project Management and Coordination
- 01 3200 Construction Progress Documentation
- 01 3300 Submittal Procedures
- 01 4000 Quality Requirements
- 01 4200 References
- 01 4323 Special Inspections
- 01 5000 Temporary Facilities and Controls
- 01 6000 Product Requirements
- 01 7300 Execution
- 01 7700 Closeout Procedures
- 01 7823 Operations and Maintenance Data
- 01 7839 Project Record Documents
- 01 7846.13 Extra Stock and Maintenance Materials Architectural

DIVISION 02 - EXISTING CONDITIONS

02 4119 - Selective Demolition

DIVISION 03 - CONCRETE

Not Used

DIVISION 04 - MASONRY

Not Used

DIVISION 05 - METALS

Not Used

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

06 4023 - Interior Architectural Woodwork

HKS 24805.000 TABLE OF CONTENTS 2021-09-13

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

07 8413 - Penetration Firestopping

07 8446 - Fire-Resistive Joint Firestopping

07 9200 - Joint Sealants

DIVISION 08 - OPENINGS

08 1114 - Interior Hollow Metal Frames

08 1416 - Prefinished Flush Wood Doors

08 7100 - Door Hardware

DIVISION 09 - FINISHES

09 2900 - Gypsum Board Assemblies

09 5113 - Acoustical Panel Ceilings

09 6500 - Resilient Flooring

09 6513 - Resilient Base and Accessories

09 9100 - Painting

09 9600 - High-Performance Coatings

DIVISION 10 - SPECIALTIES

Not Used – Existing salvage shall be re-installed

DIVISION 11 - EQUIPMENT

11 7000 – Medical Equipment GE MRI Drawings Ferroguard Drawings

DIVISION 12 - FURNISHINGS

12 3661 - Simulated Stone Countertops

DIVISION 13 - SPECIAL CONSTRUCTION

Not Used - Materials and modifications provided by vendor

DIVISION 14 - CONVEYING SYSTEMS

Not Used

DIVISION 21 - FIRE SUPPRESSION

See Plumbing Index

DIVISION 22 - PLUMBING

HKS 24805.000 TABLE OF CONTENTS 2021-09-13

See Plumbing Index

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING

See Mechanical Index

DIVISION 25 - INTEGRATED AUTOMATION

Not Used

DIVISION 26 - ELECTRICAL

See Electrical Index

DIVISION 27 - COMMUNICATIONS

See Electrical Index

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

Not Used

DIVISION 31 - EARTHWORK

Not Used

DIVISION 32 - EXTERIOR IMPROVEMENTS

Not Used

DIVISION 33 - UTILITIES

Not Used

END OF TABLE OF CONTENTS

THIS PAGE INTENTIONALLY BLANK

SPECIFICATION INDEX

211000	Water Based Fire Suppression Systems	
220500 220523 220529 220548 220719 221116 226113 226313	Common Work Results for Plumbing General-Duty Valves for Plumbing Piping Hangers and Supports for Plumbing Piping and Equipment Vibration and Seismic Controls for Plumbing Piping and Equipment Plumbing Piping Insulation Domestic Water Piping Compressed Air Piping for Laboratory and Healthcare Facilities Gas Piping for Laboratory and Healthcare Facilities	
230100 230513 230516	Mechanical Requirements Common Work Results for HVAC	
230516	Expansion Fittings and Loops for HVAC Piping Sleeves and Sleeve Seals for HVAC Piping	
230517	Escutcheons for HVAC Piping	
230519	Meters and Gages for HVAC	
230523	General-Duty Valves for HVAC Piping	
230529	Hangers and Supports for HVAC Piping and Equipment	
230548	Vibration and Seismic Controls for HVAC	
230550	Operations and Maintenance of HVAC Systems	
230553	Identification for HVAC Piping and Equipment	
230593	Testing Adjusting and Balancing for HVAC	
230713	Duct Insulation	
230719	HVAC Piping Insulation	
230900	Instrumentation and Control	
232513	Water Treatment for Closed-Loop Hydronic Systems	
233001	Common Duct Requirements	
233113	Metal Ducts	
233300	Air Duct Accessories	
233423	HVAC Power Ventilators	
233713	Diffusers, Registers, and Grilles	

SECTION 211000

WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following fire-suppression piping inside the building:
 - 1. Wet-pipe sprinkler systems.
 - 2. Description: Remodel consists mostly with changes to duct work and other systems. Fire sprinklers and piping to be relocated and rerouted if they interfere with installation of equipment from other disciplines.
- B. Related Sections include the following:
 - 1. Division 10 Section "Fire Extinguisher Cabinets" and "Fire Extinguishers" for cabinets and fire extinguishers.
 - 2. Division 22 Section "Facility Water Distribution Piping" for piping outside the building.
 - 3. Division 28 Section "Fire Detection and Alarm" for alarm devices not specified in this Section.
- C. All black steel sprinkler pipe shall have a wall thickness less than or equal to schedule 40 and greater than schedule 10.
 - 1. Exception: Pipe with a nominal pipe size of 6 inches and greater may be schedule 10.

D. Summary Table:

Item	Summary
Underground service entrance piping	Existing to remain.
Interior pipe type	Mains: Schedule 40 Branchlines: Threadable thinwall or schedule 40
Sprinkler Finish	Match existing white semi-recessed, except uprights and storage
Extended Coverage	Not Allowed
Center of Tile	Required, Center thirds are acceptable for rectangular tiles
Flexible Sprinkler Drops	Designers preference
FM Global	No No
Calculations	Calculations are required if the hydraulic demand is increased (i.e. flexible drops are added, significant lengths of piping are added, etc.) If existing hydraulic demand is maintained then calculations are not
Calculations	required.

Alarm Device	Existing to remain.
FDC	Existing to remain.
Special Items	
Seismic	

1.3 DEFINITIONS

- A. CPVC: Chlorinated polyvinyl chloride plastic.
- B. CR: Chlorosulfonated polyethylene synthetic rubber.
- C. High-Pressure Piping System: Fire-suppression piping system designed to operate at working pressure higher than standard 175 psig.
- D. PE: Polyethylene plastic.
- E. Underground Service-Entrance Piping: Underground service piping below the building.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

- A. Standard Piping System Component Working Pressure: Listed for at least 175 psig.
- B. High-Pressure Piping System Component Working Pressure: Listed for 250 psig minimum 300 psig.
- C. Fire-suppression standpipe system design shall be approved by authorities having jurisdiction.
 - 1. Minimum residual pressure at each hose-connection outlet is the following:
 - a. NPS 1-1/2 Hose Connections: 65 psig.
 - b. NPS 2-1/2 Hose Connections: 100 psig.
 - 2. Unless otherwise indicated, the following is maximum residual pressure at required flow at each hose-connection outlet:
 - a. NPS 1-1/2 Hose Connections: 100 psig.
 - b. NPS 2-1/2 Hose Connections: 175 psig.
- D. Design sprinkler piping according to the following and obtain approval from engineer, prior to submitting to other authorities having jurisdiction:

- 1. If the hydraulic demand of the system is increased then design sprinkler system with 10% reduced flow data. Contractor responsible for obtaining flow and pressure data.
- 2. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
- 3. Sprinkler Occupancy Hazard Classifications:
- a. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
- b. General Storage Areas: Ordinary Hazard, Group 1.
- c. Laundries: Ordinary Hazard, Group 1.
- d. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
- e. Office and Public Areas: Light Hazard.
- f. Residential Living Areas: Light Hazard.
- g. Restaurant Service Areas: Ordinary Hazard, Group 1.
- 4. Minimum Density for Automatic-Sprinkler Piping Design:
- a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
- b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
- c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
- d. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 5. Minimum Density for Deluge-Sprinkler Piping Design:
- a. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over entire area.
- b. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over entire area.
- c. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 6. Maximum Protection Area per Sprinkler: Per UL listing.
- 7. Maximum Protection Area per Sprinkler:
 - a. Office Spaces: 225 sq. ft..
 - b. Storage Areas: 130 sq. ft..
 - c. Mechanical Equipment Rooms: 130 sq. ft..
 - d. Electrical Equipment Rooms: 130 sq. ft..
- e. Other Areas: According to NFPA 13 recommendations, unless otherwise indicated.
- 8. Total Combined Hose-Stream Demand Requirement: According to NFPA 13, unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 - b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 - c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.
- 9. Sprinklers are to be installed throughout the premises, as required by NFPA 13.
- E. Seismic Performance: Fire-suppression piping shall be capable of withstanding the effects of earthquake motions determined according to NFPA 13.

1.6 SUBMITTALS

- A. Product Data: For the following:
 - 1. Piping materials, including dielectric fittings, flexible connections, and sprinkler specialty fittings.
 - 2. Pipe hangers and supports, including seismic restraints.
 - 3. Valves, including listed fire-protection valves, unlisted general-duty valves, and specialty valves and trim.
 - 4. Air compressors, including electrical data.
 - 5. Sprinklers, escutcheons, and guards. Include sprinkler flow characteristics, mounting, finish, and other pertinent data.
 - 6. Hose connections, including size, type, and finish.
 - 7. Fire department connections, including type; number, size, and arrangement of inlets; caps and chains; size and direction of outlet; escutcheon and marking; and finish.
 - 8. Alarm devices, including electrical data.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Fire-hydrant flow test report.
- D. Seismic Calculations.
- E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations, if applicable. Drawings are to be approved by Engineer prior to submission to State Fire Marshal.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13 and NFPA 14. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- G. Welding certificates.
- H. Field quality-control test reports.
- I. Operation and Maintenance Data: For standpipe and sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. An experienced installer who has designed and installed fire-suppression piping similar to that indicated for this Project and obtained design approval and inspection approval from authorities having jurisdiction. The Engineer requires evidence to support the ability of the contractor to perform work in the scope and volume as specified. A contractor, who cannot show such experience, may be found not suitable to perform the work. The following are the approved contractors for this project:
 - a. PRE-APPROVED CONTRACTORS LIST
 - 1) Alta Fire
 - 2) Certified Fire

- 3) Chaparral Fire
- 4) Delta Fire
- 5) Kimco Fire
- 6) Preferred Fire Protection
- 7) Quality Fire Protection
- 8) Fire Services Inc.
- 9) FireTrol
- 10) FireFly Fire Protection
- 11) Simplex-Grinnell
- 12) State Fire DC Specialties
- 13) The Safety Team
- 14) Western Automatic
- 15) Or prior approved equal
- b. A contractor not listed in the "PRE-APPROVED CONTRACTORS LIST" must receive prior approval from the engineer to bid this project.
- B. Installer's responsibilities include designing, fabricating, and installing fire-suppression systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - 1. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer or NICET Level III technician.
- C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
- D. NFPA Standards: Fire-suppression-system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 - 3. NFPA 14, "Installation of Standpipe, Private Hydrant, and Hose Systems."
 - 4. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."
- E. International Conference of Building Code Officials codes and standards complying with the following:
 - 1. IBC-2018, "International Building Code."
 - 2. IFC-2018, "International Fire Code."
- F. Utah Amendments
 - 1. Title 15A

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

1.10 General Engineering Quality

- A. Unless noted otherwise the following applies:
 - 1. The maximum water velocity shall not exceed 32-fps.
 - 2. Submit the calculations using the reduced flow data.
 - 3. In the event of multiple (3) submittal rejections (including revise and resubmit) a meeting shall be held at the engineer's office at the engineer time of choosing and the designer, fire sprinkler contractor, and general contractor shall be physically in attendance to discuss the required modifications to the design.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell end and plain end.
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, Class 53, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron gland, rubber gasket, and steel bolts and nuts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell end and plain end.
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.

2.3 C-900 TUBE AND FITTINGS

A. PVC, AWWA Pipe: AWWA C900, Class 150, with bell end with gasket and spigot end.

- 1. Comply with UL 1285 for fire-service mains if indicated.
- 2. PVC Fabricated Fittings: AWWA C900, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
- 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
- 4. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
- a. Gaskets: AWWA C111, rubber.
- 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 STAINLESS STEEL IN BUILDING RISER

- A. Continuous from the factory, no field formed fittings in the stainless steel riser. Field modifications are not allowed. Restrain with thrust block, per NFPA 24, rods as required by manufacture.
 - Inlet: AWWA C900/DIP
 Outlet: AWWA 606

2.5 STEEL PIPE AND FITTINGS

- A. Threaded-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed threaded ends.
 - 1. Cast-Iron Threaded Flanges: ASME B16.1.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
 - 3. Gray-Iron Threaded Fittings: ASME B16.4.
 - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe hot-dip galvanized where indicated. Include ends matching joining method.
 - 5. Steel Threaded Couplings: ASTM A 865 hot-dip galvanized-steel pipe where indicated.
- B. Plain-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795 hot-dip galvanized-steel pipe where indicated.
 - 1. Locking-Lug Fittings: UL 213, ductile-iron body with retainer lugs that require one-quarter turn to secure pipe in fitting not allowed.
- C. Plain-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795 hot-dip galvanized-steel pipe where indicated.
 - 1. Steel Welding Fittings: ASTM A 234/A 234M, and ASME B16.9 or ASME B16.11.
 - 2. Steel Flanges and Flanged Fittings: ASME B16.5.

- D. Grooved-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed, roll-grooved ends.
 - 1. Grooved-Joint Piping Systems:
 - a. Manufacturers:
 - 1) Anvil International, Inc.
 - 2) Central Sprinkler Corp.
 - 3) Victaulic Co. of America.
 - 4) Ward Manufacturing.
 - b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
 - c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- E. Threaded-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10, and with factory- or field-formed threaded ends.
 - 1. Cast-Iron Threaded Flanges: ASME B16.1.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
 - 3. Gray-Iron Threaded Fittings: ASME B16.4.
 - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe.
 - 5. Steel Threaded Couplings: ASTM A 865.
- F. Plain-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10.
 - 1. Locking-Lug Fittings: UL 213, ductile-iron body with retainer lugs that require one-quarter turn to secure pipe in fitting not allowed.
- G. Plain-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10.
 - 1. Steel Welding Fittings: ASTM A 234/A 234M, and ASME B16.9 or ASME B16.11.
 - 2. Steel Flanges and Flanged Fittings: ASME B16.5.
- H. Grooved-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10, and with factory- or fieldformed, roll-grooved ends.
 - 1. Grooved-Joint Piping Systems:
 - a. Manufacturers:
 - 1) Anvil International, Inc.
 - 2) Central Sprinkler Corp.
 - 3) Victaulic Co. of America.

- 4) Ward Manufacturing.
- b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
- c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- Plain-End, Schedule 10 Steel Pipe: ASTM A 135 or ASTM A 795, Schedule 10 is not allowed.
- J. Plain-End, Nonstandard OD, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 10 is not allowed.
- K. Plain-End, Hybrid Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with wall thickness less than Schedule 10 and greater than Schedule 5 is not allowed.
- L. Grooved-End, Hybrid Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with wall thickness less than Schedule 10 and greater than Schedule 5; with factory- or field-formed, roll-grooved ends are not allowed.
- M. Schedule 5 Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with plain ends is not allowed.

2.6 CPVC TUBE AND FITTINGS

- A. CPVC shall be permitted where installed in accordance with its listing limitations, including installation instructions.
- B. Specially Listed Fittings Materials and Dimensions
 - 1. Schedule 80 CPVC Threaded fittings: ASTM F 437.
 - 2. Schedule 40 CPVC Socket-type fittings: ASTM F 438.
 - 3. Schedule 80 CPVC Socket-type fittings: ASTM F 439.

2.7 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper; with plain ends.
 - 1. Copper fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
 - 2. Brazing Filler Metals: AWS A5.8, BCuP-3 or BCuP-4.
- B. Plain-End, Hard Copper Tube: ASTM B 88, Type K or ASTM B 88, Type L, water tube, drawn temper.
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
 - 2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match tubing system.
 - 3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket metal-to-metal seating surfaces, and solder-joint or threaded ends.

- 4. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube not allowed.
- 5. Brazing Filler Metals: AWS A5.8, BCuP-3 or BCuP-4.
- C. Grooved-End, Hard Copper Tube: ASTM B 88, Type K or ASTM B 88, Type L, water tube, drawn temper; with factory- or field-formed, roll-grooved ends.
 - 1. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube not allowed.
 - 2. Grooved-Joint Systems:
 - a. Manufacturers:
 - 1) Anvil International, Inc.
 - 2) Victaulic Co. of America.
 - b. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting. Fittings may have ends factory or field expanded to steel-pipe OD if required for copper tube systems using grooved-end-pipe couplings.
 - c. Grooved-End-Tube Couplings: UL 213, rigid pattern, unless otherwise indicated; gasketed fitting equivalent to AWWA C606, but made to match copper-tube OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts. Use grooved-end-pipe couplings for tube and fitting that have expanded ends.

2.8 DIELECTRIC FITTINGS

- A. Assembly shall be copper alloy, ferrous, and insulating materials with ends matching piping system.
- B. Dielectric Unions: Factory-fabricated assembly, designed for 250-psig minimum working pressure at 180 deg F. Include insulating material that isolates dissimilar materials and ends with inside threads according to ASME B1.20.1.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Hart Industries International, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
 - f. Zurn Industries, Inc.; Wilkins Div.
- C. Dielectric Flanges: Factory-fabricated companion-flange assembly, for 175-psig minimum working-pressure rating as required for piping system.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.

- D. Dielectric Flange Insulation Kits: Components for field assembly shall include CR or phenolic gasket, PE or phenolic bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products and Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Insert manufacturer's name.
- E. Dielectric Couplings: Galvanized steel with inert and noncorrosive thermoplastic lining and threaded ends and 300-psig working-pressure rating at 225 deg F.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- F. Dielectric Nipples: Electroplated steel with inert and noncorrosive thermoplastic lining, with combination of plain, threaded, or grooved ends and 300-psig working-pressure rating at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corporation.
 - b. Precision Plumbing Products, Inc.
 - c. Victaulic Co. of America.

2.9 FLEXIBLE SPRINKLER DROPS

- A. Flexible connectors shall be FM approved with exterior wire braid and have materials suitable for system fluid. Include 175-psig minimum working-pressure rating and ends according to the following:
 - 1. NPS 1: Threaded.
- B. Manufacturers:
 - 1. Flex-Head
 - 2. Victaulic
- C. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.
- D. Stainless-Steel-Hose/Stainless-Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include stainless-steel nipples or flanges, welded to hose.

2.10 FLEXIBLE PIPE CONNECTORS (SEISMIC)

- A. Flexible connectors shall be FM approved with exterior wire braid and have materials suitable for system fluid. Include 175-psig minimum working-pressure rating and ends according to the following:
 - 1. NPS 2 and Smaller: Threaded.
 - 2. NPS 2-1/2 and Larger: Flanged.
 - 3. Option for NPS 2-1/2 and Larger: Grooved for use with grooved-end-pipe couplings.

B. Manufacturers:

- 1. Flexicraft Industries.
- 2. Flex-Pression, Ltd.
- 3. Metraflex, Inc.
- C. Bronze-Hose, Flexible Connectors: Corrugated, bronze, inner tubing covered with bronze wire braid. Include copper-tube ends or bronze flanged ends, braze welded to hose.
- D. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.
- E. Stainless-Steel-Hose/Stainless-Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include stainless-steel nipples or flanges, welded to hose.

2.11 CORROSION-PROTECTIVE ENCASEMENT FOR PIPING

A. Encasement for Underground Metal Piping: ASTM A 674 or AWWA C105, PE film, 0.008-inch minimum thickness, tube or sheet.

2.12 SPRINKLER SPECIALTY FITTINGS

- A. Sprinkler specialty fittings shall be FMG approved with 175-psig minimum working-pressure rating, and made of materials compatible with piping. Sprinkler specialty fittings shall have 250-psig minimum working-pressure rating if fittings are components of high-pressure piping systems.
- B. Sprinkler Drain and Alarm Test Fittings: Cast- or ductile-iron body, with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.
 - Manufactures:
 - a. Central Sprinkler Corp.
 - b. Fire-End and Croker Corp.
 - c. Viking Corp.
 - d. Victaulic Co. of America.
- C. Sprinkler Branch-Line Test Fittings: Brass body with threaded inlet, capped drain outlet, and threaded outlet for sprinkler.

- D. Sprinkler Inspector's Test Fitting: Cast- or ductile-iron housing with threaded inlet and drain outlet and sight glass.
- E. Drop-Nipple Fittings: UL 1474, adjustable with threaded inlet and outlet, and seals.
- F. Dry-Pipe-System Fittings: UL listed for dry-pipe service.

2.13 LISTED FIRE-PROTECTION VALVES

- A. Valves shall be FMG approved, with 175-psig minimum pressure rating. Valves shall have 250-psig minimum pressure rating if valves are components of high-pressure piping system.
- B. Gate Valves with Wall Indicator Posts:
 - 1. Gate Valves: UL 262, cast-iron body, bronze mounted, with solid disc, nonrising stem, operating nut, and flanged ends.
 - 2. Indicator Posts: UL 789, horizontal-wall type, cast-iron body, with hand wheel, extension rod, locking device, and cast-iron barrel.
 - 3. Manufacturers:
 - Grinnell Fire Protection.
 - b. McWane, Inc.; Kennedy Valve Div.
 - c. NIBCO.
 - d. Stockham.
- C. Ball Valves: Comply with UL 1091, except with ball instead of disc.
 - 1. NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 - 2. NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 - 3. NPS 3: Ductile-iron body with grooved ends.
 - 4. Manufacturers:
 - a. NIBCO.
 - b. Victaulic Co. of America.
- D. Butterfly Valves: UL 1091.
 - 1. NPS 2 and Smaller: Bronze body with threaded ends.
 - a. Manufacturers:
 - 1) Global Safety Products, Inc.
 - 2) Milwaukee Valve Company.
 - 2. NPS 2-1/2 and Larger: Bronze, cast-iron, or ductile-iron body; wafer type or with flanged or grooved ends.
 - a. Manufacturers:
 - 1) Central Sprinkler Corp.
 - 2) McWane, Inc.; Kennedy Valve Div.
 - Mueller Company.

- 4) NIBCO.
- 5) Victaulic Co. of America.
- E. Check Valves NPS 2 and Larger: UL 312, swing type, cast-iron body with flanged or grooved ends.
 - 1. Manufacturers:
 - a. American Cast Iron Pipe Co.; Waterous Co.
 - b. Central Sprinkler Corp.
 - c. Clow Valve Co.
 - d. Crane Co.; Crane Valve Group; Crane Valves.
 - e. Crane Co.; Crane Valve Group; Jenkins Valves.
 - f. Fivalco
 - g. Globe Fire Sprinkler Corporation.
 - h. Grinnell Fire Protection.
 - i. Hammond Valve.
 - j. McWane, Inc.; Kennedy Valve Div.
 - k. Mueller Company.
 - I. NIBCO.
 - m. Potter-Roemer: Fire Protection Div.
 - n. Reliable Automatic Sprinkler Co., Inc.
 - o. Star Sprinkler Inc.
 - p. Stockham.
 - q. United Brass Works, Inc.
 - r. Victaulic Co. of America.
 - s. Watts Industries, Inc.; Water Products Div.
- F. Gate Valves: UL 262, OS&Y type.
 - 1. NPS 2 and Smaller: Bronze body with threaded ends.
 - a. Manufacturers:
 - 1) Crane Co.; Crane Valve Group; Crane Valves.
 - 2) Fivalco.
 - 3) Hammond Valve.
 - 4) NIBCO.
 - 5) United Brass Works, Inc.
 - 2. NPS 2-1/2 and Larger: Cast-iron body with flanged ends.
 - a. Manufacturers:
 - 1) Clow Valve Co.
 - 2) Crane Co.; Crane Valve Group; Crane Valves.
 - 3) Crane Co.; Crane Valve Group; Jenkins Valves.
 - 4) Fivalco
 - 5) Hammond Valve.
 - 6) Milwaukee Valve Company.
 - 7) Mueller Company.
 - 8) NIBCO.
 - 9) United Brass Works, Inc.

- G. Indicating Valves: UL 1091, with integral indicating device and ends matching connecting piping.
 - 1. Indicator: Electrical, 115-V ac, prewired, single-circuit, supervisory switch and Visual.
 - 2. NPS 2 and Smaller: Ball or butterfly valve with bronze body and threaded ends.
 - a. Manufacturers:
 - 1) Milwaukee Valve Company.
 - 2) NIBCO.
 - 3) Victaulic Co. of America.
 - 3. NPS 2-1/2 and Larger: Butterfly valve with cast- or ductile-iron body; wafer type or with flanged or grooved ends.
 - a. Manufacturers:
 - 1) Central Sprinkler Corp.
 - 2) Grinnell Fire Protection.
 - 3) McWane, Inc.; Kennedy Valve Div.
 - 4) Milwaukee Valve Company.
 - 5) NIBCO.
 - 6) Victaulic Co. of America.
- H. Supervised Normally Closed Valve
 - 1. Indicator: Electrical, 115-V ac, prewired, single-circuit, supervisory switch and visual to send signal on partial close.
 - a. Manufactures:
 - 1) NIBCO.
 - 2) Victaulic Co. of America.

2.14 UNLISTED GENERAL-DUTY VALVES

- A. Ball Valves NPS 2 and Smaller: MSS SP-110, 2-piece copper-alloy body with chrome-plated brass ball, 600-psig minimum CWP rating, blowout-proof stem, and threaded ends.
- B. Check Valves NPS 2 and Smaller: MSS SP-80, Type 4, Class 125 minimum, swing type with bronze body, nonmetallic disc, and threaded ends.
- C. Gate Valves NPS 2 and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, solid wedge, and threaded ends.
- D. Globe Valves NPS 2 and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, nonmetallic disc, and threaded ends.

2.15 SPECIALTY VALVES

- A. Sprinkler System Control Valves: FMG approved, cast- or ductile-iron body with flanged or grooved ends, and 175-psig minimum pressure rating. Control valves shall have 250-psig minimum pressure rating if valves are components of high-pressure piping system.
 - 1. Manufacturers:
 - a. Globe Fire Sprinkler Corporation.
 - b. Reliable Automatic Sprinkler Co., Inc.
 - c. Victaulic Co. of America.
 - d. Viking Corp.
 - 2. Dry-Pipe Valves: UL 260, differential type; with bronze seat with O-ring seals, single-hinge pin, and latch design. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 - a. Air-Pressure Maintenance Device: UL 260, automatic device to maintain correct air pressure in piping. Include shutoff valves to permit servicing without shutting down sprinkler piping, bypass valve for quick filling, pressure regulator or switch to maintain pressure, strainer, pressure ratings with 14- to 60-psig adjustable range, and 175-psig maximum inlet pressure.
 - 1) Manufacturers:
 - a) AFAC Inc.
 - b) Central Sprinkler Corp.
 - c) General Air Products, Inc.
 - d) Globe Fire Sprinkler Corporation.
 - e) Reliable Automatic Sprinkler Co., Inc.
 - f) Viking Corp.
 - b. Air Compressor: UL 753, fractional horsepower, 120-V ac, 60 Hz, single phase.
 - 1) Manufacturers:
 - a) AFAC Inc.
 - b) Gast Manufacturing, Inc.
 - c) General Air Products, Inc.
 - d) Grinnell Fire Protection.
 - e) Reliable Automatic Sprinkler Co., Inc.
 - f) Viking Corp.
 - 3. Deluge Valves: UL 260, cast-iron body, hydraulically operated, differential-pressure type. Include bronze seat with O-ring seals, trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, drip cup assembly piped without valves and separate from main drain line, fill-line attachment with strainer, and push-rod chamber supply connection.
 - a. Dry, Pilot-Line Trim Set: Include dry, pilot-line actuator; air- and water-pressure gages; low-air-pressure warning switch; air relief valve; and actuation device. Dry, pilot-line actuator includes cast-iron, operated, diaphragm-type valve with resilient facing plate, resilient diaphragm, and replaceable bronze seat. Valve includes

threaded water and air inlets and water outlet. Loss of air pressure on dry, pilot-line side allows pilot-line actuator to open and causes deluge valve to open immediately.

- B. Automatic Drain Valves: UL 1726, NPS 3/4, ball-check device with threaded ends.
 - 1. Manufacturers:
 - Grinnell Fire Protection.

2.16 SPRINKLERS

- A. Sprinklers shall be UL listed or FMG approved, with 175-psig minimum pressure rating. Sprinklers shall have 250-psig minimum 300-psig pressure rating if sprinklers are components of high-pressure piping system.
- B. Sprinklers shall have 250-psig minimum 300-psig pressure rating if sprinklers are components of high-pressure piping system.
- C. Manufacturers:
 - 1. Globe Fire Sprinkler Corporation.
 - 2. Reliable Automatic Sprinkler Co., Inc.
 - 3. Victaulic Co. of America.
 - 4. Viking Corp.
 - 5. Tyco Fire
- D. Automatic Sprinklers: With heat-responsive element complying with the following:
 - 1. UL 199, for nonresidential applications.
 - 2. UL 1626, for residential applications.
- E. Sprinkler Types and Categories: Nominal 1/2-inch orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.
 - 1. Open Sprinklers: UL 199, without heat-responsive element.
 - a. Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
 - b. Orifice: 17/32 inch, with discharge coefficient K between 7.4 and 8.2.
- F. Sprinkler types, features, and options as follows:
 - 1. Concealed ceiling sprinklers, including cover plate.
 - 2. Extended-coverage sprinklers, not allowed unless approved in writing prior to bidding.
 - 3. Flow-control sprinklers, with automatic open and shutoff feature.
 - 4. Flush ceiling sprinklers, including escutcheon, not allowed.
 - 5. Institution sprinklers, made with a small, breakaway projection.
 - 6. Pendent sprinklers.
 - 7. Pendent, dry-type sprinklers.
 - 8. Quick-response sprinklers.
 - 9. Recessed sprinklers, including escutcheon.
 - 10. Sidewall sprinklers.
 - 11. Sidewall, dry-type sprinklers.
 - 12. Upright sprinklers.

- G. Sprinkler Finishes: Chrome plated, bronze, and painted. Finishes as approved by FM Global.
- H. Special Coatings: Wax, lead, and corrosion-resistant paint.
- I. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Flat plate concealed, white.
 - 2. Sidewall Mounting: Semi-Recessed, white.
- J. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler.

2.17 HOSE CONNECTIONS

A. Manufacturers:

- 1. Central Sprinkler Corp.
- 2. Elkhart Brass Mfg. Co., Inc.
- 3. Fire-End and Croker Corp.
- 4. Fivalco
- 5. Grinnell Fire Protection.
- 6. Guardian Fire Equipment Incorporated.
- 7. McWane, Inc.; Kennedy Valve Div.
- 8. Mueller Company.
- 9. Potter-Roemer; Fire-Protection Div.
- 10. United Brass Works. Inc.
- B. Description: UL 668, brass or bronze, 300-psig minimum pressure rating, hose valve for connecting fire hose. Include angle or gate pattern design; female NPS inlet and male hose outlet; and lugged cap, gasket, and chain. Include NPS 1-1/2 or NPS 2-1/2, and hose valve threads according to NFPA 1963 and matching local fire department threads.
 - 1. Valve Operation: Nonadjustable type, unless pressure-regulating type is indicated.
 - 2. Finish: Rough metal.

2.18 FIRE DEPARTMENT CONNECTIONS

A. Manufacturers:

- 1. Central Sprinkler Corp.
- 2. Elkhart Brass Mfg. Co., Inc.
- 3. Fire-End and Croker Corp.
- 4. Fire Protection Products, Inc.
- 5. Guardian Fire Equipment Incorporated.
- 6. Potter-Roemer; Fire-Protection Div.
- 7. Reliable Automatic Sprinkler Co., Inc.
- 8. United Brass Works, Inc.
- B. Existing Fire Department Connection to remain.

2.19 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Electrically Operated Alarm: UL 464, with 8-inch- minimum- diameter, vibrating-type, metal alarm bell with red-enamel factory finish and suitable for outdoor use.
 - 1. Manufacturers:
 - a. Potter Electric Signal Company.
 - b. System Sensor.
- C. Electrically Operated Alarm: Horn/Strobe, NEMA 3R minimum suitable for outdoor use.
 - 1. Manufacturers:
 - a. Potter Electric Signal Company.
 - b. System Sensor.
- D. Water-Flow Indicator: UL 346, electrical-supervision, paddle-operated-type, water-flow detector with 250-psig pressure rating and designed for horizontal or vertical installation. Include two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 1. Manufacturers:
 - a. ADT Security Services, Inc.
 - b. Grinnell Fire Protection.
 - c. ITT McDonnell & Miller.
 - d. Potter Electric Signal Company.
 - e. System Sensor.
 - f. Viking Corp.
 - g. Watts Industries, Inc.; Water Products Div.
- E. Pressure Switch: UL 753, electrical-supervision-type, water-flow switch with retard feature. Include single-pole, double-throw, normally closed contacts and design that operates on rising pressure and signals water flow.
 - 1. Manufacturers:
 - Grinnell Fire Protection.
 - b. Potter Electric Signal Company.
 - c. System Sensor.
 - d. Viking Corp.
- F. Valve Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled valve is in other than fully open position.
 - 1. Manufacturers:
 - a. McWane. Inc.: Kennedy Valve Div.
 - b. Potter Electric Signal Company.

- c. System Sensor.
- G. Indicator-Post Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled indicator-post valve is in other than fully open position.
 - 1. Manufacturers:
 - a. Potter Electric Signal Company.
 - b. System Sensor.

2.20 PRESSURE GAGES

- A. Manufacturers:
 - 1. Brecco Corporation.
 - 2. Dresser Equipment Group; Instrument Div.
 - 3. Marsh Bellofram.
 - 4. WIKA Instrument Corporation.
- B. Description: UL 393, 3-1/2- to 4-1/2-inch- diameter, dial pressure gage with range of 0 to 250 psig minimum.
 - 1. Water System Piping: Include caption "WATER" or "AIR/WATER" on dial face.
 - 2. Air System Piping: Include retard feature and caption "AIR" or "AIR/WATER" on dial face.

2.21 DOUBLE CHECK VALVE ASSEMBLIES

- A. Manufacturers
 - 1. Ames
 - 2. Backflow Direct
 - 3. Febco
 - 4. Wilkins
 - 5. Watts
- B. Description; Resilient seated, spring loaded with testable outlets provided, as required by Authorities Having Jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Obtain Engineer's Water Analysis or fire-hydrant flow test. Use results for system design calculations required in "Quality Assurance" Article in Part 1 of this Section.
- B. Engineer's Water Analysis. See Flow Analysis provided by Van Boerum & Frank Associates.

3.2 EARTHWORK

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.3 EXAMINATION

- A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.
- B. Examine walls and partitions for suitable thicknesses, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PIPING APPLICATIONS

- A. Shop weld pipe joints where welded piping is indicated.
- B. Do not use welded joints for galvanized-steel pipe.
- C. Flanges, flanged fittings, unions, nipples, and transition and special fittings with finish and pressure ratings same as or higher than system's pressure rating may be used in aboveground applications, unless otherwise indicated.
- D. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
- E. Underground Service-Entrance Piping: Ductile-iron, push-on or mechanical-joint pipe and fittings and restrained joints. Include corrosion-protective encasement.
- F. Sprinkler Main Piping: Use the following:
 - 1. NPS 6 and Smaller: Standard-weight steel pipe with threaded ends, or grooved ends. No plain ends allowed.
 - 2. Outlets shall be welded.
 - a. Victaulic Brand Mechanical tee fittings may be used in lieu of welded outlets.
- G. Branch line piping: Use the following:
 - 1. NPS 2 and Smaller: Threadable steel pipe with threaded ends; cast- or malleable-iron threaded fittings; and threaded joints.
 - a. Victaulic Brand Mechanical tee fittings may be used
- H. Standpipes and mains: Use the following:
 - 1. NPS 4 to NPS 6: Schedule 40 steel pipe with grooved ends & Welded outlets.
 - 2. NPS 3 and Smaller: Schedule 40 steel pipe with threaded ends, or grooved ends. No plain ends allowed.

3.5 VALVE APPLICATIONS

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Fire-Protection-Service Valves: UL listed and FM approved for applications where required by NFPA 13 and NFPA 14.
 - 2. General-Duty Valves: For applications where UL-listed and FM-approved valves are not required by NFPA 13 and NFPA 14.
 - a. Shutoff Duty: Use gate, ball, or butterfly valves.
 - b. Throttling Duty: Use globe, ball, or butterfly valves.

3.6 JOINT CONSTRUCTION

- A. Refer to Division 23 Section "Common Work Result for HVAC" for basic piping joint construction.
- B. Ductile-Iron-Piping, Grooved Joints: Use ductile-iron pipe with radius-cut-grooved ends; ductile-iron, grooved-end fittings; and ductile-iron, keyed couplings. Assemble joints with couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
- C. Steel-Piping, Grooved Joints: Use Schedule 40 steel pipe with cut or roll-grooved ends and Schedule 30 or thinner steel pipe with roll-grooved ends; steel, grooved-end fittings; and steel, keyed couplings. Assemble joints with couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions. Use gaskets listed for dry-pipe service for dry piping.

3.7 WATER-SUPPLY CONNECTION

A. Install shutoff Backflow preventions assemblies, valve, pressure gage's, drain, and other accessories at connection to water service.

3.8 PIPING INSTALLATION

- A. Refer to Division 23 Section "Common Work Result for HVAC" for basic piping installation.
- B. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- C. Install underground service-entrance piping according to NFPA 24 and with restrained joints.
- D. Make connections between underground and above-ground piping using bolted flange.
- E. Install mechanical sleeve seal at pipe penetrations in basement and foundation walls. Refer to Division 23 Section "Common Work Result for HVAC."

- F. Use approved fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- G. Install unions adjacent to each valve in pipes NPS 2 and smaller. Unions are not required on flanged devices or in piping installations using grooved joints.
- H. Install flanges or flange adapters on valves, apparatus, and equipment having NPS 2-1/2 and larger connections.
- I. Install "Inspector's Test Connections" in sprinkler piping, complete with shutoff valve, sized and located according to NFPA 13.
- J. Install sprinkler piping with drains for complete system drainage.
- K. Install sprinkler zone control valves, check valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- L. Install drain valves on standpipes.
- M. Install ball drip valves to drain piping between fire department connections and check valves. Drain to floor drain or outside building.
- N. Install alarm devices in piping systems.
- O. Hangers and Supports: Comply with NFPA 13 for hanger materials. Install according to NFPA 13 for sprinkler piping and to NFPA 14 for standpipes.
 - 1. No powder driven studs allowed.
 - 2. Wrap-around braces are to be provided at end of branch lines.
- P. Earthquake Protection: Install piping according to NFPA 13-9.3 requirements, to protect from earthquake damage. Seismic Bracing shall be designed to withstand vertical forces and movement.
- Q. Install piping with grooved joints according to manufacturer's written instructions. Construct rigid piping joints, unless otherwise indicated, or required by NFPA 13 for flexibility in seismic zones.
- R. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- S. When a fire pipe crosses a seismic expansion joint it shall have a Metraflex fire loop installed at the joint in accordance with NFPA 13 chapter 9.

3.9 SPECIALTY SPRINKLER FITTING INSTALLATION

A. Install specialty sprinkler fittings according to manufacturer's written instructions.

3.10 VALVE INSTALLATION

- A. Refer to Division 23 Section "Valves" for installing general-duty valves. Install fire-protection specialty valves, trim, fittings, controls, and specialties according to NFPA 13 and NFPA 14, manufacturer's written instructions, and authorities having jurisdiction.
- B. Valves: Install fire-protection-service valves supervised-open, located to control sources of water supply except from fire department connections. Provide permanent identification signs indicating portion of system controlled by each valve.
- C. Double Check Valve Assemblies: Install valves in vertical up or horizontal position, per listings and for proper direction of flow.
- D. Deluge Valves: Install in vertical position, in proper direction flow, in main supply to deluge system.

3.11 SPRINKLER APPLICATIONS

- A. General: Sprinklers are to be standard response type if one or two heads are replaced. If all heads in the MRI magnet room are to be replaced, then they all must be quick response type. Sprinkler heads shall be of the latest design closed spray type for 155°F unless specified otherwise or required by code. Extended coverage heads shall not be used. Orifices larger than 1/2" may be used as required by density and spacing demands. Use sprinklers according to the following applications:
 - 1. Rooms without Ceilings: Upright and/or pendent sprinklers. Provide mechanical guards on all heads at or below 7'-0" height above the floor or where damage from room occupant use may occur.
 - 2. Rooms with Ceilings: Semi-Recessed sprinklers.
 - 3. Rooms with Ceilings: Concealed sprinklers, where indicated.
 - 4. Wall Mounting: Sidewall sprinklers with recessed escutcheon.
 - 5. Institutional sprinklers shall be installed in areas of detention, correctional or mental health care facilities.
 - 6. Spaces Subject to Freezing: Upright; pendent, dry-type; and sidewall, dry-type sprinklers.
 - 7. Provide freeze proof type automatic sprinkler heads serving unconditioned spaces, areas subject to freezing and in other areas requiring their use.
 - 8. Heads located within the air streams of unit heaters or other heat-emitting equipment shall be selected for proper temperature rating.
 - 9. Sprinkler Finishes: Use sprinklers with the following finishes:
 - a. Upright, Pendent, and Sidewall Sprinklers: Chrome in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view.
 - b. Concealed Sprinklers: Rough brass, with White cover plate to match ceiling color.
 - c. Semi-Recessed Sprinklers: White, with FMG approved white escutcheon.

B. Sprinklers: Use the following:

- 1. All sprinklers shall be listed, quick response type.
- 2. Sprinkler in future finish spaces (shelled) 10' x 10' spacing shall be pendants/uprights installed with 1 x $\frac{1}{2}$ " bushing, to accommodate future finishes.
- 3. Finish ceiling spaces shall have semi-recessed type escutcheon.

3.12 SPRINKLER INSTALLATION

- A. Every effort shall be required to ensure that the heads form a symmetrical pattern in the ceiling with the ceiling grid, lights, diffusers and grilles. Offsets shall be made in piping to accommodate ductwork in the ceiling. Heads should be symmetrical and all piping run parallel or perpendicular to building lines.
 - 1. In no case shall sprinkler heads be installed closer than approved distances from ceiling obstructions and HVAC ductwork.
 - 2. Sprinkler heads shall not conflict with tile grids.
 - 3. Sprinkler heads shall be located near center of corridors.
- B. Where layout of sprinkler heads is shown on reflected ceiling plans the locations shall be followed unless approval is obtained from the Architect or such locations shown do not meet the requirements of NFPA-13. In either case, approval of the Architect shall be obtained in writing before sprinkler head locations are changed. If the installation of additional heads is needed to conform to NFPA 13 requirements in areas where heads are shown on reflected ceiling plans, they shall be included in the contract price.
- C. Install sprinklers in patterns indicated.
- D. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space.
- E. Future finish shelled and tenant finish; Shell spaces shall be piped to accommodate future. Install sprinklers with 1" x ½" bushings, and space heads at a maximum spacing of 100 sq. ft. per head. Occupancy shall be Ordinary-Hazard Group 1 Design.
- F. Concealed type sprinkler shall be installed in the following areas:
 - 1. Procedure, Operating & Sterile rooms
 - 2. Communications rooms
 - 3. CT Scan Control/computer room
 - 4. Cat scan/control/computer room
 - 5. All Pre-action sprinkler systems, where ceilings are provided.
 - 6. Other areas as indicated on drawings.

3.13 HOSE-CONNECTION INSTALLATION

- A. Install hose connections adjacent to standpipes, unless otherwise indicated.
- B. Install freestanding hose connections for access and minimum passage restriction.
- C. Install NPS 2-1/2 hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 reducer adapter, cap and chain.

3.14 CONNECTIONS

- A. Connect water-supply piping and standpipes and sprinklers where indicated.
- B. Connect piping to specialty valves, hose valves, specialties, fire department connections, and accessories.

- C. Electrical Connections: Power wiring is specified in Division 28.
- D. Connect alarm devices to fire alarm.

3.15 LABELING AND IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13 and NFPA 14 and in Division 23 Section "Common Work Result for HVAC."

3.16 FIELD QUALITY CONTROL

- A. Flush, test, and inspect sprinkler piping according to NFPA 13, "System Acceptance" Chapter.
- B. Flush, test, and inspect standpipes according to NFPA 14, "Tests and Inspection" Chapter.
- C. Replace piping system components that do not pass test procedures and retest to demonstrate compliance. Repeat procedure until satisfactory results are obtained.
- D. When making a mechanical tee connection the coupon shall be attached at the mechanical tee.
- E. Report test results promptly and in writing to Architect and authorities having jurisdiction.
- F. Whether the underground serving the sprinkler system is done by this contractor or another, this contractor will be responsible to assure and have in his possession a certificate that the underground has been flushed and tested by the contractor who installed it in accordance with NFPA-24 prior to connection of the underground piping to the overhead sprinkler system.

3.17 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers having paint other than factory finish.

3.18 PROTECTION

A. Protect sprinklers from damage until Substantial Completion.

3.19 COMMISSIONING

- A. Verify that specialty valves, trim, fittings, controls, and accessories are installed and operate correctly.
- B. Verify that specified tests of piping are complete and that "Material Test Certificates" are complete.
- C. Verify that damaged sprinklers and sprinklers with paint or coating not specified are replaced with new, correct type.

- D. Verify that sprinklers are correct types, have correct finishes and temperature ratings, and have guards as required for each application.
- E. Verify that hose connections and fire department connections have threads compatible with local fire department equipment.
- F. Fill wet-pipe sprinkler piping with water.
- G. Fill standpipes with water.
- H. Verify that hose connections are correct type and size.
- I. Coordinate with fire alarm tests. Operate as required.

3.20 DEMONSTRATION & TESTS

- A. Demonstrate equipment, specialties, and accessories. Review operating and maintenance information.
- B. All tests will be conducted as required by the local authority having jurisdiction, and in no case less than those required by NFPA standards. As a minimum, piping in the sprinkler system shall be tested at a water pressure at 200 psi for a period of not less two hours, or at 50 psi in excess of the normal pressure when the normal pressure is above 150 psi. Bracing shall be in place, and air shall be removed from the system through the hydrants and drain valves before the test pressure is applied. No apparent leaks will be permitted on interior or underground piping.
- C. The local jurisdiction having authority and the Utah State Fire Marshal's office (where required) shall be notified at least three working days in advance of all tests and flushing. This includes any flushing of underground, hydrostatic testing, or flow testing that may be required.
- D. This contractor shall make all the required tests to the sprinkler system as required by code. He shall be responsible to assure that the Contractor Test Certificates for the overhead, backflow and underground work are completed and delivered to the owner's insurance underwriter to assure proper insurance credit.
- E. All tests requiring the witnessing by local authorities will be the responsibility of this contractor. If tests are not run or do not have the proper witness, then they will be run later and all damage caused by the system, or caused in uncovering the system for such test, will be borne by this contractor.

3.21 WARRANTY

- A. This contractor shall warranty the sprinkler system and all its components for one year from the date of acceptance by the owner. Any costs incurred to extend any warranties of materials to assure this time frame shall be borne by this contractor.
- B. Provide Operation and Maintenance Manuals with correct as-builts test certificates and warranties included. A minimum 6 sets to be provided in red 3-ring binders. Include a current adopted version of NFPA 25 softbound copy left with owner.

C. Electronic copy of AutoCAD as-built drawings shall also be provided on CD, with each O&M Manual.

3.22 FIELD QUALITY CONTROL

- A. Flush, test and inspect sprinkler piping according to NFPA 13, "System Acceptance" Chapter.
- B. Replace piping system components that do not pass test procedures and retest to demonstrate compliance. Repeat procedure until satisfactory results are obtained.
- C. Report test results promptly and in writing to Architect and authorities having jurisdiction.

END OF SECTION 211000

SECTION 22 0500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Concrete bases.
 - 11. Supports and anchorages.
 - 12. Link Seal

1.3 SEISMIC REQUIREMENTS

- A. Seismic Performance: Equipment, pipe hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment.
 - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

1.4 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, and crawlspaces.

- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms, accessible pipe shafts, accessible plumbing chases and accessible tunnels.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
 - C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
 - D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
 - E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:

- a. Advance Products & Systems, Inc.
- b. Calpico, Inc.
- c. Central Plastics Company.
- d. Pipeline Seal and Insulator, Inc.
- 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- D. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.10 LINK SEAL

- A. Link-Seal® Modular Seal Pressure Plates
 - 1. Link-Seal® modular seal pressure plates shall be molded of glass reinforced Nylon Polymer with the following properties:
 - a. Izod Impact Notched = 2.05ft-lb/in. per ASTM D-256
 Flexural Strength @ Yield = 30,750 psi per ASTM D-790

 Flexural Modulus = 1,124,000 psi per ASTM D-790
 Elongation Break = 11.07% per ASTM D-638
 Specific Gravity = 1.38 per ASTM D-792
 - 2. Models LS200-275-300-315 shall incorporate the most current Link-Seal® Modular Seal design modifications and shall include an integrally molded compression assist boss on the top (bolt entry side) of the pressure plate, which permits increased compressive loading of the rubber sealing element. Models 315-325-340-360-400-410-425-475-500-525-575-600 shall incorporate an integral recess known as a "Hex Nut Interlock"

- designed to accommodate commercially available fasteners to insure proper thread engagement for the class and service of metal hardware. All pressure plates shall have a permanent identification of the manufacturer's name molded into it.
- 3. For fire and Hi-Temp service, pressure plates shall be steel with 2-part Zinc Dichromate Coating.
- 4. Link-Seal® Modular Seal Hardware: All fasteners shall be sized according to latest Link-Seal® modular seal technical data. Bolts, flange hex nuts shall be: 316 Stainless Steel per ASTM F593-95, with a 85,000 psi average tensile strength.

PART 3 - EXECUTION

3.1 PLUMBING DEMOLITION

- A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 SEISMIC REQUIREMENTS

A. Comply with SEI/ASCE 7 and with requirements for seismic seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

3.3 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
 - 2. Existing Piping: Use the following:
 - a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
 - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and spring clips.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and set screw.
 - f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
 - g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with set screw or spring clips.
 - h. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.
- M. Sleeves are not required for core-drilled holes.

- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - Mechanical Sleeve Seal Installation: Select type and number of sealing elements
 required for pipe material and size. Position pipe in center of sleeve. Assemble
 mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten
 bolts against pressure plates that cause sealing elements to expand and make watertight
 seal.

- S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- T. Verify final equipment locations for roughing-in.
- U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.4 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.6 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.7 PAINTING

- A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.10 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.11 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 22 0500

Section 22 0523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Bronze angle valves.
- 2. Bronze ball valves.
- 3. High Performance butterfly valves.
- 4. Bronze lift check valves.
- 5. Bronze swing check valves.
- 6. Iron swing check valves.
- 7. Iron swing check valves with closure control.
- 8. Iron, center-guided check valves.
- 9. Iron, plate-type check valves.
- 10. Bronze gate valves.
- 11. Bronze globe valves.
- 12. Iron globe valves.
- 13. Chainwheels.

B. Related Sections: SECTION

- 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
- 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
- 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.

- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.
- D. For this project, all domestic water butterfly valves, shall be high performance butterfly valves

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 - 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
 - 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 **BRONZE ANGLE VALVES**

- A. Class 125, Bronze Angle Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hammond Valve.
 - b. Milwaukee Valve Company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.

- b. CWP Rating: 200 psig.
- c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
- d. Ends: Threaded.
- e. Stem and Disc: Bronze.
- f. Packing: Asbestos free.
- g. Handwheel: Malleable iron, bronze, or aluminum.

2.3 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Hammond Valve.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
- B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Hammond Valve.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - i. Port: Full.

- C. Three-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Hammond Valve.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Three piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
- D. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Hammond Valve.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Three piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.

2.4 HIGH PERFORMANCE BUTTERFLY VALVES

- A. 150 CWP, Iron, Single-Flange (Lug) Butterfly Valves:
 - 1. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 150 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.

- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Nylon 11 coated ductile iron.
- h. NSF Approved.

2.5 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.6 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Hammond Valve.
 - f. Kitz Corporation.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Powell Valves.
 - j. Red-White Valve Corporation.
 - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - I. Zy-Tech Global Industries, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.

- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: Bronze.
- B. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Kitz Corporation.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Red-White Valve Corporation.
 - i. Zy-Tech Global Industries, Inc.

2. Description:

- a. Standard: MSS SP-80, Type 3.
- b. CWP Rating: 300 psig.
- c. Body Design: Horizontal flow.
- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: Bronze.

2.7 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Kitz Corporation.
 - f. Legend Valve.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Powell Valves.
 - j. Red-White Valve Corporation.
 - k. Sure Flow Equipment Inc.
 - I. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - m. Zy-Tech Global Industries, Inc.
 - 2. Description:

- a. Standard: MSS SP-71, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Clear or full waterway.
- d. Body Material: ASTM A 126, gray iron with bolted bonnet.
- e. Ends: Flanged. f. Trim: Bronze.
- g. Gasket: Asbestos free.
- B. Class 250, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 500 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

2.8 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

- A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.
 - h. Closure Control: Factory-installed, exterior lever and spring.

2.9 IRON, CENTER-GUIDED CHECK VALVES

- A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. APCO Willamette Valve and Primer Corporation.
 - c. Crispin Valve.
 - d. DFT Inc.
 - e. Flo Fab Inc.
 - f. GA Industries, Inc.
 - g. Hammond Valve.
 - h. Metraflex, Inc.
 - i. Milwaukee Valve Company.
 - j. Mueller Steam Specialty; a division of SPX Corporation.
 - k. NIBCO INC.
 - I. Spence Strainers International; a division of CIRCOR International, Inc.
 - m. Sure Flow Equipment Inc.
 - n. Val-Matic Valve & Manufacturing Corp.
 - o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron.
 - d. Style: Compact wafer.
 - e. Seat: Bronze.
- B. Class 150, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crispin Valve.
 - c. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - d. Style: Compact wafer.
 - e. Seat: Bronze.
- C. Class 250, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. APCO Willamette Valve and Primer Corporation.
- b. Crispin Valve.
- c. DFT Inc.
- d. Flo Fab Inc.
- e. Hammond Valve.
- f. Metraflex, Inc.
- g. Milwaukee Valve Company.
- h. NIBCO INC.
- i. Sure Flow Equipment Inc.
- j. Val-Matic Valve & Manufacturing Corp.

2. Description:

- a. Standard: MSS SP-125.
- b. CWP Rating: 400 psig.
- c. Body Material: ASTM A 126, gray iron.
- d. Style: Compact wafer, spring loaded.
- e. Seat: Bronze.
- D. Class 300, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crispin Valve.
 - c. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. CWP Rating: 500 psig.
 - c. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - d. Style: Compact wafer, spring loaded.
 - e. Seat: Bronze.

2.10 IRON, PLATE-TYPE CHECK VALVES

- A. Class 125, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Flomatic Corporation.
 - d. Mueller Steam Specialty; a division of SPX Corporation.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 200 psig.

- c. Body Design: Wafer, spring-loaded plates.
- d. Body Material: ASTM A 126, gray iron.
- e. Seat: Bronze.
- B. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Mueller Steam Specialty; a division of SPX Corporation.
 - d. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - e. Seat: Bronze.
- C. Class 250, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 400 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Seat: Bronze.
- D. Class 300, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Mueller Steam Specialty; a division of SPX Corporation.
 - d. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 500 psig.
 - c. Body Design: Wafer, spring-loaded plates.

- d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
- e. Seat: Bronze.
- E. Class 125, Iron, Dual-Plate Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Cooper Cameron Valves TVB Techno.
 - c. Crane Co.; Crane Valve Group; Crane Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. NIBCO INC.
 - f. Spence Strainers International; a division of CIRCOR International, Inc.
 - g. Sure Flow Equipment Inc.
 - h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Seat: EPDM or NBR.
- F. Class 150, Iron, Dual-Plate Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - e. Seat: EPDM or NBR.
- G. Class 250, Iron, Dual-Plate Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Sure Flow Equipment Inc.
 - 2. Description:

- a. Standard: API 594.b. CWP Rating: 400 psig.
- c. Body Design: Wafer, spring-loaded plates.d. Body Material: ASTM A 126, gray iron.
- e. Seat: EPDM or NBR.
- H. Class 300, Iron, Dual-Plate Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 500 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - e. Seat: EPDM or NBR.

2.11 BRONZE GLOBE VALVES

- A. Class 125, Bronze Globe Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. Kitz Corporation.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Powell Valves.
 - h. Red-White Valve Corporation.
 - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - j. Zy-Tech Global Industries, Inc.

2. Description:

- a. Standard: MSS SP-80, Type 1.
- b. CWP Rating: 200 psig.
- c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
- d. Ends: Threaded or solder joint.
- e. Stem and Disc: Bronze.
- f. Packing: Asbestos free.
- g. Handwheel: Malleable iron, bronze, or aluminum.

2.12 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Kitz Corporation.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Powell Valves.
 - i. Red-White Valve Corporation.
 - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - k. Zy-Tech Global Industries, Inc.

2. Description:

- a. Standard: MSS SP-85, Type I.
- b. CWP Rating: 200 psig.
- c. Body Material: ASTM A 126, gray iron with bolted bonnet.
- d. Ends: Flanged.
- e. Trim: Bronze.
- f. Packing and Gasket: Asbestos free.

B. Class 250, Iron Globe Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:

- a. Standard: MSS SP-85, Type I.
- b. CWP Rating: 500 psig.
- c. Body Material: ASTM A 126, gray iron with bolted bonnet.
- d. Ends: Flanged.
- e. Trim: Bronze.
- f. Packing and Gasket: Asbestos free.

2.13 CHAINWHEELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.
- B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to ball butterfly and plug valve stems.
 - 3. Sprocket Rim with Chain Guides: Aluminum, of type and size required for valve.
 - 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for ball butterfly gate globe and plug valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install check valves for proper direction of flow and as follows:

- 1. Swing Check Valves: In horizontal position with hinge pin level.
- 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
- 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service Globe, angle, ball or butterfly valves.
 - 4. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal or resilient-seat check valves.
 - c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: One, Two, or Three piece, full, regular or reduced port, with brass, bronze or stainless-steel trim.
 - 3. Bronze Lift Check Valves: Class 125, bronze disc.
 - 4. Bronze Swing Check Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:

- Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
- 2. Iron, Single-Flange Butterfly Valves: 200 CWP, NBR seat, aluminum-bronze, ductile-iron or stainless-steel disc.
- 3. Iron Swing Check Valves: Class 125, metal seats.
- 4. Iron, Center-Guided Check Valves: Class 125, globe, metal seat.
- 5. Iron, Plate-Type Check Valves: Class 125; dual plate; metal seat.

3.6 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
- 2. Bronze Angle Valves: Class 125 or Class 150, bronze disc.
- 3. Ball Valves: One, Two or Three piece, full, bronze with bronze or stainless-steel trim.
- 4. Bronze Swing Check Valves: Class 125 or Class 150, bronze disc.
- 5. Bronze Globe Valves: Class 125 or Class 150, bronze disc.

B. Pipe NPS 2-1/2 and Larger:

- 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
- 2. Ball Valves: One, Two or Three piece, full or, regular port, bronze with bronze or stainless-steel trim.
- 3. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM seat, aluminum-bronze, ductile-iron or stainless-steel disc.
- 4. Iron Swing Check Valves: Class 125 or Class 250, metal seats.
- 5. Iron Swing Check Valves with Closure Control: Class 125, lever and spring weight.
- 6. Iron, Center-Guided Check Valves: Class 125, Class 150, Class 250 or Class 300, compact-wafer, metal seat.
- 7. Iron, Plate-Type Check Valves: Class 125, Class 150, Class 250 or Class 300; single plate: metal seat.
- 8. Iron Globe Valves: Class 125 or Class 250.

END OF SECTION 22 0523

SECTION 22 0529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe positioning systems.
 - 8. Equipment supports.

B. Related Sections include the following:

- 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for fire-suppression piping.
- 3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
- 4. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment.
 - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
 - 4. Pipe positioning systems.
 - 5. Mechanical Anchors: ICC-ES Evaluation Reports validating 'Cracked Concrete' testing per A.C. 193 must be provided for anchors resisting seismic loads and/or supporting lifesafety systems including fire sprinkler systems.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Pipe stands. Include Product Data for components.
 - 4. Equipment supports.
- C. Welding certificates.
- D. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 - 4. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered

professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel.", AWS D1.4, "Structural Welding Code--Reinforcing Steel." and ASME Boiler and Pressure Vessel Code: Section IX.
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 - 4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. Anvil International.
 - 2. AAA Technology & Specialties Co., Inc.
 - 3. Bergen-Power Pipe Supports.
 - 4. B-Line Systems, Inc.; a division of Cooper Industries.
 - 5. Carpenter & Paterson, Inc.
 - 6. Empire Industries, Inc.
 - 7. ERICO/Michigan Hanger Co.
 - 8. Globe Pipe Hanger Products, Inc.
 - 9. Grinnell Corp.
 - 10. GS Metals Corp.
 - 11. National Pipe Hanger Corporation.
 - 12. PHD Manufacturing, Inc.
 - 13. PHS Industries, Inc.
 - 14. Piping Technology & Products, Inc.
 - 15. Tolco Inc.
 - 16. Simpson Strong-Tie Co.

- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. Anvil International.
 - 2. B-Line Systems, Inc.; a division of Cooper Industries.
 - 3. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 4. GS Metals Corp.
 - 5. Hilti, Inc.
 - 6. Power-Strut Div.; Tyco International, Ltd.
 - 7. Thomas & Betts Corporation.
 - 8. Tolco Inc.
 - 9. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.

- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. MKT Fastening, LLC.
 - c. Powers Fasteners.
 - d. Simpson Strong-Tie Co.
- B. Mechanical-Expansion Anchors and Concrete Screws: Insert-wedge-type stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. For anchors resisting seismic loads and/or supporting life- safety systems including fire sprinkler systems, Anchors shall have been tested for 'Cracked Concrete' per A.C. 193 per a valid ICC-ES Evaluation Report. Manufacturers with these anchors have been designated below with: '*'
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.
 - g. Simpson Strong-Tie Co. *

2.7 PIPE STAND FABRICATION

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Anvil International.
 - b. ERICO/Michigan Hanger Co.

- c. MIRO Industries.
- d. Unipure
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. MIRO Industries.
- D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Anvil International.
 - b. ERICO/Michigan Hanger Co.
 - c. MIRO Industries.
 - d. Portable Pipe Hangers.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Anvil International.
 - b. Portable Pipe Hangers.
 - 2. Bases: One or more plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

- A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.
- B. Manufacturers:
 - 1. C & S Mfg. Corp.
 - 2. HOLDRITE Corp.; Hubbard Enterprises.
 - 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes. NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.

- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
- 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
- 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
- 16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- Steel or Malleable Concrete Inserts (MSS Type 18 or Simpson Blue Banger Concrete insert with UL & FM approvals): For upper attachment to suspend pipe hangers from concrete ceiling.
- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
- 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
- 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.

- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 - B. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
 - C. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
 - D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
 - E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
 - F. Fastener System Installation:

- Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Powder actuated fasteners shall not be used for seismic bracing attachments.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. For anchors resisting seismic loads and/or supporting life-safety systems including fire sprinkler systems, anchors shall have been tested for 'Cracked Concrete' per A.C. 193 and shall have a valid ICC-ES Evaluation Report

G. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.
- H. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.
- Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- J. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- K. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- L. Install lateral bracing with pipe hangers and supports to prevent swaying.
- M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- N. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- P. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.

- c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports. For applications where seismic bracing is required, 'Cracked Concrete' expansion anchors or concrete screws tested per A.C. 193 must be provided for seismic bracing anchorage where post-installed anchors are required.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove welding flux immediately.
- 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches .

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 22 0529

SECTION 22 0548

VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following restraints and vibration isolation as defined in Section 230548 "Vibration Isolation and Seismic Controls for HVAC" for the following:
 - 1. Plumbing Piping.
 - 2. Plumbing Equipment.

PART 2 - PRODUCTS

2.1 (NOT USED)

PART 3 - EXECUTION

3.1 (NOT USED)

END OF SECTION 220548

SECTION 22 0719

PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Roof drains and rainwater leaders.
 - 5. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 DEFINITIONS:

A. Refer to Section 220500 "Common Work Results for Plumbing".

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.8 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.9 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Insulation for below-ambient service requires a vapor-barrier.
- C. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- D. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- E. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- F. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA. Inc.: Aerocel.
 - b. Armacell LLC: AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553:
 - 1. Type II and ASTM C 1290, Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.

- 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A,
 - Without factory-applied jacket with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- J. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC: Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA: R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.

- 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-20.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 SEALANTS

A. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: White.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: Color-code jackets based on system.
 - a. White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.

- 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper. 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division: Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.

- 3. Thickness: 6 mils.
- 4. Adhesion: 64 ounces force/inch in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.
- C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

2.10 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - a. Engineered Brass Company.
 - b. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 - c. McGuire Manufacturing.
 - d. Plumberex.
 - e. Truebro; a brand of IPS Corporation.
 - f. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - a. Truebro; a brand of IPS Corporation.
 - b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at:
 - a. 2 inches o.c.
 - b. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

- 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
- 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
- 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

- 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Insulation shall have a k value that meets the minimum requirements of the latest International Energy Conservation Code (IECC).
- C. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 1-1/2 and Smaller: Insulation shall be one of the following;
 - a. Flexible Elastomeric:
 - 1) 1 inch thick
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I:
 - 1) 1 inch thick
 - 2. NPS 2 and Larger: Insulation shall be one of the following:
 - a. Flexible Elastomeric:
 - 1) 1-1/2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation:
 - 1) 1-1/2 inches thick.
- B. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I:
 - 1) 1 inch thick.
 - 2. NPS 2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I:
 - 1) 1-1/2 inches thick
- C. Domestic Chilled Water (Potable):
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

- D. Storm water and Overflow:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- E. Roof Drain and Overflow Drain Bodies:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Blanket Insulation, Type I: 1 inch thick.
 - c. Drain Manufacturer's Pre-formed bowl Insulation: 1 inch thick.
- F. Sanitary Waste Piping Where Heat Tracing Is Installed:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.
- G. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric:
 - 1) 3/4 inch thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I:
 - 1) 3/4 inch thick.
- H. Hot Service Drains:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
- I. Hot Service Vents:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
- 3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE
 - A. Domestic Water Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

- B. Domestic Hot and Recirculated Hot Water:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- C. Sanitary Waste Piping Where Heat Tracing Is Installed:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
- D. Hot Service Drains:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- E. Hot Service Vents:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type II: 1 inch thick.
- 3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE
 - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
 - B. If more than one material is listed, selection from materials listed is Contractor's option.
 - C. Piping, Concealed:
 - 1. None.
 - D. Piping, Exposed:
 - 1. PVC:
 - a. White: 30 mils thick
- 3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
 - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
 - B. If more than one material is listed, selection from materials listed is Contractor's option.
 - C. Piping, Concealed:
 - 1. None.

- D. Piping, Exposed:
 - 1. Aluminum, Stucco Embossed: 0.016 inch thick.
- 3.14 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET
 - A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 22 0719

SECTION 22 1116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
- 2. Encasement for piping.

B. Related Requirements:

1. Division 22 Section "Facility Water Distribution Piping" for water-service piping outside the building from source to the point where water-service piping enters the building.

1.3 SEISMIC REQUIREMENTS

- A. Seismic Performance: Pipe hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 1. For piping with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. For piping with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.

2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Delegated-Design Submittal:

- 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
- 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
- 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.

1.5 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

1.6 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Construction Manager or owner no fewer than two days in advance of proposed interruption of water service.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."
- C. All piping shall be American made and tested; no import pipe will be permitted.
- D. All exposed water supply piping in toilet rooms, custodial rooms and kitchens shall be chromium plated.
- E. All piping installed in or passing through a plenum must be plenum rated, fire wrapped, or installed in a metal conduit.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, drawn temper.
- B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Cascade Waterworks Manufacturing.
- b. Dresser, Inc.; Piping Specialties Products.
- c. Ford Meter Box Company, Inc. (The).
- d. JCM Industries.
- e. Romac Industries, Inc.
- f. Smith-Blair, Inc.; a Sensus company.
- g. Viking Johnson.

2.5 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Nipples and Waterways:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elster Perfection Corporation.
 - b. Grinnell Mechanical Products; Tyco Fire Products LP.
 - c. Matco-Norca.
 - d. Clearflow/Perfection Corp.
 - e. Precision Plumbing Products, Inc.
 - f. Victaulic Company.
 - 2. Standard: IAPMO PS 66 or ASTM F-1545-97.
 - Electroplated steel nipple or waterway complying with ASTM F 1545 or ANSI/NSF-61 Compliant.
 - 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 5. End Connections: Male threaded or grooved.
 - 6. Lining: Inert and noncorrosive, propylene or LTHS.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

- D. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
- E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Division 22 Section "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Division 22 Section "Domestic Water Piping Specialties."
- F. Install shutoff valve immediately upstream of each dielectric fitting.
- G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Division 22 Section "Domestic Water Piping Specialties."
- H. Install domestic water piping with 0.25 percent slope downward toward drain and plumb.
 - 1. Piping will be drained seasonally for freeze protection.
- I. Install seismic restraints on piping. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- M. Install piping to permit valve servicing.
- N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- O. Install piping free of sags and bends.
- P. Install fittings for changes in direction and branch connections.
- Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- R. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Division 22 Section "Meters and Gages for Plumbing Piping."
- S. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Division 22 Section "Domestic Water Pumps."
- T. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Division 22 Section "Meters and Gages for Plumbing Piping."

- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples/waterways.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples/waterways.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric nipples/waterways.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger, support products, and installation in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- F. Install supports for vertical copper tubing every 10 feet.
- G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code. Comply with requirements for connection sizes in Division 22 plumbing fixture Sections.
 - 3. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Division 22 Section "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psigabove operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.

- b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Some piping types and sizes mentioned in this section may not be used on this project.
- B. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- C. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- D. All exposed water supply piping in toilet rooms, custodial rooms and kitchens shall be chromium plated.
- E. Under-building-slab, domestic water, building-service piping, NPS 3and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, brazed joints and fittings.
- F. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type K; wrought-copper, brazed joints and fittings.
- G. Aboveground domestic water piping, NPS 2and smaller, shall be the following:

- 1. Hard copper tube, ASTM B 88, Type L; cast- copper, solder-joint fittings; and soldered joints.
- H. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- copper, solder-joint fittings; and soldered joints.
- I. Aboveground domestic water piping, NPS 5 and larger, shall be the following:
 - Hard copper tube, ASTM B 88, Type L; cast- copper, solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball for piping NPS 3 and smaller. Use butterfly or ball, with flanged ends for piping NPS 4 and larger.
 - 2. Throttling Duty: Use ball valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
 - 4. Drain Duty: Hose-end drain valves.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 22 1116

SECTION 22 6113

COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Medical compressed-air piping, designated "medical air."
- 2. Gas-powered-tool compressed-air piping, designated "instrument air."
- 3. Healthcare laboratory compressed-air piping, designated "instrument air."

B. Related Requirements:

- Section 115313 "Laboratory Fume Hoods" for compressed-air outlets in laboratory fume hoods.
- 2. Section 123553 "Laboratory Casework" for compressed-air outlets in laboratory casework.
- 3. Section 123570 "Healthcare Casework" for compressed-air outlets in healthcare casework.
- 4. Section 226119 "Compressed-Air Equipment for Laboratory and Healthcare Facilities" for air compressors and specialties.
- 5. Section 226400 "Medical Gas Alarms" for combined medical air, vacuum, and gas alarms.

1.3 DEFINITIONS

A. Medical compressed-air piping systems include medical air, and, instrument air.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Seismic Qualification Certificates: For medical compressed-air manifolds, accessories, and components, from manufacturer.

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Material Certificates: Signed by Installer certifying that medical compressed-air piping materials comply with requirements in NFPA 99 for positive-pressure medical gas systems.
- D. Brazing certificates.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical compressed-air pressure outlets.
 - a. Medical Air: Equal to 10 percent of amount installed.
 - b. Instrument Air: Equal to 10 percent of amount installed.
 - 2. D.I.S.S. Service Connections: Furnish complete medical compressed-air pressure outlets complying with CGA V-5.
 - a. Medical Air D.I.S.S. No. 1160: Equal to 10 percent of amount installed, but no fewer than 10 units.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Air Piping Systems for Healthcare Facilities: According to ASSE Standard #6010 for medical-gas-system installers.
 - 2. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.

- 1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Medical air operating at 50 to 55 psig.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Medical compressed-air manifolds shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 and with the requirements specified in Section 220548 Vibration and Seismic Controls for Plumbing Piping and Equipment.
 - 1. The term "withstand" means "the manifold will remain in place without separation of any parts when subjected to the seismic forces specified and the manifold will be fully operational after the seismic event."
 - 2. Component Importance Factor is 1.5.

2.3 PIPES, TUBES, AND FITTINGS

- A. Comply with NFPA 99 for medical air piping materials.
- B. Comply with ASME B31.9, "Building Services Piping," for instrument air piping operating at 150 psig or less.
- C. Copper Medical Gas Tube: ASTM B 819, Type K and Type L, seamless, drawn temper, that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in green for Type K tube and in blue for Type L tube.
- D. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
- E. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.
- F. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.
- G. Shape-Memory-Metal Couplings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Aerofit, Inc.
 - b. Smart Tap, Inc.
- 3. Description: Cryogenic compression fitting made of nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

H. Flexible Pipe Connectors:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Flex-Hose Co., Inc.
 - b. Flexicraft Industries.
 - c. Hyspan Precision Products, Inc.
 - d. Mercer Gasket & Shim, Inc.
 - e. Metraflex Company (The).
 - f. Proco Products, Inc.
 - g. Unaflex.
 - h. Universal Metal Hose; a Hyspan Co.
- 3. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - a. Working-Pressure Rating: 200 psig minimum.
 - b. End Connections: Plain-end copper tube.

2.4 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
- B. Threaded-Joint Tape: PTFE.

2.5 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
- B. Zone-Valve Box Assemblies: Box with medical gas valves, tube extensions, and gages.
 - 1. Zone-Valve Boxes:
 - a. Steel Box with Aluminum Cover:

- 1) Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2) Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a) Allied Healthcare Products Inc.
 - b) Amico Corporation.
 - c) Ohio Medical Corporation.
 - d) BeaconMedaes
- b. Description: Formed steel box with cover, anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves. Medical air and medical vacuum tubing, valves, and gages may be incorporated in zone valve boxes for medical gases.
 - 1) Interior Finish: Factory-applied white enamel.
 - 2) Cover Plate: Aluminum with frangible or removable windows.
 - 3) Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.

C. Ball Valves:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Allied Healthcare Products Inc.; Chemetron Division.
 - b. Amico Corporation.
 - c. BeaconMedaes.
 - d. Conbraco Industries, Inc.
 - e. Marwin Valve: a division of Richards Industries.
 - f. NIBCO INC.
 - g. Ohio Medical Corporation.
 - h. Tri-Tech Medical Inc.
- 3. Standard: MSS SP-110.
- 4. Description: Three-piece body, brass or bronze.
- 5. Pressure Rating: 300 psig minimum.
- 6. Ball: Full-port, chrome-plated brass.
- 7. Seats: PTFE or TFE.
- 8. Handle: Lever type with locking device.
- 9. Stem: Blowout proof with PTFE or TFE seal.
- 10. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

D. Check Valves:

- 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Allied Healthcare Products Inc.; Chemetron Division.

- b. Amico Corporation.
- c. BeaconMedaes.
- d. Conbraco Industries, Inc.
- e. Ohio Medical Corporation.
- f. Tri-Tech Medical Inc.
- 3. Description: In-line pattern, bronze.
- 4. Pressure Rating: 300 psig minimum.
- 5. Operation: Spring loaded.
- 6. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

E. Safety Valves:

- 1. Bronze body.
- 2. ASME-construction, poppet, pressure-relief type.
- 3. Settings to match system requirements.

F. Pressure Regulators:

- 1. Bronze body and trim.
- 2. Spring-loaded, diaphragm-operated, relieving type.
- 3. Manual pressure-setting adjustment.
- 4. Rated for 250-psig minimum inlet pressure.
- 5. Capable of controlling delivered air pressure within 0.5 psig for each 10-psig inlet pressure.

2.6 MEDICAL COMPRESSED-AIR SERVICE CONNECTIONS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide Ohmeda Style Pin Index compatible outlets by one of the following:
 - 1. Allied Healthcare Products Inc.; Chemetron Division.
 - 2. Amico Corporation.
 - 3. BeaconMedaes.
 - 4. Ohio Medical Corporation.
 - 5. Oxequip Health Industries; a division of Allied Healthcare Products Inc.
 - 6. Tri-Tech Medical Inc.
- C. General Requirements for Medical Compressed-Air Service Connections:
 - 1. Suitable for specific medical air pressure and service listed.
 - 2. Include roughing-in assemblies, finishing assemblies, and cover plates.
 - 3. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate.
 - 4. Recessed-type units made for concealed piping unless otherwise indicated.
- D. Roughing-in Assembly:
 - 1. Steel outlet box for recessed mounting and concealed piping.

- 2. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed.
- 3. Double seals that will prevent air leakage.
- 4. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tubeend dust cap.

E. Finishing Assembly:

- 1. Brass housing with primary check valve.
- 2. Double seals that will prevent air leakage.
- 3. Cover plate with gas-service label.

F. Quick-Coupler Pressure Service Connections:

- 1. Outlets for medical air and instrument air with noninterchangeable keyed indexing to prevent interchange between services.
- 2. Constructed to permit one-handed connection and removal of equipment.
- 3. With positive-locking ring that retains equipment stem in valve during use.
- G. D.I.S.S. Pressure Service Connections: Outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - 1. Medical Air: D.I.S.S. No. 1160.
 - 2. Instrument Air: D.I.S.S. No. 1160.

H. Cover Plates:

- 1. One piece.
- 2. Aluminum or stainless steel.
- 3. Permanent, color-coded, identifying label matching corresponding service.

2.7 MEDICAL COMPRESSED-AIR PRESSURE CONTROL PANELS

- A. Manufacturers: Subject to compliance with requirementsprovide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Allied Healthcare Products Inc.; Chemetron Division.
 - 2. Amico Corporation.
 - BeaconMedaes.

C. Description:

- 1. Steel box and support brackets for recessed roughing-in with stainless-steel or anodizedaluminum cover plate with printed operating instructions.
- 2. Manifold assembly consisting of inlet supply valve, inlet supply pressure gage, linepressure control regulator, outlet supply pressure gage, D.I.S.S. service connection, and piping outlet for remote service connection.
- 3. Minimum Working Pressure: 200 psig.

- 4. Line-Pressure Control Regulator: Self-relieving diaphragm type with precision manual adjustment.
- 5. Pressure Gages: 0 to 300 psig.
- 6. Service Connection: CGA V-5, D.I.S.S. No. 1160, instrument air outlet.
- 7. Before final assembly, provide temporary dust shield and U-tube for testing.
- 8. Label cover plate "Air Pressure Control."

2.8 NITROGEN

A. Comply with USP 32 - NF 27 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Comply with NFPA 99 for installation of compressed-air piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.

- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install compressed-air piping with 1 percent slope downward in direction of flow.
- H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
- I. Install eccentric reducers, if available, where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- J. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.
- K. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 220519 "Meters and Gages for Plumbing Piping."
- L. Install piping to permit valve servicing.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and for branch connections.
- O. Install medical air piping to medical air service connections specified in this Section, to medical air service connections in equipment specified in Section 226313 "Gas Piping for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical air service.
- P. Piping Restraint Installation: Install seismic restraints on compressed-air piping. Seismic restraint devices are specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- Q. Install compressed-air service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- R. Connect compressed-air piping to air compressors and to compressed-air outlets and equipment requiring compressed-air service.
- S. Install unions in copper compressed-air tubing adjacent to each valve and at final connection to each machine, specialty, and piece of equipment.
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from compressed-air equipment and specialties.

- B. Install check valves to maintain correct direction of compressed-air flow from compressed-air equipment.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install pressure regulators on compressed-air piping where reduced pressure is required.
- F. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.

3.4 JOINT CONSTRUCTION

- A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- B. Threaded Joints: Apply appropriate tape to external pipe threads.
- C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Continuously purge joint with oil-free dry nitrogen during brazing.
- D. Flanged Joints: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- E. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.

3.5 COMPRESSED-AIR SERVICE COMPONENT INSTALLATION

A. Install compressed-air pressure control panel in walls. Attach to substrate.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or Type 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

- E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within 12 inches of each fitting and coupling.
- H. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch- minimum rods.
- I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
 - 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 - 9. NPS 3: 14 feet with 1/2-inch rod.
 - 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 - 11. NPS 4: 16 feet with 1/2-inch rod.
- J. Install supports for vertical copper tubing every 10 feet.

3.7 IDENTIFICATION

- A. Install identifying labels and devices for medical compressed-air piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Medical Air: Black letters on yellow background.
 - 2. Instrument Air: White letters on red background.
 - 3. Medical Laboratory Air: Black letters on yellow-and-white checkerboard background.
- 3.8 FIELD QUALITY CONTROL FOR MEDICAL COMPRESSED-AIR PIPING IN HEALTHCARE FACILITIES
 - A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical compressed-air piping in healthcare facilities and to prepare test and inspection reports.
 - B. Tests and Inspections:
 - 1. Medical Compressed-Air Testing Coordination: Perform tests, inspections, verifications, and certification of medical compressed-air piping systems concurrently with tests, inspections, and certification of medical gas piping and medical vacuum piping systems.

- 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - Initial blowdown.
 - Initial pressure test. b.
 - C. Cross-connection test.
 - d. Pipina purae test.
 - e. Standing pressure test for positive-pressure medical compressed-air piping.
 - Repair leaks and retest until no leaks exist. f.
- 3. System Verification: Perform the following tests and inspections according to NFPA 99, ASSE Standard #6020, and ASSE Standard #6030:
 - a. Standing pressure test.
 - Individual-pressurization or pressure-differential cross-connection test. b.
 - Valve test. C.
 - d. Master and area alarm tests.
 - Piping purge test. e.
 - f. Piping particulate test.
 - Piping purity test. g.
 - Final tie-in test h.
 - Operational pressure test. i.
 - Medical air purity test. j.
 - k. Verify correct labeling of equipment and components.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - Inspections performed. a.
 - Procedures, materials, and gases used. b.
 - Test methods used. C.
 - Results of tests. d.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.9 **PROTECTION**

- Protect tubing from damage. Α.
- B. Retain sealing plugs in tubing, fittings, and specialties until installation.
- C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.10 PIPING SCHEDULE

- A. Connect new tubing to existing tubing with memory-metal couplings.
- B. Flanges may be used where connection to flanged equipment is required.

C. Medical Air Piping and Instrument Air Piping: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.

3.11 VALVE SCHEDULE

- A. Shutoff Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
- B. Zone Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.

END OF SECTION 22 6113

SECTION 22 6313

GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Carbon dioxide piping, designated "medical carbon dioxide."
 - 2. Nitrogen piping, designated "medical nitrogen."
 - 3. Nitrous oxide piping, designated "medical nitrous oxide."
 - 4. Oxygen piping, designated "medical oxygen."
- B. Owner-Furnished Material:
 - 1. Medical gas manifolds.
- C. Related Requirements:
 - 1. Section 115313 "Laboratory Fume Hoods" for gas outlets in laboratory fume hoods.
 - 2. Section 123553 "Laboratory Casework" for gas outlets in casework.
 - 3. Section 123570 "Healthcare Casework" for gas outlets in medical casework.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. Medical gas piping systems include medical carbon dioxide, medical nitrogen, medical nitrous oxide, and medical oxygen for healthcare facility patient care.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and testing agency.

- B. Seismic Qualification Certificates: For gas manifolds and bulk gas storage tanks, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Material Certificates: Signed by Installer certifying that medical gas piping materials comply with requirements in NFPA 99 for positive-pressure medical gas systems.
- D. Brazing certificates.
- E. Certificates of Shop Inspection and Data Report for Bulk Gas Storage Tanks: As required by ASME Boiler and Pressure Vessel Code.
- F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For medical and specialty gas piping specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical gas pressure outlets and suction inlets.
 - a. Medical Carbon Dioxide: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - b. Medical Nitrous Oxide: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - c. Medical Oxygen: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - d. Medical Air: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - e. Instrument Air: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - f. Medical Vacuum: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - g. WAGD: Equal to 10 percent of quantity installed, but no fewer than 10 units.
 - 2. D.I.S.S. Service Connections: Furnish complete medical gas pressure outlets and suction inlets complying with CGA V-5.
 - a. Medical Carbon Dioxide D.I.S.S. No. 1080: Equal to 10 percent of quantity installed, but no fewer than 10 units.

- b. Medical Nitrogen D.I.S.S. No. 1120: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- c. Medical Nitrous Oxide D.I.S.S. No. 1040: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- d. Medical Oxygen D.I.S.S. No. 1240: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- e. Medical Air D.I.S.S. No. 1160: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- f. Instrument Air D.I.S.S. No. 1160: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- g. Medical Vacuum D.I.S.S. No. 1220: Equal to 10 percent of quantity installed, but no fewer than 10 units.
- h. WAGD D.I.S.S. No. 2220: Equal to 10 percent of quantity installed, but no fewer than 10 units.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:

- 1. Medical Gas Piping Systems for Healthcare Facilities: According to ASSE Standard #6010 for medical-gas-system installers.
- 2. Bulk Medical Gas Systems for Healthcare Facilities: According to ASSE Standard #6015 for bulk-medical-gas-system installers.
- 3. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the medical gas piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Medical carbon dioxide operating at 50 to 55 psig.
- B. Medical helium operating at 50 to 55 psig.
- C. Medical nitrogen operating at 160 to 185 psig.
- D. Medical nitrous oxide operating at 50 to 55 psig.
- E. Medical oxygen operating at 50 to 55 psig.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Medical gas manifolds shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the medical gas manifolds will remain in place without separation of any parts when subjected to the seismic forces specified and the manifolds and tanks will be fully operational after the seismic event."
 - 2. Component Importance Factor is 1.5.

2.3 PIPES, TUBES, AND FITTINGS

- A. Comply with NFPA 99 for medical gas piping materials.
- B. Copper Medical Gas Tube: ASTM B 819, Type K and Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service; or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in green for Type K tube and blue for Type L tube.
- C. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
- D. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.
- E. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

F. Shape-Memory-Metal Couplings:

- 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Aerofit, Inc.
 - b. Smart Tap, Inc.
- 3. Description: Cryogenic compression fitting made of nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

2.4 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
- B. Threaded-Joint Tape: PTFE.

C. Solvent Cement for Joining PVC Piping: ASTM D 2564. Include primer complying with ASTM F 656.

2.5 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
- B. Zone-Valve Box Assemblies: Box with medical gas valves, tube extensions, and gages.
 - Zone-Valve Boxes:
 - a. Steel Box with Aluminum Cover:
 - 1) Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2) Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a) Allied Healthcare Products Inc.
 - b) Amico Corporation.
 - c) Ohio Medical Corporation.
 - b. Description: Formed steel box with cover, anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves. Medical air and medical vacuum tubing, valves, and gages may be incorporated in zone valve boxes for medical gases.
 - 1) Interior Finish: Factory-applied white enamel.
 - 2) Cover Plate: Aluminum with frangible or removable windows.
 - 3) Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.

C. Ball Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Allied Healthcare Products Inc.; Chemetron Division.
 - b. Amico Corporation.
 - c. BeaconMedaes.
 - d. Conbraco Industries. Inc.
 - e. Marwin Valve; a division of Richards Industries.
 - f. NIBCO INC.
 - g. Ohio Medical Corporation.
 - h. Tri-Tech Medical Inc.
- 3. Standard: MSS SP-110.
- 4. Description: Three-piece body, brass or bronze.
- 5. Pressure Rating: 300 psig minimum.

- 6. Ball: Full-port, chrome-plated brass.
- 7. Seats: PTFE or TFE.
- 8. Handle: Lever[type with locking device].
- 9. Stem: Blowout proof with PTFE or TFE seal.
- 10. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

D. Check Valves:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Allied Healthcare Products Inc.; Chemetron Division.
 - b. Amico Corporation.
 - c. BeaconMedaes.
 - d. Conbraco Industries. Inc.
 - e. Ohio Medical Corporation.
 - f. Tri-Tech Medical Inc.
- 3. Description: In-line pattern, bronze.
- 4. Pressure Rating: 300 psig minimum.
- 5. Operation: Spring loaded.
- 6. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- E. Emergency Oxygen Connections: Low-pressure oxygen inlet assembly for connection to building oxygen piping systems.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - a. Allied Healthcare Products Inc.; Chemetron Division.
 - b. Amico Corporation.
 - c. BeaconMedaes.
 - d. Ohio Medical Corporation.
 - e. Tri-Tech Medical Inc.
 - 3. Enclosure: Weatherproof hinged locking cover with caption similar to "Emergency Low-Pressure Gaseous Oxygen Inlet."
 - 4. Inlet: Manufacturer-installed, NPS 1 or NPS 1-1/4, ASTM B 819, copper tubing with NPS 1 minimum ball valve.
 - 5. Safety Valve: Bronze-body pressure relief valve set at 75 or 80 psig.
 - 6. Instrumentation: Pressure gage.
- F. Safety Valves:
 - 1. Bronze body.
 - 2. ASME-construction, poppet, pressure-relief type.
 - 3. Settings to match system requirements.
- G. Pressure Regulators:

- 1. Bronze body and trim.
- 2. Spring-loaded, diaphragm-operated, relieving type.
- 3. Manual pressure-setting adjustment.
- 4. Rated for 250-psig minimum inlet pressure.
- 5. Capable of controlling delivered gas pressure within 0.5 psig for each 10-psig inlet pressure.

2.6 MEDICAL GAS SERVICE CONNECTIONS

- A. Manufacturers: Subject to compliance with requirements provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide Chemetron Compatible product by one of the following:
 - 1. Allied Healthcare Products Inc.; Chemetron Division.
 - 2. Amico Corporation.
 - 3. BeaconMedaes.
 - 4. Ohio Medical Corporation.
 - 5. Oxeguip Health Industries; a division of Allied Healthcare Products Inc.
 - 6. Tri-Tech Medical Inc.
- C. General Requirements for Medical Gas Service Connections:
 - 1. Suitable for specific medical gas pressure and suction service listed.
 - 2. Include roughing-in assemblies, finishing assemblies, and cover plates.
 - 3. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate.
 - 4. Recessed-type units made for concealed piping unless otherwise indicated.
- D. Roughing-in Assembly:
 - 1. Steel outlet box for recessed mounting and concealed piping.
 - 2. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed. Suction inlets to be without secondary valve.
 - 3. Double seals that will prevent gas leakage.
 - 4. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tubeend dust cap.
- E. Finishing Assembly:
 - 1. Brass housing with primary check valve.
 - 2. Double seals that will prevent gas leakage.
 - 3. Cover plate with gas-service label.
- F. Quick-Coupler Pressure Service Connections: Outlets for carbon dioxide nitrous oxide and oxygen with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.
- G. Quick-Coupler Pressure Service Connections: Outlets for instrument air with noninterchangeable keyed indexing to prevent interchange between services, constructed to

permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.

- H. Quick-Coupler Suction Service Connections: Inlets for medical vacuum with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.
- I. D.I.S.S. Pressure Service Connections: Outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - 1. Medical Carbon Dioxide: D.I.S.S. No. 1080.
 - 2. Medical Nitrogen: D.I.S.S. No. 1120.
 - 3. Medical Nitrous Oxide: D.I.S.S. No. 1040.
 - Medical Oxygen: D.I.S.S. No. 1240.
- J. D.I.S.S. Pressure Service Connections: Outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - 1. Medical Air: D.I.S.S. No. 1160.
 - 2. Instrument Air: D.I.S.S. No. 1160.
- K. D.I.S.S. Suction Service Connections: Inlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - 1. Medical Vacuum: D.I.S.S. No. 1220.
 - 2. WAGD: D.I.S.S. No. 2220.
- L. Cover Plates: One piece, aluminum or stainless steel and permanent, color-coded, identifying label matching corresponding service.

2.7 MEDICAL NITROGEN PRESSURE CONTROL PANELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Allied Healthcare Products Inc.; Chemetron Division.
 - 2. Amico Corporation.
 - 3. BeaconMedaes.
 - 4. Ohio Medical Corporation.
 - 5. Tri-Tech Medical Inc.
- C. Description:
 - 1. Steel box and support brackets for recessed roughing-in with stainless-steel or anodizedaluminum cover plate with printed operating instructions.

- 2. Manifold assembly consisting of inlet supply valve, inlet supply pressure gage, linepressure control regulator, outlet supply pressure gage, D.I.S.S. service connection, and piping outlet for remote service connection.
- 3. Minimum Working Pressure: 200 psig.
- 4. Line-Pressure Control Regulator: Self-relieving diaphragm type with precision manual adjustment.
- 5. Pressure Gages: 0 to 300 psig.
- 6. Service Connection: CGA V-5, D.I.S.S. No. 1120, nitrogen outlet.
- 7. Before final assembly, provide temporary dust shield and U-tube for testing.
- 8. Label cover plate "Nitrogen Pressure Control."

2.8 MEDICAL GAS MANIFOLDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Acme Cryogenics.
 - 2. Allied Healthcare Products Inc.; Chemetron Division.
 - 3. Amico Corporation.
 - 4. BeaconMedaes.
 - 5. Ohio Medical Corporation.
 - 6. Tri-Tech Medical Inc.
- C. Comply with NFPA 99 for high-pressure medical gas cylinders.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Central Control-Panel Unit:
 - 1. Supply and delivery pressure gages.
 - 2. Electrical alarm-system connections and transformer.
 - 3. Indicator lights or devices.
 - 4. Manifold connection.
 - 5. Pressure changeover switch.
 - 6. Line-pressure regulator.
 - 7. Shutoff valves.
 - 8. Safety valve.

F. Manifold and Headers:

- 1. Duplex, nonferrous-metal header for number of cylinders indicated, divided into two equal banks.
- 2. Designed for 2000-psig minimum inlet pressure except nitrous oxide manifolds may be designed for 800 psig and carbon dioxide manifolds may be designed for 1500 psig.
- 3. Cylinder-bank headers with inlet (pigtail) connections complying with CGA V-1.
- 4. Individual inlet check valves, shutoff valve, pressure regulator, check valve, and pressure gage.

- G. Operation: Automatic, pressure-switch-activated changeover from one cylinder bank to the other when first bank becomes exhausted, without line-pressure fluctuation or resetting of regulators and without supply interruption by shutoff of either cylinder-bank header.
- H. Mounting: Wall with mounting brackets for manifold control cabinet and headers.
- I. Label manifold control unit with permanent label identifying medical gas type and system operating pressure.

2.9 GAS CYLINDER STORAGE RACKS

- A. Wall Storage Racks: Fabricate racks with chain restraints for upright cylinders as indicated or provide equivalent manufactured wall racks.
- B. Freestanding Storage Racks: Fabricate racks as indicated or provide equivalent manufactured storage racks.

2.10 NITROGEN

A. Comply with USP 32 - NF 27 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling and for underground warning tapes.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of gas piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Comply with NFPA 99 for installation of medical gas piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
- H. Install piping to permit valve servicing.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and for branch connections.
- K. Install medical gas piping to medical gas service connections specified in this Section, to medical gas service connections in equipment specified in this Section, and to equipment specified in other Sections requiring medical gas service.
- L. Install exterior, buried medical gas piping in protective conduit fabricated with PVC pipe and fittings. Do not extend conduit through foundation wall.
- M. Piping Restraint Installation: Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- N. Install medical gas service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- O. Connect gas piping to gas sources and to gas outlets and equipment requiring gas service.
- P. Install unions in copper tubing adjacent to each valve and at final connection to each specialty and piece of equipment.
- Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

- R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 VALVE INSTALLATION

- A. Install shutoff valve at each connection to gas laboratory and healthcare equipment and specialties.
- B. Install check valves to maintain correct direction of gas flow from laboratory and healthcare gas supplies.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Arrange valves so largest valve is lowest. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install pressure regulators on gas piping where reduced pressure is required.
- F. Install emergency oxygen connection with pressure relief valve and full-size discharge piping to outside, with check valve downstream from pressure relief valve, and with ball valve and check valve in supply main from bulk oxygen storage tank.

3.5 JOINT CONSTRUCTION

- A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- B. Threaded Joints: Apply appropriate tape to external pipe threads.
- C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Continuously purge joint with oil-free, dry nitrogen during brazing.
- D. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.

3.6 GAS SERVICE COMPONENT INSTALLATION

- A. Assemble patient-service console with service connections. Install with supplies concealed in walls. Attach console box or mounting bracket to substrate.
- B. Install nitrogen pressure-control panels in walls. Attach to substrate.
- C. Install gas manifolds anchored to substrate.

- D. Install gas cylinders and connect to manifold piping.
- E. Install gas manifolds with seismic restraints.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or Type 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.
- E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within 12 inches of each fitting and coupling.
- H. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch- minimum rods.
- I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
 - 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 - 9. NPS 3: 14 feet with 1/2-inch rod.
 - 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 - 11. NPS 4: 16 feet with 1/2-inch rod.
 - 12. NPS 6: 20 feet with 5/8-inch rod.
- J. Install supports for vertical copper tubing every 10 feet.

3.8 IDENTIFICATION

A. Install identifying labels and devices for specialty gas piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

- B. Install identifying labels and devices for healthcare medical gas piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Carbon Dioxide: Black or white letters on gray background.
 - 2. Nitrogen: White letters on black background.
 - 3. Nitrous Oxide: White letters on blue background.
 - 4. Oxygen: White letters on green background or green letters on white background.

3.9 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL GAS

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. Medical Gas Piping Testing Coordination: Perform tests, inspections, verifications, and certification of medical gas piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical vacuum piping systems.
 - Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blowdown.
 - b. Initial pressure test.
 - c. Cross-connection test.
 - d. Piping purge test.
 - e. Standing pressure test for positive-pressure medical gas piping.
 - f. Standing pressure test for vacuum systems.
 - g. Repair leaks and retest until no leaks exist.
 - 3. System Verification: Perform the following tests and inspections according to NFPA 99, ASSE Standard #6020, and ASSE Standard #6030:
 - a. Standing pressure test.
 - b. Individual-pressurization or pressure-differential cross-connection test.
 - c. Valve test.
 - d. Master and area alarm tests.
 - e. Piping purge test.
 - f. Piping particulate test.
 - g. Piping purity test.
 - h. Final tie-in test.
 - i. Operational pressure test.
 - j. Medical gas concentration test.
 - k. Medical air purity test.
 - I. Verify correct labeling of equipment and components.
 - m. Verify medical gas supply sources.
 - 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.

- C. Remove and replace components that do not pass tests and inspections and retest as specified above.
- D. Prepare test and inspection reports.

3.10 FIELD QUALITY CONTROL FOR LABORATORY FACILITY SPECIALTY GAS

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. Piping Leak Tests for Specialty Gas Piping: Test new and modified parts of existing piping. Cap and fill specialty gas piping with oil-free, dry nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect specialty gas regulators for proper operation.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.
- D. Prepare test and inspection reports.

3.11 PROTECTION

- A. Protect tubing from damage.
- B. Retain sealing plugs in tubing, fittings, and specialties until installation.
- C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.12 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain bulk gas storage tanks.

3.13 PIPING SCHEDULE

A. Connect new tubing to existing tubing with memory-metal couplings.

3.14 VALVE SCHEDULE

- A. Shutoff Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
- B. Zone Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.

END OF SECTION 22 6313

SECTION 230100

MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 GENERAL CONDITIONS

- A. The General Conditions of the Contract, with the amendments, supplements, forms and requirements in Division 1, and herewith made a part of this Division.
- B. All sections of Division 21, 22, & 23 shall comply with the Mechanical General Requirements. The standards established in this section as to quality of materials and equipment, the type and quality of workmanship, mode of operations, safety rules, code requirements, etc., shall apply to all sections of this Division as though they were repeated in each Division.
- C. Mechanical equipment that is pre-purchased if any will be assigned to the Mechanical Contractor. By assignment to the Mechanical Contractor, the Mechanical Contractor shall accept and installed the equipment and provide all warrantees and guarantees as if the Mechanical Contractor had purchased the equipment.
- D. Construction Indoor-Air Quality Management
 - Comply with SMACNA's "SMACNA IAQ Guideline for Occupied Buildings under Construction."

1.2 SCOPE OF WORK

A. The project described herein is the Mountain View Hospital MRI Replacement This work shall include all labor, materials, equipment, fixtures, and devices for the entire mechanical work and a complete operating and tested installation as required for this project. A retro fit of the existing MRI with the upgrade of the support equipment that is needed. This would include new equipment into a dedicated equipment room. A new glycol chiller would be installed in the exterior equipment yard and dedicated copper chiller piping will be routed around the (2) cooling towers and through the boiler and chiller rooms to the MRI equipment room. Medical air piping will need to be sourced and run through a new medical gas valve box and route to a new wall outlet.

1.3 CODES & ORDINANCES

- A. All work shall be executed in accordance with all underwriters, public utilities, local and state rules and regulations applicable to the trade affected. Should any change in the plans and Specifications be required to comply with these regulations, the Contractor shall notify the Architect before the time of submitting his bid. After entering into contract, the Contractor will be held to complete all work necessary to meet these requirements without extra expense to the Owner. Where work required by drawings or specifications is above the standard required, it shall be done as shown or specified.
- B. Applicable codes:
 - Utah Boiler and Pressure Vessel Rules and Regulations-2014 Edition

- 2. International Building code- 2018 Edition
- 3. International Mechanical Code- 2018 Edition
- 4. International Plumbing Code- 2018 Edition
- 5. International Fire Code- 2018 Edition
- 6. International Energy Code- 2018 Edition
- 7. International Fuel Gas Code- 2018 Edition
- 8. National Electrical Code- 2015 Edition

1.4 INDUSTRY STANDARDS

- A. All work shall comply with the following standards.
 - 1. Associated Air Balance council (AABC)
 - 2. Air Conditioning and Refrigeration Institute (ARI)
 - 3. Air Diffusion council (ADC)
 - 4. Air Movement and Control Association (AMCA)
 - 5. American Gas Association (AGA)
 - 6. American National Standards Institute (ANSI)
 - 7. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE)
 - 8. American Society of Mechanical Engineers (ASME)
 - 9. American Society of Testing Materials (ASTM)
 - 10. American Water Works Association (AWWA)
 - 11. Cooling Tower Institute (CTI)
 - 12. ETL Testing Laboratories (ETL)
 - 13. Institute of Electrical and Electronic Engineers (IEEE)
 - 14. Hydronics Institute (HI)
 - 15. Manufacturers Standardization Society of the Valve and Fitting Industry (MSS)
 - 16. National Fire Protection Association (NFPA)
 - 17. National Electrical Code (NEC)
 - 18. National Electrical Manufacturers Association (NEMA)
 - 19. National Electrical Safety code (NESC)
 - 20. Utah safety Standard (OSHA), Utah State Industrial Council.
 - 21. Sheet Metal and Air Conditioning Contractor=s National Association (SMACNA)
 - 22. Underwriters Laboratories (UL)
 - 23. Tubular Exchanger Manufacturers Association, Inc. (TEMA)
 - 24. Heat Exchanger Institute (HEI)
 - 25. Hydraulic Institute (HI)
 - 26. Thermal Insulation Manufacturer=s Association (TIMA)
 - 27. Scientific Apparatus Makers Association (SAMA)

B. Compliance Verification:

- 1. All items required by code or specified to conform to the ASME code shall be stamped with the ASME seal.
- 2. Form U-1, the manufacturer=s data report for pressure vessels, is to be included in the Operation and Maintenance Manuals. National Board Register (NBR) numbers shall be provided where required by code.
- 3. Manufactured equipment which is represented by a UL classification and/or listing, shall bear the UL or equivalent ETL label.

1.5 UTILITIES & FEES

A. All fees for permits required by this work will be paid by this division. The contractor shall obtain the necessary permits to perform this work. Unless noted otherwise, all systems furnished and or installed by this Contractor, shall be complete with all utilities, components, commodities and accessories required for a fully functioning system. This Contractor shall furnish smoke generators when required for testing, furnish glycol for glycol piping systems, full load of salt to fill brine tank for water softening system, furnish cleaners and water treatment additives.

1.6 SUBMITTALS AND SHOP DRAWINGS

- A. General: As soon as possible after the contract is awarded, but in no case more than 45 calendar days thereafter, the Contractor shall submit to the Architect manufacturer's data on products and materials to be used in the installation of mechanical systems for this project. The review of the submitted data will require a minimum of 14 days. The first day starts after the day they are received in the engineers office to which the project is being constructed from. If the Contractors schedule requires return of submitted literature in less than the allotted time, the Contractor shall accelerate his submittal delivery date. The Contractor shall resubmit all items requiring re-review within 14 days of returned submittals. Refer to each specification section for items requiring submittal review. Written approval of the Owner's Representative shall be obtained before installing any such equipment or materials for the project.
- B. Review by the Owner's Representative is for general conformance of the submitted equipment to the project specification. In no way does such review relieve this Contractor of his obligation to furnish equipment and materials that comply in detail to the specification nor does it relieve the Contractor of his obligation to determine actual field dimensions and conditions that may affect his work. Regardless of any items overlooked by the submittal review, the requirements of the contract drawings and specifications must be followed and are not waived or superseded in any way by the review.
- C. By description, catalog number, and manufacturer's names, standards of quality have been established by the Architect and the Engineer for certain manufactured equipment items and specialties that are to be furnished by this Division. Alternate products and equipment may be proposed for use only if specifically named in the specifications or if given written prior approval in published addenda. Design equipment is the equipment listed on the drawings or if not listed on the drawings is the equipment first named in the specifications.
- D. If the Engineer is required to do additional design work to incorporate changes caused by submitting equipment or products, different than the design equipment specified, as defined above, the contractor shall reimburse the engineer for additional time and expenses at the engineer's current, recognized, hourly rates.

E. Submittal Format:

- 1. Electronic Submittal Format: Identify and incorporate information in each electronic submittal file as follows:
 - a. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - b. Name file with submittal number or other unique identifier, including revision identifier.

- c. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by:
 - 1) Architect.
- d. Transmittal Form for Electronic Submittals:
 - 1) Use one of the following options acceptable to the Owner;
 - a) Software-generated form from electronic project management software.
 - b) Electronic form.
 - 2) The Electronic Submittal shall contain the following information:
 - a) Project name.
 - b) Date.
 - c) Name and address of Architect.
 - d) Name of Construction Manager.
 - e) Name of Contractor.
 - f) Name of firm or entity that prepared submittal.
 - g) Names of subcontractor, manufacturer, and supplier.
 - h) Category and type of submittal.
 - i) Submittal purpose and description.
 - j) Specification Section number and title.
 - k) Specification paragraph number or drawing designation and generic name for each of multiple items.
 - I) Drawing number and detail references, as appropriate.
 - m) Location(s) where product is to be installed, as appropriate.
 - n) Related physical samples submitted directly.
 - o) Indication of full or partial submittal.
 - p) Transmittal number[, numbered consecutively].
 - q) Submittal and transmittal distribution record.
 - r) Other necessary identification.
 - s) Remarks.
- e. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - 1) Project name.
 - 2) Number and title of appropriate Specification Section.
 - 3) Manufacturer name.
 - 4) Product name.

1.7 DRAWINGS AND MEASUREMENTS

- A. Construction Drawings: The contract document drawings show the general design, arrangements, and extent of the system. In certain cases, the drawings may include details that show more nearly exact locations and arrangements; however, the locations, as shown diagrammatically, are to be regarded as general.
- B. It shall be the work of this Section to make such slight alterations as may be necessary to make adjustable parts fit to fixed parts, leaving all complete and in proper shape when done. All

dimensions given on the drawings shall be verified as related to this work and with the Architect's office before work is started.

- C. This Section shall carefully study building sections, space, clearances, etc., and then provide offsets in piping or ductwork as required to accommodate the building structure without additional cost to the Owner. In any case and at any time during the construction process, a change in location required by obstacles or the installation of other trades not shown on the mechanical plans shall be made without charge.
- D. The drawings shall not be scaled for roughing in measurements nor shall they be used as shop drawings. Where drawings are required for these purposes or where drawings must be made from field measurements, the Contractor shall take the necessary measurements and prepare the drawings. Shop drawings of the various subcontractors shall be coordinated to eliminate all interferences and to provide sufficient space for the installation of all equipment, piping, ductwork, etc.
- E. The drawings and specifications have been prepared to supplement each other and they shall be interpreted as an integral unit with items shown on one and not the other being furnished and installed as though shown and called out on both.
- F. Coordination Drawings: The contractor shall provide coordination drawings for mechanical rooms, fan rooms, equipment rooms, and congested areas to eliminate conflicts with equipment, piping, or work of other trades. The drawings shall be a minimum scale of 1/4 inch= 1 foot and of such detail as may be required by the Engineer to fully illustrate the work. These drawings shall include all piping, conduit, valves, equipment, and ductwork.
- G. Sheet-metal shop drawings will be required for all ductwork in the entire building. These drawings will show all ductwork in the entire building and shall be coordinated with architectural, structural and electrical portions of the project. The contractor shall specifically obtain copies of the structural shop drawings and shall coordinate the ductwork shop drawings with approved structural members. These drawings shall be submitted to the engineer for review prior to any fabrication. The contractor is responsible for all modifications necessary to accommodate duct installation within the structural, architectural and electrical restrictions. These drawings, once reviewed by the engineer, will be made available to all mechanical, electrical, and fire sprinkler subcontractors to coordinate installation of their work.

1.8 CONTRACTOR'S USE OF BUILDING EQUIPMENT

A. The Contractor may use equipment such as electric motors, fans, heat exchangers, filters, etc., with the written permission of the Owner. As each piece of equipment is used (such as electric motors and fans), maintenance procedures approved by the manufacturer are to be followed. A careful record is to be kept of the length of the time the equipment is used, maintenance procedures followed, and any difficulty encountered. The record is to be submitted to the Owner upon acceptance. All fan belts and filter media (such as bearings) shall be carefully inspected just prior to acceptance. Any excessive wear noted shall require replacement. New filter media shall be installed in air handlers at the time systems are turned over to the owner.

1.9 EXISTING CONDITIONS

A. The Contractor shall carefully examine all existing conditions that might affect the mechanical system and shall compare these conditions with all drawings and specifications for work included

under this contract. He shall, at such time, ascertain and check all conditions that may affect his work. No allowance shall subsequently be made in his behalf for an extra expense incurred as a result of his failure or neglect to make such examination. This Contractor shall include in his bid proposal all necessary allowances to repair or replace any item that will remain or will be removed, and any item that will be damaged or destroyed by new construction.

- B. The Contractor shall remove all abandoned piping, etc., required by new construction and cap or plug openings. No capping, etc., shall be exposed in occupied areas. All openings of items removed shall be sealed to match adjacent surfaces.
- C. The Contractor shall verify the exact location of all existing services, utilities, piping, etc., and make connections to existing systems as required or as shown on the drawings. The exact location of each utility line, together with size and elevation, shall be established before any on-site lines are installed. Should elevation or size of existing main utility lines make connections to them impossible as shown on drawings, then notification of such shall immediately be given to the Owners Representative for a decision.

1.10 EQUIPMENT CAPACITIES

- A. Capacities shown for equipment in the specifications and on the drawings are the minimum acceptable. No equipment shall be considered as an alternate that has capacities or performance less than that of design equipment.
- B. All equipment shall give the specified capacity and performance at the job-site elevation. Manufacturers' standard ratings shall be adjusted accordingly. All capacities and performances listed on drawings or in specifications are for job-site conditions.

1.11 SEISMIC REQUIREMENTS FOR EQUIPMENT

A. All equipment shall be furnished structurally adequate to withstand seismic forces as outlined in the International Building Code. Refer to section Mechanical Vibration Controls and Seismic Restraints. Equipment bases shall be designed for direct attachment of seismic snubbers and/or seismic anchors.

1.12 COOPERATION WITH OTHER TRADES

- A. The Contractor shall refer to other drawings and parts of this specification that cover work of other trades that is carried on in conjunction with the mechanical work such that all work can proceed without interference resulting from lack of coordination.
- B. The Contractor shall properly size and locate all openings, chases, sleeves, equipment bases, and accesses. He shall provide accurate wiring diagrams to the Electrical Contractor for all equipment furnished under this Division.
- C. The ceiling cavity must be carefully reviewed and coordinated with all trades. In the event of conflict, the installation of the mechanical equipment and piping shall be in the following order: plumbing, waste, and soil lines; supply, return, and exhaust ductwork; water piping; medical gases; fire protection piping; and pneumatic control piping.

D. The mechanical Contractor shall insure that the installation of all piping, ducts and equipment is in compliance with Articles 110-16 and 384-4 of the National Electrical Code relative to proper clearances in front of and over all electrical panels and equipment. No piping or ductwork will be allowed to run over electrical panel.

1.13 RESPONSIBILITY OF CONTRACTOR

- A. The Contractor is responsible for the installation of a satisfactory piece of work in accordance with the true intent of the drawings and specifications. He shall provide, as a part of his work and without expense, all incidental items required even though these items are not particularly specified or indicated. The installation shall be made so that its several component parts will function together as a workable system and shall be left with all equipment properly adjusted and in working order. The Contractor shall familiarize the Owner's Representative with maintenance and lubrication instructions as prepared by the Contractor and shall explain and fully instruct him relative to operating, servicing, and maintenance of them.
- B. If a conflict arises between the drawings and the specifications the most stringent procedure/action shall be followed. A clarification to the engineer will help to determine the course of action to be taken. If a conflict arises between specification sections the engineer will determine which course of action is to be followed.

1.14 PIPE AND DUCT OPENINGS AND EQUIPMENT RECESSES

- A. Pipe and duct chases, openings, and equipment recesses shall be provided by others only if shown on architectural or structural drawings. All openings for the mechanical work, except where plans and specifications indicate otherwise, shall be provided as work of this Division. Include openings information with coordination drawings.
- B. Whether chases, recesses, and openings are provided as work of this Division or by others, this Contractor shall supervise their construction and be responsible for the correct size and location even though detailed and dimensioned on the drawings. This Contractor shall pay for all necessary cutting, repairing, and finishing if any are left out or incorrectly made. All necessary openings thru existing walls, ceilings, floors, roofs, etc. shall be provided by this Contractor unless indicated otherwise by the drawing and/or specifications.

1.15 UNFIT OR DAMAGED WORK

A. Any part of this installation that fails, is unfit, or becomes damaged during construction, shall be replaced or otherwise made good. The cost of such remedy shall be the responsibility of this Division.

1.16 WORKMANSHIP

A. Workmanship shall be the best quality of its kind for the respective industries, trades, crafts, and practices, and shall be acceptable in every respect to the Owner's representative. Nothing contained herein shall relieve the Contractor from making good and perfect work in all details in construction.

1.17 SAFETY REGULATION

A. The Contractor shall comply with all local, Federal, and OSHA safety requirements in performance with this work. (See General Conditions). This Contractor shall be required to provide equipment, supervision, construction, procedures, and all other necessary items to assure safety to life and property.

1.18 ELECTRICAL SERVICES

- A. All equipment control wiring and all automatic temperature control wiring including all necessary contacts, relays, and interlocks, whether low or line voltage, except power wiring, shall be furnished and installed as work of this Division unless shown to be furnished by Division 26. All such wiring shall be in conduit as required by electrical codes. Wiring in the mechanical rooms, fans rooms and inaccessible ceilings and walls shall be installed in conduit as well. Installation of any and all wiring done under Division 21, 22 and 23 shall be in accordance with the requirements of Division 26, Electrical.
- B. All equipment that requires an electrical connection shall be furnished so that it will operate properly and deliver full capacity on the electrical service available.
- C. Refer to the electrical control equipment and wiring shown on the diagrams. Any changes or additions required by specific equipment furnished shall be the complete responsibility of the Contractor furnishing the equipment.
- D. The Mechanical Contractor must coordinate with the Electrical Contractor to insure that all required components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

1.19 WORK, MATERIALS, AND QUALITY OF EQUIPMENT

- A. Unless otherwise specified, all materials shall be new and of the best quality of their respective kinds and all labor shall be done in a most thorough and workmanlike manner.
- B. Products or equipment of any of the manufacturers cited herein or any of the products approved by the Addenda may be used. However, where lists of products are cited herein, the one first listed in the design equipment used in drawings and schedules to establish size, quality, function, and capacity standards. If other than design equipment is used, it shall be carefully checked for access to equipment, electrical and control requirements, valving, and piping. Should changes or additions occur in piping, valving, electrical work, etc., or if the work of other Contractors would be revised by the alternate equipment, the cost of all changes shall be borne as work of this Division.
- C. The Execution portions of the specifications specify what products and materials may be used. Any products listed in the Product section of the specification that are not listed in the Execution portion of the specification may not be used without written approval by the Engineer.
- D. The access to equipment shown on the drawings is the minimum acceptable space requirements. No equipment that reduces or restricts accessibility to this or any other equipment will be considered.

- E. All major items of equipment are specified in the equipment schedules on the drawings or in these specifications and shall be furnished complete with all accessories normally supplied with the catalog item listed and all other accessories necessary for a complete and satisfactory installation.
- F. All welders shall be certified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code, latest Edition.

1.20 PROTECTION AGAINST WEATHER AND STORING OF MATERIALS

- A. All equipment and materials shall be properly stored and protected against moisture, dust, and wind. Coverings or other protection shall be used on all items that may be damaged or rusted or may have performance impaired by adverse weather or moisture conditions. Damage or defect developing before acceptance of the work shall be made good at the Contractor's expense.
- B. All open duct and pipe openings shall be adequately covered at all times.

1.21 INSTALLATION CHECK

- A. An experienced, competent, and authorized representative of the manufacturer or supplier of each item of equipment indicated in the equipment schedule and the seismic supplier shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier's representative shall be present when the equipment is placed in operation. The equipment supplier's representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is satisfactory to the Engineer.
- B. Each equipment supplier's representative shall furnish to the Owner, through the Engineer, a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it operated satisfactorily.
- C. All costs for this work shall be included in the prices quoted by equipment suppliers.

1.22 EQUIPMENT LUBRICATION

- A. The Contractor shall properly lubricate all pieces of equipment before turning the building over to the Owner. A linen tag shall be attached to each piece of equipment, showing the date of lubrication and the lubricant used. No equipment shall be started until it is properly lubricated.
- B. Necessary time shall be spent with the Owner's Representative to thoroughly familiarize him with all necessary lubrications and maintenance that will be required of him.
- C. Detergent oil as used for automotive purposes shall not be used for this work.

1.23 CUTTING AND PATCHING

A. No cutting or drilling in structural members shall be done without written approval of the Architect. The work shall be carefully laid out in advance, and cutting, channeling, chasing, or drilling of floors,

walls, partitions, ceilings, or other surfaces necessary for the mechanical work shall be carefully done. Any damage to building, piping, or equipment shall be repaired by professional plasterers, masons, concrete workers, etc., and all such work shall be paid for as work of this Division.

B. When concrete, grading, etc., is disturbed, it shall be restored to original condition as described in the applicable Division of this Specification.

1.24 ACCESS

- A. Provide access doors in walls, ceilings and floors by this division unless otherwise noted. For access to mechanical equipment such as valves, dampers, VAV boxes, fans, controls, etc. Refer to Division 8 for door specifications. All access doors shall be 24" x 24" unless otherwise indicated or required. Coordinate location of doors with the Architect prior to installation. If doors are not specified in Division 8, provide the following: Doors in ceilings and wall shall be equal to JR Smith No. 4760 bonderized and painted. Doors in tile walls shall be equal to JR Smith No. 4730 chrome plated. Doors in floors shall be equal to JR Smith No. 4910
- B. Valves: Valve must be installed in locations where access is readily available. If access is compromised, as judged by the Mechanical Engineer, these valves shall be relocated where directed at the Contractors expense.
- C. Equipment: Equipment must be installed in locations and orientations so that access to all components requiring service or maintenance will not be compromised. If access is compromised, as judged by the Mechanical Engineer, the contractor shall modify the installation as directed by the Engineer at the Contractors expense.
- D. It is the responsibility of this division to install terminal boxes, valves and all other equipment and devices so they can be accessed. If any equipment or devices are installed so they cannot be accessed on a ladder a catwalk and ladder system shall be installed above the ceiling to access and service this equipment.

1.25 CLEANING AND PAINTING

- A. Cleaning: After all tests and adjustments have been made and all systems pronounced satisfactory for permanent operation, this Contractor shall clean all exposed piping, ductwork, insulated members, fixture, and equipment installed under this Section and leave them ready for painting. He shall refinish any damaged finish and leave everything in proper working order. The Contractor shall remove all stains or grease marks on walls, floors, glass, hardware, fixtures, or elsewhere, caused by his workman or for which he is responsible. He shall remove all stickers on plumbing fixtures, do all required patching up and repair all work of others damaged by this division of the work, and leave the premises in a clean and orderly condition.
- B. Painting: Painting of exposed pipe, insulated pipe, ducts, or equipment is work of Division 9, Painting.
- C. Mechanical Contractor: All equipment which is to be furnished in factory prefinished conditions by the mechanical Contractor shall be left without mark, scratch, or impairment to finish upon completion of job. Any necessary refinishing to match original shall be done. Do not paint over nameplates, serial numbers, or other identifying marks.

D. Removal of Debris, Etc: Upon completion of this division of the work, remove all surplus material and rubbish resulting from this work, and leave the premises in a clean and orderly condition.

1.26 CONTRACT COMPLETION

- A. Incomplete and Unacceptable Work: If additional site visits or design work is required by the Engineer or Architect because of the use of incomplete or unacceptable work by the Contractor, then the Contractor shall reimburse the Engineer and Architect for all additional time and expenses involved.
- B. Maintenance Instructions: The Contractor shall furnish the Owner complete printed and illustrated operating and maintenance instructions covering all units of mechanical equipment, together with parts lists.
- C. Instructions To Owner's Representatives: In addition to any detailed instructions called for, the mechanical Contractor must provide, without expense to the Owner, competent instructors to train the Owner's representatives who will be in charge of the apparatus and equipment, in the care, adjustment, and operation of all parts on the heating, air conditioning, ventilating, plumbing, fire protection, and automatic temperature control equipment. Instruction dates shall be scheduled at time of final inspection. A written report specifying times, dates, and name of personnel instructed shall be forwarded to the Architect. A minimum of four 8-hour instruction periods shall be provided. The instruction periods will be broken down to shorter periods when requested by the Owner. The total instruction hours shall not reduced. The ATC Contractor shall provide 4 hours of instructions. The remaining hours shall be divided between the mechanical and sheet metal Contractor.
- D. Guarantee: By the acceptance of any contract award for the work herein described or shown on the drawings, the Contractor assumes the full responsibility imposed by the guarantee as set forth herein and in the General Conditions, and should protect himself through proper guarantees from equipment and special equipment Contractors and from subcontractors as their interests may appear.
- E. The guarantee so assumed by the Contractor and as work of this Section is as follows:
 - 1. That the entire mechanical system, including plumbing, heating, and air-conditioning system shall be quiet in operation.
 - 2. That the circulation of water shall be complete and even.
 - 3. That all pipes, conduit, and connections shall be perfectly free from foreign matter and pockets and that all other obstructions to the free passage of air, water, liquid, sewage, and vent shall be removed.
 - 4. That he shall make promptly and free of charge, upon notice from the Owner, any necessary repairs due to defective workmanship or materials that may occur during a period of one year from date of Substantial Completion.
 - 5. That all specialties, mechanical, and patent devices incorporated in these systems shall be adjusted in a manner that each shall develop its maximum efficiency in the operation of the system; i.e., diffusers shall deliver the designed amount of air shown on drawings, thermostats shall operate to the specified limits, etc.
 - 6. All equipment and the complete mechanical, ductwork, piping and plumbing systems shall be guaranteed for a period of one year from the date of the Architect's Certificate of Substantial Completion, this includes all mechanical, ductwork, piping and plumbing equipment and products and is not limited to boiler, chillers, coils, fans, filters etc. Any equipment supplier not willing to comply with this guarantee period shall not submit a bid price for this project. The Contractor shall be responsible for a 100-percent guarantee for the system and all items of equipment for this period. If the contractor needs to provide temporary heating or cooling

- to the building and or needs to insure systems are installed properly and or to meet the project schedule the guaranteed of all systems and equipment shall be as indicated above, on year from the date of the Architect's Certificate of Substantial Completion.
- 7. All filters used during construction shall be replaced just before equipment is turned over to the Owner, and all required equipment and parts shall be oiled. Any worn parts shall also be replaced.
- 8. If any systems or equipment is used for temporary heating or cooling the systems shall be protected so they remain clean. I.e. if the ductwork systems are used temporary filters and a filter holder (not duct-taped to ducts or grilles) shall be installed to insure the systems and the equipment remain clean.

1.27 EQUIPMENT STARTUP AND CHECKOUT:

- A. Each major piece of equipment shall be started and checked out by an authorized representative of the equipment manufacturer. A certificate indicating the equipment is operating to the satisfaction of the manufacturer shall be provided and shall be included in the commissioning report.
- B. This contractor shall coordinate commissioning procedures and activities with the commissioning agent.

1.28 DEMOLITION

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
- B. Proceed with demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
- C. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
- D. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
- E. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
- F. Maintain adequate ventilation when using cutting torches.
- G. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
- H. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- I. Dispose of demolished items and materials promptly.

- J. Return elements of construction and surfaces that are to remain to condition existing before selective demolition operations began.
- K. Existing Facilities: Comply with building manager's requirements for using and protecting elevators, stairs, walkways, loading docks, building entries, and other building facilities during selective demolition operations.
- L. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals, using power-driven saw, then remove concrete between saw cuts.
- M. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.
- N. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

END OF SECTION 230100

SECTION 230513

COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - Sleeves.
 - Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, and crawlspaces.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces, mechanical equipment rooms, accessible pipe shafts, accessible plumbing chases, and accessible tunnels.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. CPVC: Chlorinated polyvinyl chloride plastic.

- 2. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, **1/8-inch** maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, **1/8 inch** thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - Manufacturers:
 - a. Thompson Plastics, Inc.

2.5 DIELECTRIC FITTINGS

- A. General: Assembly or fitting with insulating material isolating joined dissimilar metals, to prevent galvanic action and stop corrosion.
- B. Description: Combination of copper alloy and ferrous; threaded, solder, plain, and weld-neck end types and matching piping system materials.
- C. Insulating Material: Suitable for system fluid, pressure, and temperature.
- D. Dielectric Unions: Factory-fabricated, union assembly, for **250-psig** minimum working pressure at **180 deg F**.
- E. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for **150-** or **300-psig** minimum working pressure as required to suit system pressures.
- F. Dielectric-Flange Insulation Kits: Field-assembled, companion-flange assembly, full-face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Provide separate companion flanges and steel bolts and nuts for **150-** or **300-psig** minimum working pressure as required to suit system pressures.
- G. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and **300-psig** minimum working pressure at **225 deg F**.
- H. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and **300-psig** minimum working pressure at **225 deg F**.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Watts Industries. Inc.: Water Products Div

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: **0.0239-inch** minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated and rough brass.

- D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
- E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, non-staining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: **5000-psi**, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:

1. New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with spring clips.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
- M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas **2 inches** above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide **1/4-inch** annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. PVC Steel Pipe Sleeves: For pipes smaller than **NPS 6**.
 - b. Steel Sheet Sleeves: For pipes **NPS 6** and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to **2 inches** above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- P. Verify final equipment locations for roughing-in.

Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping **NPS 2** and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping **NPS 2-1/2** and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 230500

SECTION 230516

EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Flexible-hose packless expansion joints.
 - 2. Metal-bellows packless expansion joints.
 - 3. Pipe loops and swing connections.

1.3 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.5 INFORMATIONAL SUBMITTALS

- Welding certificates.
- B. Product Certificates: For each type of expansion joint, from manufacturer.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. Steel Shapes and Plates: AWS D1.1, "Structural Welding Code Steel."
 - 2. Welding to Piping: ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

- A. Flexible-Hose Packless Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flex-Hose Co., Inc.
 - b. Flexicraft Industries.
 - c. Flex Pression Ltd.
 - d. Flex-Weld
 - e. Fugate
 - f. Metraflex, Inc.
 - g. Twin City Hose
 - 2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.
 - 3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
 - 4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with threaded solder-joint end connections.
 - a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 - 5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded solder-joint end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 - 6. Expansion Joints for Steel Piping NPS 2 and Smaller: Carbon-steel fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.
 - 7. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Carbon-steel fittings with flanged end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.

- 8. 12: Carbon-steel with flanged end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 125 psig at 70 deg Fand 90 psig at 600 deg Fratings.
- Expansion Joints for Steel Piping NPS 14 and Larger: Carbon-steel fittings with flanged end connections.
 - a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.
- B. Metal-Bellows Packless Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flex-Hose Co., Inc.
 - b. Flexicraft Industries.
 - c. Flex Pression Ltd.
 - d. Flex-Weld, Inc.
 - e. Flo Fab inc.
 - f. Hyspan Precision Products, Inc.
 - g. Metraflex, Inc.
 - h. Twin City Hose
 - 2. Standards: ASTM F 1120 and EJMA's "Standards of the Expansion Joint Manufacturers Association. Inc."
 - 3. Type: Circular, corrugated bellows with external tie rods.
 - 4. Minimum Pressure Rating: 175 psig unless otherwise indicated.
 - 5. Configuration: Single joint class unless otherwise indicated.
 - 6.
 - 7. Expansion Joints for Copper Tubing: Single-ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
 - a. End Connections for Copper Tubing NPS 2 and Smaller: Threaded.
 - b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.
 - c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.
 - 8. Expansion Joints for Steel Piping: Single-ply stainless-steel bellows, steel pipe ends, and carbon-steel shroud.
 - a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 - b. End Connections for Steel Pipe NPS 2-1/2 and Larger: Flanged.
- C. Alignment Guides:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing LLC.
 - b. Advanced Thermal Systems, Inc.
 - c. Flex-Hose Co., Inc.
 - d. Flexicraft Industries.
 - e. Flex-Weld, Inc.
 - f. Hyspan Precision Products, Inc.
 - g. Metraflex, Inc.
 - h. Piping Technology & Products, Inc.

- i. Senior Flexonics Pathway.
- j. Twin City Hose.
- 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

D. Anchor Materials:

- 1. Steel Shapes and Plates: ASTM A 36.
- 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
- 3. Washers: ASTM F 844, steel, plain, flat washers.
- 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Stud: Threaded, zinc-coated carbon steel.
 - b. Expansion Plug: Zinc-coated steel.
 - c. Washer and Nut: Zinc-coated steel.
- 5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - Bonding Material: ASTM C 881, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - b. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud unless otherwise indicated.
 - c. Washer and Nut: Zinc-coated steel.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
- C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
- B. Install one guide on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.
- C. Attach guides to pipe and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 230516

SECTION 230517

SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.

- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- C. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

END OF SECTION 23 0517

SECTION 230518

ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated or rough-brass finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type with polished, chrome-plated finish.
- b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with chrome-plated finish.
- d. Bare Piping 2 inch and Smaller at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- e. Bare Piping Larger than 2 inch at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type with polished, chrome-plated finish,
- f. Bare Piping 2 inch and Smaller at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- g. Bare Piping Larger than 2 inch at Ceiling Penetrations in Finished Spaces: Onepiece, stamped-steel type with polished, chrome-plated finish,
- h. Bare Piping 2 inch and Smaller in Unfinished Service Spaces: One-piece, castbrass type with
- i. Bare Piping Larger than 2 inch in Unfinished Service Spaces: One-piece, stamped-steel type with polished, chrome-plated finish,
- j. Bare Piping 2 inch and Smaller in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
- k. Bare Piping in Equipment Rooms Larger than 2 inch: One-piece, stamped-steel type with chrome- or cadmium-plated finish,

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518

SECTION 230519

METERS AND GAGES FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Pressure gages.
 - 4. Gage attachments.
 - 5. Test plugs.
 - 6. Test-plug kits.

B. Related Sections:

- 1. Division 23 Section "Facility Natural-Gas Piping" for gas meters.
- 2. Division 23 Section "Steam and Condensate Heating Piping" for steam and condensate meters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Palmer Wahl Instrumentation Group.
 - b. Trerice, H. O. Co.
 - c. Weiss Instruments, Inc.
 - d. Weksler.
 - 2. Standard: ASME B40.200.
 - 3. Case: Die Cast aluminum or brass; nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle type unless otherwise indicated, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
 - 5. Tube: Glass with magnifying lens and blue organic liquid.
 - 6. Tube Background: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass.
 - 8. Stem: Copper-plated steel, aluminum, stainless steel, or brass designed for thermowell installation. Stem shall be of length to match thermowell insertion length.
 - a. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge Div.
 - b. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - c. Ernst Gage Co.
 - d. Marsh Bellofram.
 - e. Miljoco Corp.
 - f. NANMAC Corporation.
 - g. Noshok, Inc.
 - h. Palmer Wahl Instruments Inc.
 - i. REO TEMP Instrument Corporation.
 - j. Tel-Tru Manufacturing Company.
 - k. Trerice, H. O. Co.
 - I. Weiss Instruments, Inc.
 - m. Weksler
 - n. WIKA Instrument Corporation.

- o. Winters Instruments.
- 2. Manufacturers: Same as manufacturer of thermometer being used.
- Standard: ASME B40.200.
- 4. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
- 5. Material for Use with Copper Tubing: Brass.
- 6. Material for Use with Steel Piping: Brass.
- 7. Type: Stepped shank unless straight or tapered shank is indicated.
- 8. External Threads: NPS 1/2, NPS 3/4, NPS 1 or NPS 1-1/4 ASME B1.20.1 pipe threads.
- 9. Internal Threads: 1/2, 3/4, and 1 inch with ASME B1.1 screw threads.
- 10. Bore: Diameter required to match thermometer bulb or stem.
- 11. Insertion Length: Length required to match thermometer bulb or stem.
- 12. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 13. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. KOBOLD Instruments. Inc.
 - e. Marsh Bellofram.
 - f. Miljoco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Trerice, H. O. Co.
 - k. Weiss Instruments, Inc.
 - Weksler
 - m. WIKA Instrument Corporation.
 - n. Winters Instruments U.S.
 - Standard: ASME B40.100.
 - 3. Case: Liquid-filled type; cast aluminum or drawn steel; 4-1/2-inchnominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated. NPS 1/4 or NPS 1/2.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Glass.
 - 10. Ring: Stainless steel.
 - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

- B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. KOBOLD Instruments. Inc.
 - e. Marsh Bellofram.
 - f. Milioco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Trerice, H. O. Co.
 - k. Weiss Instruments, Inc.
 - I. Weksler
 - m. WIKA Instrument Corporation.
 - n. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.
 - Case: Liquid-filled, cast aluminum or drawn steel; diameter with back flange for panel surface mounting or front flange for panel recessed mounting. Flanges to include predrilled screw holes.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated. NPS 1/4 or NPS 1/2.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Glass.
 - 10. Ring: Stainless steel.
 - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with ASME B1.20.1 pipe threads. Include extension for use on insulated piping. NPS 1/4 or NPS 1/2 .
 - 1. Surge-dampening device: porous-metal-type.
 - 2. Surge-dampening device: [piston]-type.
- B. Siphons:
 - 1. Loop-shaped section: Brass pipe with pipe threads. NPS 1/4 or NPS 1/2.
- C. Valves:
 - 1. Needle: Brass, with NPS 1/4 or NPS 1/2 ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. MG Piping Products Co.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.
 - 6. Trerice, H. O. Co.
 - 7. Twin City Hose.
 - 8. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 9. Welsler.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: or , ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating:
- F. Core Inserts: Self-sealing synthetic rubber;
 - 1. EPDM (Nordel) for air, water or glycol operation between 30 and 275 deg F.
 - 2. CR (Neoprene) for air, water, glycol, oil, or gas operation between -30 to 200 deg F.

2.6 TEST-PLUG KITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. MG Piping Products Co.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.
 - 6. Trerice, H. O. Co.
 - 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 3. Weiss Instruments, Inc.
- B. Furnish the number of test-plug kits given below with the number of thermometers given below, with each kit having one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
 - 1. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
 - 2. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

- 3. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch diameter dial and probe. Dial range shall be at least to 200 psig.
- 4. Carrying Case: Metal or plastic, with formed instrument padding.
- 5. One test-plug kit with:
 - a. Two thermometers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells: with socket extending one-third of pipe diameter and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions to most readable position.
- F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- G. Install needle-valve and snubber in piping for each pressure gage for fluids. Exception: Steam.
- H. Install test plugs in piping tees.
- I. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic boiler.
 - 2. Two inlets and two outlets of each chiller.
 - 3. Inlet and outlet of each hydronic coil in air-handling units.
 - 4. Two inlets and two outlets of each hydronic heat exchanger.
 - 5. Inlet and outlet of each thermal-storage tank.
 - 6. Inlet and outlet of each piece of steam equipment.
- J. Install pressure gages in the following locations:
 - 1. Inlet and discharge of each pressure-reducing valve.
 - 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 - 3. Suction and discharge of each pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic zone shall be one of the following:
 - 1. Test plug: With EPDM self-sealing rubber inserts.
- B. Thermometers at inlet and outlet of each hydronic boiler shall be one of the following:
 - 1. Industrial-style, liquid-in-glass type.
- C. Thermometers at inlets and outlets of each chiller shall be one of the following:
 - 1. Industrial-style, liquid-in-glass type.
- D. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be one of the following:
 - 1. Industrial-style, liquid-in-glass type.
- E. Thermometers at inlet and outlet of each hydronic coil at fan coils, cabinet heaters, unit heaters and reheat coils and as shown on details shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
 - 2. Test plug with [CR] [chlorosulfonated polyethylene synthetic] self-sealing rubber inserts.
 - 3. Test plug with EPDM self-sealing rubber inserts.
- F. Thermometers at inlets and outlets of each hydronic heat exchanger shall be the one of following:
 - 1. Industrial-style, liquid-in-glass type.
- G. Thermometers at inlet and outlet of each hydronic heat-recovery unit shall be the one of following:
 - 1. Industrial-style, liquid-in-glass type.
- H. Thermometers at inlet and outlet of each thermal-storage tank shall be one of the following:
 - 1. Industrial-style, liquid-in-glass type.
- I. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
- B. Scale Range for Condenser-Water Piping: 0 to 150 deg F.

- C. Scale Range for Heating, Hot-Water Piping: 30 to 240 deg F.
- D. Scale Range for Steam and Steam-Condensate Piping: 30 to 240 deg F.
- E. Scale Range for Air Ducts: Minus 40 to plus 110 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at inlet and discharge of each pressure-reducing valve shall be the one of following:
 - 1. Dry-case type, direct-mounted, metal case.
- B. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be one of the following:
 - Liquid-filled, direct-mounted, metal case.
- C. Pressure gages at suction and discharge of each pump shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water, Condenser-Water, Heating, Hot-Water, Steam and Condensate Piping shall be twice the normal operating pressure of the measured system with gage ranges as follows:
 - 1. 30 in. Hg to 15 psi.
 - 2. 0 to 30 psi.
 - 3. 0 to 100 psi.
 - 4. 0 to 160 psi.
 - 5. 0 to 200 psi.
 - 6. 0 to 300 psi.
 - 7. 0 to 600 psi.

3.8 FLOWMETER SCHEDULE

- A. Flowmeters for Chilled-Water Piping: Venturi type.
- B. Flowmeters for Condenser-Water Piping: Venturi type.
- C. Flowmeters for Heating, Hot-Water Piping: Venturi type.

END OF SECTION 230519

SECTION 230523

GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Bronze ball valves.
- 2. Iron, single-flange butterfly valves.
- 3. Bronze lift check valves.
- 4. Bronze swing check valves.
- 7. Bronze globe valves.
- 8. Iron globe valves.

B. Related Sections:

1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated. Body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and

arrangement, dimensions and required clearances, and installation instructions. Include list indicating valve and its application.

B. Maintenance data for valves to be included in the operation and maintenance data specified in Division 1. Include detailed manufacturer's instructions on adjusting, servicing, disassembling, and repairing.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve as listed in SUMMARY from a single source and from a single manufacturer.
- B. Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
 - MSS Compliance: Comply with the various MSS Standard Practice documents referenced.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and weld ends.
 - 3. Set angle, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:

- 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
- 2. Handwheel: For valves other than quarter-turn types.
- 3. Handlever: For quarter-turn valves NPS 6 and smaller[except plug valves].
- 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every [5] [10] <Insert number> plug valves, for each size square plug-valve head.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.

F. Valve-End Connections:

- 1. Flanged: With flanges according to ASME B16.1 for iron valves.
- 2. Solder Joint: With sockets according to ASME B16.18.
 - Caution: Where soldered end connections are used, use solder having a melting point below 840 deg. For, globe, and check valves: below 421 deg. F for ball valves.
- 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 MANUFACTURERS

- A. Subject to compliance with requirements, provide products by one of the following:
 - 1. APCO Willamette Valve and Primer Corp.
 - 2. Babbitt Steam Specialty Company.
 - 3. Bray Controls.
 - 4. Center Line.
 - 5. Cla-Val Company.
 - 6. Conbraco Industries Inc.
 - 7. Crane Co.; Crane Valve Group.
 - 8. Fisher Valve by Emerson.
 - 9. Flo Fab Inc.
 - 10. Flow-Tek Inc.
 - 11. Grinnell Corporation.
 - 12. Hammond Valve.
 - 13. Jamesbury; a subsidiary of Metso Automation.
 - 14. Jomar International LTD.
 - 15. Keystone Valve USA, Inc.
 - 16. Kitz Corp.
 - 17. Metraflex Company.
 - 18. Milwaukee Valve Company.
 - 19. Mueller Steam Specialty.
 - 20. NIBCO Inc.
 - 21. Red-White Valve Corp.
 - 22. Spence Strainers International.

- 23. Stockham Valves and Fittings, Inc.
- 24. Tyco Fire/Shurjoint Piping Products.
- 25. Tyco/Pentair LTD.
- 26. Val-Matic Valve & Mfg. Corp.
- 27. Victaulic Company.
- 28. Watts Regulator Company.

2.4 BRONZE BALL VALVES

- C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.

2.5 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 150 CWP, Iron, Single-Flange (Lug) Butterfly Valves:
 - 1. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 150 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Nylon 11 coated ductile iron.
- B. 175 CWP, Iron, Single-Flange (Lug) Butterfly Valves:
 - 1. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 175 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Nylon 11 coated ductile iron.

- C. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Nylon 11 coated ductile Iron Disc:
 - 1. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Nylon 11 coated ductile iron.
- D. 250 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Nylon 11 coated ductile Iron Disc:
 - 1. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 250 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Nylon 11 coated ductile iron.

2.6 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

2.7 BRONZE GLOBE VALVES

- A. Class 150, Bronze Globe Valves with Nonmetallic Disc:
 - 1. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.

e. Stem: Bronze.f. Disc: PTFE or TFE.

g. Packing: Teflon impregnated, asbestos free.

h. Handwheel: Malleable iron.

2.8 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:

1. Description:

a. Standard: MSS SP-85, Type I.

b. CWP Rating: 200 psig.

c. Body Material: ASTM A 126, gray iron with bolted bonnet.

d. Ends: Flanged.

e. Stem: Brass alloy. OS &Y.f. Disc: Renewable bronze seat.

g. Trim: Bronze.

h. Packing and Gasket: Teflon impregnated, asbestos free.

i. Handwheel: Cast iron

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance3 with requirements for installation tolerances and other conditions affecting performance of valves. Do no proceed with installation until unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves as indicated, according to manufacturer's written instructions.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of piping, fittings, and specialties.

- C. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- D. Locate valves for easy access and provide separate support where necessary.
- E. Install valves in horizontal piping with stem at or above center of pipe.
- F. Install valves in position to allow full stem movement.
- G. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.
 - 4. Install all check valves a minimum of five pipe diameters downstream of pump discharge or elbow to avoid flow turbulence. In extreme cases add flow straighteners as required to correct the turbulence.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service except Steam: Globe valves.
 - 4. Throttling Service, Steam: Globe valves.
 - 5. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring or iron, metal-seat check valves.
 - 6. Drain Service (except Steam): Two-Piece, Full Port Bronze Ball Valves with Bronze Trim. To be installed with NPS ¾ hose thread outlet and hose cap with chain.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.

- 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
- 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
- 3. Ball Valves:
 - a. Piece: Two
 - b. Port: Full.
 - c. Material/Trim: Bronze with:
 - 1) Bronze trim.
- 4. Bronze Swing Check Valves:
 - a. Class 150
 - b. Bronze disc.
- 6. Bronze Globe Valves:
 - a. Class 125
 - b. Bronze disc.

B. Pipe NPS 2-1/2 and Larger:

- 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
- 2. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12:
 - a. 200 CWP,
 - b. Seat: EPDM.
 - c. Disc: Ductile-iron.
- 3. Iron Swing Check Valves: Class 125, metal seats.
- 4. Iron Globe Valves: Class 125.

END OF SECTION 230523

SECTION 230548

VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SCOPE

- A. Provide engineered vibration isolation and restraint systems in accordance with the requirements of this section including design, engineering, materials, testing, inspections and reports.
- B. Mechanical equipment with moving parts shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure..
- C. All mechanical equipment, piping and ductwork shall be restrained as required by Federal, State and Local building codes to preserve the integrity of nonstructural building components during seismic events to minimize hazards to occupants and reduce property damage.
- D. The importance factor for this project shall be 1.5.

1.3 SUMMARY

- A. This Section includes the following:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Open-spring isolators.
 - 5. Housed-spring isolators.
 - 6. Restrained-spring isolators.
 - 7. Housed-restrained-spring isolators.
 - 8. Pipe-riser resilient supports.
 - 9. Resilient pipe guides.
 - 10. Air-spring isolators.
 - 11. Restrained-air-spring isolators.
 - 12. Elastomeric hangers.
 - 13. Spring hangers.
 - 14. Snubbers.
 - 15. Restraint channel bracings.
 - 16. Restraint cables.
 - 17. Seismic-restraint accessories.
 - 18. Mechanical anchor bolts.
 - 19. Adhesive anchor bolts.

- 20. Vibration isolation equipment bases.
- 21. Restrained isolation roof-curb rails.
- 22. Certification of seismic restraint designs.
- 23. Installation supervision.
- 24. Design of attachment of housekeeping pads.
- 25. All components requiring IBC compliance and certification.
- 26. All inspection and test procedures for components requiring IBC compliance.
- 27. Restraint of all mechanical equipment, pipe and ductwork, within, on, or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.
- 28. Seismic certification of equipment

B. Related Requirements:

 Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.

1.4 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. ASCE: American Society of Civil Engineers
- D. OSHPD: Office of Statewide Health Planning and Development for the State of California.
- E. Ip: Importance Factor.
- F. ESSENTIAL FACILITIES, (Occupancy Category IV, IBC-2018)
 - 1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

G. LIFE SAFETY

- 1. All systems involved with fire protection, including sprinkler piping, jockey pumps, fire pumps, control panels, service water supply piping, water tanks, fire dampers, smoke exhaust systems and fire alarm panels.
- 2. All mechanical, electrical, plumbing or fire protection systems that support the operation of, or are connected to, emergency power equipment, including all lighting, generators, transfer switches and transformers.
- 3. All medical and life support systems.
- 4. Hospital heating systems and air conditioning systems for maintaining normal ambient temperature.
- 5. Automated supply, exhaust, fresh air and relief air systems on emergency control sequence, including air handlers, duct, dampers, etc., or manually-operated systems used for smoke evacuation, purge or fresh air relief by the fire department.

6. Heating systems in any facility with Occupancy Category IV, IBC-2018 where the ambient temperature can fall below 32 degrees Fahrenheit.

H. HIGH HAZARD

1. All gases or fluids that must be contained in a closed system which are flammable or combustible. Any gas that poses a health hazard if released into the environment and vented Fuel Cells.

1.5 REFERENCE CODES AND STANDARDS

- A. Codes and Standards: The following shall apply and conform to good engineering practices unless otherwise directed by the Federal, State or Local authorities having jurisdiction.
 - 1. IBC
 - 2. ASCE 7
 - 3. NFPA 13 (National Fire Protection Association)
 - 4. IBC 2018 replaces all references to IBC 2006, 2009, 2012, 2015.
- B. The following guides may be used for supplemental information on typical seismic installation practices. Where a conflict exists between the guides and these construction documents, the construction documents will preside.
 - 1. FEMA (Federal Emergency Management Agency) manuals 412, Installing Seismic Restraints for Mechanical Equipment and 414, Installing Seismic Restraints for Ductwork and Pipe.
 - 2. SMACNA (Sheet Metal and Air-conditioning Contractors' National Association) Seismic Restraint Manual Guidelines for Mechanical Systems, 3rd ed.
 - 3. ASHRAE (American Society for Heating, Refrigerating and Air-conditioning Engineers) A Practical Guide to Seismic Restraint
 - 4. MSS (Manufacturers Standardization Society of the Valve and Fittings Industry) MSS SP-127, Bracing for Piping Systems, Seismic – Wind – Dynamic, Design, Selection, Application.

1.6 ISOLATOR AND RESTRAINT MANUFACTURER'S RESPONSIBILITIES:

- A. Provide project specific vibration isolation and seismic restraint design prepared by a registered design professional in the state were the project is being constructed, and manufacturer certifications that the components are seismically qualified.
 - 1. Provide calculations to determine restraint loads resulting from seismic forces as required by IBC, Chapter 16 and ASCE 7, latest editions. Seismic calculations shall be certified by an engineer licensed in the state where the project is being constructed.
- B. Provide installation instructions and shop drawings for all materials supplied under this section of the specifications.
 - 1. Provide seismic restraint details with specific information relating to the materials, type, size, and locations of anchorages; materials used for bracing; attachment requirements of bracing to structure and component; and locations of transverse and longitudinal sway bracing and rod stiffeners.

- 2. Provide seismic bracing layout drawings indicating the location of all seismic restraints.
 - a. Each piece of rotating isolated equipment shall be tagged to clearly identify quantity and size of vibration isolators and seismic restraints.
- C. Provide, in writing, the special inspection requirements for all Designated Seismic Systems as indicated in Chapter 17 of the IBC.
- D. Provide training for installation, operation and maintenance of isolation and restraint systems.

1.7 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC:
 - 2. Assigned Occupancy Category as Defined in the IBC: IV. Per the structural drawings and specifications
 - a. Component Importance Factor: 1.5.
 - 1) Life safety components required to function after an earthquake.
 - 2) Components containing hazardous or flammable materials in quantities that exceed the exempted amounts for an open system listed in Chapter 4.
 - 3) For structures with an Occupancy Category IV, components needed for continued operation of the facility or whose failure could impair the continued operation of the facility.
 - 4) Storage racks in occupancies open to the general public (e.g., warehouse retail stores).
 - b. Component Importance Factor: 1.5.
 - 1) All other components
 - c. Component Response Modification Factor: Per the structural drawings and specifications.
 - 3. Design Spectral Response Acceleration at Short Periods: Per the structural drawings and specifications.
 - 4. Design Spectral Response Acceleration at 1-Second Period: Per the structural drawings and specifications.

5.

1.8 ACTION SUBMITTALS

- A. Product Data: For the following:
 - Submittals shall include catalog cut sheets and installation instructions for each type of anchor and seismic restraint used on equipment or components being isolated and/or restrained.
 - 2. Submittals for mountings and hangers incorporating springs shall include spring diameter and free height, rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

- Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
- b. Annotate to indicate application of each product submitted and compliance with requirements.
- 4. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

- Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. "Basis for Design" report: Statement from the registered design professional that the design complies with the requirements of the ASCE 7-05 Chapter 13, IBC 2009 chapter 1912 and ACI 318. In addition, the basis for compliance must also be noted, as listed below:
 - a. Project specific design documentation prepared and submitted by a registered design professional (ASCE 7, 13.2.1.1)
 - b. Submittal of the manufacturer's certification that the isolation equipment is seismically qualified by:
 - c. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - d. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - e. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - Seismic restraint load ratings must be certified and substantiated by testing or calculations under direct control of a registered professional engineer. Copies of testing and calculations must be submitted as part of submittal documents. OSHPD preapproved restraint systems are exempt from this requirement if their pre-approval is current and based upon the IBC 2009 (i.e. OPA-07 pre-approval numbers).
 - 3. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 4. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, **seismic** forces required to select vibration isolators, restraints, and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.

- 5. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
- 6. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
- 7. **Seismic** -Restraint Details:
 - a. Design Analysis: To support selection and arrangement of **seismic** restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By **an evaluation service member of ICC-ES**, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.9 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
 - 1. Submittal drawings and calculations must be stamped by a registered professional engineer in the State where the project is being constructed who is responsible for the seismic restraint design.
 - Calculations and restraint device submittal drawings shall specify anchor bolt type, embedment, concrete compressive strength, minimum spacing between anchors, and minimum distances of anchors from concrete edges. Concrete anchor locations shall not be near edges, stress joints, or an existing fracture. All bolts shall be ASTM A307 or better.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Field quality-control test reports.

1.10 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

1.11 SEISMIC CERTIFICATION OF EQUIPMENT

- A. Component Importance Factor. All plumbing and mechanical components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
 - 1. The component is required to function for life-safety purposes after an earthquake.
 - 2. The component contains hazardous materials.
 - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, *lp*, equal to 1.0.
- C. For equipment or components where Ip = 1.0.
 - 1. Submit manufacturer's certification that the equipment is seismically qualified by:
 - An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - b. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - c. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - 2. The equipment and components listed below are considered rugged and shall not require Special Seismic Certification:
 - a. Valves (not in cast-iron housings, except for ductile cast iron).
 - b. Elevator cabs.
 - c. Equipment and components weighing not more than 20 lbs. supported directly on structures (and not mounted on other equipment or components) with supports and attachments in accordance with Chapter 13, ASCE 7.
 - 3. Rugged equipment and components in this section are for factory assembled discrete equipment and components only and do not apply to site assembled or field assembled equipment or equipment anchorage. The list is based in part on OSHPD Code Application Notice 2-1708A.5.
- D. Special Certification requirements for Designated Seismic Systems (i.e. Ip = 1.5): Seismic Certificates of Compliance supplied by manufacturers shall be submitted for all components that

are part of Designated Seismic Systems. In accordance with the ASCE 7, certification shall be via one of the following methods:

- 1. For active mechanical and electrical equipment that must remain operable following the design earthquake:
 - a. Testing as detailed by part C.1.b above.
 - b. Experience data as detailed by part C.1.c above.
 - c. Equipment that is considered "rugged" per part C.2 above.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. CalDyn (California Dynamics Corporation).
 - 3. ISAT (International Seismic Application Technology).
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibro-Acoustics
 - 7. VMC (Vibration Mountings & Controls, Inc.)

2.2 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. CalDyn (California Dynamics Corporation).
 - 3. ISAT (International Seismic Application Technology).
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibro-Acoustics
 - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by **an evaluation service member of ICC-ES**.
 - Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.

- 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
- 3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.
- D. Channel Support System: MFMA-4, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- E. Restraint Cables: ASTM A 603 galvanized or ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. Cables located in exterior or other wet locations such as wash-down areas shall be stainless steel.
- F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- G. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- H. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- I. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- J. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- K. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- L. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
- M. All post installed anchors utilized in the seismic design must be qualified for use in cracked concrete and approved for use with seismic loads.
- N. Expansion anchors shall not be used for anchorage of equipment with motors rated over 10 HP with the exception of undercut expansion anchors. Spring or internally isolated equipment are exempt from this requirement.
- O. All beam clamps utilized for vertical support must also incorporate retention straps.
- P. All seismic brace arm anchorages to include concrete anchors, beam clamps, truss connections, etc., must be approved for use with seismic loads.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and **seismic-** control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and **seismic** control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 COORDINATION

- A. Coordinate size, shape, reinforcement and attachment of all housekeeping pads supporting vibration/seismically rated equipment. Concrete shall have a minimum compressive strength of 4,000 psi or as specified by the project engineer. Coordinate size, thickness, doweling, and reinforcing of concrete equipment housekeeping pads and piers with vibration isolation and seismic restraint device manufacturer to ensure adequate space, embedment and prevent edge breakout failures. Pads and piers must be adequately doweled in to structural slab.
- B. Coordinate with vibration/seismic restraint manufacturer and the structural engineer of record to locate and size structural supports underneath vibration/seismically restrained equipment (e.g. roof curbs, cooling towers and other similar equipment). Installation of all seismic restraint materials specified in this section shall be accomplished as per the manufacturer's written instructions. Adjust isolators and restraints after piping systems have been filled and equipment is at its operating weight, following the manufacturer's written instructions.

3.3 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by **an evaluation service member of ICC-ES** and per the seismic restraint manufacturer's design.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.4 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.
- C. Isolate all mechanical equipment 0.75 hp and over per the isolator and seismic restraint schedule and these specifications. Vibration isolators shall be selected in accordance with the equipment, pipe or duct weight distribution so as to produce reasonably uniform deflections
- D. All isolation materials and seismic restraints shall be of the same vendor and shall be selected and certified using published or factory certified data
- E. Installation of all vibration isolation materials, flexible connectors and supplemental equipment bases specified in this section shall be accomplished as per the manufacturer's written instructions with mountings adjusted to level equipment. Any variance or non-compliance with the manufacturer's instructions shall be reviewed and approved in writing by the manufacturer or corrected by the contractor in an approved manner.
- F. Installation of vibration isolators must not cause any change of position of equipment, piping or duct work resulting in stresses or misalignment.
- G. Locate isolation hangers as near to the overhead support structure as possible.
- H. No rigid connections between isolated components and the building structure shall be made that degrades the noise and vibration control system herein specified. "Building" includes, but is not limited to, slabs, beams, columns, studs and walls. "Components" includes, but is not limited to, mechanical equipment, piping and ducts.
- I. Coordinate work with other trades to avoid rigid contact with the building.
- J. Any conflicts with other trades which will result in rigid contact with equipment or piping due to inadequate space or other unforeseen conditions should be brought to the architects/engineers attention prior to installation. Corrective work necessitated by conflicts after installation shall be at the responsible contractor's expense.
- K. Bring to the architects/engineers attention any discrepancies between the specifications and the field conditions or changes required due to specific equipment selection, prior to installation. Corrective work necessitated by discrepancies after installation shall be at the responsible contractor's expense.
- L. Correct, at no additional cost, all installations which are deemed defective in workmanship and materials at the contractor's expense.
- M. Use horizontal thrust restraints **T1** to protect Air handling equipment and centrifugal fans against excessive displacement which results from high air thrust when thrust forces exceed 10% of the equipment weight.

- N. Isolated equipment, duct and piping located on roofs must be attached to the structure. Supports (e.g., sleepers) that are not attached to the structure will not be acceptable.
- O. On completion of installation of all isolation materials and before startup of isolated equipment all debris shall be cleared from areas surrounding and from beneath all isolated equipment, leaving equipment free to move on the isolation supports.
- P. Horizontal Pipe Isolation: All HVAC pumped water, pumped condensate, glycol, and refrigerant piping size 1-1/4" and larger within mechanical rooms shall be isolated. Outside equipment rooms this piping shall be isolated for the greater of 50' or 100 pipe diameters from rotating equipment. For the first three (3) support locations from externally isolated equipment provide specification H2 or H3 hangers or specification S1, S2 or S3 mounts with the same deflection as equipment isolators (max 2"). All other piping within the equipment rooms shall be isolated with the same specification isolators with a 3/4" minimum deflection. Steam piping size 1-1/4" and larger which is within an equipment room and connected to rotating equipment shall be isolated for three (3) support locations from the equipment. Provide specification H2 or H3 hangers, or specification S1 or S2 mounts with the same deflection as equipment isolators but a minimum of 3/4".
- Q. Install full line size flexible pipe connectors at the inlet and outlet of each pump, cooling tower, condenser, chiller, coiling connections and where shown on the drawings. All connectors shall be suitable for use at the temperature, pressure, and service encountered at the point of installation and operation. End fitting connectors shall conform to the pipefitting schedule. Control rods or protective braid must be used to limit elongation to 3/8". Flexible connectors shall not be required for suspended in-line pumps.
- R. All plumbing pumped water, piping size 1-1/4" and larger within mechanical rooms shall be isolated the same as HVAC piping above. Isolators are not required for any plumbing pumped water, pumped condensate, and steam piping outside of mechanical rooms unless listed in the isolation schedule.
- S. Pipe Riser Isolation: The operating weight of all variable temperature vertical pipe risers 1-1/4" and larger, requiring isolation where specifically shown and detailed on riser drawings shall be fully supported by specification M1, M2 or R1 supports. S1, S2, S3, H2 or H3 steel spring deflection isolators with minimum 3/4-inch minimum shall be in those locations where added deflection is required due to pipe expansion and contraction. Spring deflection shall be a minimum of 4 times the anticipated deflection change. Springs shall be selected to keep the riser in tension. Height saving brackets used with isolators having 2.5" deflection or greater shall be of the precompression type to limit exposed bolt length. Specification R1 riser supports shall be installed near the center point of the riser to anchor the riser when spring isolation is used. Specification R2 riser guides may be used in conjunction with spring isolators per design calculations. Pipe risers up through 16" shall be supported at intervals of every third floor of the building. Pipe risers 18" and over, every second floor. Wall sleeves for take-offs from riser shall be sized for insulation O.D. plus two times the anticipated movement to prevent binding. Horizontal take-offs and at upper and lower elbows shall be supported with spring isolators as required to accommodate anticipated movement. In addition to submittal data requirements previously outlined, riser diagrams and calculations shall be submitted for approval. Calculations must show anticipated expansion and contraction at each support point, initial and final loads on the building structure, and spring deflection changes. Submittal data shall include certification that the riser system has been examined for excessive stresses and that none will exist if installed per design proposed.
- T. Where riser pipes pass through cored holes, core diameters shall be a maximum of 2" larger than pipe O.D. including insulation. Cored holes must be packed with resilient material or firestop as provided by other sections of this specification or local codes. Where seismic

restraint is required specification isolator S3 shall support risers and provide longitudinal restraint at floors where thermal expansion is minimal and will not bind isolator restraints.

U. Duct Isolation: Isolate all duct work with a static pressure 2" W.C. and over in equipment rooms and to minimum of 50 feet from the fan or air handler. Use specification type H2 or H3 hangers or type S1 or S2 floor mounts.

3.5 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment Restraints:

- 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- 3. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES**. providing required submittals for component.
- 4. Suspended Equipment: All suspended equipment that meets any of the following conditions requires seismic restraints as specified by the supplier:
 - a. Rigidly attached to pipe or duct that is 75 lbs. and greater,
 - b. Items greater than 20 lbs and distribution systems weighing more than 5 lbs/lineal foot, with an importance factor of 1.0 hung independently or with flexible connections.
 - c. Possibility of consequential damage.
 - d. For importance factors greater than 1.0 all suspended equipment requires seismic restraint regardless of the above notes.
 - e. Wall mounted equipment weighing more than 20 lbs.
 - f. Exemptions:
 - 1) Equipment weighing less than 20 lbs and distribution systems weighing less than 5 lbs/lineal foot, with an Ip = 1.0 and where flexible connections exist between the component and associated ductwork, piping or conduit.
- 5. Base Mounted Equipment: All base mounted equipment that meets any of the following conditions requires attachments and seismic restraints as specified by the supplier:
 - a. Connections to or containing hazardous material,
 - b. With an overturning moment.
 - c. Weight greater than 400 lbs.
 - d. Mounted on a stand 4 ft. or more from the floor
 - e. Possibility of consequential damage.
 - f. For importance factors greater than 1.0 all base mounted items require seismic restraints regardless of the above notes.
 - g. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
 - h. Exemptions:

1) Floor or curb-mounted equipment weighing less than 400 lbs and not resiliently mounted, where the Importance Factor, Ip = 1.0, the components are mounted at 4 feet or less above a floor level, flexible connections between the components and associated duct work, piping and conduit are provided and there is no possibility of consequential damage.

6. Roof Mounted Equipment:

- a. To be installed on a structural frame, seismically rated roof curb, or structural curb frame mechanically connected to the structure. Items shall not be mounted onto sleepers or pads that are not mechanically and rigidly attached to the structure. Restraint must be adequate to resist both seismic and wind forces.
- b. Roof curbs shall be installed directly to building structural steel or concrete roof deck and not to top of steel deck or roofing material.
- c. Exemptions:
 - 1) Curb-mounted mushroom, exhaust and vent fans with curb area less than nine square feet are excluded.

7. Rigid Mounted Equipment:

- a. Anchor floor and wall mounted equipment to the structure as per the stamped seismic certifications / drawings.
- b. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
- c. Suspended equipment shall be restrained using seismic cable restraints, or struts, and hanger rods as per the stamped seismic certifications / drawings.

8. Vibration Isolated Equipment:

- a. Seismic control shall not compromise the performance of noise control, vibration isolation or fire stopping systems.
- b. Equipment supported by vibration-isolation hangers shall be detailed and installed with approximately a 1/8" gap between the isolation hangers and the structure. Isolators at restraint locations must be fitted with uplift limit stops.
- B. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- C. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- D. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES** providing required submittals for component.
- E. Installation and adjustment of all seismic restraints specified in this section shall be accomplished as per the manufacturer's written instructions. Any deviation from the manufacturer's instructions shall be reviewed and approved by the manufacturer.

F. Piping Restraints:

- 1. Comply with requirements in MSS SP-127.
- 4. Seismically restrain all Ip = 1.5 piping larger than 1" diameter.
- 5. Branch lines may not be used to brace main lines.
- 6. Exemptions:

- a. All high deformability pipe 3" or less in diameter suspended by individual hanger rods where Ip = 1.0.
- b. High deformability pipe or conduit in Seismic Design Category C, 2" or less in diameter suspended by individual hanger rods where Ip = 1.5.
- c. High deformability pipe in Seismic Design Category D, E or F, 1" or less in diameter suspended by individual hanger rods where Ip = 1.5.
- d. All clevis supported pipe runs installed less than 12" from the top of the pipe to the underside of the support point and trapeze supported pipe suspended by hanger rods having a distance less than 12" in length from the underside of the pipe support to the support point of the structure.
- e. Piping systems, including their supports, designed and constructed in accordance with ASME B31.
- f. Piping systems, including their supports, designed and constructed in accordance with NFPA, provided they meet the force and displacement requirements of Section 13.3.1 and 13.3.2 (ASCE 7).
- G. Install flexible metal hose loops in piping which crosses building seismic joints, sized for the anticipated amount of movement.
- H. Install flexible piping connectors where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.
- I. Where pipe sizes reduce below dimensions required for seismic, the final restraint shall be installed at the transition location.
- J. Restraint Spacing For Piping: Sizes shown are maximum. Actual spacing determined by calculation.
 - 1. For non-ductile piping (e.g., cast iron, PVC) space transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
 - 2. For piping with hazardous material inside (e.g., natural gas, medical gas) space Transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
 - 3. For pipe risers, restrain the piping at floor penetrations using the same spacing requirements as above.
 - 4. For all other ductile piping see Table "A" below
- K. Seismic Restraint of Ductwork: Seismically restrain per specific code requirements, all ductwork listed below (unless otherwise indicated on the drawings), using seismic cable restraints: (Ductwork not meeting criteria listed below is to be "Exempt")
 - 1. Restrain rectangular ductwork with cross sectional area of 6 square feet or larger. Duct with and an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 2. Restrain round ducts with diameters of 28" or larger. Duct with an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 3. Restrain flat oval ducts the same as rectangular ducts of the same nominal size.
 - 4. Duct must be reinforced at the restraint locations. Reinforcement shall consist of an additional angle on top of the ductwork that is attached to the support hanger rods. Ductwork is to be attached to both upper angle and lower trapeze. Additional reinforcing is not required if duct sections are mechanically fastened together with frame bolts and positively fastened to the duct support suspension system.

- 5. A group of ducts may be combined in a larger frame so that the combined weights and dimensions of the ducts are less than or equal to the maximum weight and dimensions of the duct for which bracing details are selected.
- 6. Walls, including gypsum board non-bearing partitions, which have ducts running through them, may replace a typical transverse brace. Provide channel framing around ducts and solid blocking between the duct and frame.
- 7. If ducts are supported by angles, channels or struts, ducts shall be fastened to it at seismic brace locations in lieu of duct reinforcement.
- 8. All ductwork weighing more than 17 lb/ft.
- 9. Exemptions:
 - a. Duct runs supported at locations by two rods less than 12 inches in length from the structural support to the structural connection to the ductwork. This exemption does not apply to ducts with an importance factor of 1.5.
- 10. See Table "A" below for restraint spacing.
- L. Exemptions do not apply for:
 - 1. Life Safety or High Hazard Components
 - a. Including gas, fire protection, medical gas, fuel oil and compressed air needed for the continued operation of the facility or whose failure could impair the facility's continued operation, Occupancy Category IV, IBC-2009 as listed in Section 1.3 B regardless of governing code for HVAC, Plumbing, Electrical piping or equipment. (A partial list is illustrated.) High Hazard is additionally classified as any system handling flammable, combustible or toxic material. Typical systems not excluded are additionally listed below.

2. Piping

a. Fuel oil, gasoline, natural gas, medical gas, steam, compressed air or any piping containing hazardous, flammable, combustible, toxic or corrosive materials. Fire protection standpipe, risers and mains. Fire Sprinkler Branch Lines must be end tied.

3. Duct

a. Smoke evacuation duct or fresh air make up connected to emergency system, emergency generator exhaust, boiler breeching or as used by the fire department on manual override.

4. Equipment

- a. Previously excluded non life safety duct mounted systems such as fans, variable air volume boxes, heat exchangers and humidifiers having a weight greater than 75 lbs require independent seismic bracing.
- M. Spacing Chart For Suspended Components:

N. Where duct sizes reduce below dimensions required for seismic restraint the final restraint shall

(Maximum A	Table "A" Se Ilowable Spacing Shown- Actu	eismic Bracing al Spacing to Be Determi	ined by Calculation)
Equipment	On Center Transverse	On Center Longitudi- nal	Change Of Direction
Duct			
All Sizes	30 Feet	60 Feet	4 Feet
Pipe Threaded, We	elded, Soldered Or Grooved		
To 16"	40 Feet	80 Feet	4 Feet
18" – 28"	30 Feet	60 Feet	4 Feet
30" – 40"	20 Feet	60 Feet	4 Feet
42" & Larger	10 Feet	30 Feet	4 Feet

be installed at the transition location.

- O. Install cables so they do not bend across edges of adjacent equipment or building structure.
- P. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- Q. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- R. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- S. Seismically Rated Beam Clamps are required where welding to or penetrations to steel beams are not approved.

T. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.6 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.

3.7 FIELD QUFALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
 - 1. A representative of the vibration isolation system manufacturer shall review the project installation and provide documentation indicating conformance to vibration isolation design intent
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.
 - 1. The installing contractor shall submit a report upon request to the building architect and/or engineer, including the manufacturer's representative's final report, indicating that all seismic restraint material has been properly installed, or steps that are to be taken by the contractor to properly complete the seismic restraint work as per the specifications.

3.8 IDENTIFICATION

- A. Install identification tags at all seismic brace locations. Tags to include the following information:
 - 1. Specific seismic forces (g-force) the location was designed to resist.
 - 2. Maximum brace reaction at connection to structure.
 - 3. For single hung items, the maximum pipe/conduit size the brace location was designed to accommodate.
 - 4. For trapeze supported items, the maximum weight (lbs/lf) the brace location was designed to accommodate.
 - 5. For suspended equipment, the maximum unit operating weight (lbs) the brace location was designed to accommodate.
 - 6. Location identifier cross matched to that on plan set layout.
 - 7. Company name of installing contractor.

3.9 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust leveling devices as required to distribute loading uniformly on isolators. Shim units as required where leveling devices cannot be used to distribute loading properly.
 - Adjust active height of spring isolators.

- C. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 230548

SECTION 230550

OPERATION AND MAINTENANCE OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. All pertinent sections of Division 21, 22, & 23 Mechanical General Requirements, are part of the work of this Section. Division 1 is part of this and all other sections of these specifications.
 - 1. Testing and Balancing is specified in section 230594.
 - 2. Training and Instructions to Owner's Representative is specified in section 230100.

1.2 SCOPE OF WORK

- A. Submission of Operating and Maintenance Manuals complete with Balancing reports. (Coordinate with Division 1).
- B. Coordination of work required for system commissioning.
- C. Provide a hard copy and six (6) electronic copy of the O and M manual fully searchable in PDF format.

1.3 SUBMITTALS

- A. Submit product data in accordance with Division 1 and Section 230100. Submit the following:
 - 1. Sample of O and M manual outline.

PART 2 - PRODUCTS

2.1 O & M MANUALS

- A. The operating and maintenance manuals shall be as follows:
 - 1. Binders shall be red buckram with easy-view metal for size 8-1/2 x 11-inch sheets, with capacity expandable from 2 inches to 3-1/2 inches as required for the project. Construction shall be rivet-through with library corners. No. 12 backbone and lining shall be the same material as the cover. The front cover and backbone shall be foil-stamped in white as follows: (coordinate with **Division 01**)

OPERATING AND MAINTENANCE MANUAL FOR THE

PROJECT NAME

VAN BOERUM & FRANK ASSOCIATES, INC. MECHANICAL ENGINEER

FFKR ARCHITECTS

PART 3 - EXECUTION

3.1 OPERATING AND MAINTENANCE MANUALS:

- A. Work under this section shall be performed in concert with the contractor performing the system testing and balancing. Six (6) copies of the manuals shall be furnished to the Architect for distribution to the owner.
- B. The "Start-Up and Operation" section is one of the most important in the manual. Information in this section shall be complete and accurately written and shall be verified with the actual equipment on the job, such as switches, starters, relays, automatic controls, etc. A step-by-step start-up procedure shall be described.
- C. The manuals shall include water-balancing reports, system commissioning procedures, start-up tests and reports, equipment and system performance test reports, warranties, and certificates of training given to the owner's representatives.

An index sheet typed on AICO Gold-Line indexes shall be provided in the front of the binder. The manual shall include the following:

SYSTEM DESCRIPTIONS

START-UP PROCEDURE AND OPERATION OF SYSTEM

OPERATION AND MAINTENANCE BULLETINS

AUTOMATIC TEMPERATURE CONTROL DESCRIPTION OF OPERATION, INTERLOCK AND CONTROL DIAGRAMS, AND CONTROL PANELS.

AIR BALANCING REPORTS

EQUIPMENT WARRANTIES AND TRAINING CERTIFICATES

SYSTEM COMMISSIONING REPORTS

EQUIPMENT START-UP CERTIFICATES

END OF SECTION 230100

SECTION 230553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Danger, Warning and Caution signs and labels.
- 3. Pipe labels.
- 4. Duct labels.
- 5. Stencils.
- 6. Valve tags.
- 7. Danger tags.
- 8. Warning tags.
- 9. Caution tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

5.

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Minimum Thickness, predrilled or stamped holes for attachment hardware:
 - a. Brass. 0.032-inch.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel;
 - a. Rivets or self-tapping screws
 - Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, and having predrilled holes for attachment hardware, 1/16 inch thick.
 - 2. Letter Color:
 - a. Black.
 - 3. Background Color:
 - a. White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel;
 - a. Rivets or self-tapping screws
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 DANGER, WARNING AND CAUTION SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, having predrilled holes for attachment hardware; 1/16 inch thick.

- B. Danger signs, colors:
 - 1. Letter Color:
 - a. White.
 - 2. Background Color:
 - a. Red.
- C. Warning signs, colors:
 - Letter Color:
 - a. Black.
 - 2. Background Color:
 - a. Orange.
- D. Caution signs, colors:
 - Letter Color:
 - a. Black.
 - 2. Background Color:
 - a. Yellow.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- H. Fasteners: Stainless-steel;
 - 1. Rivets or self-tapping screws
 - 2. Rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

- 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
- 2. Lettering Size: At least 1-1/2 incheshigh.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, having predrilled holes for attachment hardware; 1/16 inch thick.
- B. Letter Color:
 - 1. White.
- C. Background Color:
 - Black.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel:
 - 1. Rivets or self-tapping screws
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material:
 - a. Aluminum.
 - Stencil Paint:
 - a. Exterior, gloss, alkyd enamel black unless otherwise indicated.
 - b. Paint may be in pressurized spray-can form.
 - 3. Identification Paint:
 - Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material, predrilled or stamped holes for attachment hardware, minimum thickness:
 - a. Brass, 0.032-inch
 - 2. Fasteners: Brass:
 - a. Wire-link or beaded chain; or S-hook
- B. Valve Schedules:
 - 1. For each piping system, on 8-1/2-by-11-inch bond paper, tabulate;
 - a. Valve number.
 - b. Piping system.
 - c. System abbreviation (as shown on valve tag).
 - d. Location of valve (room or space).
 - e. Normal-operating position (open, closed, or modulating).
 - f. Variations for identification.
 - g. Mark valves for emergency shutoff and similar special uses.
 - 2. Valve-tag schedule:
 - a. Shall be included in operation and maintenance data.

2.7 DANGER TAGS

- A. Danger Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size:
 - a. 3 by 5-1/4 inches minimum
 - 2. Fasteners:
 - a. Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," and "DO NOT OPERATE."
 - 4. Color: Red background with white lettering.

2.8 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size:
 - a. 3 by 5-1/4 inches minimum
 - 2. Fasteners:
 - a. Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "WARNING" and "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

2.9 CAUTION TAGS

- A. Caution Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size:
 - a. 3 by 5-1/4 inches minimum
 - 2. Fasteners:
 - a. Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "CAUTION," and "DO NOT OPERATE."
 - 4. Color: Orange background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09.
- B. Stenciled Pipe Label Option:
 - 1. Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option.
 - 2. Install stenciled pipe labels with painted, color-coded bands or rectangles on each piping system.
 - a. Identification Paint: Use for contrasting background.
 - b. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.

- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule: (See Drawing Schedules)

3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.
- 3.5 VALVE-TAG INSTALLATION (See Drawing Schedules.)
 - A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within the following number of days of the Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article;
 - 1. 30 days.
- B. Certified TAB reports.
- C. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - Application.
 - Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB and shall be the same as the TAB Contractor.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB as a TAB technician and shall be the same as the TAB Contractor.
- B. Certify TAB field data reports and perform the following:
 - Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by:
 - Architect .
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Notice: Provide [seven] days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on the following distribution systems have been satisfactorily completed:
 - 1. Air.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

- A. Subject to compliance with requirements, engage one of the following:
 - 1. Bonneville Test and Balance
 - BTC Service.
 - Certified Test & Balance.
 - 4. Diamond Test & Balance.

- 5. RS Analysis.
- 6. Test & Balance Inc.
- 7. Payson Sheetmetal.
- QT&B Inc.

3.2 EXAMINATION

- A. There is a need to read the existing system of rooftop units. The Magnet Room and Equipment Room and Control Room need to be read. The overhead supply diffusers return grilles and exhaust grille.
- B. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- C. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- D. Examine the approved submittals for HVAC systems and equipment.
- E. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

F. Examine:

- 1. Ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in:
 - a. Section 233113 "Metal Ducts"
- 2. Verify ceiling plenums and underfloor air plenums used for supply, return or relief air are properly separated from adjacent areas.
- 3. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- G. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- H. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- I. Examine test reports specified in individual system and equipment Sections.
- J. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in this section and:
 - 1. AABC's "National Standards for Total System Balance"
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP).

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.

- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

- 6. Obtain approval from one of the following entities for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for airhandling units for adjustment of fans, belts, and pulley sizes to achieve indicated airhandling-unit performance:
 - a. Architect.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent .
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.

3.8 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to

facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

- B. Status Reports: Prepare progress reports on the following interval to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors:
 - Weekly.

3.9 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Field test reports prepared by system and equipment installers.
 - 2. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - Project location.
 - Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

- 1. Quantities of outdoor, supply, return, and exhaust airflows.
- 2. Duct, outlet, and inlet sizes.
- 3. Terminal units.
- 4. Balancing stations.
- 5. Position of balancing devices.
- E. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated air flow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual air flow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- F. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.10 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
 - 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - c. Verify that balancing devices are marked with final balance position.
 - d. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by:

- a. Architect.
- 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of:
 - a. Architect.
- 3. The following entity shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day:
 - a. Architect.
- 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.11 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION 230593

SECTION 230713

DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.

B. Related Sections:

- Section 230716 "HVAC Equipment Insulation."
- 2. Section 230719 "HVAC Piping Insulation."
- 3. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of **25** or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of **75** or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, **Type III with factory-applied FSK jacket**. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville: Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.: AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.</u>
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.</u>
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. FSK Jacket Adhesive, and ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: CP-82.
 - b. <u>Eagle Bridges Marathon Industries; 225.</u>
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of **50** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, **0.013 perm** at **43-mil** dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, **58 percent** by volume and **70 percent** by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, **1.8 perms** at **0.0625-inch** dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: **60 percent** by volume and **66 percent** by weight.
 - 5. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of **50** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 2. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.</u>
 - b. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
- 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
- 4. Service Temperature Range: 0 to plus 180 deg F.
- 5. Color: White.

2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of **420** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

2.8 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: **6.5 mils**.
 - 4. Adhesion: **90 ounces force/inch** in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: **3.7 mils**.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: **5** percent.
 - 6. Tensile Strength: **34 lbf/inch** in width.

2.9 SECUREMENTS

A. Bands:

- 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Aluminum: **ASTM B 209**, Alloy 3003, 3005, 3105, or 5005; Temper H-14, **0.020 inch** thick, **3/4 inch** wide with **wing seal** .
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.

- a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) <u>Midwest Fasteners, Inc.</u>; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
- 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, **0.135-inch-** diameter shank, length to suit depth of insulation indicated with integral **1-1/2-inch** galvanized carbon-steel washer.
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, **0.030 inch** thick by **2** inches square.
 - Spindle: Copper- or zinc-coated, low-carbon steel fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - b. Baseplate: Perforated, nylon sheet, **0.030 inch** thick by **1-1/2 inches** in diameter.
 - Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers.
 - 2) GEMCO; Peel & Press.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, **0.030 inch** thick by **2 inches** square.
 - c. Spindle: **Copper- or zinc-coated, low-carbon steel**, fully annealed, **0.106-inch-** diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.

- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with **3-inch-** wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced **4 inches** o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least **4 inches** beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.

- 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
- 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least **2 inches**.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least **2 inches**.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" firestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least **2 inches**.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for **100** percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions **18 inches** and smaller, place pins along longitudinal centerline of duct. Space **3 inches** maximum from insulation end joints, and **16 inches** o.c.
 - b. On duct sides with dimensions larger than **18 inches**, place pins **16 inches** o.c. each way, and **3 inches** maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing **2 inches** from one edge and one end of insulation segment. Secure laps to adjacent insulation section with **1/2-inch** outward-clinching staples, **1 inch** o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below **50 deg F** at **18-foot** intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than **3 inches**.
- 5. Overlap unfaced blankets a minimum of **2 inches** on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of **18 inches** o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with **6-inch-** wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced **6 inches** o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for **50** percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions **18 inches** and smaller, place pins along longitudinal centerline of duct. Space **3 inches** maximum from insulation end joints, and **16 inches** o.c.

- b. On duct sides with dimensions larger than **18 inches**, space pins **16 inches** o.c. each way, and **3 inches** maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
- c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
- d. Do not overcompress insulation during installation.
- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with **6-inch-** wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced **6 inches** o.c.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: **Engage** a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to **one** location for each duct system defined in the "Duct Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- 3.8 DUCT INSULATION SCHEDULE, GENERAL (All ductwork on this project shall be wrapped, no ductwork will be provided with lining).
 - A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.

4. Indoor, exposed return located in unconditioned space.

B. Items Not Insulated:

- 1. Fibrous-glass ducts.
- 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
- 3. Factory-insulated flexible ducts.
- 4. Factory-insulated plenums and casings.
- 5. Flexible connectors.
- 6. Vibration-control devices.
- 7. Factory-insulated access panels and doors.

3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be **one of** the following:
 - 1. Flexible Elastomeric: 1 inch thick.
 - 2. Mineral-Fiber Blanket: 2 inches \thick and 1.5-lb/cu. ft. nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be **one of** the following:
 - 1. Flexible Elastomeric: 1 inch thick.
 - 2. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- C. Concealed, rectangular, supply-air duct insulation shall be[one of] the following:
 - 1. Flexible Elastomeric: 1 inch thick
 - 2. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- D. Concealed, rectangular, return-air duct insulation shall be **one of** the following:
 - 1. Flexible Elastomeric: **1 inch** thick.
 - 2. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.
- E. Exposed, round and flat-oval, supply-air duct insulation shall be **one of** the following:
 - 1. Flexible Elastomeric: 1 inch thick.
 - 2. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

3.

- F. Exposed, round and flat-oval, return-air duct insulation shall be **one of** the following:
 - 1. Flexible Elastomeric: **1 inch** thick.
 - 2. Mineral-Fiber Blanket 2 inches thick and 1.5-lb/cu. ft. nominal density.
 - 3. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

END OF SECTION 230713

SECTION 230719

HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Chilled-water piping.

1.3 DEFINITIONS:

A. Refer to Section 230500 "Common Work Results for HVAC".

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive,

mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.8 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

1.9 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Insulation for below-ambient service requires a vapor-barrier.
- C. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- D. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- E. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- F. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- G. Calcium Silicate:

- 1. Products: Subject to compliance with requirements, provide the following:
 - a. Industrial Insulation Group (IIG); Thermo-12 Gold.
- 2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
- 3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
- 4. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.
- H. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
- I. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553,
 - Type II and ASTM C 1290, Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.

- 3. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville: Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000-Degree Pipe Insulation.
 - c. Manson Insulation Inc.; Alley-K.
 - d. Owens Corning; Fiberglas Pipe Insulation.
 - e. Type I, **850 deg F** Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, **Type I, Grade A:**
 - 1) with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

f. .

- K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied:
 - 1. **ASJ** complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is **2.5 lb/cu. ft.** or more. Thermal

conductivity (k-value) at **100 deg F** is **0.29 Btu x in./h x sq. ft. x deg F** or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.
- L. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation. Inc.: Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of **50 to 800 deg F**.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-97.
 - b. Eagle Bridges Marathon Industries; 290.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-27.
 - d. Mon-Eco Industries, Inc.; 22-30.
 - e. Vimasco Corporation; 760.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Aeroflex USA, Inc.; Aeroseal.
- b. Armacell LLC; Armaflex 520 Adhesive.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
- d. K-Flex USA; R-373 Contact Adhesive.
- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, **0.013 perm** at **43-mil** dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, **0.05 perm** at **30-mil** dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, **1.8 perms** at **0.0625-inch** dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.
 - 6. Color: White.

2.5 SEALANTS

- A. ASJ Flashing Sealants [, and Vinyl,] and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: Color-code jackets based on system:
 - a. White
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
- b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
- c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with **ASTM B 209**, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications:
 - 1) **1-mil-** thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications:
 - 1) **3-mil-** thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: **90 ounces force/inch** in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.

- c. Venture Tape; 1506 CW NS.
- Width: 2 inches.
 Thickness: 6 mils.
- 4. Adhesion: **64 ounces force/inch** in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.

2.9 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.

- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with **3-inch-** wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced **4 inches** o.c.
 - 3. Overlap jacket longitudinal seams at least **1-1/2 inches**. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at
 - a. 2 inches o.c.
 - b. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least **4 inches** beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:

- 1. Vibration-control devices.
- 2. Testing agency labels and stamps.
- 3. Nameplates and data plates.
- 4. Manholes.
- 5. Handholes.
- 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal ioint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least **2 inches** below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least **2 inches**.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

- 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
- 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
- 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CALCIUM SILICATE INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure single-layer insulation with stainless-steel bands at **12-inch** intervals and tighten bands without deforming insulation materials.
 - 2. Install two-layer insulation with joints tightly butted and staggered at least **3 inches**. Secure inner layer with wire spaced at **12-inch** intervals. Secure outer layer with stainless-steel bands at **12-inch** intervals.
 - 3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to insulation surface. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least **1 inch**. Apply finish coat of lagging adhesive over glass cloth or tape. Thin finish coat to achieve smooth, uniform finish.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.
 - 4. Finish flange insulation same as pipe insulation.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed insulation sections of insulation are not available, install mitered sections of calcium silicate insulation. Secure insulation materials with wire or bands.
 - 3. Finish fittings insulation same as pipe insulation.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

- 2. Install insulation to flanges as specified for flange insulation application.
- 3. Finish valve and specialty insulation same as pipe insulation.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at **6 inches** o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least **1 inch**, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with **1-inch** overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with **2-inch** overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands **12 inches** o.c. and at end joints.

3.10 FINISHES

- A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: **Two** finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
- 3.12 Insulation shall have a k value that meets the minimum requirements of the latest International Energy Conservation Code (IECC).

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Chilled Water, **40 Deg F** and below:
 - 1. NPS **1-1/2 inch** and Smaller: Insulation shall be the following:
 - a. Flexible Elastomeric:
 - 1) **1-1/2 inch** thick.
 - 2. NPS **2 inch** and Larger: Insulation shall be the following:
 - a. Flexible Elastomeric:
 - 1) 1-1/2 inch thick.
 - 3. Insulation for runouts not exceeding 48 inches in length for connection to equipment shall be the following:
 - a. Flexible Elastomeric: 1 inch thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. **PVC**:

a. White: 30 mils thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. PVC: 30 mils thick. 20 mils

3.16 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 230719

SECTION 230900

INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 – GENERAL

1.01 Work Included:

- A. General Building Management System (BMS) Contractor shall provide and install:
 - 1. All Controls shall be compatible with existing system.
 - 2. Provide hardware, software, and wiring to provide communication interfaces with each of the systems listed below.
 - a. Dimplex Chiller (alarms)
 - 3. Provide system graphics for each new controlled device and/or integrated systems as required by the owner. Origin of information shall be transparent to the operator and shall be controlled, displayed, trended, etc. as if the points were hardwired to the BMS.
 - b. It is acceptable to wire the following systems into any of the Primary DDC panels:
 - 1) Miscellaneous alarm monitoring (i.e. ATS, leak, temperature, light ...etc.)
 - 2) Miscellaneous equipment (i.e. Unit Heater, Domestic Water Heater, Standalone Dampers ...etc.)
 - 4. Provide line item pricing for a stand-a-lone Oxygen Depletion Senor that is to be wall mounted in the control room of the project with sampling tubing to extend into the magnet room through a coordinated opening in the shieling. A comparable unit to Pure Aire, MRI compatible, model 99029. Provide a sample draw type of unit along with sampling tubing and full installation. Unit to be configured for warning alarm at 18.50% and evacuation alarm at 18%. Engineer to be provided a product submittal for review before ordering.

PART 3 - EXECUTION

3.01 Examination:

A. The project plans shall be thoroughly examined for control device and equipment locations. Any discrepancies, conflicts, or omissions shall be reported to the architect/engineer for resolution before rough-in work is started.

- B. The contractor shall inspect the site to verify that new equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the engineer for resolution before rough-in work is started.
- C. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate—or if any discrepancies occur between the plans and the contractor's work and the plans and the work of others—the contractor shall report these discrepancies to the engineer and shall obtain written instructions for any changes necessary to accommodate the contractor's work with the work of others.

3.02 Protection

- A. The contractor shall protect all work and material from damage by its employees and/or subcontractors and shall be liable for all damage thus caused.
- B. The contractor shall be responsible for its work and equipment until finally inspected, tested, and accepted.

3.03 Coordination

A. Site

- 1. The project coordination between trades is the responsibility of the prime contractor who is the one tier higher contractual partner such as mechanical contractor, general contractor, construction manager, owner or owner's representative as applicable.
- 2. The controls contractor shall follow prime contractor's job schedule and coordinate all project related activities through the prime contactor except otherwise agreed or in minor job site issues. Reasonable judgment shall be applied.
- Where the work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment.
- 4. If the contractor deviates form the job schedule and installs work without coordinating with other trades, so as to cause interference with work of other trades, the contractor shall make the necessary changes to correct the condition without extra charge.
- 5. Coordinate and schedule work with all other work in the same area, or with work that is dependent upon other work, to facilitate mutual progress.

B. Test and Balance

 The contractor shall furnish a single set of all tools necessary to interface to the control system for test and balance purposes.

- 2. The contractor shall provide training in the use of these tools. This training will be planned for a minimum of 1 hours.
- 3. In addition, the contractor shall provide a qualified technician for duration of 1 hours to assist in the test and balance process.
- 4. The tools used during the test and balance process shall be returned at the completion of the testing and balancing.
- C. Coordination with controls specified in other sections or divisions.
 - Other sections and/or divisions of this specification include controls and control
 devices that are to be part of or interfaced to the control system specified in this
 section. These controls shall be integrated into the system and coordinated by
 the contractor as follows:
 - a. Each supplier of controls product is responsible for the configuration, programming, startup, and testing of that product to meet the sequences of operation described in this section.
 - b. The Contractor shall coordinate and resolve any incompatibility issues that arise between the control products provided under this section and those provided under other sections or divisions of this specification.
 - c. The contractor is responsible for providing all controls described in the contract documents regardless of where within the contract documents these controls are described for new equipment only.
 - d. The contractor is responsible for the interface of new control products provided by multiple suppliers regardless of where this interface is described within the contract documents.

3.04 General Workmanship

- A. Install equipment, piping, and wiring/raceway parallel to building lines (i.e., horizontal, vertical, and parallel to walls) wherever possible.
- B. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- C. Install all equipment in readily accessible locations as defined by Chapter 1, Article 100, Part A of the National Electrical Code (NEC).
- D. Verify integrity of all wiring to ensure continuity and freedom from shorts and grounds.
- E. All equipment, installation, and wiring shall comply with acceptable industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices.

3.05 Field Quality Control

- A. Contractor shall have a 6 Sigma certified quality manager on staff to inspect the project execution and to enforce quality standards.
- B. All work, materials, and equipment shall comply with the rules and regulations of applicable local, state, and federal codes and ordinances as identified in Part 1 of this specification.
- C. Contractor shall continually monitor the field installation for code compliance and quality of workmanship.
- Contractor shall have work inspected by local and/or state authorities having jurisdiction over the work.

3.06 Existing Equipment

A. Unless otherwise directed, the contractor is not responsible for the repairs or replacement of existing energy equipment and systems, valves, dampers, or actuators. Should the contractor find existing equipment that requires maintenance, the engineer is to be notified immediately.

3.07 Wiring

- A. All control and interlock wiring shall comply with national and local electrical codes and Division 26 of this specification. Where the requirements of this section differ from those in Division 16, the requirements of this section shall take precedence.
- B. All NEC Class 1 (line voltage) wiring shall be UL Listed in approved conduit according to NEC and Division 16 requirements.
- C. All low-voltage wiring shall meet NEC Class 2 requirements. (Low-voltage power circuits shall be sub fused when required to meet Class 2 current limit.)
- D. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in conduit may be used provided that cables are UL Listed for the intended application. For example, cables used in ceiling plenums shall be UL Listed specifically for that purpose.
- E. All wiring in mechanical, electrical, or service rooms—or where subject to mechanical damage— shall be installed in conduit.
- F. Do not install Class 2 wiring in conduit containing Class 1 wiring. Boxes and panels containing high voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g., relays and transformers).
- G. Do not install wiring in conduit containing tubing.
- H. Where plenum rated cable is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 3 m (10 ft) intervals.

- I. Where plenum rated cable is used without conduit, it shall be supported from or anchored to structural members. Cables shall not be supported by or anchored to ductwork, electrical conduits, piping, or ceiling suspension systems.
- J. All wire-to-device connections shall be made at a terminal block or wire nut. All wire-to-wire connections shall be at a terminal strip or wire nut.
- K. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.
- L. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers or interposing relays.
- M. All plenum rated wiring shall be installed as continuous lengths, with no splices permitted between termination points
- N. All wiring in conduit shall be installed as continuous lengths, with no splices permitted between termination points or junction boxes.
- O. Maintain fire rating at all penetrations. Install plenum wiring in sleeves where it passes through walls and floors.
- P. Size and type of conduit and size and type of wire shall be the responsibility of the contractor, in keeping with the manufacturer's recommendations and NEC requirements, except as noted elsewhere.
- Q. Include one pull string in each conduit 3/4 in. or larger.
- R. Control and status relays are to be located in designated enclosures only. These enclosures can include packaged equipment control panel enclosures unless they also contain Class 1 starters.
- S. Conceal all conduit, except within mechanical, electrical, or service rooms. Install conduit to maintain a minimum clearance of 15 cm (6 in.) from high-temperature equipment (e.g., steam pipes or flues).
- T. Secure conduit with conduit clamps fastened to the structure and spaced according to code requirements. Conduit and pull boxes may not be hung on flexible duct strap or tie rods. Conduits may not be run on or attached to ductwork.
- U. Adhere to this specification's Division 16 requirements where conduit crosses building expansion joints.
- V. The Contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.
- W. Flexible metal conduits and liquid-tight, flexible metal conduits shall not exceed 1 m (3 ft) in length and shall be supported at each end. Flexible metal conduit less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal conduits shall be used.
- X. Conduit must be adequately supported, properly reamed at both ends, and left clean and free of obstructions. Conduit sections shall be joined with couplings (according to code).

Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.08 Communication Wiring

- A. The contractor shall adhere to the items listed in the "Wiring" article in Part 3 of the specification.
- B. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling.
- C. Do not install communication wiring in raceway and enclosures containing Class 1 or other Class 2 wiring.
- D. Maximum pulling, tension, and bend radius for cable installation, as specified by the cable manufacturer, shall not be exceeded during installation.
- E. Contractor shall verify the integrity of the entire network following the cable installation. Use appropriate test measures for each particular cable.
- F. When a cable enters or exits a building, a lightning arrestor must be installed between the lines and ground. The lighting arrestor shall be installed according to the manufacturer's instructions.
- G. All runs of communication wiring shall be unspliced length when that length is commercially available.
- H. All communication wiring shall be labeled to indicate origination and destination data.
- I. Grounding of coaxial cable shall be in accordance with NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."

3.09 Installation Of Sensors

A. General:

- 1. Install sensors in accordance with the manufacturer's recommendations.
- 2. Mount sensors rigidly and adequately for the environment within which the sensor operates.
- 3. Room temperature sensors shall be installed on concealed junction boxes properly supported by the wall framing.
- 4. All wires attached to sensors shall be air sealed in their raceways or in the wall to stop air transmitted from other areas affecting sensor readings.
- B. Room Instrument Mounting

- Room instruments, including but not limited to wall mounted thermostats and sensors located in occupied spaces shall be mounted 53 inches above the finished floor unless otherwise shown.
- C. Instrumentation Installed in Piping Systems
 - 1. Thermometers and temperature sensing elements installed in liquid systems shall be installed in thermowells.
 - 2. Gauges in piping systems subject to pulsation shall have snubbers.
 - 3. Gauges for steam service shall have pigtail fittings with isolation valve.

3.10 Programming

- A. Provide sufficient internal memory for the specified sequences of operation and trend logging. There shall be a minimum of 25% of available memory free within the primary controller for future use.
- B. Point Naming: System point names shall be modular in design, allowing easy operator interface without the use of a written point index. Point Naming standard shall be agreed upon between owner and BAS contractor. Refer to Submittals section in the General Section.
- C. Software Programming
 - Provide programming for the system and adhere to the sequences of operation provided for new equipment only. The contractor also shall provide all other system programming necessary for the operation of the system, but not specified in this document. Imbed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequences of operation and be of different font and color in text editor. Use the appropriate technique based on one of the following programming types:
 - a. Text-based:
 - 1) Must provide actions for all possible situations
 - 2) Must be modular and structured
 - 3) Must be commented
 - 4) Must provide line by line programming and compilation wizard to allow for ease of editing.
 - b. Graphic-based:
 - 1) Must provide actions for all possible situations
 - Must provide programming and compilation wizard to allow for ease of editing.
 - 3) Must be documented
- D. Operator Interface (existing)

- 1. Standard graphics—Provide graphics for new equipment only.
- 2. Show terminal equipment information on a "graphic" summary table. Provide dynamic information for each point shown.

3.11 Cleaning

- A. The contractor shall clean up all debris resulting from their activities daily. The contractor shall remove all cartons, containers, crates, etc., under his/her control as soon as their contents have been removed. Waste shall be collected and placed in a designated location.
- B. At the completion of work in any area, the contractor shall clean all work, equipment, etc., keeping it free from dust, dirt, and debris, etc.
- C. At the completion of work, all equipment furnished under this section shall be checked for paint damage, and any factory-finished paint that has been damaged shall be repaired to match the adjacent areas. Any cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

3.12 Sequences of operation

MRI chiller loop.

The temperature of the supply and return loop and pump and chiller status flow shall be monitored and alarmed to the central operations station.

END OF SECTION 230900

SECTION 232513

WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following water treatment for closed-loop hydronic systems:
 - 1. **Manual** chemical-feed equipment.
 - 2. Chemicals.
- B. Related Requirements:

1.3 DEFINITIONS

- A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- B. RO: Reverse osmosis.
- C. TSS: Total suspended solids are solid materials, including organic and inorganic, that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.4 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 - 1. Chemical solution tanks.
 - 2. Chemical material safety data sheets.
- B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to hydronic systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For components, from manufacturer.

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.
- C. Field quality-control reports.
- D. Other Informational Submittals:
 - 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.
 - 2. Water Analysis: Illustrate water quality available at Project site.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.8 MAINTENANCE SERVICE

- A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 - 1. Initial water analysis and HVAC water-treatment recommendations.
 - 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 - 3. Customer report charts and log sheets.
 - 4. Laboratory technical analysis.
 - 5. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Power Engineering Co.
 - 2. WEST

2.2 PERFORMANCE REQUIREMENTS

- A. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.
- B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- C. Closed hydronic systems, including:
 - 1. Glycol cooling
- D. Closed hydronic systems, shall have the following water qualities:
 - 1. pH: Maintain a value within the combined recommendations of the various equipment manufacturers.
 - 2. Nitrite: Maintain a value within 800 to 1000 ppm.
 - 3. Soluble Copper: Maintain a maximum value of **0.20** ppm.
 - 4. TDS: Maintain a value as recommended by the treatment manufacturer.
 - 5. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of **zero** organisms/mL.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of **zero** organisms/mL.
 - c. Nitrate Reducers: Maintain a maximum value of **zero** organisms/mL.
 - d. Sulfate Reducers: Maintain a maximum value of **zero** organisms/mL.
 - e. Iron Bacteria: Maintain a maximum value of **zero** organisms/mL.

2.3 MANUAL CHEMICAL-FEED EQUIPMENT

- A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 - 1. Capacity:
 - a. **2 gal.**
 - 2. Minimum Working Pressure:
 - a. **125 psig**

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.

B. GLYCOL

- 1. The glycol provided shall be propylene glycol as manufactured by Dow Chemical or Huntsman Chemical. Trade name shall be DowFrost HD or JeffCool HD. The water quality in the hot/chilled water system shall meet the recommendations of the glycol manufacturer so as to reduce the formation of sludge. If the water quality at the jobsite does not meet manufacturers recommendations then the glycol solution shall be provided pre-mixed with deionized water. An analysis of the glycol solution and the water quality shall be included in the O&M manuals. Glycol percentage shall be:
 - a. As defined by Dimplex Chiller Manufacturer

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install interconnecting control wiring for chemical treatment controls and sensors.
- B. Mount sensors and injectors in piping circuits.

3.3 CONNECTIONS

- A. Where installing piping adjacent to equipment, allow space for service and maintenance.
- B. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Comply with requirements in Section 232116 "Hydronic Piping Specialties."
- C. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 230523 "General-Duty Valves for HVAC Piping."
- D. Comply with requirements in Section 221119 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.
- E. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.
- F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of hydronic systems' startup procedures.
 - 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 - 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 - 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects
 - 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- C. Equipment will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. At quarterly intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to "Performance Requirements" Article.
- F. Comply with ASTM D 3370 and with the following standards:
 - 1. Silica: ASTM D 859.
 - 2. Acidity and Alkalinity: ASTM D 1067.
 - 3. Iron: ASTM D 1068.
 - 4. Water Hardness: ASTM D 1126.

3.5 DEMONSTRATION

- A. **Engage a factory-authorized service representative to train** Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.
- B. Training: Provide a "how-to-use" self-contained breathing apparatus video that details exact operating procedures of equipment.

END OF SECTION 232513

SECTION 233001

COMMON DUCT REQUIREMENTS

1.1 SUMMARY

- A. Includes But Not Limited To:
 - 1. General procedures and requirements for ductwork.
 - 2. Repair leaks in ductwork, as identified by smoke test, at no additional cost to Owner.
 - 3. Soundproofing procedures for duct penetrations of walls, ceilings, and floors in mechanical equipment rooms.
- B. Related Sections:

Division 07: Quality of Acoustic Sealant.
 Section 23 0500: Common Work Results for HVAC

3. Section 23 0593: Testing Adjusting and Balancing for HVAC.

1.2 SUBMITTALS

- A. Samples: Sealer and gauze proposed for sealing ductwork.
- B. Quality Assurance / Control:
 - 1. Manufacturer's installation manuals providing detailed instructions on assembly, joint sealing, and system pressure testing for leaks.
 - 2. Specification data on sealer and gauze proposed for sealing ductwork.

1.3 QUALITY ASSURANCE

- A. Requirements: Construction details not specifically called out in Contract Documents shall conform to applicable requirements of SMACNA HVAC Duct Construction Standards.
- B. Pre-Installation Conference: Schedule conference immediately before installation of ductwork.

PART 2 - PRODUCTS

2.1 Finishes, Where Applicable: Colors as selected by Architect.

2.2 Duct Hangers:

A. One inch by **18 ga** galvanized steel straps or steel rods as shown on Drawings, and spaced not more than **96 inches** apart. Do not use wire hangers.

- 1. Attaching screws at trusses shall be **2 inch** No. 10 round head wood screws. Nails not allowed.
- 2. Attach threaded rod to steel joist with Grinnell Steel washer plate Fig. 60 ph-1. Double nut connection.

2.3 Penetration Soundproofing Materials:

- A. Insulation for Packing: Fiberglass.
- B. Calking: Polysulphide.
- C. Escutcheon Frame: 22 ga galvanized iron 2 inches wide.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. During installation, protect open ends of ducts by covering with plastic sheet tied in place to prevent entrance of debris and dirt.
- B. Make necessary allowances and provisions in installation of sheet metal ducts for structural conditions of building. Revisions in layout and configuration may be allowed, with prior written approval of Architect. Maintain required airflows in suggesting revisions.

C. Hangers And Supports:

- 1. There are to be no ferrous hangers or ductwork that will be installed below the RF shielding. Every component installed below the RF shielding is be 100% aluminum.
- 2. Install pair of hangers close to each transverse joint and elsewhere as required by spacing indicated in table on Drawings.
- 3. Install upper ends of hanger securely to floor or roof construction above by method shown on Drawings.
- 4. Attach strap hangers to ducts with cadmium-plated screws. Use of pop rivets or other means will not be accepted.
- 5. Where hangers are secured to forms before concrete slabs are poured, cut off flush all nails, strap ends, and other projections after forms are removed.
- 6. Secure vertical ducts passing through floors by extending bracing angles to rest firmly on floors without loose blocking or shimming. Support vertical ducts, which do not pass through floors, by using bands bolted to walls, columns, etc. Size, spacing, and method of attachment to vertical ducts shall be same as specified for hanger bands on horizontal ducts.

D. Penetration Soundproofing

- 1. Pack space between ducts and structure full of fiberglass insulation of sufficient thickness to be wedged tight, allowing space for application of calking.
- 2. Provide calking at least **2 inches** thick between duct and structure on both ends of opening through structure.
- 3. Provide metal escutcheon on Equipment Room side. Secure escutcheon to wall.

END OF SECTION 233001

SECTION 233113

METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall **round** ducts and fittings.
- 3. Sheet metal materials.
- 4. Sealants and gaskets.
- 5. Hangers and supports.
- 6. Seismic-restraint devices.

B. Related Sections:

- 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
- 3. Section 230713 "Duct Insulation" for duct insulation and fire wrap.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- **B.** Seismic Performance: Duct hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC." **For this project the importance factor shall be 1.5.**
 - 1. For equipment with a seismic importance factor of **1.0** the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - 2. For equipment with a seismic importance factor of **1.5** the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected

to the seismic forces specified and the unit will be fully operational after the seismic event."

- C. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Sealants and gaskets.
 - 2. Seismic-restraint devices.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including, but not limited to the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to [AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.] [AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.] [AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.]
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.

- 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
- 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 **SINGLE-WALL ROUND** DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than **60 Inches** in Diameter: Flanged.
- C. Longitudinal Seams: Not allowed.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653.
 - 1. Galvanized Coating Designation: **G90**.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, **1/4-inch** minimum diameter for lengths **36 inches** or less; **3/8-inch** minimum diameter for lengths longer than **36 inches**.

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: **10-inch wg**, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:

- 1. Application Method: Brush on.
- 2. Solids Content: Minimum 65 percent.
- 3. Shore A Hardness: Minimum 20.
- 4. Water resistant.
- Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: **10-inch wg**, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel, stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

- 1. Application Method: Brush on.
- 2. Base: Synthetic rubber resin.
- 3. Solvent: Toluene and heptane.
- 4. Solids Content: Minimum 60 percent.
- 5. Shore A Hardness: Minimum 60.
- 6. Water resistant.
- 7. Mold and mildew resistant.
- 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 9. VOC: Maximum 395 g/L.
- 10. Maximum Static-Pressure Class: **10-inch wg**, positive or negative.
- 11. Service: Indoor or outdoor.
- 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.

- 1. General: Single-component, acid-curing, silicone, elastomeric.
- 2. Type: S.
- 3. Grade: NS.
- 4. Class: 25.
- 5. Use: O.
- 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of **3 cfm/100 sq. ft. at 1-inch wg** and shall be rated for **10-inch wg** static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," **Table 5-1**, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.6 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Hilti Corp.
 - 4. Kinetics Noise Control.
 - 5. Loos & Co.; Cableware Division.
 - 6. Mason Industries.
 - 7. TOLCO; a brand of NIBCO INC.
 - 8. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by [an evaluation service member of the ICC Evaluation Service]
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least [four] times the maximum seismic forces to which they will be subjected.
- C. Restraint Cables: [ASTM A 603, galvanized] [ASTM A 492, stainless]-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- D. Hanger Rod Stiffener: [Steel tube or steel slotted-support-system sleeve with internally bolted connections] [Reinforcing steel angle clamped] to hanger rod.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. There are to be no ferrous hangers or ductwork installed below the RF shield. All ductwork and components below the RF shield are to 100% aluminum.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- C. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- D. Install **round** ducts in maximum practical lengths.
- E. Install ducts with fewest possible joints.
- F. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- G. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- H. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- I. Install ducts with a clearance of **1 inch**, plus allowance for insulation thickness.
- J. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- K. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines".

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. Install grease duct with minimum clearance to combustibles as required by IBC and local codes. Installations that do not meet the minimum required clearances shall be fire wrapped as specified in Section 230713 "Duct Insulation".
- G. Provide approved fire-wrap insulation that meets ASTM C 656.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Return-Air Ducts: Seal Class A.
 - 4. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class A.
 - Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 - 6. Unconditioned Space, Exhaust Ducts: Seal Class A.
 - 7. Unconditioned Space, Return-Air Ducts: Seal Class A.
 - 8. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class A.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 - 10. Conditioned Space, Exhaust Ducts: Seal Class A.
 - 11. Conditioned Space, Return-Air Ducts: Seal Class A.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

- 1. Where practical, install concrete inserts before placing concrete.
- 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
- Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inchesthick.
- Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inchesthick.
- 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," **Table 5-1**, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within **24 inches** of each elbow and within **48 inches** of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of **16 feet**.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 1. Comply with **ASCE/SEI 7**.
 - 2. Comply with [SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."]
 - Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 4. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling.

Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than **3-Inch wg**: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 - b. Supply Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - c. Return Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - d. Exhaust Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give **seven** days' advance notice for testing.

C. Duct System Cleanliness Tests:

- 1. Visually inspect duct system to ensure that no visible contaminants are present.
- 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed **0.75 mg/100 sq. cm**.
- 3. Any liner showing evidence that is has wet at any time shall be removed and replaced with new liner.
 - a. Disinfect affected sheet metal, and pins.
 - b. Install new liner per specifications
 - c. Seal friable edges and seams of repaired liner.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean **new** duct system before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with **99.97 percent** collection efficiency for **0.3-micron**-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).

- 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
- 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
- 4. Coils and related components.
- 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
- 6. Supply-air ducts, dampers, actuators, and turning vanes.
- 7. Dedicated exhaust and ventilation components and makeup air systems.

3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
- B. Ductwork running in areas where there are no ceilings or when noted on the drawings shall be doubled wall duct and shall meet the requirements indicated below.
- C. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. Minimum SMACNA Seal Class: A.
 - d. SMACNA Leakage Class for Rectangular: 16.
 - e. SMACNA Leakage Class for Round: 8.
 - 2. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 6-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 4.
 - d. SMACNA Leakage Class for Round: 2.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 4-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 4.
 - d. SMACNA Leakage Class for Round: 2.

D. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 16.
 - d. SMACNA Leakage Class for Round: 8.

E. Liner:

- 1. Return Air Ducts: Fibrous glass, Type I, 1 inch thick.
- 2. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick.
- 3. Transfer Ducts: Fibrous glass, Type I [or flexible elastomeric], 1 inch thick.

F. Elbow Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity **1000 fpm** or Lower: 1.0 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity **1000 to 1500 fpm**: 1.5 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity **1500 fpm** or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

G. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry high efficiency take-off.

b. Rectangular Main to Round Branch: 45-degree entry high efficiency take-off.

2. Round:

- a. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
- b. Velocity 1000 to 1500 fpm: 45-degree entry high efficiency tap.
- c. Velocity **1500 fpm** or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Manual volume dampers.
 - 2. Control dampers.
 - 3. Turning vanes.
 - 4. Remote damper operators.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Flexible ducts.
 - 8. Duct accessory hardware.
 - 9. Combination Fire and Smoke dampers.

B. Related Requirements:

- 1. Division 23 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
- 2. Division 23 "Diffusers, Registers and Grilles".
- 3. Division 28 "Digital, Addressable Fire-Alarm System" for duct-mounted fire and smoke detectors.
- 4. Division 28 "Zoned (DC-Loop) Fire-Alarm System" for duct-mounted fire and smoke detectors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

- a. Special fittings.
- b. Manual volume damper installations.
- c. Control-damper installations.
- d. Fire-damper, smoke-damper, combination fire- and smoke-damper, pressure relief-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
- e. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to **10** percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Aluminum Sheets: Comply with **ASTM B 209**, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

- C. Extruded Aluminum: Comply with **ASTM B 221**, Alloy 6063, Temper T6.
- D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- E. Tie Rods: Galvanized steel, **1/4-inch** minimum diameter for lengths **36 inches** or less; **3/8-inch** minimum diameter for lengths longer than **36 inches**.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating; a division of Mestek, Inc.
 - b. McGill AirFlow LLC.
 - c. Nailor Industries Inc.
 - d. Pottorff.
 - e. Ruskin Company.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, Mitered and welded corners. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - a. 16GA 0.064-inch thick, galvanized sheet steel.
 - 5. Blades:
 - a. Multiple or single blade. Parallel- or opposed-blade design. Stiffened damper blades for stability.
 - b. Material:
 - 1) Galvanized -steel, 16GA 0.064 inch thick.
 - 6. Blade Axles:
 - a. Nonferrous metal
 - b. Shall extend full length of damper blades in ducts with pressure classes of **3-inch wg** or more.
 - 7. Bearings:
 - a. Material:
 - 1) Molded synthetic.
 - b. Bearings at both ends of damper operating shafts in ducts with pressure classes of **3-inch wg** or more.
 - 8. Tie Bars and Brackets: Galvanized steel.
- B. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating; a division of Mestek, Inc.

- b. McGill AirFlow LLC.
- c. Nailor Industries Inc.
- d. Pottorff.
- e. Ruskin Company.
- 2. Comply with AMCA 500-D testing for damper rating.
- 3. Low-leakage rating , with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames:
 - a. Frame: Hat-shaped,
 - 1) **16GA 0.064-inch** thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Material:
 - 1) Galvanized, roll-formed steel, 16GA 0.064 inch thick.
- 7. Blade Axles:
 - a. Nonferrous metal.
- 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of **3-inch wg** or more shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals:
 - a. Neoprene.
- 10. Jamb Seals: Cambered Stainless steel or aluminum.
- 11. Tie Bars and Brackets: **Galvanized steel** or **aluminum**.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- C. Jackshaft:
 - 1. Size:
 - a. 1-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of **3/32-inch-** thick zinc-plated steel, and a **3/4-inch** hexagon locking nut.

- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.4 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. METALAIRE, Inc.
 - 2. SEMCO Incorporated.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Fabricate single blade vanes to comply with SMACNA's "HVAC Duct Construction Standards-Metal and Flexible."
 - 2. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: [Single] [Double] wall.
- F. Vane Construction: Single wall for ducts up to **48 inches** wide and double wall for larger dimensions.

2.5 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff.
 - 2. Ruskin Company; Tomkins PLC.
 - 3. Young Regulator Company.
- B. Cable Type:
 - 1. Description: Cable system designed for remote manual damper adjustment.
 - 2. Tubing/Sheathing: Galvinsed, Brass, Copper or Aluminum.
 - 3. Cable: Stainless steel or Steel.
 - 4. Wall-Box Mounting: Coordinate with Architect.
 - 5. Wall-Box Cover-Plate Material: Coordinate with Architect.
- C. Activated Electric Type:
 - 1. Description: Electrically activated zone control damper for remote adjustment. When an adjustment is needed the system is powered up.

- 2. Means: Factory mounted actuator factory wired to damper.
- 3. Portable **9 volt** system. No field power requirement.
- 4. Mounting: Recessed Wall Box or Diffuser or Hand Held.
- 5. Wall-Box Cover Finish: Coordinate with Architect.
- 6. Wall-Box Porting: 1 to 6 ports or more.

2.6 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. McGill AirFlow LLC.
 - 3. Pottorff.
 - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures **7-2**, "Duct Access Doors and Panels," and 7-3. "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: **1-by-1-inch** butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to [18 Inches] Square:
 - 1) Hinges:
 - a) Two hinges and two sash locks.
 - c. Access Doors up to **24 by 48 Inches**, provide outside and inside handles:
 - 1) Hinges:
 - a) Three hinges and two compression latches.
 - d. Access Doors Larger Than **24 by 48 Inches**, provide outside and inside handles:
 - 1) Hinges:
 - a) Continuous and two compression latches with outside and inside handles.

2.7 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Ductmate Industries, Inc.</u>
 - 2. <u>Ventfabrics, Inc.</u>
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a wide fabric strip attached to two narrower metal strips. Provide strips of metal compatible with connected ducts.
 - 1. Wide Strip:
 - a. 3-1/2 inches.
 - 2. Narrow Strips:
 - a. 0.028-inch- thick, galvanized sheet steel.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: **530 lbf/inch** in the warp and **440 lbf/inch** in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.

2.8 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
- C. Splitter Damper Accessories: Zinc-plated damper blade bracket; **1/4-inch**, zinc-plated operating rod; and a duct-mounted, ball-joint bracket with flat rubber gasket and square-head set screw.
- D. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes **3 to 18 inches** to suit duct size.

2.9 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - Pottorff.
 - 4. Ruskin Company.
 - 5. United Enertech
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

- C. Closing rating in ducts up to **4-inch wg** static pressure class and minimum velocity of:
 - 1. **4000-fpm**
- D. Fire Rating:
 - 1. 1-1/2 hours.
- E. Frame: Hat shaped, galvanized sheet steel. With or without mounting flange as required.
 - 1. Thickness:
 - a. 16GA-0.064-inch
 - 2. Corners:
 - a. Welded.
- F. **Heat-Responsive Device:** Replaceable, **212 deg F** rated, fusible links.
- G. Blades: Horizontal, galvanized sheet steel.
 - 1. Type:
 - a. Air-foil.
 - 2. Fit:,
 - a. Interlocking.
 - 3. Thickness:
 - a. 0.063-inch-.
- H. Leakage:
 - 1. Class I.
- I. Rated pressure and velocity to exceed design airflow conditions.
- J. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
 - 1. Thickness:
 - a. 18GA 0.05-inch-.
- K. Master control panel for use in dynamic smoke-management systems.
- L. Damper Motors:
 - 1. Locate outside air stream unless otherwise indicated,
 - 2. Action:
 - a. Two-position.
 - 3. Voltage: to match fire alarm system (coordinate).
 - 4. Listed: UL, as part of damper assembly.
 - 5. Outdoor Motors and Motors in Outside-Air Intakes:
 - a. Gaskets: O-ring gaskets designed to make motors weatherproof.
 - b. Internal heaters: Equip to permit normal operation at minus 40 deg F.
- M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Electrical Connection: 115 V, single phase, 60 Hz.
- N. Accessories:
 - 1. Auxiliary switches:
 - a. Signaling.
 - b. Position indication.

- 2. Test Switch type:
 - a. Momentary test switch.
- 3. Test Switch Mounting:
 - a. Damper.

PART 3 - EXECUTION

3.1 INSTALLATION

General

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Use the Remote Damper Operator when they are called out on the drawings or when the damper cannot be easily accessed.

Volume Damper

- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing. Exception: Pressure relief damper.
- F. A balance damper with locking quadrant will be provided downstream of take-off from trunk duct.

FIRE, SMOKE AND FIRE-SMOKE DAMPERS

- G. Install fire **and smoke** dampers according to UL listing.
 - 1. Install fusible links in fire dampers.
- H. For round ductwork **24-inch** and smaller a true round fire damper with the same rating may be used.

Access Doors

- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
 Access doors for access to fire or smoke dampers having fusible links shall be
 standard access doors and shall be outward operation for access doors installed
 upstream from dampers and inward operation for access doors installed downstream
 from dampers.
 - 2. At each change in direction and at maximum **50-foot** spacing.
 - 3. **Upstream** from turning vanes.
 - 4. Upstream or downstream from duct silencers.
 - 5. Control devices requiring inspection.
 - 6. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: **25 by 14 inches**.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- L. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

3.3 ADJUSTING

- A. Adjust duct accessories for proper settings.
- B. Adjust fire and smoke dampers for proper action.
- C. Final positioning of manual-volume dampers is specified in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

END OF SECTION 23330

SECTION 233423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on:
 - 1. Actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.
- C. Fan Schedule: Fan characteristics and performance data are described in an equipment schedule on the drawings including:
 - 1. Fan arrangement with wheel configuration, inlet and discharge configurations, and required accessories.
 - 2. Capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, shipping weights, operating weights, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Wiring Diagrams: For power, signal, and control wiring.
 - a. Detail all wiring systems and differentiate clearly between manufacturer-installed and field-installed wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension assembly members.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Field quality-control Reports

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- NEMA Compliance: Power ventilator electrical components shall comply with applicable NEMA standards.
- D. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.
- E. TUV Certified: High Volume low speed fan shall comply with UL 507

1.8 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 PRODUCTS FURNISHED BUT NOT INSTALLED

A. Products furnished, but not installed, under this Section include roof curbs for roof-mounted exhaust fans. Roof curbs to be installed by Division 07, section "Roof Accessories".

2.2 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 2. Greenheck Fan Corporation.
 - 3. Loren Cook Company.
 - 4. PennBarry.
 - 5. Twin City.
- B. Housing: Removable: Square, one-piece, aluminum base with venture inlet cone.
 - 1. Spun-aluminum, dome top and outlet baffle.
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels:
 - 1. Aluminum hub and wheel with backward-inclined blades.
 - 2.
- D. Direct-Drive Units: Motor mounted outside of airstream within fan housing.
- E. Electronically Commutated Motor (ECM)
 - 1. Motor enclosures: Open type
 - 2. Motor to be a DC electronic commutation type motor (ECM).
 - a. AC induction type motors are not acceptable.
 - 3. Permanently lubricated motor with heavy duty ball bearing
 - Internal motor circuitry to convert AC power supplied to the fan to DC power to operate the motor.
 - 5. Speed controllable to 20% of full speed (80% turndown).
 - a. Potentiometer dial mounted at the motor speed controller
 - b. 0-10 VDC signal.
 - 85% efficient at all speeds minimum.

F. Accessories:

6.

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type:
 - Thermal-overload protection; factory wired through an internal aluminum conduit.
 - 1) Mounted inside fan housing.
- 3. Bird Screens: Removable, 1/2-inch mesh:
 - a. Aluminum wire.
- 4. Dampers:

- a. Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
- b. Motorized parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- G. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base. Provide neoprene gasket between fan base and curb to reduce sound transmission.
 - 1. Configuration:
 - a. Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height:
 - a. 18 inches.

2.3 FACTORY FINISH

- A. Metal Parts: All assembly parts shall be protected from rust and corrosion.
 - 1. Stainless steel, aluminum, and other non-corroding materials require no protective finish.
 - 2. Non-galvanized sheet metal parts shall be prime coated or powder coated before final assembly.
 - 3. Prime coated parts shall receive baked enamel finish coat after assembly.

2.4 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements of installation tolerances and other conditions affecting performance of the power ventilators. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PROJECT CONDITIONS

- A. Field Measurements: Verify dimensions by field measurements. Verify clearances.
- B. Do not operate fans until ductwork is clean, filters are in place, bearings are lubricated, and fans have been commissioned.

3.3 INSTALLATION

- A. Install power ventilators level and plumb according to manufacturer's written instructions.
- B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- C. Label units according to requirements specified in Division 23 "Identification for HVAC Piping and Equipment."
- D. Install power ventilators with factory recommended and code required clearances for service and maintenance

3.4 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 "Grounding and Bonding for Electrical Systems."
 - Tighten electrical connectors and terminals, including grounding connections, according
 to manufacturer's published torque-tightening values. Where manufacturer's torque
 values are not indicated, use those specified in UL 486A and UL 486B.
- D. Connect wiring according to Division 26 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Tighten electrical connectors and terminals, including grounding connections, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Division 23 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.7 CLEANING

- A. After completing installation, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.
- B. Clean fan interiors to remove foreign material and construction debris. Vacuum clean fan wheel and cabinet.

3.8 DEMONSTRATION

- A. Train Owner's maintenance personnel on procedures and schedules related to startup and shutdown, troubleshooting, servicing, and preventive maintenance.
- B. Review data in the operation and maintenance manuals. Refer to Division 1 Section "Contract Closeout."
- C. Schedule training with Owner, through Architect, with at least 7 days' advance notice.
- D. Demonstrate operation of power ventilators. Conduct walking tour of the Project. Briefly identify location and describe function, operation, and maintenance of each power ventilator.

END OF SECTION 233423

SECTION 23 3713

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.
- B Related Sections include the following:
 - 1. Division 10 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Division 23 Section "Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.
 - 3. Division 23 Section "Testing, Adjusting, and Balancing" for balancing diffusers, registers, and grilles.

1.3 DEFINITIONS

- A Diffuser: Circular, square, or rectangular air distribution outlet, generally located in the ceiling and comprised of deflecting members discharging supply air in various directions and planes and arranged to promote mixing of primary air with secondary room air.
- B Grille: A louvered or perforated covering for an opening in an air passage, which can be located in a sidewall, ceiling, or floor.
- C Register: A combination grille and damper assembly over an air opening.

1.4 SUBMITTALS

- A Product Data: For each model indicated, include the following:
 - 1. Data Sheet: For each type of air outlet and inlet, and accessory furnished; indicate construction, finish, and mounting details.
 - 2. Performance Data: Include throw and drop, static-pressure drop, and noise ratings for each type of air outlet and inlet.
 - 3. Schedule of diffusers, registers, and grilles indicating drawing designation, room location, quantity, model number, size, and accessories furnished.

- 4. Assembly Drawing: For each type of air outlet and inlet; indicate materials and methods of assembly of components.
- B Coordination Drawings: Reflected ceiling plans and wall elevations drawn to scale to show locations and coordination of diffusers, registers, and grilles with other items installed in ceilings and walls.
- C Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available for diffusers, registers, and grilles with factory-applied color finishes. Colors to be off-white, unless otherwise selected by Architect during submittal stage.
- D Samples for Verification: Of diffusers, registers, and grilles, in manufacturer's standard sizes, showing the full range of colors. Prepare Samples from the same material to be used for the Work.

1.5 QUALITY ASSURANCE

- A Product Options: Drawings and schedules indicate specific requirements of diffusers, registers, and grilles and are based on the specific requirements of the systems indicated.
- B NFPA Compliance: Install diffusers, registers, and grilles according to NFPA 90A, "Standard for the Installation of Air-Conditioning and Ventilating Systems."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A Available Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anemostat
 - 2. Krueger
 - 3. Metal Aire
 - 4. Nailor
 - 5. Price
 - 6. Titus

2.2 REGISTERS, GRILLES, & DIFFUSERS

A. SEE SCHEDULE ON DRAWINGS. All aluminum construction required for air devices in MRI Scan Room

2.3 SOURCE QUALITY CONTROL

A. Testing: Test performance according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb, according to manufacturer's written instructions, Coordination Drawings, original design, and referenced standards.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of the panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connection to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION 233713

Division	Section Title	Pages
DIVISION 16 - ELECTRICAL		
260500	COMMON WORK RESULTS FOR ELECTRICAL	7
260519	GROUNDING AND BONDING	5
260526	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	4
260533	RACEWAYS AND BOXES	9
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	5
262726	WIRING DEVICES	5
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	6
265100	INTERIOR LED LIGHTING	7
271000	VOICE/DATA CABLING	13

END OF TABLE OF CONTENTS

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Supporting devices for electrical components.
 - 2. Access Panels
 - 3. Demolition
 - 4. Cutting and patching for electrical construction.
 - 5. Touchup painting.
 - 6. Temporary Power and Communication
 - 7. Permits and Fees

1.3 SUBMITTALS

- A. Product Data: For electricity-metering equipment.
- B. Shop Drawings: Dimensioned plans and sections or elevation layouts of electricity-metering equipment.
- C. Submittal Procedures: Submittal procedures are specified in Division 1.
 - 1. Prepare submittals in three-ring "hard cover" binders with project name and volume on the binding. Include tabs identified by the specification section and in numerical order. Include plastic sleeves to hold drawings that exceed 8-1/2" x 11".
 - 2. Include cover sheet with the following information: date, project name, address, and title; Installer's name, address and phone number; Project manager, and Engineering firm names and phone numbers.
- D. Digital Operation and Maintenance Manual on CD-ROM
 - 1. Intuitive CD-ROM instructional manual for information to care, adjust, maintain and operate equipment. Include contract documents, shop drawings, product data.
 - a. Software: Adobe Acrobat.
 - b. Format: PDF.
 - c. Index: Hypertext alphabetical index.
 - d. Auto Starting: Windows 9X with any directions to continue observable on the screen.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70, and NFPA 99.
- C. Installer Qualifications: All workmen doing electrical work shall be duly licensed with the required supervision in the State or Locality as legally required.

1. Site Review: All electricians must carry their electrician's license with them and show it upon request.

1.5 COORDINATION

- A. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - 1. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.
- B. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment requiring positioning before closing in the building.
- C. Coordinate electrical equipment installation with other building components.
 - 1. Verify all dimensions be field measurements.
 - 2. Minimize costs to resolve equipment and other conflicts by successfully concluding preinstallation conferences. Include the following:
 - a. Review Divisions 21, 22 and 23 shop drawings. Compare equipment electrical specifications with equipment schedule. Prevent Div 21, 22 and 23 equipment encroaching on clearances required by NEC. Request clarification of conflicts prior to installation.
 - b. Determine whether lighting fixtures and other electrical items conflict with the location of structural members and mechanical or other equipment.
 - c. Coordinate connecting electrical service to components furnished in other sections of the specification or by the User. Verify electrical requirements including voltage, full load amps, and minimum wire ampacity prior to installing or purchasing the associated electrical equipment and wiring.
 - d. Review systems furniture electrical specifications and compare with wiring indicated. Request dimensional layout from furniture installer including electrical connection locations. Request clarification of conflicts prior to installation.
- D. Coordinate electrical service connections to components furnished by electric utility companies.
 - 1. Coordinate installation and connection of exterior underground and overhead utilities and services, including provision for electricity-metering components.
 - 2. Comply with requirements of authorities having jurisdiction and of utility company providing electrical power and other services.
 - 3. Notify Architect a minimum of seven days in advance of any proposed utility interruption and obtain approval prior to proceeding. Comply with requirements of the Owner, User, and Utility.
 - 4. Include all costs, including Owner, municipal or utility costs that will need to be paid to obtain electric service.
- E. Coordinate communication service connections to components furnished by communication utility companies.
 - Coordinate installation and connection of exterior underground and overhead utilities and services.
 - 2. Comply with requirements of authorities having jurisdiction.
 - 3. Notify Architect a minimum of seven days in advance of any proposed utility interruption and obtain approval prior to proceeding. Comply with requirements of the Owner, User, and Utility.
 - 4. Include all costs, including Owner, municipal or utility costs that will need to be paid to obtain communication services.

- F. Temporary Power and Communication are specified in Division 1 Section "Construction Facilities and Temporary Controls".
 - 1. Comply with requirements for temporary electric and communication services with the proper utility.
 - 2. Comply with Article 305 of the NEC.
- G. Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces. Access doors and panels are specified in Division 8 Section "Access Doors."
- H. Coordinate with Authorities Having Jurisdiction including: city, county, state, university, federal and other governmental authorities.
 - 1. Obtain all permits (including excavation permits) prior to beginning construction.
 - 2. Pay all fees.
 - 3. Request inspections required by Authorities Having Jurisdiction in a timely manner and in order to comply with sequencing requirements.

PART 2 - PRODUCTS

2.1 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.
- C. Slotted-Steel Channel Supports: Flange edges turned toward web, and 9/16-inch- (14-mm-) diameter slotted holes at a maximum of 2 inches (50 mm) o.c., in webs.
 - 1. Channel Thickness: Selected to suit structural loading.
 - 2. Fittings and Accessories: Products of the same manufacturer as channel supports.
- D. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
- E. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.
- F. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.
- G. Expansion Anchors: Carbon-steel wedge or sleeve type.
- H. Toggle Bolts: All-steel springhead type.
- I. Powder-Driven Threaded Studs: Heat-treated steel.

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

A. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide the maximum possible headroom.

- B. Materials and Components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.
- D. Right of Way: Give to raceways and piping systems installed at a required slope.
- E. Existing Utilities: Locate and identify existing underground utilities in excavation areas or in demolition areas. Maintain services to areas outside demolition limits or excavated areas. When services must be interrupted, install temporary services for affected areas.
- F. Manufacturer's Instructions: Comply with manufacturer's installation instructions and recommendations, to the extent that those instructions and recommendations are more explicit or stringent than requirements indicated in the Contract Documents.
- G. Record drawings and Shop Drawings: Mark up drawings daily during construction with changes or deletions in the scope of the project.

3.2 ELECTRICAL SUPPORTING DEVICE APPLICATION

- A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, U-channel system components.
- B. Dry Locations: Steel materials.
- C. Support Clamps for PVC Raceways: Click-type clamp system.
- D. Selection of Supports: Comply with manufacturer's written instructions.
- E. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four; minimum of 200-lb (90-kg) design load.

3.3 SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
 - Comply with NFPA 70. In addition, install supports within 12" of couplings, fittings, and boxes, with a minimum of two supports per 10 foot length of raceway. Install supports at each change of direction. Similarly support cables in cable trays or raceways as indicated; except, provide J-hooks to support cables.
 - 2. Support suspended conduit and cables independently from all other electrical or mechanical systems by attaching directly from building structure, unless prior approval in writing has been obtained from the Architect after engineering calculations have been submitted.
 - 3. Coordinate installation of supports so as not to interfere with the removal of ceiling tiles, the service of mechanical equipment, etc.
 - 4. Install bracing parallel to trusses, beams, joists, bridging, etc.
- B. Install individual and multiple raceway hangers and riser clamps to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.

- D. Support parallel runs of cables together on trapeze or bracket type hangers, either vertically or horizontally.
- E. Size supports for multiple raceway and cable installations so capacity can be increased by a 25 percent minimum in the future.
- F. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- G. Install 1/4-inch- (6-mm-) diameter or larger threaded steel hanger rods, unless otherwise indicated.
- H. Spring-steel fasteners specifically designed for supporting single conduits or tubing may be used instead of malleable-iron hangers for 1-1/2-inch (38-mm) and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings and for fastening raceways to slotted channel and angle supports.
- I. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- J. Simultaneously install vertical conductor supports with conductors.
- K. Separately support cast boxes that are threaded to raceways and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If supported directly from the building structure, attach box to framing on opposite sides of the box. If bar hangers are used, attach bar to raceways on opposite sides of the box and support the raceway with an approved fastener not more than 24 inches (610 mm) from the box.
- L. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength.
- M. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and raceway penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.
 - 1. Install wrapped or coated RMC sleeves with 3 feet extending on each side through penetrations of foundations or concrete walls by RNC.
- N. Securely fasten electrical items and their supports to the building structure, unless otherwise indicated. Perform fastening according to the following unless other fastening methods are indicated:
 - 1. Wood: Fasten with wood screws or screw-type nails.
 - 2. Masonry: Toggle bolts on hollow masonry units and expansion bolts on solid masonry units.
 - 3. New Concrete: Concrete inserts with machine screws and bolts.
 - 4. Existing Concrete: Expansion bolts. Drill holes in concrete so holes do not cut main reinforcing bars. Fill and seal holes drilled in concrete and not used.
 - a. Obtain prior approval from project structural engineer prior to drilling prestressed or post-tension concrete slabs and beams.
 - 5. Instead of expansion bolts, threaded studs driven by a powder charge and provided with lock washers may be used in existing concrete.
 - 6. Steel: Welded threaded studs or spring-tension clamps on steel.
 - a. Field Welding: Comply with AWS D1.1.
 - 7. Welding to steel structure may be used only for threaded studs, not for conduits, pipe straps, or other items.

- 8. Light Steel: Sheet-metal screws.
- 9. Fasteners: Select so the load applied to each fastener does not exceed 25 percent of its proof-test load. Do not support electrical equipment or conduits with toggle bolts, molybolts, or screws in sheetrock or plaster. Do not support electrical equipment or conduit from tie wires
- 10. Do not use wooden plugs in concrete or masonry units for fastening conduits, tubing, boxes, cabinets, etc.

3.4 ACCESS DOORS

A. Install access panels where required by accessibility requirements of NEC for electrical installations such as junction boxes, ballasts, and other electrical equipment requiring access.

3.5 FIRESTOPPING

- A. Apply firestopping to cable and raceway penetrations of fire-rated floor and wall assemblies to achieve fire-resistance rating of the assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Firestopping."
- B. Gypsum Board Tenting: Apply to lighting fixture or electrical equipment penetrations of fire rated floor, ceiling and wall assemblies, unless product is UL listed with integral fire rating Perform tenting as specified in appropriate Division 9 section to reestablish the original fire-resistance rating of the assembly at the penetration.

3.6 DEMOLITION

- A. Protect existing electrical equipment and installations indicated to remain. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.
 - 1. Relocate existing electrical devices, conduit or equipment that for any reason obstructs construction. Include any equipment having electrical connections that requires disconnecting and reconnection at the same or another location throughout the course of construction.
 - 2. Maintain in working condition all electrical equipment and apparatus in areas not remodeled.
 - 3. Temporary Partitions or Dust Barriers: Prevent the spread of dust and dirt to adjacent areas.
- B. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.
 - 1. Include exposed equipment and installations made obsolete by new work.
- C. Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches (50 mm) below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.
- D. Remove and legally dispose of demolished material from Project site.
- E. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.
- F. Remove conductors from raceway to the first active outlet or branch panels for vacated or unused circuits.

3.7 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled mechanics of trades involved.
 - 1. Core drilling: X-Ray post-tension slabs prior to core drilling to assure that post-tension cables are not damaged.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled mechanics of trades involved.

3.8 REFINISHING AND TOUCHUP PAINTING

- A. Refinish and touch up paint. Paint materials and application requirements are specified in Division 9 Section "Painting."
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.9 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
 - 1. Remove labels that are not permanent labels.
 - 2. Wipe surfaces of electrical equipment. Remove excess lubrication and other substances.
 - 3. Clean exposed exterior and interior hard-surface finishes to a dust-free condition, free of stains, films and similar foreign substances.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 260500

SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field Quality-Control Test Reports: From Contractor.

1.4 QUALITY ASSURANCE

- A. Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 CONDUCTORS AND CABLES

A. Manufacturers:

- 1. Copper Wire and Cables:
 - a. Alcan Aluminum Corporation; Alcan Cable Div.
 - b. American Insulated Wire Corp.; a Leviton Company.
 - c. General Cable Corporation.
 - d. Senator Wire & Cable Company.
 - e. Southwire Company.

- B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.
- C. Conductor Material: Copper, minimum size #12 for phase conductors and #14 for control conductors complying with NEMA WC 7; solid conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.
- D. Conductor Insulation Types: Type THWN-2, XHHW-2 and SO complying with NEMA WC7.

2.3 CONNECTORS AND SPLICES

- A. Manufacturers:
 - 1. AFC Cable Systems, Inc.
 - 2. AMP Incorporated/Tyco International.
 - 3. Burndy.
 - 4. Hubbell/Anderson.
 - 5. Ilsco.
 - 6. O-Z/Gedney; EGS Electrical Group LLC.
 - 7. 3M Company; Electrical Products Division.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

- A. Service Entrance: Type THWN-2, single conductors in raceway.
- B. Exposed Feeders: Type THWN-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THWN-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THWN-2, single conductors in raceway. Exposed Branch Circuits: Type THWN-2, single conductors in raceway.
- E. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THWN-2, single conductors in raceway.
- F. Branch circuits in healthcare occupancies:
 - 1. Branch Circuits: Type THHN-2/THWN-2, minimum #12 in raceway
 - 2. Branch Circuits: Type THHN-2/THWN-2 must be installed in non-flexible metallic raceways.
 - 3. Patient Care Area branch circuits: Branch circuit wiring in all areas other than mechanical and electrical rooms shall comply with NEC 517.13 (b). Do not use non-metallic conduits or raceways for branch circuits serving areas other than mechanical and electrical rooms.
- G. Fire Alarm Circuits:
 - 1. THWN-2 conductors in raceway for fire alarm power and horn/strobe indicating circuits.
 - 2. Power limited signaling circuit cable in raceway for initiating loops

- H. Emergency circuits: Install in separate raceways from all other wiring, except where they connect to the same equipment for two-source operation.
- I. Class 1 Control Circuits: Type THWN-2, in raceway.
- J. Class 2 Control Circuits: Type THWN-2, in raceway.
- K. Fixture Conductors: Install conductors in lighting fixtures with insulation ratings as recommended by the manufacturer's written instructions or a minimum 90 degrees C., whichever is higher.
- L. Communication Conductors: Install communication conductors in raceway.

3.2 INSTALLATION

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Multi-wire branch circuits: install no more than three circuits in a raceway, unless specifically shown otherwise. Install #10 conductors for branch circuits for which the distance from panelboard to furthest outlet is more than 100' for 120 volt or more than 140' for 277 volt circuits.
- C. GFI circuit breakers or feed-thru outlets to outlets served: provide separate neutrals.
- D. Panelboards, switchboards, MCCs, switchgear: Do not route conductors through a section which terminate in another section, except for interconnecting control conductors.
- E. Remove existing conductors from raceway before pulling in new wires and cables.
- F. Parallel conductors: Where parallel conductors are installed in parallel raceways, install in each raceway conductors of phase, neutral and/or ground as specified. Carefully cut parallel conductors to identical length for each phase leg. Do not parallel conductors less than #1/0.
- G. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- H. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- I. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- J. Do not install wiring through any part of a transformer vault or elevator equipment room and shaft that is does not serve equipment in the respective room. Also, coordinate that piping or other items foreign to the transformer vault, elevator equipment room or shaft is not installed in these spaces.
- K. Support cables according to Division 26 Section "Common Work Results for Electrical."
- L. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."
- M. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.3 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Conductor splices: Minimize conductor splices. Do not install in conduit bodies.
- C. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors. Install compression type connectors for aluminum conductors or copper pigtail adapters for installation in mechanical lugs.
- D. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.
- E. Furniture connections: connect systems furniture to power supply circuits per manufacturer's written instructions.
- F. Panelboard connections: do not splice conductors in panelboards.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
 - 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.1. Certify compliance with test parameters.
- B. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - 1. Comply with UL 467.
- B. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Grounding Conductors, Cables, Connectors, and Rods:
 - a. Apache Grounding/Erico Inc.
 - b. Boggs, Inc.
 - c. Chance/Hubbell.
 - d. Copperweld Corp.
 - e. Dossert Corp.
 - f. Erico Inc.; Electrical Products Group.
 - g. Framatome Connectors/Burndy Electrical.
 - h. Galvan Industries, Inc.
 - i. Harger Lightning Protection, Inc.
 - j. Hastings Fiber Glass Products, Inc.
 - k. Heary Brothers Lightning Protection Co.
 - I. Ideal Industries, Inc.
 - m. ILSCO.
 - n. Kearney/Cooper Power Systems.
 - o. Korns: C. C. Korns Co.: Division of Robrov Industries.
 - p. Lightning Master Corp.
 - q. Lyncole XIT Grounding.
 - r. O-Z/Gedney Co.; a business of the EGS Electrical Group.
 - s. Raco, Inc.; Division of Hubbell.
 - t. Robbins Lightning, Inc.
 - u. Salisbury: W. H. Salisbury & Co.
 - v. Superior Grounding Systems, Inc.
 - w. Thomas & Betts, Electrical.

x. VFC, Inc.

2.2 GROUNDING CONDUCTORS

- A. For insulated conductors, comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Material: Copper.
- C. Equipment Grounding Conductors: Insulated with green-colored insulation.
- D. Grounding Electrode Conductors: Stranded cable.
- E. Bare Copper Conductors: Comply with the following:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Assembly of Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
- F. Copper Bonding Conductors: As follows:
 - 1. Bonding Conductor: as noted on the drawings, stranded copper conductor. Comply with NEC minimum requirements.
 - 2. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; 1-5/8 inches (42 mm) wide and 1/16 inch (1.5 mm) thick.
- G. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.
 - 1. 2" X 12" X 1/4" minimum ground bus mounted on insulators.

2.3 CONNECTOR PRODUCTS

- A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.
- B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.
- C. Welded Connectors: Exothermic-welded type, in kit form, and selected per manufacturer's written instructions.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- B. In raceways, use insulated equipment grounding conductors.
- C. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells.
 - 1. Use for interconnecting wiring from ground bus to ground bus.
- D. Equipment Grounding Conductor Terminations: Use bolted pressure clamps.
- E. Ground Rod Clamps at Test Wells: Use bolted pressure clamps with at least two bolts.

- F. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Use 2" X 12" X ¼" bus with insulated spacer; space 2 inch (50.8 mm) from wall. Locate 12" above floor, unless otherwise indicated.
- G. Underground Grounding Conductors: Use tinned- copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches (600 mm) below grade or bury 12 inches (300 mm) above duct bank when installed as part of the duct bank.

3.2 EQUIPMENT GROUNDING CONDUCTORS

- A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
- B. Isolated Grounding Receptacle Circuits: Install an insulated equipment-grounding conductor connected to the receptacle-grounding terminal. Isolate grounding conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- C. Nonmetallic Raceways: Install an equipment-grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.
- D. Air-Duct Equipment Circuits: Install an equipment-grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners and heaters. Bond conductor to each unit and to air duct.
- E. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate equipment-grounding conductor to each electric water heater, heat-tracing, and antifrost heating cable. Bond conductor to heater units, piping, connected equipment, and components.
- F. Signal and Communication Systems: For telephone, alarm, voice and data, and other communication systems, provide as noted on the drawings insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch (6.4-by-50-by-300-mm) grounding bus.
- G. Common Ground Bonding with Lightning Protection System: Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.

- C. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- D. Bond each aboveground portion of gas piping system upstream from equipment shutoff valve.
- E. Metal Frame of the building where effectively grounded: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to metal frame of building. Exothermically weld grounding conductors to metal frame. Bond metal grounding conductor conduit or sleeve to conductor at each end.

3.4 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Non-contact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
- E. Connections at Test Wells: Use compression-type connectors on conductors and make boltedand clamped-type connections between conductors and ground rods.
- F. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- G. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

H. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 SEPARATELY DERIVED SYSTEMS

- A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of grounding electrode conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
- B. Do not ground system neutral conductor under any circumstances after it has been grounded at the service entrance disconnect except for separately derived systems. Interconnect or bond all grounding systems to the main system ground. Do not used neutral conductors for grounding equipment. Do not bond the neutral bus to distribution cabinets, except for separately derived systems.

END OF SECTION 260526

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 7 Section "Through-Penetration Firestop Systems" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 - 2. Division 26 Section "Common Work Results for Electrical" for supports, anchors, and identification products.
 - 3. Division 26 Section "Seismic Controls for Electrical Systems" for seismic restraints and bracing of raceways, boxes, enclosures, and cabinets.
 - 4. Division 26 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. HDPE: High Density Polyethylene.
- D. IMC: Intermediate metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: Show fabrication and installation details of components for raceways, fittings, boxes, enclosures, and cabinets.
- C. Manufacturer Seismic Qualification Certification: Submit certification that enclosures, cabinets, accessories, and components will withstand seismic forces defined in Division 26 Section "Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

- a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

- A. Manufacturer:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 4. Electri-Flex Co.
 - 5. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
 - 6. LTV Steel Tubular Products Company.
 - 7. Manhattan/CDT/Cole-Flex.
 - 8. O-Z Gedney; Unit of General Signal.
 - 9. Wheatland Tube Co.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. EMT and Fittings: ANSI C80.3.
 - 1. Fittings: Steel Set-screw or compression type. Do not use die-cast fittings.
- D. FMC: Zinc-coated steel.
- E. LFMC: Flexible steel conduit with PVC jacket.
- F. Fittings: NEMA FB 1; compatible with conduit and tubing materials. Do not use die-cast fittings.

2.3 NONMETALLIC CONDUIT AND TUBING

A. Manufacturer:

- 1. American International.
- 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
- Arnco Corp.
- 4. Cantex Inc.
- 5. Certainteed Corp.; Pipe & Plastics Group.
- 6. Condux International.
- 7. ElecSYS, Inc.
- 8. Electri-Flex Co.
- 9. Lamson & Sessions: Carlon Electrical Products.
- 10. Manhattan/CDT/Cole-Flex.
- 11. RACO; Division of Hubbell, Inc.
- 12. Spiralduct, Inc./AFC Cable Systems, Inc.
- 13. Thomas & Betts Corporation.
- B. RNC: NEMA TC 2, Schedule 40 and Schedule 80 PVC.
- C. RNC Fittings: NEMA TC 3; match to conduit or tubing type and material.
- D. LFNC: UL 1660.
- E. HDPE: NEMA TC-7 Smoothwall Coilable PE Electrical Plastic Conduit. UL Listed HDPE is compliant with the 2002 NEC Articles 300 and 352, and meets the requirements of UL 651B. EPEC 40 (Schedule 40).

2.4 METAL WIREWAYS

- A. Manufacturer:
 - 1. Hoffman.
 - 2. Square D.
- B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1 and 3R.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.
- E. Wireway Covers: Screw-cover type.
- F. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer's standard prime coating. Single channel unless otherwise noted. Designed for field installation of receptacles that meet the requirements of Section 16140. Precut outlet covers.

- 1. Manufacturer:
 - a. Thomas & Betts Corporation.
 - b. Monosystems.
 - c. Wiremold Company (The); Electrical Sales Division.
- B. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturer:
 - 1. Cooper Crouse-Hinds: Div. of Cooper Industries. Inc.
 - 2. Emerson/General Signal; Appleton Electric Company.
 - 3. Erickson Electrical Equipment Co.
 - 4. Hoffman.
 - 5. Hubbell, Inc.; Killark Electric Manufacturing Co.
 - 6. O-Z/Gedney; Unit of General Signal.
 - 7. RACO; Division of Hubbell, Inc.
 - 8. Robroy Industries, Inc.; Enclosure Division.
 - 9. Scott Fetzer Co.; Adalet-PLM Division.
 - 10. Spring City Electrical Manufacturing Co.
 - 11. Thomas & Betts Corporation.
 - 12. Walker Systems, Inc.; Wiremold Company (The).
 - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.
- D. Floor Boxes: Cast metal (on grade) and Sheet metal (above grade), fully adjustable, rectangular.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
- G. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

2.7 EXPANSION FITTINGS:

- A. Manufacturer:
 - O-Z Gedney; Unit of General Signal.
- B. Expansion Fittings: Malleable Iron, hot dipped galvanized, weatherproof suitable for raceway and applications
 - 1. Coordinate expansion requirements with Architect.

2.8 FACTORY FINISHES

- A. Finish: provide manufacturer's standard paint applied before shipping to factory-assembled products for:
 - 1. Surface raceways: To be selected by Architect from manufacturer's standard colors.
 - 2. Enclosures: Standard Grey in electrical rooms, White in finished areas.
 - 3. Cabinets: Standard Grey in electrical rooms, White in finished areas.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors:

- 1. Exposed: Rigid steel or IMC.
- 2. Concealed: Rigid steel or IMC.
- 3. Underground: RNC (except coated or wrapped rigid steel for bends greater than 22 degrees, coated or wrapped rigid steel.
 - a. Conduits that are a part of the emergency power system, includes life safety and critical branches and feeders to standby power distribution system, must be encased in not less than 2" thick concrete.
 - b. Conduits supplying patient care areas must be rigid steel or IMC, coated or wrapped.
- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 5. Boxes and Enclosures: NEMA 250, Type 3R.

B. Indoors:

- Exposed:
 - a. Above 6' from finished floor: EMT, IMC or Rigid Steel.
 - b. Below 6' from finished floor, or subject to mechanical damage: IMC or Rigid Steel.
- 2. Underground: refer to underground installation selections in outdoor paragraph above.
- 3. Concealed: EMT or Rigid Steel.
 - a. Patient Care Applications: EMT or Rigid Steel.
- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, Engine-Driven or Motor-Driven Equipment): LFMC.
- 5. Connection to systems furniture: LFMC
- 6. Damp or Wet Locations: Rigid steel conduit.
- 7. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 - a. Damp or Wet Locations: NEMA 250, Type 4, stainless steel.

C. Minimum Raceway Size:

- 1. Metallic Conduits: 3/4-inch trade size (DN 16).
- 2. Nonmetallic Conduits: 3/4-inch trade size (DN 21).
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid Metal Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated. Engage a minimum of five full threads.
 - 2. Intermediate Metal Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated. Engage a minimum of five full threads.
 - 3. PVC Externally Coated or wrapped Rigid Steel Conduits: Use only fittings approved for use with that material. Patch all nicks and scrapes in PVC coating after installing conduits.
 - 4. EMT: set screw or compression for dry interior locations; compression for damp or wet locations; compression with tape for installations in concrete slabs above grade.

- 5. Building Expansion joints: use expansion fittings with 36" of wrapped metal raceways on either side of joint.
- E. Do not install aluminum conduits embedded in or in contact with concrete.

3.2 INSTALLATION

- A. Layout of electrical boxes: Do not scale electrical drawings. Refer to mounting height detail sheet.
 - Coordinate with architectural elevations. Where outlets are not identified on the elevations, refer mounting height decisions to the Architect. If counters or work surfaces are shown refer mounting height decisions, whether above or below counter, to the Architect. Coordinate location of switches with actual door swings.
 - 2. Verify final locations with field measurements and with the requirements of the actual equipment to be connected as determined from shop drawings.

B. Outlet Boxes:

- 1. Frame construction: 4"X4"X1-1/2" with suitable plaster-ring, except:
 - a. 2-1/8" deep for boxes with 3 conduit entrances and for communication outlets
 - b. 4-11/16" boxes for boxes with 4 or more conduits.
- 2. Masonry or concrete construction: 1g or multiple gang by 3-1/2" deep.
- 3. Fixture Outlets: minimum 4" outlet box with 3/8" fixture stud supported adequately for minimum of 200 lbs.
- 4. Do not use gangable boxes.
- C. Keep raceways at least 12 inches (300 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- D. Complete raceway installation before starting conductor installation.
- E. Support raceways as specified in Division 26 Section "Common Work Results for Electrical."
- F. Install temporary closures to prevent foreign matter from entering raceways.
- G. Stub-ups: Embed coupling flush with finished floor. If to remain a spare, the flush plug is to remain in the coupling.
- H. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated. Make bends in parallel or banked runs from same centerline to make bends parallel.
 - 1. Nonmetallic Conduits: Use rigid elbows for all bends 22 degrees or greater.
 - 2. Communication Systems Raceways: comply with long sweep radius elbows minimum dimensions in Table 5.2-1 of ANSI/TIA/EIA-569A for all bends or offsets for backbone cables.
- I. Raceways below grade: Install RNC or wrapped/coated Rigid Steel minimum 24" below grade, unless specifically noted otherwise. Where noted encase in concrete.
- J. Conceal conduit and EMT within finished walls, ceilings, and floors, except at surface mounted panels and apparatus or unless otherwise indicated. Install surface raceways only where indicated or where directed by Architect.
 - 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
 - 2. Install surface raceways in rooms where surface mounted panels are indicated or for exposed equipment in mechanical, electrical, or communication rooms.

- K. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.
 - 1. Maximum conduit size: Lesser of 1-inch trade size (DN 27) or 1/3 the concrete cover.
 - For conduits larger than 1-inch trade size (DN 27), consult structural engineer for additional structural supports or other options.
 - b. Layout: Route conduits without crossovers. Space conduit at least 18" apart. Space raceways laterally to prevent voids in concrete.
 - c. Where concentrations of conduit occur, support slab independent of steel deck. Coordinate with structural engineer.
 - 2. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 - 3. Install taped compression type fittings or fittings approved for such use.
 - 4. Change from nonmetallic tubing to IMC or Rigid Steel conduit before rising above the floor.
- L. Raceways Penetrating foundation walls: Install rigid conduit through the foundation wall or 3' each side.
- M. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 - 1. Run parallel or banked raceways together on common supports.
 - 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- N. Raceway coordination: Do not install raceways in or through (including above ceilings) the following areas that do not serve equipment in those areas:
 - 1. Elevator equipment rooms.
 - 2. Imaging Rooms.
 - 3. Stairwells.
 - 4. Vestibules.
- O. Join raceways with fittings designed and approved for that purpose and make joints tight.
 - 1. Use insulating bushings to protect conductors.
- P. Tighten set screws of threadless fittings with suitable tools.
- Q. Cap open ends of empty conduit to keep out debris until the project is completed.
- R. Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. For RMC and IMC, use two locknuts, one inside and one outside box and a bushing. For EMT, use insulated throats or plastic bushings (except for grounding bushings where required).
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
 - 3. Service Conduits or conduits installed in concentric/eccentric knock-outs or reducing washers: terminate raceway with grounding bushings.
- S. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Plug empty raceways at both ends.

- T. Low Voltage, Telephone, and Signal System Raceways, 2-Inch Trade Size (DN 53) and Smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet (45 m) and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements. All structural cabling will be run in raceway minimum size 1" or basket tray.
- U. Fire alarm to be installed in raceway
- V. Install seals for conduit penetrations of slabs on grade and exterior walls below grade. Tighten sleeve seal screws until sealing grommets have expanded to form watertight seal.
- W. Roof Penetrations: Install flashings for conduit penetrations of roofs under the direct supervision of the roofing installer.
- X. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where conduits pass through airtight spaces or plenums to prevent air leakage.
 - 3. Where conduits pass from hazardous areas to nonhazardous.
 - 4. Where otherwise required by NFPA 70.
- Y. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.
- Z. Raceway Cleaning: Prevent accumulation of water, dirt or concrete in raceways. Where water or foreign matter have entered raceways, thoroughly clean or replace conduits where such accumulation cannot be removed by methods approved by this Engineer.
- AA. Flexible Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semi-recessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.
- BB. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.
- CC. Set floor boxes level and flush with finished floor surface.
- DD. Install hinged-cover enclosures and cabinets plumb. Support at each corner.
- EE. Spare conduits:
 - Provide 300' of 3/4" C as directed by Architect/Engineer, where not required, credit unused portion.

3.3 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

- 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
- 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 260533

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Identification for raceways.
- 2. Identification of power and control cables.
- 3. Identification for conductors.
- 4. Underground-line warning tape.
- 5. Warning labels and signs.
- 6. Instruction signs.
- 7. Equipment identification labels.
- 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

- A. Color coded raceways with factory applied color coating.
- B. Colors for Raceways:
 - 1. Normal power circuits: no added color.
 - 2. Emergency power circuits: blue
 - 3. Optional Standby and UPS power circuits: green

- 4. Fire Alarm wiring: red
- 5. Access control and CCTV systems wiring: white
- 6. All other systems: black

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.
- B. Colors for Cables Carrying Circuits at 600 V and Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- C. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F (93 deg C). Comply with UL 224.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.
- B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

- A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
- B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.

2.5 FLOOR MARKING TAPE

A. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.6 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Metal-Backed, Butyrate Warning Signs:
 - Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
 - 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 - 3. Nominal size, 10 by 14 inches (250 by 360 mm).
- C. Warning label and sign shall include, but are not limited to, the following legends:
 - Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD -EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.7 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.
- G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- J. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

- A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with color coding that matches raceways and self-adhesive vinyl labels with the wiring system legend. For power circuits include the panel and circuit numbers of all conductors contained in the box and the voltage. For fire alarm circuits include the circuit numbering to match shop drawings. For other systems include the system type such as Access Control, CCTV, Overhead Paging, etc. System color coding shall be as follows:
 - 1. Normal power circuits: no added color.
 - 2. Emergency power circuits: blue
 - 3. Optional Standby and UPS power circuits: green
 - 4. Fire Alarm wiring: red
 - 5. Access control and CCTV systems wiring: white
 - 6. All other systems: black

- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - a. Color shall be factory applied.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Orange
 - 2) Phase B: Brown
 - 3) Phase C: Yellow.
- C. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive- vinyl-film-type labels.
- D. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
- E. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual.
- G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
- J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- K. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.
- L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual.

Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

- 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
- 2. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be engraved, laminated acrylic or melamine label.
 - b. All receptacles and switches
 - c. Fire alarm devices
 - d. Circuit #'s on j-boxes
 - Enclosures and electrical cabinets.
 - f. Access doors and panels for concealed electrical items.
 - g. Switchboards.
 - h. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - i. Emergency system boxes and enclosures.
 - j. Enclosed switches.
 - k. Enclosed circuit breakers.
 - I. Enclosed controllers.
 - m. Variable-speed controllers.
 - n. Push-button stations.
 - o. Power transfer equipment.
 - p. Contactors.
 - q. Remote-controlled switches, dimmer modules, and control devices.
 - r. Battery racks.
 - s. Monitoring and control equipment.
 - t. UPS equipment.

END OF SECTION

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Receptacles, receptacles with integral GFCI, and associated device plates.
- 2. Snap switches and wall-box dimmers.
- 3. Wall-switch and exterior occupancy sensors.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. Comply with NFPA 70.
- C. Use electrical devices with modular plug-in connectors which meet the following requirements:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pass & Seymour (Plugtail); 5361 (single), 5362 (duplex).
- B. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - Pass & Seymour; TR63H (Plugtail).
 - 2. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a.
 - b. Pass & Seymour(Plugtail); 2095.
- C. Tamper-Resistant GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pass & Seymour(Plugtail); 2095TR.

2.5 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; CWL520R.
 - b. Hubbell; HBL2310.
 - c. Leviton; 2310.
 - d. Pass & Seymour; L520-R.

2.6 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Single Pole:
 - 2) Pass & Seymour(Plugtail); CSB20AC1.
 - 3) Three Way:
 - 4) Pass & Seymour(Plugtail); CSB20AC3.
 - 5) Four Way:
 - 6) Pass & Seymour(Plugtail); CSB20AC4.

2.7 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
- C. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.8 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic.
 - 3. Material for Unfinished Spaces: Smooth, high-impact thermoplastic.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.9 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

- 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

- 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Verify that dimmers used for fan speed control are listed for that application.
- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.

- 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
- 3. Ground Impedance: Values of up to 2 ohms are acceptable.
- 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
- 5. Using the test plug, verify that the device and its outlet box are securely mounted.
- 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Test straight-blade convenience outlets in patient-care areas for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes individually mounted enclosed switches and circuit breakers used for the following:
 - 1. Feeder and branch-circuit protection.
 - 2. Motor and equipment disconnecting means.
- B. Related Sections include the following:
 - 1. Division 26 Section "Wiring Devices" for attachment plugs, receptacles, and toggle switches used for disconnecting means.
 - 2. Division 26 Section "Switchboards" for individually enclosed, fusible switches used as feeder protection.
 - 3. Division 26 Section "Fuses" for fusible devices.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. RMS: Root mean square.
- C. SPDT: Single pole, double throw.
- D. MCP: Motor Circuit Protectors (Adjustable instantaneous trip circuit breakers).

1.4 SUBMITTALS

- A. Product Data: For each type of switch, circuit breaker, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each switch and circuit breaker.
 - Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations and layout of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Current and voltage ratings.
 - c. Short-circuit current rating.
 - d. UL listing for series rating of installed devices.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring. Differentiate between manufacturer-installed and field-installed wiring.
 - 3. Maintenance Data: For RV Power Centers and components to include in maintenance manuals specified in Division 1.

- C. Manufacturer Seismic Qualification Certification: Submit certification that enclosed switches and circuit breakers, accessories, and components will withstand seismic forces defined in Division 26 Section "Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis of Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Qualification Data: Submit data for testing agencies indicating that they comply with qualifications specified in "Quality Assurance" Article.
- E. Field Test Reports: Submit written test reports and include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- F. Manufacturer's field service report.
- G. Maintenance Data: For enclosed switches and circuit breakers and for components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Closeout Procedures," include the following:
 - 1. Routine maintenance requirements for components.
 - 2. Manufacturer's written instructions for testing and adjusting switches and circuit breakers.
 - 3. Time-current curves, including selectable ranges for each type of circuit breaker.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NEMA AB 1 and NEMA KS 1.
- C. Comply with NFPA 70.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2000 m).

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spares: For the following:
 - a. Potential Transformer Fuses: 2.
 - b. Control-Power Fuses: 2.
 - c. Fuses for Fused Switches: refer to Division 26 section "Fuses".
 - 2. Spare Indicating Lights: Six of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Fusible Switches:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - 2. Molded-Case Circuit Breakers:
 - a. Eaton Corp.; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
 - 3. Combination Circuit Breaker and Ground-Fault Trip:
 - a. Eaton Corp.: Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Control Division.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D Co.
- B. RV Power Centers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Midwest Electric Products, Inc

2.2 RV Power Centers

- A. Metering: Unmetered.
- B. Mounting: Pedestal earth burial.
- C. Feed: Underground.
- D. Heads: One
- E. Receptacles: one 14-50R and one 5-20R2
- F. Breakers:
 - 1. One 50 amp, 2 pole
 - 2. One 20 amp, single pole, GFI.

- G. Amps: 100
- H. Volts: 120/208, single phase.
- I. U.L. Listed.

2.3 ENCLOSED SWITCHES

- A. Enclosed, Nonfusible Switch: NEMA KS 1, Type HD, with lockable handle.
- B. Enclosed, Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips to accommodate specified fuses, built-in fuse pullers arranged to facilitate fuse removal, lockable handle with two padlocks, and interlocked with cover in closed position.
 - 1. Rejection clips where rejection fuses are specified.

2.4 ENCLOSED CIRCUIT BREAKERS

- A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuitbreaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
 - 3. Electronic Trip Unit Circuit Breakers: RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I2t response.
 - 4. GFCI Circuit Breakers: Single- and two-pole configurations with 5 -mA trip sensitivity, unless noted otherwise on the drawings.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style suitable for number, size, trip ratings, and material of conductors.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and timedelay settings, push-to-test feature, and ground-fault indicator.
 - 4. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - 5. Auxiliary Switch: [One SPDT switch] [Two SPDT switches] with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

2.5 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.6 FACTORY FINISHES

A. Finish: Manufacturer's standard gray paint applied to factory-assembled and -tested enclosures before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with mounting and anchoring requirements specified in Division 26 Section "Seismic Controls for Electrical Systems."
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Equipment Disconnects
 - 1. Maximum elevation: 48".
 - 2. Locate lockable disconnect near each motor complying with clearance requirements.
 - 3. Multiple speed motors: provide switch in all motor leads.
- D. RF Power Centers: Install according to manufacturers written instructions. Provide concrete base below ground to prevent tilting and settling.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Identification for Electrical Systems."
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.
- C. Fusible Switch Labels: Label each enclosure with "REPLACE WITH CURRENT LIMITING FUSES ONLY. CATALOG NUMBER: (FUSE CAT. NO.)."

3.4 CONNECTIONS

- A. Install equipment grounding connections for switches and circuit breakers with ground continuity to main electrical ground bus.
- B. Install power wiring. Install wiring between switches and circuit breakers, and control and indication devices.
- C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

- 1. Test insulation resistance for each enclosed switch, circuit breaker, component, and control circuit.
- 2. Test continuity of each line- and load-side circuit.
- B. Testing: After installing enclosed switches and circuit breakers and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 - 1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 262816

SECTION 26 5100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.

B. Related Sections:

- 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
- 2. Division 26 Section "Central Dimming Controls" and "Modular Dimming Controls" for architectural dimming systems.
- 3. Division 26 Section "Network Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
- 4. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CCT: Correlated color temperature.
- C. CRI: Color-rendering index.
- D. HID: High-intensity discharge.
- E. LER: Luminaire efficacy rating.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting fixture, including ballast housing if provided.
- H. TCLP: Toxicity Characteristic Leaching Procedure, as designed by the Environmental Protection Agency (EPA).

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Emergency lighting units including battery and charger. Integral for all LED fixtures

- 3. Ballast, including BF.
- 4. Energy-efficiency data.
- 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
- 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
- 7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
- 8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
 - Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work.
 - Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Seismic Qualification Certificates: For lighting fixtures, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Samples, When Requested by Architect/Engineer: For each lighting fixture indicated in the Interior Lighting Fixture Schedule. Each Sample shall include the following:
 - 1. Lamps and ballasts, installed.
 - 2. Cords and plugs.
 - 3. Pendant support system.
- E. Installation instructions.
- F. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Lighting fixtures.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extends to within 12 inches (305 mm) of the plane of the luminaires.
 - 4. Ceiling-mounted projectors.
 - 5. Structural members to which suspension systems for lighting fixtures will be attached.

- 6. Other items in finished ceiling including the following:
 - a. Air outlets and inlets.
 - b. Speakers.
 - c. Sprinklers.
 - d. Smoke and fire detectors.
 - e. Occupancy sensors.
 - f. Access panels.

٦.

- 7. Perimeter moldings.
- G. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.
- H. Field quality-control reports.
- I. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 - Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.
- J. Warranty: Sample of special warranty.

1.5 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- D. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components that fail in materials, quality or workmanship within specified warranty period.
 - 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
 - 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

3. Acrylic Lenses, Anti-Yellowing: 5 years from date of Substantial Completion if acrylic lenses who any noticeable sign of yellowing.

1.8 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Plastic Diffusers and Lenses: One [ten [U of U Projects]] for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Ballasts or drivers: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Metal Parts: Free of burrs and sharp corners and edges.
- C. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.
- D. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- E. Diffusers and Globes:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
 - b. UV stabilized.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
- F. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp and ballast characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.

- c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
- d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
- e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
- CCT and CRI for all luminaires.

2.3 LED LAMPS AND DRIVERS:

- A. Minimum CRI 78.
- B. Rated life of 50,000 hrs per L70 (IES LM-79).
- C. Flicker: No visible or detectable flicker, operate on filtered DC or AC greater than 42Khz.
- D. Drivers shall not operate LEDs below 70% of LED manufacturer's recommended drive current.
- E. Dimming drivers shall be compatible with the control method shown on the drawings. All dimmed drivers shall use dimming control capable of 1% 100% dimming. 0-10 vdc, DMX, dali, n-lite or Lurtron HiLume protocol.
- F. Approved Manufacturers.
 - 1. General Electric.
 - 2. Philips.
 - 3. Osram / Sylvania.
 - 4. Cree

2.4 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 - 2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 - a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factoryinstalled infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 - g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required

intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.5 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- E. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- F. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures:
 - 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 - 2. Install lamps in each luminaire.
- B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.
- C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.
- D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 - Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches (150 mm) from at least two diagonal corners of lighting fixture and attach to building structure.
 - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
 - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- E. Suspended Lighting Fixture Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.

- 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
- 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.
- 5. Safety Cables: to prevent the fixture from falling if swaying breaks the pendant.
- F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
- B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.
- C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours continuous at full voltage.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.
 - 1. Adjust aimable luminaires in the presence of Architect.

END OF SECTION

SECTION 271000 - STRUCTURED CABLING (VOICE-DATA) DISTRIBUTION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Requirements of the following Division 26 Sections apply to this section:
 - 1. Basic Electrical Requirements.
 - 2. Basic Electrical Materials and Methods.
 - 3. Electronic Systems Electrical
 - C. Requirements of the following Division 27 Sections apply to this Section:
 - 1. Basic Electronic Systems Materials and Methods.

1.2 SUMMARY

- A. This Section includes complete installation of voice/data distribution components as an addition to an existing local area network. Install completely so system will be fully operational when telephone/data instruments and network/switching equipment are connected. Items that are part of this work include, but are not limited to the following:
 - 1. Cat 6 UTP 4 pair cabling.
 - 2. Telecommunications outlets.
 - 3. Patch panels.
 - 4. Cable Management.
 - Labeling.
 - 6. Patch Cords.
 - 7. Terminations and all accessories.
 - 8. Equipment rack.
- B. This section requires that rough-in materials for this section be provided by the Division 26 installer for installation under Division 26. Rough-in materials include but are not limited to conduit, junction boxes, pathways in corridors, and through wall sleeves. Cable, wall cable management, and j-hooks for this section shall be provided by the Division 27 installer.
- C. Backbone vertical cabling and terminations to the new rack shall be provided by the Owner.

1.3 SUBMITTALS

- A. General: Submit the following according to Conditions of the Contract and Division 1 Specification Sections.
- B. Product data for system components.
 - 1. Prior to purchasing any equipment or materials, a list of their manufacturers shall be submitted for review.
 - 2. Prior to assembling or installing the telecommunications work, the following shall be submitted for review:

- a. Catalog information, factory assembly drawings and field installation drawings as required for a complete explanation and descriptions of all items and equipment.
- C. Upon request, submit for approval a sample of each of the following:
 - 1. Each type of cable.
 - 2. Each type of cable connector.
 - 3. Complete outlet assembly including frame, jacks, and cover plate.
 - 4. Each type of identification label.
 - 5. Other items as requested.
- D. Record of field tests of system.
- E. Documents will not be accepted for review unless:
 - 1. They include complete information pertaining to appurtenances and accessories.
 - 2. They are submitted as a package where they pertain to related items.
 - 3. They are properly marked with specific service or function, and intended location of use within the project (i.e., voice TR and MC termination).
 - They are clearly identified or highlighted to indicate all items which are applicable.
 - 5. They indicate the project name and address along with the Contractor's name, address and phone number.
 - 6. They are properly marked with external connection identification as related to the project where they consist of standard factory assembly or field installation drawings.

F. Shop drawing Review

- 1. The Contractor shall submit for approval system shop drawings which include pin configurations, cable runs, punch down blocks, patch panels, conduit, systems/materials. and riser diagrams and workstation or other terminations. The Contractor shall keep all documentation current throughout the installation and build-out process. If changes occur which affect any documentation, the Contractor shall formally re-issue the affected documentation to the Owner at the completion of the installation.
- 2. The purpose of the review of shop drawings is to maintain the integrity of the design. Unless the contractor clearly points out changes, substitutions, deletions or any other differences between the submission and the Contract Documents in writing on the Contractor's letterhead, approval by the Engineer or Architect does not constitute acceptance. It is not to be assumed that the engineer has read the text nor reviewed the technical data of a manufactured item and its components except where the Vendor has pointed out differences between his product and the specified model.
- It is the responsibility of the contractor to confirm all dimensions, quantities, and the
 coordination of materials and products supplied by him with other trades. Approval of shop
 drawings containing errors does not relieve the contractor from making corrections at his
 expense.

- 4. Substitutions of equipment, systems, materials, must be coordinated by the Contractor with his own or other trades which may be involved with the item, such as, but not limited to, equipment substitutions which change telecommunications or electrical requirements, or hanging or supporting weights or dimensions.
- 5. Any extra charges or credits which may be generated by other trades due to substitutions will not be accepted unless the Contractor has an agreement in writing with the Owner.
- 6. Substitutions of equipment, system, etc. requiring approval of local authorities must comply with such regulations and be filed at the expense of the Contractor (should filing be necessary). Substitutions are subject to approval or disapproval by the Engineer. The contractor in offering substitution shall hold the Owner and Engineer harmless if the substituted item is an infringement of patent held by the specified item.
- G. The Contractor shall establish cable records during the installation. These records shall correlate workstation number, distribution cable number, punch down block or frame assignments, conduit or duct path and station location. These records shall be updated as the project progresses to reflect any required changes. As built Records/Drawings will be furnished as specified and accepted by Owner.
- H. All manufacturer's product data including specifications and installation instructions will be provided to the Owner upon acceptance of the space by the Owner.

1.4 QUALITY ASSURANCE

- A. All equipment and materials for permanent installation shall be the products of recognized manufacturers and shall be new.
- B. Installers Qualifications: Belden certified and experienced in voice/data distribution system installation similar to that indicated for this project and that have a record of successful performance for a period of 5 years minimum.
 - 1. Factory certification: The installer shall have factory trained and certified technicians on the jobsite at all times for the products and installation methods used in this project.
- C. New equipment and installation shall comply with the following:
 - 1. ANSI/TIA/EIA -568-C, "Commercial Building Telecommunications Cabling Standard", 2002.
 - ANSI/TIA/EIA -569-C, "Commercial Building Standard for Telecommunications Pathways and Spaces", 2012.
 - 3. ANSI/TIA/EIA -606A, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings", 1993.
 - 4. ANSI/TIA/EIA -607A, "Commercial Building Grounding and Bonding Requirements for Telecommunications", 1994.
 - 5. NFPA 70, National Electric Code
- D. New equipment and installation shall:
 - 1. Be Underwriters Laboratories, Inc. (U.L.) labeled and/ or listed where specifically called for, or where normally subject to such U.L. labeling and/ or listing services.
 - 2. Be clearly labeled identifying the transmission parameters specified (specifically with reference to Category ratings).

- 3. Be without blemish or defect.
- 4. Be in accordance with the latest applicable standards.
- 5. Be products which meet with the acceptance of the agency inspecting the telecommunications work.
- E. All items of equipment or material of one generic type shall be the product of one manufacturer throughout.
- F. It is the intent of these specifications that wherever a manufacturer of a product is specified, and the terms "other approved" or "or approved equal" or "equal" are used, the substitute item must conform in all respects to the specified item. Consideration will not be given to claims that the substituted item meets the performance requirements with lesser construction. Performance as delineated in schedules and in the specifications shall be interpreted as minimum performance.
- G. Substituted equipment or optional equipment where permitted and approved, must conform to space requirements. Any substituted equipment that cannot meet space requirements, whether approved or not shall be replaced at the Contractor's expense. Any modifications of related systems as a result or substitutions shall be made at the Contractor's expense.
- H. Note that the approval of shop drawings, or other information submitted in accordance with the requirements hereinbefore specified, does not assure that the Engineer, Architect, or any other Owner's Representative, attests to the dimensional accuracy or dimensional suitability of the material or equipment involved or the ability of the material or equipment involved or the mechanical performance of equipment. Approval of Shop Drawing does not invalidate the plans and specifications if in conflict, unless a letter requesting such change is submitted and approved in the Engineer's letterhead.
- I. Substitutions of Telecommunications Equipment for that shown on the schedules or designated by model number in the specifications will not be considered it the item is not a regular cataloged item shown in the current catalog of the manufacturer.
- J. Manufacturer's Recommendations: Where installation procedures of any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of the recommendations shall be furnished prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- K. Connected Equipment Manufacturer Approval: Where cables specified in this Section are used to provide signal paths for systems specified in other sections of these Specifications or for systems furnished under other contracts, obtain review of the cable characteristics and approval for use with the connected system equipment by the connected equipment manufacturers.
- L. "Nationally Recognized Testing Laboratory" (NRTL) Listing: Provide materials that are listed and labeled.
 - 1. The Terms "Listed" and "Labeled": As defined in the "National Electrical Code," Article 100.
 - FCC Regulations: Comply with FCC Part 68, Chapter 1, "US Code of Federal Regulations,"
 Title 47 for all telephone system wire and cable connection components.
- M. Toxicity: Comply with applicable codes and regulations regarding toxicity of combustion products of materials used in control/signal transmission media.

- N. Coordination of Work: Coordinate the Work of this Section with the requirements of the Owner's voice/data system suppliers, existing conditions, and any of the off premises utility organizations.
 - 1. Meet jointly with the representatives of the Owner and any utility representatives, to exchange information and agree on details of installation interfaces, any work involving existing equipment and the installation of new infrastructure thereto, T568A or B wiring standards, and any other circumstances that impact on the completion of the work of this Section.
 - 2. Record agreements reached in the meeting and distribute the record to the other participants.

1.5 DESCRIPTION OF STANDARD TELECOMMUNICATIONS ASSEMBLIES

- A. The pair configuration for all twisted-pair cables shall conform to the industry standards for multipair cables and shall be color coded using the Western Electric color code scheme.
- B. The contractors shall be responsible for insuring that the installation of all equipment be performed in accordance with manufacturer's specifications. The necessity of special conditions required by a particular manufacturer shall be bought to the attention of the engineer prior to the installation of any equipment in the area concerned.

1.6 WARRANTY

- A. Project Warranty: A written warranty agreeing to replace and install voice/data distribution system components that fail in materials or workmanship, or do not meet manufacturer's official published specifications and performance criteria within the warranty period specified below. This includes both labor and materials. This warranty shall be in addition to, and not a limitation of, other rights and remedies the Owner may have against the Contractor under the Contract Documents.
- B. Special Project Warranty Period: 5 years minimum, beginning on the date of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver cable factory-packaged in containers or reels. Store in clean dry space and protect products from damaging fumes and traffic. Handle wire and cable carefully to avoid damage.

1.8 SEQUENCING AND SCHEDULING

- A. Coordinate with installation of electrical boxes and fittings, and raceways for subsequent installation of cable/wire.
- B. Sequence installation of cabling systems with other work to minimize possibility of damage during construction. Contractor is responsible for replacing and or repairing damaged materials during installation, such as wall finishes, ceiling tile, grid, etc.

PART 2 - PRODUCTS

2.1 EQUIPMENT/CABLING LIST

A. The parts referred to in the drawings or specifications are recommended types. Where acceptable substitutes are available from only one vendor, no substitutions will be permitted. The owner or his representative reserve the right to examine and approve any and all parts acquired to satisfy the

installation requirements, and to reject these parts without penalty if they do not meet with the specifications.

- B. The items indicated by a specific manufacturer shall not be construed as a "bill of materials". They represent items of significance used during the design of the cabling installation. Where the items indicated are one portion of an assembly, the entire assembly shall be provided unless specified otherwise. Where items do not have a manufacturer or part number listed, no particular item has been selected at this time.
- C. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Cable:
 - a. Belden Inc.; Electronics Division.
 - 2. Rack Terminal and Connector Components:
 - a. Belden/CDT.
 - 3. Distribution Racks and Wire Management:
 - a. Belden Inc.
- D. Voice/Data distribution (LAN) system equipment racks
 - 1. General Frame Requirements:
 - a. Distribution Frames: Freestanding and wall-mounting, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 - b. Module Dimension: Width compatible with EIA 310 standard, 19-inch panel mounting.
 - c. Finish: Manufacturer's standard, baked-polyester powder coat.
 - 2. Floor-Mounted Racks: Modular-type, steel or aluminum construction.
 - a. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
 - b. Baked-polyester powder coat finish.

2.2 UTP CABLE AND WIRING COMPONENTS

- A. General: Provide cable and wiring components of manufacturer's standard materials as indicated by published product information, designed and constructed as recommended by manufacturer, for a complete installation and for applications indicated. See schedules in drawings and specifications.
- B. Data Grade Systems:
 - 1. Cable: Provide 4 pair, 24 gauge, category 6 UTP cable that meets or exceeds the requirements for channel and link performance as stated in ANSI/TIA/EIA 568-C.1 and C.2-Provide plenum rated cable in all areas.

- 2. Terminations: Unless otherwise indicated, all cable shall be terminated at patch panels and at workstations.
- 3. Patch Panels: Rack-mounted, modular type with RJ45 connectors. Provide quantity of ports to accommodate the number of outlets shown on drawings plus 25%. Patch panels shall be provided for Category 6 UTP and all equipment shall meet current industry standards.
- 4. Workstations: Shall be an 8-pin modular jack that mounts to a frame or faceplate. The jacks shall be appropriate for the type and category of UTP cable being installed, i.e., category 6 cable shall have category 6 termination unless otherwise noted.
- 5. Patch Cables: Category 6, terminated with RJ-45 connectors. Provide one for each station cable terminated to the LAN rack patch panels. Provide length and quantity as necessary to complete interconnection to owner switches based on the rack elevation drawings and submittal shop drawings. Minimum length is 6 feet.

C. Identification

- Network data, telephones, printers, tracker monitors, CCTV: Cable jackets and jacks shall be black.
- 2. RFID/RTLS: Cable jackets shall be purple.
- 3. CATV: Cable jackets and jacks shall be blue.
- 4. Physiological Monitoring: Cable jacket and jack shall be orange.
- 5. Nurse call: Cable jackets shall be green.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Distribution System: Unless indicated otherwise, provide all terminations and accessories for cables being provided in this project. Install completely so system will be fully operational when telephone/data instruments and switching equipment are connected.

3.2 EXAMINATION

A. Examine areas and conditions, with Installer present for compliance with requirements for installation and other conditions affecting telephone distribution systems performance. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.3 WIRING INSTALLATION

- A. General: Install telephone/data distribution systems, cabling and components in accordance with manufacturer's written instructions and in compliance with NEC and applicable ANSI/TIA/EIA requirements. Coordinate installation of transmission media with other Work.
- B. Install cable without damaging conductors, shield, or jacket. Do not either in handling or installation bend cable to smaller radii than minimum recommended by manufacturer. Ensure that medium manufacturer's recommended pulling tensions are not exceeded. Pull cable simultaneously where more than one is being installed in same raceway. Use pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Use pulling means, including fish tape, cable, rope, and basket weave wire/cable grips that will not damage media or raceway.

- C. Wiring Method: Install horizontal cabling in cable management tray and/or hooks. Installations that use the suspended ceiling to support cable will not be accepted.
- D. Exposed Cable: Install parallel or perpendicular to surfaces or exposed structural members and follow surface contours where possible.
 - 1. Cable Support: Secure cable to independent supports at intervals not greater than 5 feet to prevent sagging between supports. Use metallic supports with corrosion-resistant finish.
- E. No splices are allowed except at indicated termination points.
- F. Wiring in Termination Rooms and Cabinets: Install conductors parallel to and at right angles to walls. Bundle, wrap, and train the conductors to terminal points with sufficient service loop. Use wire distribution spools at points where cables are fanned or conductors turned. Label each terminal with designations approved by the Owner. Wiring on racks, patch panels, and at riser UTP blocks shall be installed through wire-management devices.
- G. Conductor Terminations: Terminate conductors of cables on terminal blocks and hardware using tools recommended by the manufacturer.

3.4 GROUNDING

- A. Provide grounding connections for cable and other system components as required by manufacturer's written instructions and TIA/EIA 607, "Grounding and Bonding of Telecommunications Systems".
- B. All ground connectors in the main telecommunications equipment rooms and telecommunications closets shall be made to the ground bars provided for that purpose as part of the electrical work.
- C. All metal panels, enclosures, boxes, racks, raceways, etc. in computer rooms, telecommunications equipment rooms and closets shall be grounded.
- D. Conductors utilized for grounding and bonding shall not be less that #6 AWG and shall have type "TW" or better insulation, color coded green.

3.5 IDENTIFICATION AND TAGGING FOR TELECOMMUNICATIONS DEVICES

- A. Identify individually:
 - 1. Each and every telecommunications cable.
 - 2. Each outlet (and each port).
 - 3. Each termination block and patch panel (and each termination).
 - 4. Each equipment termination frame and cabinet.
 - 5. Each junction box used for telecommunications wiring.
 - 6. Each system (i.e., voice, Data, fiber, etc.) as identified by the engineer.
 - 7. Other items as directed.
- B. The nomenclature used to identify cables, blocks, equipment, etc. shall be as specified on the drawings or elsewhere in this specification. Missing or unclear nomenclature criteria for the items specified above shall not be construed as a reason not to identify the items and shall be brought to the attention of the Owner.
- C. All materials required for labeling shall be provided by the contractor. All labels shall be permanently adhered, easily visible and shall be resistant to smearing. All text shall be typed (not handwritten). All cables shall be labeled at both ends minimum.

3.6 FIRE-STOPPING:

- A. Firestopping shall be provided for all penetrations of conduit, wireways, bus ducts, cable trays, etc., through fire-rated walls and floors and other fire-rated separations as follows:
 - Excess space in framed openings through structural floors between conduits and concrete shall be grouted in with concrete to a depth of at least the thickness of the slab plus 2" minimum above the slab.
 - 2. Conduit penetration through poured concrete or masonry walls shall be grouted in with concrete and provided with tight fitting escutcheon plates on both sides.
 - Conduit penetrations through fire-rated dry walls shall be with sleeves through the wall fitted
 with escutcheon plates on both sides with excess openings filled with fire stop material
 specifically manufactured for the purpose.
 - 4. Excess space within conduit sleeves or stubs through floor slabs or walls where low voltage/ telecommunications cables pass through shall be filled with firestopping material specifically manufactured for the purpose.
 - 5. Utilize fire-rated fittings, as specified elsewhere for penetrations through floor slabs for supplying floor outlets.
- B. All conduits/sleeves used for vertical cable passage shall be sealed utilized suitable material after the installation of cables as follows:
 - 1. The material shall be non-corrosive to the cable jacket or insulation that it applies to.
 - 2. The material shall provide for a minimum of three (3) hour fire rating.
 - 3. The material shall be non-shrinking, waterproof and smoke tight. The material shall remain flexible and non-hardening.
 - 4. The material shall be of the type that when installed will not slip through the openings, will stick to the surfaces of the openings and the cable and will not require any pressure to be applied to the cable in order to keep it in place.
 - 5. The material shall be installed in a neat and workmanlike manner and the final installation shall be smooth finished to the top of the sleeve or conduit.
 - 6. The material shall be easily removable without damaging the cables after being set or cured for at least one week.
- C. All horizontal cable penetrations through rated walls shall be sealed in a manner that will provide a fire rating equal to the wall construction.
- D. Upon completion of the telecommunications work, the contractor will certify that all openings for the cables satisfactorily sealed and fire stopped.
- E. All materials used for firestopping shall be approved for the purpose and the rating of the wall or floor and all methods employed shall meet with the approval of the local authorities.
- F. Refer to architectural drawings and specifications for all locations of fire rated walls and floors.

3.7 TESTING

- A. Before an application for final acceptance of the telecommunications work will be considered, all tests deemed necessary by the Owner and Engineer to show proper execution of the voice and data wiring work shall have been performed and completed in the presence of the Owner's representative. Scheduling of all testing procedures shall be arranged to suit the convenience of the Owner.
- B. Test specified to be performed in this document are intended to verify the quality of all cabling. This document also establishes a uniform method of reporting the test results for evaluation by the Engineer and Owner.
- C. All tests are to be performed upon completion of the initial installation.
- D. Performing the indicated tests does not constitute equipment or circuit acceptance.

3.8 TEST EQUIPMENT

- A. The equipment indicated below represents test equipment utilized to develop this test specification. Substitute test equipment may be used, upon approval by the Engineer, provided the same level and quality of testing is performed.
 - 1. Twisted pair (Cat 6)

PRODUCT

PRODUCT NUMBER

Fluke Networks

DTX CableAnalyzer

Utilize accessories as required (refer to manufacturer's handbook):

B. Prior to any testing being performed, the Engineer shall be supplied with a list of test equipment to be used, for his review and approval, if not the equipment identified in this specification. The submittal shall include documentation indicating that the proposed equipment is capable of performing all of the tests as required by this specification.

3.9 TESTS TO BE PERFORMED

- A. Tests are to be performed on the following aspects of the voice/data distribution cabling system:
 - 1. From each Termination Room (TR) termination to each and every workstation termination.
 - 2. Any other telecommunications inter-building or station cable which forms a portion of this installation.
- B. All cable runs for which equipment will not initially be attached must be tested to the same level of compliance as all other cabling.
- C. Prior to any acceptance testing being performed, a sample test shall be performed for each series of tests (i.e., copper, fiber, etc.). The sample test shall consist of a regular acceptance test on a few sample cables as selected by the contractor. The Engineer shall be given a minimum of one week notice so he and/ or his representative may observe the test.
- D. The Contractor is responsible for testing each telephone and data circuit installed and is to certify that each circuit is fully operational from the workstation to the MC prior to notifying the Owner that the space is ready for inspection and acceptance. All testing will be in accordance with ANSI/TIA/EIA 568-C standards. The contractor will maintain and provide to the Owner an operational test log. This will provide a chronological list, including but not limited to the following:

all significant events, including equipment/ facility reactions, meter readings, etc. obtained during the testing phase.

- E. All wiring, wiring connections and equipment provided by the contractor shall be tested in the presence of a representative of the Owner. The record of the test results will be submitted to the Owner's representative within seven (7) days of said test.
- F. Testing for certification will not occur until after all construction has been completed, carpet laid to ensure that the installation is not injured after testing.
- G. Test results and written certification will be entered on forms previously approved by the Owner's Technical Representative and returned to the Owner within seven (7) days after testing.
- H. Data Grade Cable (Category 6)

The following tests shall be performed on all pairs of each UTP cable.

1. Test equipment

Fluke Networks DTX CableAnalyzer

- 2. Tests to be performed
 - a. The test equipment shall be configured to test the maximum transmission performance for which the cable is rated (i.e. Cat 6 = 250 Mbps).
 - b. The following minimum information shall be provided for each cable and pair to be tested:
 - 1. Length find the total cable length.
 - 2. Resistance measured for each cable pair.
 - 3. Noise measured for each pair at the following frequencies: 10Hz 150KHz 16 MHZ, -100MHz, -250MHZ.
 - 4. Insertion Loss (dB loss) measured for each pair at 250 MHZ.
 - 5. Near End Cross Talk (NEXT) measured in dB and the associated frequency.
 - 6. Power Sum NEXT measured in dB.
 - 7. Attenuation to Cross Talk (ACR) measured in dB.
 - 8. Far End Cross Talk (ELFEXT) measured in dB.
 - 9. Power Sum ELFEXT measured in dB.
 - 10. Return Loss measured in dB.
 - 11. Wire map indicate that the wiring at the near end and far end are as specified.
 - c. Installer shall show that the complete installation meets category 6 requirements.

3.5 RECORD OF TEST RESULTS

- A. A record of all required tests shall be provided to the Engineer and Owner. The information shall be permanent record for the purposes of maintenance and restoration.
- B. A brief description outlining the test equipment used and a single line diagram indicating the test setup shall be provided to the Engineer for his review. The level of description should be sufficient enough to allow an individual who is not familiar with the specific test equipment to recreate any portion of the test.
- C. Te

Test results to be provided shall contain the following minimum information:				
1.	For all similar cable runs include:			
	a.	Project name.		
	b.	Description of test (i.e., voice riser, workstation cable, etc.)		
	C.	Cable origin		
	d.	Cable destination		
	e.	Cable ID		
	f.	Cable pair/ strand		
	g.	Test date		
	h.	Tester (individual responsible for conducting the test)		
	i.	Page of		
	j.	An initial block for Owner witness for each separate testing requirement.		
	l.	A signature block for the Owner witness.		
2.	For copper cables:			
	a.	No shorts, no crosses, no breaks		
	b.	For the indicated pairs of the cables include:		
		1)	Length	
		2.)	Resistance	
		3.)	Noise @ 10 Hz - 150 Khz 150KHz - 15 Mhz 16 Mhz - 250 Mhz	
		4.)	Attenuation (dB) at 10 Mhz	

Near end cross talk (NEXT) and the associated frequency

Wire map

Test equipment settings.

5.)

6.)

7.)

- D. While it is recognized that the test results will be completed in the field, it is important to note that they will serve as record documents. Therefore, care should be taken in the recording of the test results. The final product is expected to be done in a neat and legible manner.
- E. Some test equipment has the ability to record test results to a printer or memory for printing later. Submitting of these printed test forms is preferred in lieu of handwritten forms. Some test equipment also has the ability to store the tests results to disk media. The test results are required on disk to associate the information with a cable management database. All test results shall be provided in the following formats:
 - 1. Printed (1 bound copy).
 - 2. Disk or Flash media.
- F. A copy of the test results in both electronic and printed formats shall be provided to the Engineer for his review and the Owner for his records.

3.6 CORRECTIVE ACTION

- A. Any defects or deficiencies discovered in any of the telecommunications work shall be indicated on the test report and be corrected.
- B. Upon completion of testing and problem resolution, all connections tested are to be 100% error free for all horizontal workstations.
- C. Any connections determined to be not correctable shall be indicated at each end of the termination as "bad" (in red) backbone/ riser.

3.7 COMMISSIONING

- A. Subsequent to hookups of telephone/data distribution systems, operate control/signal systems to demonstrate proper functioning. Replace malfunctioning media with new materials, and then retest until satisfactory performance is achieved.
- B. Documentation: Use the above test equipment to make a strip chart recording of transmission characteristics, wave form, and performance of all segments of the installation at the time of commissioning. Record loss data in a form with provision for at least 50 additional loss data entries during future maintenance operations. Bind the recordings in a cable record book indexed for easy reference during future maintenance operations and turn book over to the Owner's authorized representative.

END OF SECTION 271000