

Salt Lake City Department of Airports

SALT LAKE CITY INTERNATIONAL AIRPORT SALT LAKE CITY, UTAH

TECHNICAL SPECIFICATIONS

RELOCATION OF GATES 10 & 11

SLCIA Project No.: 54-1019-1765 RS&H Project No.: 225-1754-012

> Client: SALT LAKE CITY DEPARTMENT OF AIRPORTS P.O. BOX 145550 SALT LAKE CITY, UT 84114

> > RS&H, INC. 5215 Wiley Post Way Suite 510 Salt Lake City, UT 84116

March 4, 2020

Bid Documents

THIS PAGE INTENTIONALLY BLANK

TABLE OF CONTENTS

TITLE

INDEX OF PAGES

Technical Specifications

P-101	Surface Preparation and Demolition	4
P-130	Survey	8
P-147	Mobilization and Demobilization	2
P-148	Construction Signs, Barricades, Warning Lights, Gate Guards and	
	Flagging Operations	6
P-151	Clearing and Grubbing	2
P-152	Excavation and Embankment	8
P-153	Controlled Low Strength Material	4
P-154	Subbase Course.	6
P-156	Geotextile Fabric	4
P-239	Aggregate Base Course (UDOT)	6
P-400	Bituminous Base and Surface Course (UDOT)	12
P-500	Portland Cement Concrete Pavement	38
P-603	Bituminous Tack Coat	4
P-610	Structural Portland Cement Concrete	10
P-620	Pavement Marking	6
P-621	Traffic Signs	8
D-701	Pipe for Storm Drains and Culverts	8
D-751	Manholes, Catch Basins, Inlets and Inspection Holes	6
D-756	Concrete Curb & Gutter, Gate Access Aprons and Sidewalk	6
F-162	Chain-Link Fences	6
2(000 5:4		2
26000-Site	Installation of Electrical Systems.	2
260519-Site	Low-Voltage Electrical Power Conductors and Cables	4
260526-Site	Grounding and Bonding for Electrical Systems	6
260529-Site	Hangers and Supports for Electrical Systems	0
260543-Site	Underground Ducts and Raceways for Electrical Systems	ð
260553-Site	Identification for Electrical Systems	ð
262416-Site	Panelboards	ð
265613-Site	Lighting Poles and Standards.	10
265619-Site	Exterior Lighting	ð
Architectural		
033000	Cast-in-place Concrete	8
033546	Penetrating Liquid Floor Treatments For Concrete	3
061000	Rough Carpentry	6
061053	Miscallanaous Dough Comentry	6
001033	Sheathing	2
001000	Disting interview for a data bit actional Calification	э 0
004110	Plastic-laminate-laced Architectural Cabinets	У 2
066400	Plastic Paneling	3
071113	Bituminous Dampproofing	3
072100	Thermal Insulation	4

072500	Weather Barriers	3
074616	Aluminum Siding	4
074646	Fiber-cement Siding	5
075419	Polyvinyl-chloride (pvc) Roofing	8
077100	Roof Specialties	8
079200	Joint Sealants	13
081113	Hollow Metal Doors And Frames	6
083113	Access Doors And Frames	4
083213	Sliding Aluminum-framed Glass Doors	8
085113	Aluminum Windows	8
087100	Door Hardware	10
092900	Gypsum Board	7
095113	Acoustical Panel Ceilings	9
096513	Resilient Base And Accessories	5
099113	Exterior Painting	7
099123	Interior Painting	7
099600	High-Performance Coatings	6
102800	Toilet, Bath, And Laundry Accessories	4
104416	Fire Extinguishers	4
105113	Metal Lockers	8
113013	Residential Appliances	6
123623	Plastic-laminate-clad Countertops	6
220500	Common Work Results For Plumbing	10
220517	Sleeves And Sleeve Seals For Plumbing Piping	2
220518	Escutcheons For Plumbing Piping	2
220519	Meters And Gages For Plumbing Piping	6
220523	General Duty Valves For Plumbing Piping	6
220529	Hangers And Supports For Plumbing Piping And Equipment	12
220548	Vibration And Seismic Control For Plumbing Piping And Equipment	2
220553	Identification For Plumbing Piping And Equipment	6
220700	Plumbing Insulation	20
221116	Domestic Water Piping	16
221119	Domestic Water Piping Specialties	8
221316	Sanitary Waste And Vent Piping	8
224000	Plumbing Fixtures	8
230100	Mechanical Requirements	14
230500	Common Work Result For Hvac	12
230513	Common Motor Requirements For Hvac Equipment	4
230529	Hangers And Supports Rev	10
230548	Vibration And Seismic Controls For Hvac Rev	22
230550	Operations And Maintenance Manuals Rev	4
230553	Identification For Piping & Equipment Rev	8
230594	General Testing, Adjusting And Balancing Rev	14
233423	Hvac Power Ventilators	8
238126	Split System Air-Conditioners	6
238240	Electric Unit Heaters	6

250125	Building Automation System	10
250130	Bas Interface Requirements	4
250205	Field Devices For Building Automation System.	12
260519	Low-Voltage Electrical Power Conductors and Cables	6
260526	Grounding and Bonding for Electrical Systems	8
260529	Hangers and Supports for Electrical Systems	8
260533	Raceways and Boxes For Electrical Systems	14
260543	Underground Ducts and Raceways for Electrical Systems	12
260553	Identification for Electrical Systems	12
260573.13	Short-Circuit Studies	8
260573.16	Coordination Studies	10
260573.19	Arc-Flash Hazard Analysis	8
262213	Low-Voltage Distribution Transformers	8
262416	Panelboards	12
262726	Wiring Devices	8
262816	Enclosed Switches and Circuit Breakers	12
264313	Surge Protection For Low-Voltage Electrical Power Circuits	6
265119	Led Interior Lighting	6
265619	Led Exterior Lighting	10
Londooono		
Landscape	anomy Trace and Diget Directory	6
229400 Luci and in a fait ribitetion		
526400 Imganon System		

Utility

unty	
30000 Water and Sewer Utility Work	2

THIS PAGE INTENTIONALLY BLANK

SECTION P-101

SURFACE PREPARATION AND DEMOLITION

DESCRIPTION

101-1.1 This item shall consist of preparation of existing pavement surfaces for overlay, surface treatments, removal of existing pavement, and other miscellaneous items. The work shall be accomplished in accordance with these specifications and the applicable drawings.

EQUIPMENT

101-2.1 All equipment shall be specified here and in the following paragraphs or approved by the Engineer. The equipment shall not cause damage to the pavement to remain in place.

CONSTRUCTION

101-3.1 Removal of existing pavement.

a. **Concrete pavement.** The existing concrete pavement to be removed shall be freed from the pavement to remain by sawing through the complete depth of the slab one foot (30 cm) inside the perimeter of the final removal limits or outside the dowels, whichever is greater when the limits of removal are located on the joints. The pavement between the perimeter of the pavement removal and the saw cut shall be carefully broken up and removed using hand-held jackhammers, weighing 30 pounds (14 kg) or less, or other light-duty equipment which will not cause distress in the pavement which is to remain in place. The Contractor shall have the option of sawing through the dowels at the joint, removing the pavement and installing new dowels. Where the perimeter of the removal limits is not located on the joint and there are no dowels present, then the perimeter shall be saw cut the full depth of the pavement. The pavement inside the saw cut shall be removed by methods suitable to the Engineer which will not cause distress in the pavement. The pavement which is to remain in place. If the material is to be wasted on the airport site, it shall be reduced to a maximum size designated by the Engineer. The Contractor's removal operation shall not cause damage to cables, utility ducts, pipelines, or drainage structures under the pavement. Concrete slabs that are damaged by under breaking shall be removed. Any damage shall be repaired at the Contractor's expense.

b. **Asphalt concrete pavement.** Asphalt concrete pavement to be removed shall be cut or milled to the full depth of the bituminous material around the perimeter of the area to be removed. The pavement shall be removed so the joint for each layer of pavement replacement is offset 1 foot (30 cm) from the joint in the preceding layer. This does not apply if the removed pavement is to be replaced with concrete or soil.

101-3.2 Concrete Sawcutting. Concrete sawcutting shall be required at those locations identified on the plans or as directed by the Engineer and shall be incidental to the work items requiring sawcutting. Pavement shall be sawcut full depth unless otherwise noted. The adjacent concrete pavement shall not be disturbed and shall be protected from damage. Any damage to the existing pavements identified to remain in place shall be repaired at no cost to the owner. All overcuts shall be sealed in a manner approved by the Engineer.

101-3.3 Cold milling. Equipment used for cold milling shall be a self-propelled, power operated planing machine, CM1450 or approved equal, capable of removing the necessary thickness of bituminous material to a minimum width of 7.17 feet and to a uniform profile and cross slope.

Remove and dispose of all planed asphalt material at a site on Airport Property. The cost of disposing of milled asphalt shall be included in the contract unit price of this item.

If the Contractor mills or grinds deeper or wider than the plans specify, the Contractor shall replace the material that was removed with new material at no additional cost to the Owner.

a. **Profiling, grade correction, or surface correction.** The milling machine shall have a minimum width of 12.0 feet and it shall be equipped with electronic grade control devices that will cut the surface to the grade and tolerances specified. The machine shall cut vertical edges. A positive method of dust control shall be provided. The machine shall have the ability to remove the millings or cuttings from the pavement and load them into a truck.

b. **Clean-up.** The Contractor shall sweep the milled surface daily and immediately after the milling until all residual aggregate and fines are removed from the pavement surface. Prior to paving, the Contractor shall wet down the milled pavement and thoroughly sweep and/or blow the surface to remove any remaining aggregate or fines.

101-3.4 Maintenance. The Contractor shall perform all maintenance work necessary to keep the pavement in a satisfactory condition until the full section is complete and accepted by the Engineer. The surface shall be kept clean and free from foreign material. The pavement shall be properly drained at all times. If cleaning is necessary or if the pavement becomes disturbed, any work repairs necessary shall be performed at the Contractor's expense.

101-3.5 Removal of Utilities. The removal of existing structures and utilities required to permit the orderly progress of work will be accomplished by the Contractor. The Contractor to coordinate with all utility companies involved as necessary to complete work. All existing foundations shall be excavated for at least 2 feet (0.6 m) below the top of subgrade or as indicated on the plans, and the material disposed of as directed. All foundations, including storm sewer structures, thus excavated shall be backfilled with suitable material and compacted as specified herein.

101-3.6.2 Cleaning prior to sealing. Immediately before sealing, joints shall be cleaned by removing any remaining laitance and other foreign material. Clean joints by sandblasting, or other method approved by the Engineer, on each joint face with nozzle held at an angle and not more than three inches (75 mm) from face. Following sandblasting, clean joints with air free of oil and water. Joint surfaces will be surface-dry prior to installation of sealant.

METHOD OF MEASUREMENT

101-4.1 Bituminous Pavement Cold Milling Variable Depth. Bituminous Pavement Cold Milling (planing) is to be measured and paid for by the number of square yards of the accepted planed area conforming to the depth and dimensions shown on the drawings. Payment shall be made at the contract unit price per square yard and shall be full compensation for all equipment, labor, removal of planed material, transportation from stock pile area, clean up, and incidentals necessary to complete this item of

work. Transportation of millings to and from the stockpiled areas shall be incidental with no additional payment.

101-4.2 Full-Depth Asphalt Removal. The unit of measurement for Full-Depth Asphalt Pavement Removal shall be the number of square yards removed by the Contractor. Any pavement removed outside the limits of removal because the pavement was damaged by negligence on the part of the Contractor shall not be included in the measurement for payment.

101-4.3 Concrete Curb and Gutter Removal. The amount of concrete curb and gutter removed shall be measured by the linear foot for actual curb and gutter removed and disposed of. Sawcutting of the pavement or curb will not be measured separately but will be considered incidental to the removal.

101-4.4 Concrete Pavement Removal. The unit of measurement for concrete pavement removal shall be the number of square yards removed by the Contractor. Any pavement removed outside the limits of removal because the pavement was damaged by negligence on the part of the Contractor shall not be included in the measurement for payment.

101-4.5 Block Wall Removal. The amount of block wall removed shall be measured by the linear foot for actual block wall including caps removed and salvaged for reinstalling into new location. It shall also include backfilling with a suitable material not less than the structural capacity of the material adjacent to its location.

101-4.6 Post and Chain Fence Demolition. The amount of Post and Chain Fence removed shall be measured by the linear foot for actual fence including its posts and foundations removed and disposed of. It shall also include backfilling with a suitable material not less than the structural capacity of the material adjacent to its location.

101-4.7 Bollard Removal. The number of bollards removed shall be measured for each actual bollard including its foundation removed and disposed of. It shall also include backfilling with a suitable material not less than the structural capacity of the material adjacent to its location.

101-4.8 Chain-Link Fence Removal. The amount of Chain-Link Fence removed shall be measured by the linear foot for actual fence including its posts and foundations removed and disposed of. It shall also include backfilling with a suitable material not less than the structural capacity of the material adjacent to its location.

BASIS OF PAYMENT

101-5.1 Payment. Payment shall be made at contract unit price for the unit of measurement as specified above. This price shall be full compensation for furnishing all materials and for all preparation, hauling, and placing of the material and for all labor, equipment, tools, and incidentals necessary to complete this item.

Payment will be made under:

Item P-101-1	Bituminous Pavement Cold Milling Variable Depth - Per Square Yard
Item P-101-2	Full-Depth Asphalt Removal – Per Square Yard
Item P-101-3	Concrete Curb and Gutter Removal – Per Linear Foot
Item P-101-4	Concrete Pavement Removal – Per Square Yard
Item P-101-5	Block Wall Removal – Per Linear Foot
Item P-101-6	Post and Chain Fence Demolition – Per Linear Foot
Item P-101-7	Bollard Removal – Per Each
Item P-101-8	Chain-Link Fence Removal – Per Linear Foot

END OF SECTION P-101

SECTION P-130

SURVEY

GENERAL

130-1.1 Description. This item shall consist of scheduling, coordinating, and providing all construction surveying, staking, measurement and calculations (including measurement and calculation of quantities for contract pay items measured or paid for by area or volume) essential to completing the project and for proper control of the entire work, including survey for layout of permanent paint markings by others.

130-1.2 Quality Assurance.

- A. The Contractor is responsible for survey and control of the work, and for correcting Contractor errors, whether the errors are discovered during the actual survey work or in subsequent phases of the project. The Contractor shall bear any cost overruns resulting from Contractor errors.
- B. The Contractor shall perform all work in accordance with the plans and specifications and standard Engineering and Surveying practices under the responsible charge of a Professional Engineer or Professional Land Surveyor duly and properly registered in the State of Utah.
- C. The Engineer may spot check the work for accuracy and may reject unacceptable portions of the work. The Contractor shall survey rejected work and correct work that is not within the specified tolerances at no additional expense to the Owner.

130-1.3 Submittals.

- A. All submittals required under this specification section shall be signed and sealed by a Professional Engineer or Professional Land Surveyor registered in the State of Utah.
- B. Re-submittals may be required depending on completeness and correctness of the work.
- C. Prior to beginning work, the Contractor shall submit a statement indicating all Ownerprovided horizontal and vertical control has been field checked and the control has been determined to be accurate within the tolerances specified in this section. In addition, the surveyor shall use these field checked points to verify tie-in elevations at the project limits. Attach field survey information used to verify the control and design points. If discrepancies are found, the Contractor shall immediately notify the Engineer verbally and in writing.
- D. Contractor shall also submit for approval a Survey Plan, indicating the survey Grid to be used for all surface and quantity verification purposes. No excavation shall begin without approval of the Survey Plan. The survey Grid shall consist of a grid pattern in which the grids shall not exceed 100 feet by 100 feet. The grid lines shall be aligned with finished surface concrete joint lines and include all grade breaks and edges of pavement. The

Survey Plan shall graphically indicate the grid system, edges of pavement, concrete joints, and coordinates (northings and westings) for each survey point.

E. After project completion, the Contractor shall return to the Engineer all surveying and design data and provide a red-lined hard copy plan set showing as-built features denoting changes from the original design. Every dimension, elevation and coordinate shown on the drawings shall be field checked by the surveyor with the as-built information shown in red. The surveyor shall certify that the information shown on the red-lined hard copy plan set is correct.

Electronic versions of the as-built information may be substituted for hard copies <u>only</u>, when approved by the Engineer. Electronic versions must be compatible with the current software used by the Salt Lake City Department of Airports.

PRODUCTS

130-2.1 Equipment.

- A. The Contractor shall furnish tools, supplies, and stakes suitable for use in highway survey work.
- B. Stakes and hubs shall be of sufficient length to provide a solid set in the ground with sufficient surface area above ground for necessary legible markings.
- C. Survey instruments and supporting equipment shall be capable of achieving the specified tolerances. Calibrate survey equipment for accuracy prior to beginning survey work and as required.

130-2.2 Survey Data and Calculations.

A. The Contractor shall furnish survey data and calculations of quantities for each layer of material placed. No material shall be placed until the surface survey data and calculations for the underlying layer have been submitted by the Contractor and approved by the Engineer.

EXECUTION

130-3.1 Preparation.

- A. The Contractor shall establish construction survey points, elevations and grades as necessary to control layout and complete the work. The Contractor shall verify all control surveying and staking meets specified tolerances prior to beginning work.
- B. The Contractor shall calculate all grades, elevations, offsets and alignment data necessary for staking and/or setting items of work. Alternate methods of establishing grade control with wire lines, computer or laser controlled grading or other suitable methods must be approved by the Engineer.
- C. The Contractor shall provide appropriate traffic control for all survey activities.

130-3.2 Contract Provision Disclaimer.

RELEASE OF AIRPORT DATA: The Contractor may obtain an electronic copy of the data points prepared by the Owner. The Owner provides data points in AutoCAD format only. The Contractor is responsible for translation into other formats. This data does not include the commercial software needed to read the points. In order to obtain an electronic copy, the Contractor shall make a written request to the Engineer. The Contractor agrees and understands that the data points are prepared by the Owner for its own purposes and not for the benefit of private individuals or businesses. The Contractor waives any and all claims that may result from the use of or reliance upon the data points. The Contractor indemnifies the Owner and holds it harmless for any damages, costs, attorneys' fees, or other liabilities that might be incurred as a result of the Contractor's use and reliance on the data.

130-3.3 Stake Maintenance and Marking. The Contractor shall maintain <u>ALL</u> staking necessary for the work until the construction has been completed and accepted by the Engineer.

- A. Legibly mark all survey stakes with station and offset referenced to their respective control line.
- B. Mark slope, reference and guard stakes with station.
- C. Renew illegible stakes at no additional cost to the Owner.

130-3.4 Control Points and Survey Tolerances.

- A. The Contractor shall relocate initial horizontal and vertical control points in conflict with construction to areas that will not be disturbed by construction operations. The coordinates and elevations for the relocated points shall be given to the Engineer before the initial points are disturbed.
- B. The Contractor shall protect benchmarks from construction activities. Benchmarks shall be positioned to allow a level rod to stand vertically and squarely on the mark.
- C. The Contractor shall survey and establish control within the tolerances in Table 1.

Description	Horizontal	Vertical
	dec	imals of a foot
Control points	± 0.01	± 0.01
Centerline points	± 0.03	± 0.02
Cross sections and slope stakes	± 0.10	± 0.10
Slope stake references	± 0.10	± 0.10
Culverts and Ditches	± 0.10	± 0.05
Minor drainage structures	± 0.10	± 0.03
Curb and gutter	± 0.02	± 0.02
Guardrail and concrete barrier	± 0.05	± 0.05
Retaining walls	± 0.05	± 0.01
Bridge substructure and overall	± 0.01	± 0.01
Bridge superstructure and overall	± 0.01	± 0.01
Environmental Control Limits	± 1.00	
Clearing and grubbing limits	± 1.00	
Right of Way Limits	± 0.02	
Subgrade finish stakes	± 0.10	± 0.05
Surface course finish grade	± 0.04	± 0.02
stakes		
Signals and electrical	± 0.05	± 0.02
Striping	± 0.08	
Paving reference line	± 0.04	± 0.01

TABLE 1. SURVEY TOLERANCES

The survey tolerances of any items not listed in Table 1 shall be coordinated with the Engineer. Tolerances given in Table 1 are subordinate to any tolerances listed in other specification sections.

- D. The Contractor shall set grade finishing stakes as follows:
 - 1. For grade elevations and horizontal alignment:
 - a. On centerline.
 - b. On each shoulder at runway, taxiway and roadway cross section locations and between centerline and shoulder with a maximum spacing of 25 feet.
 - c. At the top of subgrade and the top of each aggregate course.
 - d. Drainage Swales slope stakes and flow line blue tops at 50-foot stations.
 - e. Drain lines, cut stakes and alignment on 25-foot stations, inlet and manholes.
 - f. Fence lines at 100-foot stations.
 - g. Painting and Striping layout marked for paint Contractor.

- 2. Maximum spacing between stakes along the alignment: 50 feet.
- 3. Brushes or guard stakes shall be used at each grade finishing stake.
- 4. Grade finishing stakes must be reset as many times as necessary to construct the subgrade and each aggregate course.
- 5. Laser, or other automatic control devices, shall be checked with temporary control point or grade hub at a minimum of once per 400 feet per pass (paving lane).

130-3.5 Survey for Surface and Quantity Verification. Contractor shall survey each of the following surfaces in accordance with the approved Survey Plan:

- Baseline: milled surface
- Subgrade (bottom of excavation) (P-152)
- Top of Cobble Stabilization (P-152) after placement of P-154 leveling layer
- Top of Aggregate Subbase (P-154)
- Top of Base Material: Aggregate Base Course (P-239)

Top of Finish Grade:

- Bituminous Surface Course(P-400)
- PCC Pavement (P-500, in addition to final survey per Section P-500)

Survey of each surface shall be completed on the approved Survey Grid and submitted according to submittal requirements in Section 0700 of the General Conditions, Article 3.9. Contractor shall complete quantity calculations of each layer and submit data and calculations to Engineer for verification and acceptance. The Engineer shall be allowed 2 working days to verify and accept or reject the submittal, and the Engineer reserves the right to request additional survey points, if deemed necessary. No material shall be placed until the surface, survey data, and quantity calculations for the underlying layer have been approved by the Engineer.

At the completion of each surface, and at the completion of the work, all partial surfaces shall be merged and stitched together to form a single, complete topographic surface for each layer, and the total quantities of each layer shall be recalculated and submitted to the Engineer for review. The total quantities will be compared to the total of all partial/interim quantity calculations for each layer, and all progress payments based on interim condition surveys shall be subject to revision based on Engineer's review of the compiled, final surfaces and calculations.

130-3.6 Concrete Paving.

- A. The Contractor shall develop a method of horizontal and vertical control for the placement of concrete pavement.
 - 1. Utilize laser, wire, or string line, for example, to maintain horizontal and vertical control.

- 2. Maximum spacing: 50 feet.
- 3. Set control on both sides of paving lane.
- B. Stake concrete joint locations.

130-3.7 Drainage Structures.

- A. The Contractor shall stake drainage structures to fit field conditions and in coordination with the Engineer. The location of the structures may differ from the plans.
 - 1. Survey and record the ground profile along the centerline of the structure.
 - 2. Determine the slope catch points at inlets and outlets.
 - 3. Set reference points and record information necessary to determine structure length and end treatments.
 - 4. Stake ditches or grade to make the structure functional.
 - 5. Mark guard stakes with the following, when applicable:
 - a. Diameter, length and type of culvert (for example 18" x 35' RCP)
 - b. The vertical and horizontal distance from the hub to the invert at the end of the culvert or any intermediate point as needed or directed
 - c. Flow line grade of the pipe
 - d. Station
 - 6. For storm sewers and waterlines provide a reference at a maximum spacing of 50 feet. Reference inverts of pipe at all manholes, catch basins, and/or inlets.

130-3.8 Pavement Marking.

- A. The Contractor shall layout all temporary and permanent pavement markings.
- B. The Contractor shall place references for pavement striping as needed for the painting contractor, but shall be a maximum of 100 feet apart on tangents and a maximum of 25 feet on curves.

130-3.9 Cleanup.

A. The Contractor shall remove and dispose of all flagging, lath, stakes and other staking material after the project is complete.

130-3.10 Utilities.

A. As part of cooperating with the utility companies, the Contractor shall stake control lines as needed, so their facilities can be relocated to their proper final position. In addition, stake crossings or potential points of conflict between facilities so as to provide proper horizontal and vertical control for the relocation. Schedule this survey work with the utility companies to minimize delays and disruption of survey stakes. Replace all disturbed stakes as necessary to facilitate the relocations. The Contractor is responsible for costs incurred to relocate any utility more than once due to inaccurate or incomplete staking.

METHOD OF MEASUREMENT

130-4.1. No separate measurement will be made for Surveying.

BASIS OF PAYMENT

130-5.1. There shall be no separate payment for Survey. Payment for furnishing all labor, equipment and materials necessary to complete the item as described in the drawings and specifications shall be included in the respective item of work under other technical specifications.

END OF SECTION P-130

THIS PAGE INTENTIONALLY BLANK

SECTION P-147

MOBILIZATION AND DEMOBILIZATION

DESCRIPTION

P-147-1.1 Mobilization and Demobilization consists of but is not limited to, the work necessary to move in personnel, equipment and materials, set up all temporary offices, buildings, facilities, security fencing and gates, erosion control installation and maintenance, pavement sweeping and cleaning, construction signs and utilities, safety flagging and barricades, obtain all required permits, pay all fees, transport all employees and materials to and from the work site, remove all equipment, personnel, and materials at the completion of the project, and all other expenses as required for the Project. This item shall include all traffic control (flaggers) and gate guards as required and shown on the drawings, and any temporary gate guard shelters as may be needed.

P-147-1.2 See General Conditions for related requirements.

CONSTRUCTION METHODS

P-147-2.1 Site Area. The approximate limits of the site and areas designated for Contractor's parking and staging are shown on the drawings.

In the event additional space is required for staging operations, make arrangements for such additional space with the Engineer.

Provide and maintain all signing, safety flagging, barricades, fencing, flagging, drainage, flaggers, gate guards, and other items as required to protect public and private property from damage caused by mobilization, demobilization, and construction operations.

P-147-2.2 Access. Construction access to work areas shall be as shown on the Drawings. The Contractor shall coordinate with the Engineer and Airport Operations for installation of temporary access gates and temporary security fencing as needed. Temporary fencing and gates shall be as shown on the drawings. If construction access is required in addition to the construction entrances shown on the drawings, secure Engineer's approval of all additional project construction entrances prior to construction. All haul routes, staging areas and equipment storage shall be at the location shown on the Drawings, unless otherwise approved by the Engineer.

The Contractor shall maintain all temporary access roads during the life of the construction. All temporary paved roads shall be removed at the end of construction and returned to their pre-construction condition unless permission is granted in writing by the Engineer for it to remain.

P-147-2.3 Temporary Facilities. Provide or make arrangements for all temporary facilities as required for performing the work according to the Special Conditions including power, telephone, water, sanitary facilities, offices, and other facilities as necessary for the Project.

Obtain all necessary permits, pay all fees, and make required arrangements for connection to necessary services provided by utility companies serving the project area, and pay all connection and utility inspection fees.

Provide and maintain suitable areas on site for materials storage. Location of storage areas shall be approved by the Engineer, but remain the responsibility of the Contractor. Location shall not interfere with drainage, traffic, airport operations, NAVAIDs, or private property.

Set up and maintain in a neat and orderly manner all temporary construction facilities within the designated area or at a location approved by the Engineer.

Provide and maintain temporary road detours and construction signing where indicated on the drawings.

P-147-2.4 Slope Stabilization, Shoring, and Dewatering. Investigate and provide materials, means and methods for providing safe cut slopes for construction. This may include dewatering, shoring, sheet piling, or other mechanical methods of stabilization of slopes as determined by the Contractor. All work shall be approved by the Engineer prior to implementation. The work shall be designed by a licensed civil engineer registered in the State of Utah and must be in conformance to federal, state, and local rules and regulations.

METHOD OF MEASUREMENT

P-147-3.1 There shall be no separate measurement for Mobilization and Demobilization.

BASIS OF PAYMENT

P-147-4.1 Payment for mobilization and demobilization will be made at the contract lump sum price and will be made in accordance with the following table. Should the bid amount for this item exceed 8 percent of the total bid, the amount over 8 percent will not be paid until final project acceptance.

Percent of Original	Percent of Amount Bid
Contract Amount Earned	for Mobilization to be paid
5%	25%, but not exceeding 2 percent of the total bid
10%	an additional 25%, but not exceeding 4 percent of the total bid
25%	an additional 25%, but not exceeding 6 percent of the total bid
80%	an additional 15%, but not exceeding 8 percent of the total bid

Upon final project acceptance, which includes delivery of all deliverables, O&M manuals, and contractors' asbuilt drawings, any unpaid amount of the contract amount for the item of mobilization will be paid. Nothing herein shall be construed to limit or preclude partial payments provided for by the Agreement.

Payment will be made under:

Item P-147 Mobilization and Demobilization – Per Lump Sum

END OF SECTION P-147

P-147-2

SECTION P-148

CONSTRUCTION SIGNS, BARRICADES, WARNING LIGHTS, GATE GUARDS AND FLAGGING OPERATIONS

DESCRIPTION

148-1.1 The item of work to be performed under this section shall consist of installing construction signs, barricades, warning lights, and flagging operations per contractors' submitted traffic control plan as submitted and reviewed by the Engineer. Such devices and controls as shown on the drawings are for general understanding of the project phasing and shall not be interpreted as an approved traffic control plan.

This work shall conform to the requirements of Section 01554 of the "Utah Department of Transportation (UDOT) Metric Standard Specifications for Road and Bridge Construction, 2017 Edition," UDOT Traffic Control (TC) Series Standard Drawings, and the "Manual on Uniform Traffic Control Devices for Streets and Highways" (MUTCD) and all supplements thereto, with the following modifications and additions.

MATERIALS AND CONSTRUCTION REQUIREMENTS

148-2.1 Construction Signs. Construction signs shall be installed prior to the start of construction and shall be placed per contractors' submitted traffic control plan as submitted and reviewed by the Engineer. All construction signs shall conform to the size and detail shown on the drawings or as indicated in the MUTCD/ UDOT TC Series Standard Drawings.

148-2.2 Barricades. Barricades shall be placed per contractors' submitted traffic control plan as submitted and reviewed by the Engineer. Barricades shall have reflectorized markings conforming to the standards outlined in the MUTCD/ UDOT TC Series Standard Drawings.

These additional requirements shall be followed:

- 1) Barricades required on all stages of this project shall be installed, maintained and repositioned as needed or as directed by the Engineer.
- 2) Barricades shall be properly secured and inspected regularly to ensure that all lights are operational.
- 3) All barricades must be approved by the Engineer.
- 4) All maintenance work required to keep barricades, warning lights/ batteries, etc. in good operating condition shall be provided by the Contractor at no expense to the City.

148-2.3 Warning Lights. Flashing warning lights shall be required around hazards and shall be placed per contractors' submitted traffic control plan as submitted and reviewed by the Engineer. Warning lights

shall be in accordance with the current requirements of ITE Standards for <u>Flashing and Steady Burning</u> <u>Warning Lights, Type A</u>, as shown below:

WARNING LIGHTS

	Type A Low Intensity
Lens Directional Faces	1 or 2
Flashing Rate Per Minute	55 to 75
Flash Duration (1)	10%
Minimum Effective Intensity (2)	4 Candles
Minimum Beam Candle Power (2)	
Hours of Operation	Dusk to Dawn
Diameter of Lens	7" Minimum

- (1) Length of time that instantaneous intensity is equal to or greater than effective intensity.
- (2) These values must be maintained within an angle of 9 degrees on each side of the vertical axis and 5 degrees above and below the horizontal axis.

Warning lights shall be battery-operated with the battery in a weatherproof enclosure. Lights shall be equipped with a solar switch which shall turn the light on at dusk and off at dawn.

Warning lights shall be secured to the constructed signs, barricade or support by tamper-proof bolts. The fastening of the light to the support shall be approved by the Engineer.

148-2.4 Gate Guard.

- a. Access Points/Gates/Gate Guards
 - 1. All gates used for Contractor access must be staffed by qualified and trained gate guards provided by the Contractor at all times when the gates are open and in use for construction activities in progress on the project. The gate guard is required to check each person entering the secure area through the gate for a valid Airport ID badge, construction escort badge, or delivery escort badge and valid vehicle ramp permit and vehicle markings. Anyone not in compliance with these requirements will be denied access.
 - 2. When not actively in use, the gate will be kept closed and locked. During periods of operation, the gate must be pulled shut or an approved barricade must be placed in front of the gate to require a vehicle to stop so that an inadvertent entry into the secure area is prevented.
 - 3. Access to construction sites through vehicle gates shall be coordinated with Airport staff. Contractor locks shall not be placed on gates. Only Airport locks shall be used. Vehicle gates used for construction access will be unlocked and opened at the beginning of each shift by a Salt Lake City Department of Airports employee. The qualified gate guard must be present and prepared to perform all gate guard duties when the gate is unlocked. At the end of the shift, the gate will be closed and locked by a Salt Lake City Department of Airports employee. The Contractor shall coordinate all required gate access times twenty

four (24) hours in advance with the Engineer.

- 4. All vehicles under escort shall be physically inspected by the gate guard prior to entering the secure area.
- b. Contractor Provided Construction Gate Guards
 - 1. Contractor shall provide qualified personnel to perform gate guard services at construction gates used for access to secure areas of the Airport.
 - 2.Personnel assigned to provide gate guard services shall obtain an Airport-issued identification badge prior to providing service. To be qualified to obtain the identification badge, personnel shall:
 - a) Undergo a fingerprint based criminal history records check as required by TSR 1542.209. Contractor's employees to be used to provide gate guard services shall be able to pass this check with no convictions for a disqualifying offense as outlined by the Transportation Security Administration (TSA).
 - b) Successfully complete a TSA-required two-hour security training course offered by the Airport which includes training specific to gate guard duties and how to conduct a vehicle inspection. This training must be completed prior to the gate guard's first duty assignment.
 - 3. Personnel assigned to provide gate guard services shall have the ability to clearly speak, read, write and understand the English language.
 - 4. Personnel assigned to provide gate guard services shall be supervised and checked at frequent intervals by Contractor's supervisor and Department of Airports personnel to ensure they are in compliance with all security requirements associated with staffing a perimeter gate access point leading to a secure area of the airport.
 - 5. Personnel assigned to provide gate guard services shall wear a safety vest at all times.
 - 6. Personnel assigned to provide gate guard services shall not carry a firearm.
 - 7. Personnel assigned to provide gate guard services must have the ability to communicate directly with the Airport's Control Center by cellular telephone provided by the Contractor.
 - 8. The Contractor shall provide temporary restroom facilities for use by the gate guards at the access gate. If the gate is to be used for access at night, the Contractor shall provide and maintain in working condition a temporary light plant to illuminate the gate area.
- c. Gate Guard Duties:
- 1. Security responsibilities include:
 - a) Checking all incoming individuals and vehicles for Airport authorized identification and permits to prevent unauthorized entrance into secure areas.
 - b) Comparing the name on the identification badge for each individual entering

through the gate with an Airport-provided "stop list." If a person's name is on the stop list, entry shall be denied and the Airport's Control Center immediately notified;

- c) Conducting vehicle searches to ensure that weapons, explosive devices and other prohibited items are not allowed into the secure area of the airport; if weapons or other prohibited items are found, the gate guard shall prevent entry and immediately notify the Airport's Control Center.
- d) Ensuring that the security gate is closed when not actively being used to prevent security breaches.

148-2.5 Flagging. The Contractor shall provide certified and adequately equipped flagging personnel per contractors' submitted traffic control plan as submitted and reviewed by the Engineer during construction working hours for safe flow of traffic. All flagging shall be done as described in the current UDOT Manual of Safety Rules and the Safety Orders covering flagging personnel of the Industrial Commission of Utah.

148-2.6 Safety. The Contractor shall be responsible for maintenance, control and the safe guarding of pedestrian and vehicular traffic within and immediately abutting the areas where his work is being conducted. Whenever, in the opinion of the Engineer, the Contractor has not provided sufficient or proper safety precautions and safeguards he shall do so immediately and to whatever extent the Engineer deems advisable.

Special care shall be exercised to prevent vehicles and pedestrians from falling into open excavations or being otherwise harmed as a result of the work. The Contractor shall, in all cases, hold the Owner harmless for any and all damages resulting from any of the Contractor's operations.

No speed limit signs shall be placed by the Contractor unless authorized by the Engineer. Any limits properly established shall be for a temporary period only and shall be removed at the direction of the Engineer.

At all intersecting roads with the project, adequate warning signs and stop signs shall be placed in advance of the intersection as directed by the Engineer.

METHOD OF MEASUREMENT

148-3.1 The method of measurement and basis of payment for barricades will be made at the contract unit price per Lump Sum. This shall include construction signs, barricades, warning lights, flagging, etc., for traffic control as required by the Department of Airports.

BASIS OF PAYMENT

148-4.1 The basis of payment for the above items shall be full compensation for furnishing all materials, labor, tools, equipment and all incidentals necessary to complete this item of work to the satisfaction of the Engineer.

Payment will be made under:

Item P-148

Const. Signs, Barricades, Warning Lights, Gate Guards & Flagging – Per Lump Sum

USE AND MATERIAL REQUIREMENTS

Utah Department Traffic Control of Transportation Metric Standard Specifications for Road and Bridges Construction, Latest Edition (2017) Section 01554.

Manual on Uniform Traffic Control Services (2009) - Applicable sections.

END OF SECTION P-148

THIS PAGE INTENTIONALLY BLANK

SECTION P-151

CLEARING AND GRUBBING

DESCRIPTION

151-1.1 This item shall consist of clearing or clearing and grubbing, including the disposal of materials, for all areas within the limits designated on the plans or as required by the Engineer.

- **a.** Clearing shall consist of the cutting and removal of all trees, stumps, brush, logs, hedges, the removal of fences and other loose or projecting material from the designated areas. The grubbing of stumps and roots will not be required.
- **b.** Clearing and grubbing shall consist of clearing the surface of the ground of the designated areas of all trees, stumps, down timber, logs, snags, brush, undergrowth, hedges, heavy growth of grass or weeds, fences, structures, debris, and rubbish of any nature, natural obstructions or such material which in the opinion of the Engineer is unsuitable for the foundation of strips, pavements, or other required structures, including the grubbing of stumps, roots, matted roots, foundations, and the disposal from the project of all spoil materials resulting from clearing and grubbing.

CONSTRUCTION METHODS

151-2.1 GENERAL. The areas denoted on the plans to be cleared or cleared and grubbed shall be staked on the ground by the Contractor. The clearing and grubbing shall be done at a satisfactory distance in advance of the grading operations.

All spoil materials removed by clearing or by clearing and grubbing shall be disposed of outside the Airport's limits at the Contractor's responsibility. Cost associated with removing all cleared and grubbed material off site shall be incorporated into the unit price for clearing and grubbing.

Any broken concrete or masonry that cannot be used in construction, and all other materials not considered suitable for use elsewhere, shall be disposed of by the Contractor. In no case shall any discarded materials be left in windrows or piles adjacent to or within the airport limits. The manner and location of disposal of materials shall be subject to the approval of the Engineer and shall not create an unsightly or objectionable view. When the Contractor is required to locate a disposal area outside the airport property limits, the Contractor shall obtain and file with the Engineer, permission in writing from the property owner for the use of private property for this purpose, and shall obtain required local and state permits for such work

The removal of existing structure and utilities required to permit orderly progress of work shall be accomplished by local agencies, unless otherwise shown on the plans. Whenever a telephone or telegraph pole, pipeline, conduit, sewer, roadway, or other utility is encountered and must be removed or relocated, the Contractor shall advise the Engineer who will notify the proper local authority or owner to secure prompt action.

TECHNICAL SPECIFICATIONS

151-2.2 CLEARING. The Contractor shall clear the staked or indicated area of all objectionable materials. Trees unavoidably falling outside the specified clearing limits must be cut up, removed, and disposed of in a satisfactory manner. To minimize damage to trees that are to be left standing, trees shall be felled toward the center of the area being cleared. The Contractor shall preserve and protect from injury all trees not to be removed. The trees, stumps, and brush shall be cut flush with the original ground surface. The grubbing of stumps and roots will not be required.

151-2.3 CLEARING AND GRUBBING. In areas designated to be cleared and grubbed, all stumps, roots, buried logs, brush, grass, and other unsatisfactory materials shall be removed, except where embankments exceeding 3-1/2 feet (105 cm) in depth will be constructed outside of paved areas. For embankments constructed outside of paved areas, all unsatisfactory materials shall be removed, but sound trees, stumps, and brush can be cut off flush with the original ground and allowed to remain. Tap roots and other projections over 1 $\frac{1}{2}$ inches (38 mm) in diameter shall be grubbed out to a depth of at least 18 inches (0.5 m) below the finished subgrade or slope elevation.

Any buildings and miscellaneous structures that are shown on the plans to be removed shall be demolished or removed, and all materials shall be disposed of by removal from the site. The cost of removal is incidental to this item. The remaining or existing foundations, wells, cesspools, and like structures shall be destroyed by breaking down the materials of which the foundations, wells, cesspools, etc., are built to a depth at least 2 feet (60 cm) below the existing surrounding ground. The holes or openings shall be backfilled with acceptable material and properly compacted.

METHOD OF MEASUREMENT

151-3.1 The quantities of clearing or clearing and grubbing as shown by the limits on the plans or as ordered by the Engineer shall be the number of square yards, of land specifically cleared or cleared and grubbed.

BASIS OF PAYMENT

151-4.1 Payment shall be made at the contract unit price per square yard for clearing and grubbing. This price shall be full compensation for furnishing all materials and for all labor, equipment, tools, and incidentals necessary to complete the item.

No payment will be made under this section without accompanying survey data completed in accordance with Section P-130.

Payment will be made under:

P-151 Clearing and Grubbing.....Per Square Yard (SY)

END OF SECTION P-151

SECTION P-152

EXCAVATION AND EMBANKMENT

DESCRIPTION

152-1.1 This section covers excavation, disposal, placement and compaction of all materials within the limits of the work required to construct roadways, parking lots, runways, taxiways, aprons, and intermediate areas as well as other areas for drainage, building construction, parking, or other purposes in accordance with these specifications and in conformity to the dimensions and typical section(s) shown on the plans. Unless specifically indicated otherwise in the project specifications or on the project plans all excavated material, regardless of classification, shall be removed from Airport property and properly disposed of by the Contractor.

152-1.2 Classification. All material excavated shall be classified as defined below:

- a. <u>Unclassified Excavation</u>. Unclassified excavation shall consist of the excavation and disposal of all material regardless of its nature, which is not otherwise classified and paid for under other items.
- b. <u>Unsuitable Excavation</u>. Any material containing vegetable or organic matter, such as muck, peat, organic silt, or sod shall be considered unsuitable for use in embankment construction and shall be disposed of off airport property at a legal disposal site selected by the Contractor. Unsuitable excavation shall also include excavation, removal, and disposal off airport property of existing buried cobble rock encountered during excavation.

152-1.3 Unsuitable Material. Any material containing vegetable or organic matter, such as muck, peat, organic silt, or sod shall be considered unsuitable for use in embankment construction. Material, when approved by the Engineer as suitable to support vegetation, may be used on the embankment slope

152-1.4 Subgrade Stabilization. A minimum of 12-inches of material shall be placed to stabilize the entire subgrade area. The material shall be placed to the thickness or elevation as shown on the plans or as directed by the Engineer. This item shall consist of one or a combination of the following materials:

a. <u>Cobble Rock</u>. Cobble Rock shall be defined as furnishing and placing of sound, durable rock, stone or crushed concrete that meets the requirements of this specification, conforms to the following gradation, and can be suitably tamped into the subgrade without creating voids.

Sieve Size	Percent Passing
12 inch	100
8 inch	80 - 100
3 inch	0 - 10

Cobble Rock may be obtained by the Contractor from sources outside of the project area, or from crushing concrete removed from within the project area. If imported material is used, the cobble rock shall have a specific gravity (saturated surface dry) of not less than 2.60.

The cobble material shall be placed on the subgrade and shall be pushed, tamped or keyed into the subgrade by track walking or other suitable means. After cobble placement, granular material from excavations or aggregate backfill material, meeting the requirements of technical specification P-154 Subbase, shall be spread on top of the cobble and worked in to fill any remaining voids, compacted and graded to provide a smooth surface prior to the placement of the ground stabilization fabric.

Limits of cobble stabilization are shown in the drawings. The Engineer also reserves the option to select any combination of materials and methods for additional stabilization if required in any particular area.

- b. <u>Subbase</u>. If subbase material is used for stabilization, the material shall meet the requirements of Section P-154, Subbase Course.
- c. <u>Aggregate Backfill Material</u>. If aggregate backfill material is used for stabilization, the material shall meet the requirements of Section P-154, Subbase.
- d. <u>Ground Stabilization Fabric</u>. If fabric material is used for stabilization, the material shall meet the requirements of Section P-156, Geotextile Fabric.

CONSTRUCTION METHODS

152-2.1 General. The suitability of material to be placed in embankments shall be subject to approval by the Engineer. All unsuitable material shall be disposed of in waste areas shown on the plans. If no waste areas are shown on the plans then all excess excavated material and all unsuitable material shall be removed from Airport property and properly disposed of by the Contractor. All waste areas shall be graded to allow positive drainage of the area and of adjacent areas. The surface elevation of waste areas shall not extend above the surface elevation of adjacent usable areas of the Airport, unless specified on the plans or approved by the Engineer.

When the Contractor's excavating operations encounter artifacts of historical or archaeological significance, the operations shall be temporarily discontinued. At the direction of the Engineer, the Contractor shall excavate the site in such a manner as to preserve the artifacts encountered and allow for their removal. Such excavation will be paid for as extra work.

Those areas outside of the pavement areas in which the top layer of soil material has become compacted, by hauling or other activities of the Contractor, shall be scarified and disked to a depth of 4 inches (100 mm) in order to loosen and pulverize the soil.

The Contractor shall be required to excavate and stabilize the entire subgrade area using material outlined under paragraph P-152-1.4 Subgrade Stabilization, and as directed by the Engineer.

If, in the opinion of the Engineer, the Contractor "overworks" (use of too heavy equipment and/or excessive operations) any area, causing soft and unstable subgrade conditions, these areas shall be stabilized using material as outlined under paragraph P-152-1.4 Subgrade Stabilization. All costs for this additional work will be borne by the Contractor, and the Owner will make no payment for this work.

If it is necessary to interrupt existing surface drainage, sewers or underdrain systems, conduits, utilities or similar underground structures, the Contractor shall be responsible for and shall take all necessary precautions to preserve them or provide temporary services. When such facilities are encountered, the Contractor shall notify the Engineer, who shall arrange for their removal if necessary. The Contractor shall, at his/her own expense, satisfactorily repair or pay the cost of all damage to such facilities or structures which may result from any of the Contractor's operations during the period of the contract.

152-2.2 Excavation. No excavation shall be started until the work has been staked out by the Contractor's surveyor and the Engineer has obtained elevations and measurements of the ground surface. All suitable excavated material shall be used in the formation of embankment, subgrade, or for other purposes shown on the plans. The Contractor shall properly dispose of all unsuitable material off Airport property, unless noted otherwise on the plans.

When the volume of the excavation exceeds that required to construct the embankments to the grades indicated, the Contractor shall properly dispose of all excess material off Airport property, unless noted otherwise on the plans. When the volume of excavation is not sufficient for constructing the fill to the grades indicated, the deficiency shall be obtained from borrow areas.

The grade shall be maintained so that the surface is well drained at all times. When necessary, temporary drains and drainage ditches shall be installed to intercept or divert surface water which may affect the work.

- a. <u>Undercutting</u>. Rock, shale, hardpan, loose rock, boulders, or other material unsatisfactory for runway safety areas, subgrades, roads, shoulders, or any areas intended for turfing shall be excavated to a minimum depth of 12 inches (300 mm) or to the depth specified by the Engineer, below the subgrade. Muck, peat, matted roots, or other yielding material, unsatisfactory for subgrade foundation, shall be removed to the depth specified. Unsuitable materials shall be disposed of by the Contractor off Airport property. This excavated material shall be paid for at the contract unit price per cubic yard (cubic meter) for unclassified excavation. The excavated area shall be refilled with suitable material, obtained from the grading operations or borrow areas and thoroughly compacted to specified densities. The necessary refilling will constitute a part of the embankment. Where rock cuts are made and refilled with selected material, any pockets created in the rock surface shall be drained in accordance with the details shown on the plans.
- b. <u>Overbreak</u>. Overbreak, including slides, is that portion of any material displaced or loosened beyond the finished work as planned or authorized by the Engineer. The Engineer shall determine if the displacement of such material was unavoidable and his/her decision shall be final. All overbreak shall be graded or removed by the Contractor and disposed of as directed; however, payment will not be made for the removal and disposal of overbreak that the Engineer determines as avoidable. Unavoidable overbreak will be classified as "Unclassified Excavation".

d. <u>Compaction Requirements</u>. The subgrade under the 12-inches of cobble rock layer will not be required to be compacted within the defined project limits of this projects reconstruction.

152-2.3 Borrow Excavation. Borrow area(s) within the Airport property are indicated on the plans. Borrow excavation shall be made only at these designated locations and within the horizontal and vertical limits as staked or as directed by the Engineer.

When borrow sources are outside the boundaries of the Airport property, it shall be the Contractor's responsibility to locate and obtain the supply, subject to the approval of the Engineer. The Contractor shall notify the Engineer, at least 15 days prior to beginning the excavation, so necessary measurements and tests can be made. The Contractor shall dispose of all unsuitable material. All borrow pits shall be opened up to expose the vertical face of various strata of acceptable material to enable obtaining a uniform product. Borrow pits shall be excavated to regular lines to permit accurate measurements, and they shall be drained and left in a neat, presentable condition with all slopes dressed uniformly.

152-2.4 Drainage Excavation. Drainage excavation shall consist of excavating for drainage ditches such as intercepting, inlet or outlet; for temporary levee construction; or for any other type as designed or as shown on the plans. The work shall be performed in the proper sequence with the other construction. All satisfactory material shall be placed in fills; unsuitable material shall be properly disposed of by the Contractor off Airport property or as directed by the Engineer. Intercepting ditches shall be constructed prior to starting adjacent excavation operations. All necessary work shall be performed to secure finish true to line, elevation, and cross section.

The Contractor shall maintain ditches constructed on the project to the required cross section and shall keep them free of debris or obstructions until the project is accepted.

152-2.5 Preparation of Embankment Area. Where any embankment is to be constructed, all sod, vegetable matter, rubbish, and any other unsuitable material shall be removed for the surface upon which the embankment is to be placed, and the cleared surface shall be inspected by the Engineer and surveyed. Following Engineer inspection and survey, the cleared area shall be completely broken up by the plowing or scarifying to minimum depth of 6 inches (150mm). This area shall then be compacted as indicated in paragraph 2.6.

152-2.6 Formation of Embankments. Embankments shall be formed in successive horizontal layers of not more than 8 inches (200 mm) in loose depth for the full width of the cross section, unless otherwise approved by the Engineer.

The grading operations shall be conducted, and the various soil strata shall be placed, to produce a soil structure as shown on the typical cross section or as directed. Materials such as brush, hedge, roots, stumps, grass and other organic matter, shall not be incorporated or buried in the embankment.

Operations on earthwork shall be suspended at any time when satisfactory results cannot be obtained because of rain, freezing, or other unsatisfactory conditions of the field. The Contractor shall drag, blade, or slope the embankment to provide proper surface drainage.

The material in the layer shall be within ± 2 percent of optimum moisture content before rolling to obtain the prescribed compaction. In order to achieve a uniform moisture content throughout the layer, wetting or drying of the material and manipulation shall be required when necessary. Should the material be too wet to permit proper compaction or rolling, all work on all of the affected portions of the embankment shall be delayed until the material has dried to the required moisture content. Sprinkling of dry material to obtain the proper moisture content shall be done with approved equipment that will sufficiently distribute the water. Sufficient equipment to furnish the required water shall be available at all times. Based on the compaction tests outlined in paragraph P-152-2.11, the Contractor shall make the necessary corrections and adjustments in methods, materials or moisture content in order to achieve the correct embankment density.

Rolling operations shall be continued until the embankment is compacted to the depths and densities as shown on the plans or as specified in other specification sections. When not otherwise shown or specified compact to a density of not less than 95 percent of the maximum density for cohesive soils and 100 percent of the maximum density for non-cohesive soils. Maximum density and optimum moisture content shall be determined using the following test methods:

ASTM D 1557 soils with less than 30 percent retained on the 3/4-inch (19.0 mm) sieve.

or

AASHTO T 180 for soils with more than 30 percent retained on the 3/4-inch (19.0 mm) sieve.

Any areas inaccessible to a roller shall be consolidated and compacted by mechanical tampers.

On all areas outside of the pavement areas, no compaction will be required on the top 4 inches (100 mm). The lower layers shall be compacted to 95 percent of the maximum density as determined in accordance with ASTM D 698 for non-cohesive soils and 90% for cohesive soils.

The in-place field density shall be determined in accordance with ASTM D 1556, ASTM D 2167 or ASTM D 6938. If nuclear density machines are to be used for density determination, the machines shall be calibrated in accordance with ASTM D 6938. The nuclear equipment shall be calibrated using blocks of materials with densities that extend through a range representative of the density of the proposed embankment material. All testing shall be done by a laboratory hired by the Contractor. The results shall be furnished daily to the Engineer for determination of acceptance.

Compacted areas shall be kept separate, and no layer shall be covered by another until the proper density is obtained.

During construction of the embankment, the Contractor shall route his/her equipment at all times, both when loaded and when empty, over the layers as they are placed and shall distribute the travel evenly over the entire width of the embankment. The equipment shall be operated in such a manner that hardpan, cemented gravel, clay or other chunky soil material will be broken up into small particles and become incorporated with the other material in the layer.

In the construction of embankments, layer placement shall begin in the deepest portion of the fill; as placement progresses, layers shall be constructed approximately parallel to the finished pavement grade line.

When rock and other embankment material are excavated at approximately the same time, the rock shall be incorporated into the outer portion of the embankment and the other material shall be incorporated under the future paved areas. Stones or fragmentary rock larger than 4 inches (100 mm) in their greatest dimension will not be allowed in the top 6 inches (150 mm) of the subgrade. Rock fill shall be brought up in layers as specified or as directed and every effort shall be exerted to fill the voids with the finer material to form a dense, compact mass. Rock or boulders shall not be disposed of outside of the excavation or embankment areas, except at places and in the manner designated by the Engineer.

When the excavated material consists predominately of rock fragments of such size that the material cannot be placed in layers of the prescribed thickness without crushing, pulverizing or further breaking down the pieces, such material may be placed in the embankment as directed in layers not exceeding 2 feet (0.6 m) in thickness. Each layer shall be leveled and smoothed with

suitable leveling equipment and by distribution of spalls and finer fragments of rock. These types of lifts shall not be constructed above an elevation 4 feet (1.2 m) below the finished subgrade.

Frozen material shall not be placed in the embankment nor shall embankment be placed upon frozen material.

The Contractor shall be responsible for the stability of all embankments made under the contract and shall replace any portion which, in the opinion of the Engineer, has become displaced due to carelessness or negligence on the part of the Contractor.

There will be no separate measurement or payment for compacted embankment, and all costs incidental to placing in layers, compacting, disking, watering, mixing, sloping and other necessary operations for construction of embankments will be included in the contract price for excavation, borrow or other items.

152-2.7 Finishing and Protection of Subgrade. After the subgrade has been substantially stabilized, the full width shall be proof rolled per section P-152-2.11. Any soft spots which are not compacted properly shall require additional cobble rock to be tamped in until subgrade has been stabilized. The resulting areas and all other low areas, holes or depressions shall be brought to grade with suitable select material. Scarifying, blading, rolling and other methods shall be performed to provide a thoroughly stabilized subgrade shaped to the lines and grades shown on the plans.

Grading of the subgrade prior to stabilizing shall be performed so that it will drain readily. The Contractor shall take all precautions necessary to protect the subgrade from damage. He/she shall limit hauling over the finished subgrade to that which is essential for construction purposes.

All ruts or rough places that develop in a completed section of the stabilized subgrade shall be smoothed and re-compacted.

No subbase, base, or surface course shall be placed on the stabilized subgrade until the stabilized subgrade has been approved by the Engineer.

152-2.8 Haul. All hauling will be considered a necessary and incidental part of the work. Its cost shall be considered by the Contractor and included in the contract unit price for the pay of items of work involved. No payment will be made separately or directly for hauling on any part of the work.

152-2.9 Tolerances. In those areas upon which a subbase or base course is to be placed, the top of the stabilized subgrade shall be of such smoothness that, when tested with a 16-foot straightedge applied parallel and at right angles to the centerline, it shall not show any deviation in excess of 1/2 inch or shall not be more than 0.05 feet (15 mm) from true grade as established by grade hubs or pins. Any deviation in excess of these amounts shall be corrected by loosening, adding or removing materials, reshaping and re-compacting by sprinkling and rolling.

On runway safety areas, intermediate and other designated areas, the surface shall be of such smoothness that it will not vary more than 0.10 of a foot (30 mm) from true grade as established by grade hubs. Any deviation in excess of this amount shall be corrected by loosening, adding or removing materials and reshaping.

152-2.10 Topsoil. See specification 329000 – Landscape for topsoil specifications and bid item.

152-2.11 Testing Frequency. Acceptance testing for stabilized subgrade shall be based on proof rolling with a dual tandem dump truck carrying 15 tons as approved by Engineer.

METHOD OF MEASUREMENT

152-3.1 The quantity of Unclassified Excavation shall be the number of cubic yards measured by survey in its original position and disposed of off Airport property.

152-3.2 The quantity of Unsuitable Excavation shall be the number of cubic yards measured by survey in its original position and disposed of off Airport property.

152-3.2 The quantity of Cobble Stabilization shall be the number of square yards measured by survey of the Unsuitable Excavation limits.

BASIS OF PAYMENT

152-4.1 Payment shall be made at the contract unit price per unit as indicated below. These prices shall be full compensation for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specifications.

P-152-1	Unclassified Excavation	Per Cubic	Yard
P-152-2	Unsuitable Excavation	Per Cubic	Yard
P-152-3	12" Cobble Stabilization	Per Square	Yard

TESTING REQUIREMENTS

ASTM D 698	Test Method for Laboratory Compaction Characteristics of Soil Using Standard Method
ASTM D 1556	Test Method for Density and Unit Weight of Soil In Place by the Sand-Cone Method
ASTM D 1557	Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
ASTM D 2167	Test Method for Density and Unit Weight of Soil In Place by the Rubber Balloon Method
ASTM D 6938	Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
AASHTO T 99	Method of Test for Moisture-Density Relations of Soils Using a 5.5-lb (2.5 kg) Rammer and a 12-in (365 mm) Drop
AASHTO T 180	Method of Test for Moisture-Density Relations of Soils Using a 10-lb (4.54 kg) Rammer and an 18-in (457 mm) Drop

END OF SECTION P-152
SECTION P-153

CONTROLLED LOW-STRENGTH MATERIAL

DESCRIPTION

153-1.1 This item shall consist of furnishing, transporting, and placing a controlled low-strength material (CLSM) as flowable backfill in trenches or at other locations shown on the plans or as directed by the Engineer.

MATERIALS

153-2.1 Materials.

- a. Portland Cement. Portland cement shall conform to the requirements of ASTM C 150 Type II. If for any reason, cement becomes partially set or contains lumps of caked cement, it shall be rejected. Cement salvaged from discarded or used bags shall not be used.
- b. Fly ash. Fly ash shall conform to ASTM C 618, Class C or F.
- c. Fine Aggregate (Sand). Fine aggregate shall conform to the requirements of ASTM C33 except for aggregate gradation. Any aggregate gradation which produces performance characteristics of the CLSM specified here will be accepted, except as follows.

Sieve Size	Percent Passing by weight
3/4 inch (19.0 mm)	100
No. 200 (0.075 mm)	0 - 12

d. Water. Water used in mixing shall be potable and free of oil, salt, acid, alkali, sugar, vegetable matter, or other substances injurious to the finished product.

MIX DESIGN

153-3.1 Proportions. The Contractor shall submit, to the Engineer, a mix design including the proportions and source of aggregate, fly ash, cement, water, and approved admixtures. No CLSM mixture shall be produced for payment until the Engineer has given written approval of the proportions. The proportions shall be prepared by a laboratory and shall remain in effect for the duration of the project. Laboratory costs are incidental to this item. The proportions shall establish a single percentage or weight for aggregate, fly ash, cement water, and any admixtures proposed.

- a. Compressive Strength. CLSM shall be designed to achieve a 28-day compressive strength of 100 to 300 psi (690 to 2,070 kPa) when tested in accordance with ASTM D 4832. There should be no significant strength gain after 28 days.
- b. Consistency. CLSM should be designed to achieve a consistency that will produce an approximate 8 inch (200 mm) diameter circular-type spread without segregation when tested

by: (1) filling a 3 inch inside diameter by 6 inch length flow cylinder (non-absorbent pipe), (2) strike off of the flow cylinder and start of lift within five seconds of filling and (3) by steady upward pull, lift the cylinder in a time period of between two and four seconds. Adjustments of the material proportions should be made to achieve proper solid suspension and flowable characteristics, however the theoretical yield shall be maintained at one cubic yard (cubic meter) for the given batch weights.

CONSTRUCTION METHODS

153-4.1 Placement.

a. Placement. CLSM may be placed by any reasonable means from a mixing unit into the space to be filled. Agitation is required during transportation and waiting time. Placement shall be performed so structures or pipes are not displaced from their final position and intrusion of CLSM into unwanted areas is avoided. CLSM shall be placed in lifts not exceeding 4 feet in height, with time intervals of not less than one hour between lifts. When backfilling within the pipe zone, the backfill shall be placed equally on both sides of the pipe in such a manner that the pipe is not displaced. All efforts shall be made to completely fill the space beneath and around the pipe. Backfilling of pipe trenches with CLSM shall be done in not less than two lifts with the first lift no higher than the top of the pipe.

The material shall be brought up uniformly to the fill line shown on the plans or as directed by the Engineer. Each placement of CLSM shall be as continuous an operation as possible. If CLSM is placed in more than one layer, the base layer shall be free of surface water and loose foreign material prior to placement of the next layer.

b. Limitations of Placement. CLSM shall not be placed on frozen ground. Mixing and placing may begin when the air or ground temperature is at least 35 °F (2 °C) and rising. At the time of placement, CLSM shall have a temperature of at least 40 °F (4 °C). Mixing and placement shall stop when the air temperature is 40 °F (4 °C) and falling or when the anticipated air or ground temperature will be 35 °F (2 °C) or less in the 24 hour period following proposed placement.

153-4.2 Curing and Protection.

- a. Curing. The air in contact with the CLSM shall be maintained at temperatures above freezing for a minimum of 72 hours. If the CLSM is subjected to temperatures below 32 °F (0 °C), the material may be rejected by the Engineer if damage to the material is observed.
- b. Protection. The CLSM shall not be subject to loads and shall remain undisturbed by construction activities for a period of 48 hours or until a compressive strength of 15 psi (105 kPa) is obtained. The Contractor shall be responsible for providing evidence to the Engineer that the material has reached the desired strength. Acceptable evidence shall be based upon compressive tests made in accordance with paragraph 153-3.1a.

153-4.3 Acceptance. Acceptance of CLSM delivered and placed as shown on the plans or as directed by the Engineer shall be based upon mix design approval and batch tickets provided by the Contractor to confirm that the delivered material conforms to the mix design. The Contractor shall verify by additional

testing, each 1,000 cubic yards (765 m^3) of material used. The Engineer shall verify by additional testing at a frequency of one sample for each day CLSM is placed, except when one day's placement exceeds 1,000 cubic yards (765 cubic meters) in which case the day's placement shall be split into two or more equal lots not exceeding 1,000 cubic yards (765 cubic meters) each.

Verification shall include confirmation of material proportions and tests of compressive strength to confirm that the material meets the original mix design and the requirements of CLSM as defined in this specification. Adjustments shall be made as necessary to the proportions and materials prior to further production.

The CLSM shall be sampled in accordance with ASTM D 5971. The spread diameter shall be determined according to ASTM D 6103 and the compressive strength shall be determined by test cylinders made and tested in accordance with ASTM D 4832.

Unless noted otherwise on the plans, CLSM shall meet the following criteria:

Minimum spread diameter -	6.0 inches (150 mm)
Maximum spread diameter -	10.0 inches (250 mm)
Minimum compressive strength -	100 psi (690 kPa) at 28 days
Maximum compressive strength -	300 psi (2,070 kPa) at 28 days

Four test cylinders shall be made from each sample to provide two compressive strength tests at each test age. Since the strength level of CLSM at an early age is considerably lower than concrete, special care is required in handling test specimens. Cylinders should be field cured 4 days prior to moving. The Contractor shall cure and store the test specimens under such conditions as directed.

For each test age the compressive strength for each sample shall be computed by averaging the results of the two test cylinders representing that sample. Test ages will be 7 days and 28 days.

METHOD OF MEASUREMENT

153-5.1 Measurement. Accepted quantities of controlled low strength material shall be considered incidental to other pay items and no separate measurement will be made for this material.

BASIS OF PAYMENT

153-6.1 Payment. Accepted quantities of controlled low strength material shall be considered incidental to other pay items and no separate payment will be made for this material.

TESTING REQUIREMENTS

ASTM D4832 Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders

MATERIAL REQUIREMENTS

ASTM C33	Specification for Concrete Aggregates
ASTM C150	Specification for Portland Cement
ASTM C618	Specification for Coal Flyash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete
ASTM C595	Specification for Blended Hydraulic Cements

END OF SECTION P-153

SECTION P-154

SUBBASE COURSE

DESCRIPTION

154-1.1 This item shall consist of a subbase course composed of granular materials constructed on a prepared subgrade or underlying course in accordance with these specifications and in conformity with the dimensions shown on the plans.

MATERIALS

154-2.1 Materials. The subbase material shall consist of hard durable particles or fragments of granular aggregates. This material will be mixed or blended with fine sand, clay, stone dust or other similar binding or filler materials produced from approved sources. This mixture must be uniform and shall comply with the requirements of these specifications as to gradation, soil constants, and shall be capable of being compacted into a dense and stable subbase. The material shall be free from vegetable matter, lumps or excessive amounts of clay and other objectionable or foreign substances. Pit-run material may be used, provided the material meets the requirements specified.

Sieve Designation (Square Openings) as per ASTM C 136 and C 117	Percentage by Weight Passing Sieves
4 inch (100 mm)	100
2 inch (50 mm)	70 - 95
3/4 inch (19 mm)	45 - 95
No. 4 (4.75 mm)	28 - 75
No. 10 (2.00 mm)	20 - 62
No. 40 (0.425 mm)	5 - 40
No. 200 (0.075 mm)	0 - 8

 TABLE 1. GRADATION REQUIREMENTS

The portion of the material passing the No. 40 (0.425 mm) sieve shall have a liquid limit of not more than 20 and a plasticity index of not more than 6 when tested in accordance with ASTM D 4318. The imported subbase material shall have a California Bearing Ratio (CBR) of not less than 35 at 0.1 to 0.5 inches when compacted and soaked at 100 percent of maximum dry density.

154-2.2 Submittals. Prior to placement of the subbase course material, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction. The certification shall show the appropriate ASTM or AASHTO tests for the material, the name of the company performing the tests, the date of the tests, the test results and a statement that the material did or did not comply with the applicable specifications. Tests older than 90 days shall not be used. The submittal shall include the material source, sieve analysis, liquid limit, plasticity index, CBR, maximum density and optimum moisture content.

Submittals shall comply with procedures set forth in Section 00700, General Conditions Article 3.9. Allow ten days for review by the Engineer, excluding delivery time to and from the Contractor.

CONSTRUCTION METHODS

154-3.1 General. The subbase course shall be placed where designated on the plans or as directed by the Engineer. The material shall be shaped and thoroughly compacted within the tolerances specified.

Granular subbases which, due to grain sizes or shapes, are not sufficiently stable to support without movement the construction equipment, shall be mechanically stabilized to the depth necessary to provide such stability as directed by the Engineer. The mechanical stabilization shall principally include the addition of a fine-grained medium to bind the particles of the subbase material sufficiently to furnish a bearing strength, so that the course will not deform under the traffic of the construction equipment. The addition of the binding medium to the subbase material shall not increase the soil constants of that material above the limits specified.

154-3.2 Operation in Pits. All work involved in clearing and stripping pits and handling unsuitable material encountered shall be performed by the Contractor at his/her own expense. The subbase material shall be obtained from pits or sources that have been approved. The material in the pits shall be excavated and handled in such manner that a uniform and satisfactory product can be secured.

154-3.3 Preparing Underlying Course. Before any subbase material is placed, the underlying course shall be prepared and conditioned as specified, and as shown on the drawings. The course shall be checked and accepted by the Engineer before placing and spreading operations are started.

Grade control between the edges of the pavement shall be by means of grade stakes or steel pins placed in lanes parallel to the centerline of the pavement and at intervals which will permit string lines or check boards to be placed between the stakes or pins.

To protect the subgrade and to ensure proper drainage, the spreading of the subbase shall begin along the centerline of the pavement on a crowned section or on the high side of pavements with a one-way slope.

154-3.4 Materials Acceptance in Existing Condition. When the entire subbase material is secured in a uniform and satisfactory condition and contains approximately the required moisture, such approved material may be moved directly to the spreading equipment for placing. The material may be obtained from gravel pits, stockpiles or may be produced from a crushing and screening plant with the proper blending. The materials from these sources shall meet the requirements for gradation, quality and consistency. It is the intent of this section of the specifications to secure materials that will not require further mixing. The moisture content of the material shall be approximately that required to obtain maximum density.

Any minor deficiency or excess of moisture may be corrected by surface sprinkling or by aeration. In such instances, some mixing or manipulation may be required, immediately preceding the rolling, to obtain the required moisture content. The final operation shall be blading or dragging, if necessary, to obtain a smooth uniform surface true to line and grade.

154-3.5 Plant Mixing. When materials from several sources are to be blended and mixed, the subbase material shall be processed in a central or travel mixing plant. The subbase material, together with any blended material, shall be thoroughly mixed with the required amount of water. After the mixing is complete, the material shall be transported to and spread on the underlying course without undue loss of the moisture content.

154-3.5.1 Mixed in Place. Prior written approval from the Engineer is required for mixing in place. When materials from different sources are to be proportioned and mixed or blended in place, the relative proportions of the components of the mixture shall be as designated by the Engineer.

The subbase material shall be deposited and spread evenly to a uniform thickness and width. Then the binder, filler or other material shall be deposited and spread evenly over the first layer. There shall be as many layers of materials added as the Engineer may direct to obtain the required subbase mixture.

When the required amount of materials have been placed, they shall be thoroughly mixed and blended by means of graders, discs, harrows, rotary tillers, supplemented by other suitable equipment if necessary. The mixing shall continue until the mixture is uniform throughout. Areas of segregated material shall be corrected by the addition of binder or filler material and by thorough remixing. Water in the amount and as directed by the Engineer shall be uniformly applied prior to and during the mixing operations, if necessary, to maintain the material at its required moisture content.

When the mixing and blending has been completed, the material shall be spread in a uniform layer which, when compacted, will meet the requirements of thickness and typical cross section.

154-3.6 General Methods for Placing. The subbase course shall be constructed in layers. Any layer shall be not less than 4 inches (100 mm) nor more than 8 inches (200 mm) of compacted thickness. The subbase material shall be deposited and spread evenly to a uniform thickness and width. The material, as spread, shall be of uniform gradation with no pockets of fine or coarse materials. The subbase, unless otherwise permitted by the Engineer, shall not be spread more than 2,000 square yards (1,700 square meters) in advance of the rolling. Any necessary sprinkling shall be kept within this limit. No material shall be placed in snow or on a soft, muddy, or frozen course.

When more than one layer is required, the construction procedure described herein shall apply similarly to each layer.

During the placing and spreading, sufficient caution shall be exercised to prevent the incorporation of subgrade, shoulder, or foreign material in the subbase course mixture.

154-3.7 Finishing and Compacting. After spreading or mixing, the subbase material shall be thoroughly compacted by rolling and sprinkling, when necessary. Sufficient rollers shall be furnished to adequately handle the rate of placing and spreading of the subbase course.

The field density of the compacted material shall be per Table 2, or as shown on the drawings, and based on the maximum density of laboratory specimens prepared from samples of the subbase material delivered to the job site. The laboratory specimens shall be compacted and tested in accordance with Table 3. All

testing shall be done by a laboratory hired by the contractor. Density test results shall be furnished daily to the Engineer for acceptance determination.

Material	Minimum Density		
Subbase Course	95 percent		

TABLE 2. DENSITY REQUIREMENTS

TABLE 3. TESTING REQUIREMENTS

Aircraft or Vehicle Gross Weight	Unit Weight Test Procedure
Greater than 60,000 lbs. (27,200 kg)	AASHTO T 180

The in-place field density shall be determined in accordance with ASTM D 1556 or ASTM D 6938. A field nuclear gauge calibration to a sand cone density, for the subbase course material, shall be conducted at the beginning of the project. The moisture content of the material at the start of compaction shall not be below nor more than 2 percentage points above the optimum moisture content.

Note: The moisture requirement range is only specified for the start of compaction, and not during acceptance testing of compaction.

The course shall not be rolled when the underlying course is soft or yielding or when the rolling causes undulation in the subbase. When the rolling develops irregularities that exceed 1/2 inch (12 mm) when tested with a contractor-provided 16-foot (4.8 m) straightedge, the irregular surface shall be loosened and then refilled with the same kind of material as that used in constructing the course and again rolled as required above.

Along places inaccessible to rollers, the subbase material shall be tamped thoroughly with mechanical or hand tampers.

Sprinkling during rolling, if necessary, shall be in the amount and by equipment approved by the Engineer. Water shall not be added in such a manner or quantity that free water will reach the underlying layer and cause it to become soft.

No base or surface course shall be placed on the subbase until the subbase has been approved by the Engineer and the surface has been surveyed in accordance with Section P-130, Survey.

154-3.8 Surface Test. After the course is completely compacted, the surface shall be tested for smoothness and accuracy of grade and crown; any portion found to lack the required smoothness or to fail in accuracy of grade or crown shall be scarified, reshaped, recompacted and otherwise manipulated as the Engineer may direct until the required smoothness and accuracy are obtained.

The finished surface shall not vary more than 1/2 inch (12 mm) when tested with a contractor-provided 16-foot (4.8 m) straightedge applied parallel with, and at right angles to, the centerline.

154-3.9 Thickness. The thickness of the completed subbase course shall be determined by survey in accordance with Section P-130, Survey. When the deficiency in thickness is more than 1/2 inch (12 mm), the Contractor shall correct such areas by scarifying, adding satisfactory mixture, rolling, sprinkling, reshaping and finishing in accordance with these specifications. The Contractor shall replace at his/her expense the subbase material where borings are taken for test purposes. No payment shall be made to the Contractor for the material placed in excess of 1/2 inch (12 mm) over proposed thickness.

154-3.10 Protection. Work on subbase course shall not be conducted during freezing temperature nor when the subgrade is wet. When the subbase material contains frozen material or when the underlying course is frozen, the construction shall be stopped.

154-3.11 Maintenance. Following the final shaping of the material, the subbase shall be maintained throughout its entire length by the use of standard motor graders and rollers until, in the judgment of the Engineer, the subbase meets all requirements and is acceptable for the construction of the next course.

154-3.12 Testing Frequency. Acceptance testing for subbase course material shall be based on the schedule in Table 4.

Test	Frequency
Maximum Density and Optimum Moisture (Proctor)	One per 5,000 tons (4,540 metric tons) One additional test each time the material changes in appearance
Sieve Analysis (Gradation)	One before subbase hauling operations begin and one per day when hauling subbase
Field Density & Moisture	One per 500 square yards (420 square meters)*
Surface Test	One per 500 square yards (420 square meters)
Thickness	One per 500 square yards (420 square meters)

 TABLE 4. TESTING SCHEDULE

* applies to each layer placed

Additional tests may be conducted as directed by the Engineer.

METHOD OF MEASUREMENT

154-4.1 The quantity of subbase course to be paid for shall be the number of cubic yards of subbase course material placed, compacted and accepted in the completed course. The quantity shall be measured in its final position.

Measurement shall not include the quantity of materials placed without authorization beyond the lines shown in the drawings, or the quantity of material used for purposes other than those directed.

154-4.2 For payments specified by the cubic yard, measurement for all materials shall be computed by survey in accordance with Section P-130, Survey. The quantity shall be the volume that is bound by the final surface of the layer below the aggregate subbase, established by survey, and the final surface after completion of the subbase course, established by survey, subject to verification by the Engineer. After completion of subbase and prior to the placing of any base material, the final quantity shall be verified by the Contractor in accordance with the requirements of Section P-130, Survey.

BASIS OF PAYMENT

154-5.1 Payment shall be made at the contract unit price per cubic yard for subbase course. This price shall be full compensation for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item. No payment will be made under this section without accompanying survey data completed in accordance with Section P-130, Survey.

P-154	Subbase Course	Per	Cubic	Yard	ł
-------	----------------	-----	-------	------	---

TESTING REQUIREMENTS

AASHTO T 99	Methods of Test for Moisture-Density Relations of Soils Using a 5.5-lb (2.5 kg) Rammer and a 12-in (365 mm) Drop
AASHTO T 180	Method of Test for Moisture-Density Relations of Soils Using a 10-lb (4.54 kg) Rammer and an 18-in (457 mm) Drop
ASTM C 117	Test Method for Material Finer than 75 μ m (No. 200) Sieve in Mineral Aggregate by Washing
ASTM C 136	Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate
ASTM D 1556	Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D 1883	Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils
ASTM D 6938	Test Methods for Density of Soil and Soil-Aggregate in place by Nuclear Methods (Shallow Depth)
ASTM D 4318	Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

END OF SECTION P-154

SECTION P-156

GEOTEXTILE FABRIC

DESCRIPTION

P-156-1.1. The work covered by this section consists of furnishing and installing geotextile fabric as shown on the plans or as directed by the Engineer.

P-156-1.2 Submittal Data. The Contractor shall submit to the Engineer a minimum of 1 square yard sample of the geotextile fabric proposed for use if requested by the Engineer. The submittal shall be accompanied by manufacturer's written warranty against defects in materials and workmanship, and a written affidavit as to the physical properties of the fabric. Test results shall be from an independent testing laboratory in accordance with referenced testing procedures.

P-156-1.3 Information To Be Provided. The Contractor shall provide all information regarding proper handling and installation of each material.

MATERIALS

P-156-2.1 Geotextile Fabric. The geotextile fabric shall be composed of strong, rot-proof synthetic fibers formed into a fabric of the woven or nonwoven type. The fabric shall be free of any treatment or coating which might significantly alter its physical properties after installation. The fabric shall contain stabilizers and/or inhibitors to make the filaments stable under exposure to ultraviolet light for sufficient periods of time to assure proper installation of the fabric. The fabric shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position with respect to each other.

The edges of the fabric shall be finished to prevent the outer yarn from pulling away from the fabric. The fabric shall be free of defects or flaws which significantly affect its physical and/or filtering properties. Sheets of fabric may be sewn or bonded together. No deviation from any physical requirements will be permitted due to the pressure of the seam. The fabric shall at a minimum meet the following requirements.

Property	Test Method	<u>Minimum Value</u>
Weight, oz./sq. yd.	ASTM D 3776	6.0
Tensile Strength, lbs.	ASTM D 5034	275
Maximum Elongation Percent	ASTM D 5034	20
Mullen Burst Strength, psi	ASTM D 3786	600
Puncture Strength, lbs.	ASTM D 751	120
Equivalent Opening Size	ASTM D 4751	20-80
U.S. Standard Sieve		

During all periods of shipment and storage, the cloth shall be wrapped in a heavy-duty protective covering to protect the cloth from sunlight, mud, dust, dirt, and debris. The fabric shall not be exposed to temperatures greater than 140 degrees F.

CONSTRUCTION METHODS

P-156-3.1 Ordering, Delivery and Storage. Materials shall be delivered in original, unopened packaging, which protects the materials from abrasions and ultraviolet exposure. Packaging shall be clearly labeled and shall warn against exposing fabric to ultraviolet radiation and mechanical injury. Materials shall be stored off the ground in weather-protected enclosures.

Before placing an order for the material, the Contractor shall inform the Engineer of the proposed quantity to be ordered and the required time for delivery. Based on current site conditions and information, the Engineer may approve the ordering of that quantity or a different quantity.

P-156-3.2 Geotextile Installation. Geotextile fabric shall be installed at the locations as directed by the Engineer. Before placing fabric, all sharp stones shall be removed from the surface and surface shall be tamped level. The fabric shall be loosely laid on the surface, secured, and covered as detailed within two days. Sufficient slack shall be left in the fabric around irregularities to allow readjustments without tearing. No traffic or construction equipment will be permitted to travel directly on the filter fabric. Under no circumstances will the Contractor drop material directly onto the fabric above a height of 1 foot. All tears in the fabric shall be patched by placing an additional section of fabric over the tear with a 3-foot overlap on all sides. Likewise, all fabric joints shall be made by overlapping adjacent sheets with a minimum 3-foot overlap. Factory "sewn seams" will be allowed in lieu of 3-foot overlap if Contractor can demonstrate through certified testing laboratories that the sewn seams are equal to or superior to a 3-foot overlap in all respects.

METHOD OF MEASUREMENT

P-156-4.1. Fabric installed will be measured for payment based upon the number of square yards installed in plan view and accepted by the Engineer. There will be no payment for areas of overlap.

BASIS OF PAYMENT

P-156-5.1. Payment will be made for the fabric measured according to the unit prices. Payment shall be full compensation for all materials, tools and labor required to complete this item of work.

Payment will be made under:

P-156 Geotextile FabricPer Square Yard

TESTING REQUIREMENTS

ASTM D 751	Standard Test Methods for Coated Fabrics
ASTM D 3776	Standard Test Methods for Mass per Unit Area (Weight) of Fabric
ASTM D 3786	Test Method for Hydraulic Bursting Strength of Knitted Goods and Nonwoven Fabrics: Diaphragm Bursting Strength Tester Method
ASTM D 5034	Standard Test Method for Breaking Load and Elongation of Textile Fabrics (Grab Method)
ASTM D 4751	Test Method for Determining the Apparent Opening Size of Geotextiles

END OF SECTION P-156

THIS PAGE INTENTIONALLY BLANK

SECTION P-239

AGGREGATE BASE COURSE (UDOT)

DESCRIPTION

239-1.1 General. Production, construction, and compaction of untreated base course (UTBC) used for pavements, shoulders, and incidental construction.

239-1.2 Submittals. Submit a written report for approval for each aggregate class and source, a minimum of five working days prior to placement. Include the following:

- 1. Aggregate Suitability. Refer to this Section, Part 2, Materials.
- 2. Name of supplier and location of source.
- 3. Maximum Dry Density and Optimum Moisture Content. Refer to AASHTO T 180, Method D.
- 4. Job mix gradation including single values for each sieve size, No. 4 and finer, within the gradation limits of Table 2.

MATERIALS

239-2.1 Aggregates.

a. Well-graded, clean, hard, tough, durable and sound mineral aggregates consisting of crushed stone, crushed gravel or crushed slag; free of organic matter and contamination from chemical or petroleum products; meeting the requirements of Table 1.

TABLE 1					
AGGREGATE PROPERTIES					
	A	Aggregate Cla			
	А	В	С		
Dry Rodded Unit Weight	Not	less than 75	AASHTO T 19		
Liquid Limit/Plastic Index	Non-p	plastic	$PI \le 6$	AASHTO T 89 AASHTO 90	
Aggregate Wear	Not to	o exceed 50 p	AASHTO T 96		
Gradation		Table 2	AASHTO T 11 AASHTO T 27		
CBR with a 10 lb surcharge measured at 0.20 inch penetration	70% Minimum		N/A	AASHTO T 193	
Two Fractured Faces	50 % Min N/A		N/A	AASHTO TP 61	

b. Establish the job mix (target) gradation for the ³/₄ inch sieve and finer within the gradation limits. The Job Mix Gradation Tolerance is the allowable deviation from the job mix (target) gradation on the

applicable sieves. All other percent's passing will be within the gradation limits. Refer to AASHTO T 11 and AASHTO T 27.

TABLE 2					
	GRADATION LIMIT	TS			
Sieve Size	Job Mix Gradation Target	Job Mix Gradation			
	Band	Tolerance			
$1\frac{1}{2}$ inch	100				
1 inch	90 - 100	± 9.0			
³ / ₄ inch	70 - 85	± 9.0			
¹ / ₂ inch	65 - 80	± 9.0			
³ / ₈ inch	55 - 75	± 9.0			
No. 4	40 - 65	± 7.0			
No. 16	25 - 40	± 5.0			
No. 200	7 - 11	± 3.0			

Percent passing based on total aggregate (dry weight), and fine and coarse aggregate having approximately the same bulk specific gravities.

CONSTRUCTION METHODS

239-4.1 Installation

a. Mixing: Provide moisture content of ± 2 percent of optimum at the time of placement. Refer to AASHTO T 180, Method D and AASHTO T 255.

b. Procedures for changing the Job-Mix Gradation

1. Submit changes in writing 24 hours prior to placement for approval by the Engineer.

c. Placing: Place in layers of uniform thickness and compact each layer to a thickness not to exceed 8 inch depth. Do not place on any frozen surface.

d. Finishing: Uniform line and grade with surface deviations no more than $\frac{3}{8}$ inch in 10 feet in any direction.

- 1. Profile Tolerance Correct any profile deviations greater than ³/₈ inch.
- 2. Rework minimum of 4-inch lift to achieve homogeneous density.
- 3. Determine limits of correction based on extent of deviation.
- 4. Continue finishing until existing deviation is less than ³/₈ inch.
- e. Compaction: Maintain optimum moisture content ± 2 percent.
 - 1. Use appropriate compaction equipment adjacent to abutments, slabs, curb & gutter, retaining walls, and other structures.
 - 2. Use a minimum of two passes with a roller for Type III placement, or as shown on the Drawings or directed by the Engineer.

239-4.2 Acceptance.

a. Acceptance sampling and testing of material is in accordance with UDOT Minimum Sampling and Testing Requirements.

b. Type I Placement – Pavement Section includes placement for Curb or Curb and Gutter when in conjunction with placement for pavement section.

- 1. Use Class A aggregate, Table 1.
- 2. The Engineer takes random samples from the grade and tests for moisture, gradation, and laboratory density, and performs In-place Density determinations.
- 3. Meet gradation limits and applicable tolerances of Table 2 for each gradation test. Each sublot will be evaluated separately and not averaged with other sublots.
- 4. Meet minimum density test average of 97 percent of maximum laboratory density with no test less than 94 percent.

c. Type II Placement – Incidental, includes placement for curb or curb and gutter, barrier curb, concrete block walls, driveways, pedestrian access ramps, sidewalk, waterways, concrete slabs, and other items of work in the contract to which UTBC is included and not measured or paid for separately.

- 1. Use Class A or B aggregate, Table 1.
- 2. The Engineer takes random samples from the grade and tests for moisture, gradation, and laboratory density, and performs In-place Density determinations.
- 3. Meet gradation limits and applicable tolerances of Table 2 for each gradation test. Each sublot will be evaluated separately and not averaged with other sublots.
- 4. Meet minimum density test average of 95 percent of maximum laboratory density with no test less than 92 percent.

d. Type III Placement – Shoulder – Incidental, includes placement for unpaved shoulders and aprons around sign pads and other items of work in the contract to which UTBC is included and not measured or paid for separately.

- 1. Use Class A, B or C aggregate, Table 1.
- 2. Adjust moisture content prior to compaction.

e. Material not meeting the gradation requirements may be allowed to remain in-place at the discretion of the Engineer, provided density requirements are met. However, additional lots may not be placed until the deficiencies are addressed and corrected.

f. Correct material that does not meet the specified criteria by scarifying, placing additional material, re-mixing, reshaping and re-compacting when directed by the Engineer. Rework unacceptable material at no additional cost to the Airport.

g. Do not place additional material on any unaccepted layer.

h. Remove products found defective after placement and replace with acceptable products at no additional cost to the Airport when directed by the Engineer.

239-4.3 Testing Frequency. Acceptance of untreated base course with respect to density shall be based on the average of all density determinations made in a lot. A lot shall equal the number of tons of base course placed to the required lines and grade and compacted each production day. The test lot shall be divided into sublots of approximately 1,600 square yards. One density test, randomly selected by use of a suitable random number table, shall be taken within each sublot. Testing shall be performed in accordance with ASTM D 2922 and ASTM D 3017.

METHOD OF MEASUREMENT

239-5.1 The quantity of aggregate base course to be paid for shall be the number of cubic yards of aggregate base course material placed, compacted and accepted in the completed course. The quantity of aggregate base course material shall be measured in its final position. Only Type I placement shall be measured for payment. Type II and Type III placement of aggregate base course shall be incidental to the item for which it is placed.

Measurement shall not include the quantity of materials placed without authorization beyond the lines shown in the drawings, or the quantity of material used for purposes other than those directed.

239-5.2 For payments specified by the cubic yard, measurement for all materials shall be computed by survey in accordance with Section P-130, Survey. The quantity shall be the volume that is bound by the final surface of the layer below the aggregate base, established by survey, and the final surface after completion of the aggregate base course, established by survey, subject to verification by the Engineer. After completion of aggregate base and prior to the placing of any surfacing material, the final quantity shall be verified by the Contractor in accordance with the requirements of Section P-130, Survey.

BASIS OF PAYMENT

239-6.1 The accepted quantities of this item shall be paid for at the contract unit price per cubic yard of aggregate base course, which price shall include all work required to complete this item, including water added during mixing.

a. The price shall be full compensation for furnishing all materials, labor, equipment, tools and incidentals necessary to furnish, haul, place, compact and complete this item to the satisfaction of the Engineer.

b. Quantities of materials wasted or disposed of in a manner not called for under the contract; rejected loads of materials, including material rejected after it has been placed; material not unloaded from the transport vehicles; material placed outside the lines and grades indicated on the drawings or as directed by the Engineer; or materials remaining on hand after completion of the work will not be paid for and no compensation will be allowed for hauling away any rejected materials

Payment will be made under:

Item P-239	Aggregate Base Course	UDOT)	Per Cubic Y	Yard
1001111 20/		(,	,	1	

TESTING AND MATERIAL REQUIREMENTS

- ASTM C-29 Test Method for Bulk Density (Unit Weight) and Voids in Aggregate
- ASTM C-117 Test Method for Material Finer than 75 µm (No. 200) Sieve in Mineral Aggregate by Washing
- ASTM C-131 Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact Using the Los Angeles Machine
- ASTM C-535 Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact Using the Los Angeles Machine
- ASTM C-136 Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate
- ASTM D-1557 Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
- ASTM D 6938 Test Methods for Density of Soil and Soil-Aggregate in place by Nuclear Methods (Shallow Depth)
- ASTM D 4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

REFERENCES

- AASHTO T 11: Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing
- AASHTO T 19: Bulk Density ("Unit Weight") and Voids in Aggregate
- AASHTO T 27: Sieve Analysis of Fine and Coarse Aggregates
- AASHTO T 89: Determining the Liquid Limit of Soils
- AASHTO T 90: Determining the Plastic Limit and Plasticity Index of Soils
- AASHTO T 96: Resistance to Degradation of Small-Sized Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
- AASHTO T 180: Moisture-Density Relations of Soils Using a 4.54 kg (10 lb) Rammer and 457 mm (18 in) Drop
- AASHTO T 193: The California Bearing Ratio
- AASHTO T 255: Total Evaporable Moisture Content of Aggregate by Drying
- AASHTO TP 61: Determining the Percent of Fracture in Coarse Aggregate

UDOT Minimum Sampling and Testing Requirements

END OF SECTION P-239

THIS PAGE INTENTIONALLY BLANK

SECTION P-400

BITUMINOUS BASE AND SURFACE COURSE (UDOT)

DESCRIPTION

400-1.1 This item shall consist of the construction of a bituminous surface course and a bituminous base course composed of a mineral aggregate and bituminous binder; mixed at a central mixing plant and spread and compacted on a prepared base course or existing surface course in reasonably close conformance with the lines, grades, and dimensions shown on the drawings and in accordance with these specifications.

This item shall conform to the requirements of UDOT 02741 - "Hot Mix Asphalt (HMA)" of the State of Utah Department of Transportation 2008 Standard Specifications for Road and Bridge Construction, or latest edition.

MATERIALS

400-2.1 Bituminous Material. The bituminous material shall be a Performance Graded Asphalt Binder (PGAB). Supply PGAB's under the Utah Department of Transportation Approved Supplier Certification (ASC) system. Up to 25% Reclaimed Asphalt Pavement (RAP) materials may be incorporated into the hot mix asphalt pavement according to Hot Mix Asphalt UDOT 02741 and Asphalt Material UDOT 02745.

Type and Grade: PG 64 -34

Bituminous material shall be Performance Graded Asphalt binder as specified in AASHTO MP 1, with the following modifications:

- a. Delete superscript (f) for all specified grades having design cold temperatures of -34 degrees C or colder.
- b. Add Direct Tension for all specified grades having design cold temperatures of -34 degrees C or colder. Failure Strain, minimum of 1.3 percent at 1.0 mm/min.

The Contractor shall furnish the vendor's certified test reports for each lot of bituminous material shipped to the project. The vendor's certified test report for the bituminous material can be used for acceptance or tested independently by the Engineer.

400-2.2 Mineral Aggregate. Mineral aggregate shall consist of crushed stone, crushed gravel, or crushed slag conforming to the following requirements:

- a. Crusher processed virgin aggregate material consisting of crushed stone, gravel, or slag.
- b. Refer to Table 1 to determine the suitability of the aggregate.
 - 1. Coarse aggregates:
 - a. Retained on No. 4 sieve.
 - 2. Fine aggregates:
 - a. Clean, hard grained, and angular.
 - b. Passing the No. 4 sieve.

IABLE I					
AGGREGATE PROPERTIES – HMA					
Test Method	Test No.	Category 1	Category 2		
One Fractured Face	AASHTO TP 61	95% min.	85% min. (1 inch and ³ / ₄ inch) and 90% min. (¹ / ₂ inch and ³ / ₈ inch)		
Two Fractured Face	AASHTO TP 61	90% min.	80% min. (1 inch and ³ / ₄ inch) and 90% min. (¹ / ₂ inch and ³ / ₈ inch)		
Fine Aggregate Angularity	AASHTO T 304	45 min.	45 min.		
Flakiness Index	UDOT MOI 933 (Based on ³ / ₈ inch sieve and above)	17% max.	17% max.		
L.A. Wear	AASHTO T 96	35% max.	40% max.		
Sand Equivalent	AASHTO T 176 (Pre- wet method)	60 min.	45 min.		
Plasticity Index	AASHTO T 89 and T 90	0	0		
Unit Weight	AASHTO T 19	min. 75 lb/cu ft	min. 75 lb/cu ft		
Soundness (sodium sulfate)	AASHTO T 104	16% max. loss with five cycles	16% max. loss with five cycles		
Clay Lumps and Friable Particles	AASHTO T 112	2% max	2% max.		
Natural Fines	N/A	0%	10% max.		
Category 1: National Highway System and Truck Routes					

TADIE 1

400-2.3 Gradation. The combined dry mineral aggregate shall be uniformly graded and of such size that it meets one of the gradations specified below when tested in accordance with AASHTO T-30. The gradation to be used shall be the option of the Contractor unless otherwise specifically designated in the proposal. When a specific gradation is designated, none other shall be used unless authorized in writing by the Engineer. The maximum aggregate size shall not be more than one-half the thickness of the compacted course to be constructed.

If the Contractor intends to start paving before the stockpiles are completed, at least 25 percent or 10,000 tons, whichever is less, of the estimated quantity of surfacing aggregate shall be crushed and stockpiled.

At least 10 working days prior to producing bituminous surface or base course, the Contractor shall submit in writing a job-mix formula to the Engineer for his approval. The job-mix gradation furnished shall be based on the material already stockpiled. The job-mix gradation shall have definite single values for the percentage of aggregate passing each specified sieve based on the dry weight of the aggregate. The jobmix gradation shall meet the ideal gradation with the tolerances shown below:

_	TABLE 2					
		AGGR	EGATE GRADATI	ONS		
		(Percent Passi	ing by Dry Weight of	Aggregate)		
Sieve Size		1 inch	³ / ₄ inch	¹ / ₂ inch	³ / ₈ inch	
Control	1½ inch	100.0				
Sieves	1 inch	90.0 - 100.0	100.0			
	³ /4 inch	<90	90.0 - 100.0	100.0		
	¹ / ₂ inch		<90	90.0 - 100.0	100.0	
	³ / ₈ inch			<90	90.0 - 100.0	
	No. 4				< 90	
	No. 8	19.0 - 45.0	23.0 - 49.0	28.0 - 58.0	32.0 - 67.0	
	No. 200	1.0 - 7.0	2.0 - 8.0	2.0 - 10.0	2.0 - 10.0	

Changes in the job-mix formula and/or gradation may be made prior to a day's production subject to approval by the Engineer. The request for change shall be in writing and shall give the Engineer sufficient notice to evaluate the mix design. For major changes in the job-mix formula and/or gradation, at least 3

working days' notice shall be required.

400-2.4 Sampling and Testing. Acceptance of bituminous surface and base course with respect to gradation and bitumen content shall be based on the average deviation from the job-mix formula of the samples taken from a lot determined in accordance with Utah Department of Transportation Minimum Sampling and Testing Requirements. A lot shall equal the number of tons of bituminous mix placed each production day. When the daily production exceeds 2,500 tons a minimum of five samples shall be required. When it is between 1,500 and 2,500 tons a minimum of four samples shall be required.

When it is less than 1,500 tons a minimum of three samples shall be required. In the event the minimum number of samples required cannot be obtained, the test lot may be evaluated on the basis of fewer samples. Test samples shall be taken as the bituminous mix is being placed and shall be obtained immediately behind the paver prior to any further processing or compaction. The samples shall be chosen on a random basis by means of a suitable random number table. In addition, the samples shall be distributed as uniformly as possible in time throughout the test lot so as to be representative of the material being introduced during the entire production day. Acceptance shall be in accordance with Tables 3 and 4.

If the mean of the deviations of the lot acceptance tests from the job-mix formula for a particular sieve or sieves or for bitumen content is more than the maximum shown under the 1.00 pay factor in Table 3 or Table 4, the Contractor has the option to remove and replace the lot or, upon his written request, accept the lot at an adjusted unit price. The mean of the deviations is hereby defined as the sum of the absolute values of the deviations divided by the number of tests in the lot.

During the first day's operation, the Contractor may elect to eliminate the test results from any one sample for both gradation and bitumen content. The applicable factor shall then be for one less sample than was tested. Use Table 4 for these determinations.

At the pre-construction conference, the Contractor will accept or reject the sample elimination procedure for the first day's operation. Upon acceptance by the Contractor, the Engineer will pre-select the location where the material produced during the first day's operation is to be incorporated into the project.

If the mean result of the deviation of the lot acceptance tests from the job-mix formula for a particular sieve or sieves, or if the bitumen content is more than the maximum value shown under the 0.70 pay factor in Table 3 or 4, the Engineer may order the removal of any or all of the bituminous mix in the lot. The pay factor for any such surface course which is allowed to remain in place shall be 0.50.

The computation of the adjusted unit price for bituminous surface course shall be based upon the minimum pay determined from Table 3 or 4.

In addition to the random acceptance samples taken from each lot, the Engineer may sample bituminous mix from any portion of the course that exhibits a non-uniform appearance. The Engineer may reject this material when test results show a deviation from the job-mix formula that exceeds maximum deviation allowed under the 0.70 pay factor in Table 3 or 4.

The Contractor shall take steps to bring the bituminous surface and base course into specification when the test results show a deviation from the job-mix formula that exceeds the maximum deviation under the 1.00 pay factor in Table 3 or 4.

ACCEPTANCE SCHEDULE BITUMEN CONTENT AND AGGREGATE GRADATION OF BITUMINOUS MIXTURE MEAN OF THE DEVIATIONS OF FIVE LOT ACCEPTANCE TESTS FROM THE JOB-MIX FORMULA							
]	PERCENTAGE	POINTS				
			PAY FACTOR				
BITUMEN CONTENT	1.00	0.95	0.90	0.80	0.70		
SIEVE SIZE	0 - 0.38 .3943 .4452 .4852 .5356 SIEVE SIZE						
SIEVE SIZE 0 - 5.2 5.3 - 5.8 5.9 - 6.4 6.5 - 7.1 7.2 - 7.7 3/8 inch 0 - 4.9 5.0 - 5.5 5.6 - 6.1 6.2 - 6.6 6.7 - 7.2 No. 4 0 - 4.8 4.9 - 5.4 5.5 - 5.9 6.0 - 6.5 6.6 - 7.0 No. 8 0 - 4.0 4.1 - 4.9 4.6 - 4.9 5.0 - 5.4 5.5 - 5.8 No. 16 0 - 3.9 4.0 - 4.3 4.4 - 4.7 4.8 - 5.1 5.2 - 5.4 No. 50 0 - 3.2 3.3 - 3.5 3.6 - 3.8 3.9 - 4.1 4.2 - 4.5							

TABLE 3

ACCEPTANCE SCHEDULE FOR LESS THAN FIVE LOT ACCEPTANCE TESTS BITUMEN CONTENT AND AGGREGATE GRADATION OF BITUMINOUS MIXTURE (PERCENTAGE POINTS)					
	M ACCEPT	EAN OF THE DE TANCE TESTS FR	VIATIONS OF TH COM THE JOB-MI	IE LOT X FORMULA	
	PAY FACTOR	1 TEST	2 TESTS	3 TESTS	4 TESTS
Bitumen Content	1.00 0.95 0.90 0.80 0.70	0 - 0.7 0.8 0.9 1.0 1.1	054 .5561 .6268 .6975 .7682	046 .4752 .5358 .5964 .6569	041 .4246 .4751 .5256 .5761
1/2 inch and larger	1.00 0.95 0.90 0.80 0.70	0 - 10 11 - 13 13 14 15	03 7.4 - 8.3 8.4 - 9.3 9.4 - 10.3 10.4 - 11.3	0 - 6.3 6.4 - 7.1 7.2 - 9.3 8.0 - 8.7 8.8 - 9.5	0 - 5.6 5.7 - 6.3 6.4 - 7.0 7.1 - 7.7 7.8 - 8.4
3/8 inch Sieve	1.00 0.95 0.90 0.80 0.70	0 - 9 10 11 12 - 13 14	0 - 6.9 7.0 - 7.8 7.9 - 8.7 8.8 - 9.6 9.7 - 10.5	0 - 5.9 6.0 - 6.6 6.7 - 7.3 7.4 - 8.0 8.1 - 8.9	0 - 5.3 5.4 - 5.9 6.0 - 6.6 6.7 - 7.2 7.3 - 7.9
No. 4 Sieve	1.00 0.95 0.90 0.80 0.7	0 - 9 10 11 12 - 13 14	0 - 6.7 6.8 - 7.6 7.7 - 8.5 8.6 - 9.4 9.5 - 10.2	0 - 5.7 5.8 - 6.3 6.4 - 6.9 7.0 - 7.5 7.6 - 8.0	0 - 5.2 5.3 - 5.8 5.9 - 6.4 6.50 7.16
No. 8 Sieve	1.00 0.95 0.90 0.80 0.70	0 - 7 8 9 10 10 - 12	0 - 5.6 5.7 - 6.3 6.4 - 7.0 7.1 - 7.7 7.8 - 8.5	0 - 4.8 4.9 - 5.4 5.5 - 6.0 6.1 - 6.6 6.7 - 7.2	0 - 4.3 4.4 - 4.8 4.9 - 5.3 5.4 - 5.8 5.9 - 6.4
No. 16 Sieve	1.00 0.95 0.90 0.80 0.70	0 - 7 8 9 10 10	0 - 5.2 5.3 - 5.8 5.9 - 6.4 6.5 - 7.0 7.1 - 7.6	0 - 4.6 4.7 - 5.1 5.2 - 5.6 5.7 - 6.1 6.2 - 6.6	0 - 4.2 4.3 - 4.6 4.7 - 5.5 5.2 - 5.1 5.6 - 5.9
No. 50 Sieve	1.00 0.95 0.90 0.80 0.70	0 - 6 7 8 9 10	0 - 4.3 4.4 - 4.8 4.9 - 5.3 5.4 - 5.8 5.9 - 6.4	0 - 3.8 3.9 - 4.1 4.2 - 4.5 4.6 - 4.9 5.0 - 5.5	0 - 3.4 3.5 - 3.8 3.9 - 4.1 4.2 - 4.4 4.5 - 4.9

TABLE 4

No. 200	1.00	0 - 3.0	0 - 24	0 - 2.0	0 - 1.8
Sieve	0.95	3.1 - 3.5	2.5 - 2.7	2.1 - 2.2	1.9 - 2.0
	0.90	3.6 - 4.0	2.8 - 3.0	2.3 - 2.4	2.1 - 2.2
	0.80	4.1 - 4.5	3.1 - 3.3	2.5 - 2.7	2.3 - 2.4
	0.70	4-6 - 5.0	3.4 - 3.6	2.8 - 3.0	2.5 - 2.6

Cores shall be taken for each production day lot size by the Owner at the follow rate:

up to 700 tons 4 cores 701 – 900 tons 6 cores 901 – 1100 tons 8 cores over 1101 tons 10 cores

Density shall be 93.5 percent of Theoretical Maximum Specific Gravity.

CONSTRUCTION METHODS

400-3.1 Equipment. The mixing plant shall be equipped with suitable dust collectors. Where a continuous plant is used, continuous operation shall be required. If stopping and starting is inevitable, any improperly mixed bituminous material produced prior to stopping after starting up again shall be wasted as determined by the Engineer. Continuous plants shall have positive means of wasting improperly mixed bituminous material.

Mixing plant, with the exception of batch plants, shall be equipped with an adequate approved surge bin capable of dumping into hauling units. The surge bin shall be loaded in such a manner as to prevent segregation of the mix. Dumping on the ground and reloading of the bituminous mix shall not be permitted.

Bituminous pavers shall be self-contained, self-propelled units, equipped with an adjustable activated screed or strike-off assembly, heated if necessary and capable of spreading and finishing courses of bituminous plant mix material in accordance with the typical section and specified thickness.

Where bituminous pavers are modified by adding extensions, these extensions shall be activated and heated.

Any paver incapable of satisfactory performance, with or without extensions, shall not be used.

Pavers shall be equipped with a control system capable of automatically maintaining the screed elevation as specified herein. The control system shall be automatically actuated from either a reference line or surface through a system of mechanical sensors or sensor-directed mechanisms or devices which will maintain the paver screed at a predetermined transverse slope and at the proper elevation to obtain the required surface.

The controls shall be capable of working in conjunction with any of the attachments indicated below. The method used shall be at the request of the Contractor with written approval of the Engineer:

- a. Taut string line (wire) set to grade
- b. Ski-type device or traveling string line 40 feet minimum length
- c. Under limited conditions, a short ski or shoe for matching the pavement placed by a previous pass of the paver

The Contractor shall furnish, place, and maintain such supports, wire, devices, and materials as may be required to provide continuous line and grade reference control to the automatic paver control system on either or both sides of the paver.

Should the automatic control system become inoperative during the day's work, the Contractor will be permitted to finish the day's work using manual controls. However, work shall not be resumed thereafter until the automatic control system has been made operative. When using manual controls, the pavement placed shall still be subject to smoothness tolerances in accordance with Section P-400-3.6.

400-3.2 Temperature Control. The viscosity of the asphalt as it is being used in the pugmill shall be between 150 and 300 centistokes, determined in accordance with ASTM D-2170.

The Contractor shall advise the Engineer of the source of the asphalt to be used, including the temperature limits for the asphalt, aggregate, mixing, and lay down.

In the event a dryer-drum process is used, the temperature of the bituminous mixture at discharge from the mixer shall be not less than 230 degrees F. nor more than 260 degrees F. It is desirable to complete compaction of the bituminous mixture before the temperature of the mixture drops below 180 degrees F.

If the source of asphalt is changed during the course of the work, a new mix design shall be made. In no case shall the asphalt from two different sources be intermixed.

400-3.3 HMA

- a. Dry aggregate to an average moisture content of not more than 0.2 percent by weight.
 - 1. May be verified by AASHTO T 255.
 - 2. Adjust burners to avoid damage or soot contamination of the aggregate.
- b. Treat aggregate with hydrated lime.
 - 1. Insure lime slurry equipment is operating at all times.
 - a. Cease production if hydrated lime slurry treatment is interrupted.
 - b. Engineer may require marination of the aggregate/hydrated lime mixture in the stockpile, Method B, if production continues without hydrated lime slurry treatment.
- c. Coat with asphalt binder 100 percent of the particles passing and 98 percent of the particles retained on the No. 4 sieve.
 - 1. May be verified by AASHTO T 195.
 - 2. Discontinue operation and make necessary corrections if material is not properly coated.
- d. Maintain temperature of the HMA between identified limits for mixing and compaction as defined on Volumetric Mix Design Verification Letter.
 - 1. Department rejects materials heated over the identified limits.
 - 2. Remove all material rejected by the Department for overheating.

400-3.4 HMA Plant

a. Provide:

- 1. Positive means to determine the moisture content of aggregate.
- 2. Positive means to sample all material components.
- 3. Sensors to measure the temperature of the HMA at discharge.
- 4. The ability to maintain mix discharge temperature according to the mix design.
- b. Provide asphalt binder storage tanks that:
 - 1. Calibrate tanks so the quantity of material remaining in the tank can be determined at any time.
 - 2. Provide a positive means of sampling the asphalt binder from the tanks.

400-3.5 Laboratory Correlation

- a. Perform split-sample, paired *t*-testing with the Department based on project quality control testing using UDOT LQP qualified lab.
 - 1. Perform split-sample, paired *t* analysis on all mix acceptance tests and tests related to volumetric properties.
 - 2. Perform paired *t* analysis as defined in the Materials Manual of Instruction, Appendix C.
 - 3. Continue paired *t*-testing until at least two consecutive production days meet $\alpha = 0.05$ for a two tailed distribution.

400-3.6 Surface Preparation

- a. Locate, reference, and protect all utility covers, monuments, curb and gutter and other components affected by the paving operations.
- b. Remove all moisture, dirt, sand, leaves, and other objectionable material from the prepared surface before placing the mix.
- c. Complete spot leveling before placing pavement courses.
 - 1. Place, spread, and compact leveling mix on portions of the existing surface.
 - 2. Fill and compact any localized potholes more than 1 inch deep.
 - 3. Allow compacted mix to cool sufficiently to below 150 degrees F to provide a stable structural platform before placing additional lifts of HMA.
- d. Allow sufficient cure time for prime coat/tack coat before placing HMA. Refer to P-603 specification.

400-3.7 Surface Placement

- a. Provide a 3:1 (horizontal to vertical) sloped edge adjacent to the next lane to be paved when full-width or Echelon paving is impractical and more than one pass is required.
- b. Adjust the production of the mixing plant and material delivery until a steady paver speed is maintained.
- c. Offset longitudinal joints 6 to 12 inches in succeeding courses.
 - 1. Place top course joint within 1 foot of the centerline or lane line.
 - 2. Tack the longitudinal edge before placing the adjacent pass if the previous pass has cooled below 175 degrees F.
- d. Offset transverse construction joints at least 6 feet longitudinally.
- e. Do not allow construction vehicles, general traffic, or rollers to pass over the uncompacted end or edge of freshly placed mix until the mat temperature drops to a point where damage or differential compaction will not occur.
- f. Taper the end of a course subjected to traffic at approximately 50:1 (horizontal to vertical).
 - 1. Remove the portion of the pass that contains the tapered end before placing fresh mix.
 - 2. Tack the contact surfaces before fresh mix is placed against the compacted mix.
- g. Use a motor grader, spreader box, or other approved spreading methods for projects under 180 yd², irregular areas, or for miscellaneous construction such as detours, sidewalks, and leveling courses.

400-3.8 Finishing. The bituminous surface course shall be finished to a smooth, uniform line and grade. The use of any equipment that leaves defects in the finished surface which cannot be eliminated shall be discontinued.

Transverse construction joints shall be measured with a 10 foot straightedge lapped three (3) times. When tested longitudinally across the joint, the surface shall not vary more than 0.013 feet in 10 feet. The joint shall be brought into specification tolerance immediately after the paving machine has moved away and the asphalt is still pliable. The repair of the joint shall be diligently pursued by an adequate crew or the Contractor will not be allowed to continue his paving operation. Adjacent transverse joints shall be staggered 10 feet measured longitudinally.

The pavement surface shall be tested for smoothness as the work progresses. The pavement surface shall be accepted in lots equal to the number of square yards placed each day. A lot shall be tested at selected locations longitudinally and transversely.

Longitudinal and transverse measurements shall be made with a 25 foot string line and 10 foot straightedge, respectively.

The variation of the surface from the testing edge of the string line between any two contacts with the surface shall at no point exceed 0.025 feet for longitudinal measurements. The variation of the surface from the testing edge of the straightedge between any two contacts with the surface shall at no point exceed 0.01

feet for transverse measurements. All deviations from a plane exceeding the specified tolerances shall be corrected at the expense of the Contractor as directed by the Engineer.

On projects where more than one course of bituminous surface course will be placed, only the top course shall be tested for smoothness. Leveling courses, overlays, other than final surfaces, and cushion courses shown on the drawings or designated by the Engineer will not require smoothness determinations.

Spot leveling, when required, shall be placed, spread, and compacted prior to placing subsequent pavement courses.

Acceptance of the completed bituminous surface course with respect to thickness shall be based on the average thickness of a test lot. A test lot shall equal approximately 8,000 square yards of completed roadway. A lot shall be divided into sublots of approximately 1,600 square yards. One thickness test, randomly selected by use of a random number table, shall be taken within each sublot. A lot shall be accepted when the average thickness of all sublots is not more than 1/2 inch greater nor 3/8 inch less than the total designated bituminous surface course thickness and when no individual sublot shows a deficient thickness of more than 3/4 inch.

Lots or sublots that are not acceptable because of deficient thickness shall be brought into compliance by placing additional surface course as directed by the Engineer.

Lots or sublots that are not acceptable because of excess thickness shall be corrected as directed by the Engineer. If it becomes necessary to remove portions of the bituminous surface course, the entire depth of surfacing shall be removed and replaced at the Contractor's expense. If the Engineer permits an excess thickness of surface course to remain in place, the amount of material in excess of the tolerance specified will not be included in the pay quantities.

The thickness tolerances established above shall not apply to leveling courses, overlays, and cushion courses shown on the drawings or designated by the Engineer. However, final surfaces in stage construction shall still be checked for thickness.

400-3.9 Weather and Seasonal Limitations. Bituminous surface course shall be placed only between April 15 and October 15 and when the air temperature in the shade and the roadbed temperature are above 50 degrees F. Bituminous surface course shall not be placed during rain, when the roadbed is wet, or during other adverse weather conditions. Bituminous surface course placed after October 15 shall be placed only upon written authorization from the Engineer and then only when a proper review has determined that it is in the best interest of the Airport and the public.

METHOD OF MEASUREMENT

400-4.1 Bituminous Surface Course. Plant mix bituminous concrete pavement mix shall be measured by the number of tons of bituminous mixture used in the accepted work. The weight of bituminous material shall not be deducted from the total weight. Recorded batch weights or truck scale weights will be used to determine the basis for the tonnage. Weight tickets shall be delivered to the job site with each truck and shall be given to the Engineer daily.

400-4.2 Bituminous Material. No separate measurement will be made for purposes of payment of the bituminous material which is included in the mix as it will be considered incidental to the mix.

BASIS OF PAYMENT

400-5.1 Bituminous Surface Course. Payment for bituminous surface course mix shall be made at the contract unit price per ton. The price shall be full compensation for furnishing all materials, for all preparation, mixing, and placing of these materials, and for all labor, equipment, tools and incidentals necessary to complete the item.

Payment will be made under:

Item P-400 Bituminous Surface Course - (³/₄" PG 64-34) Per Ton

TESTING REQUIREMENTS

Rice Method	Compaction of Bituminous Mix
AASHTO M-226	Viscosity Graded Asphalt Cement
AASHTO T-30	Mechanical Analysis of Aggregate
AASHTO M 323	Superpave Volumetric Mix Design
AASHTO R 35	Standard Practice for Superpave Volumetric Design for Hot-Mix Asphalt (HMA)
AASHTO T 19	Bulk Density ("Unit Weight") and Voids in Aggregate
AASHTO T 30	Sieve Analysis
AASHTO T 89	Determining the Liquid Limit of Soils
AASHTO T 90	Determining the Plastic Limit and Plasticity Index of Soils
AASHTO T 112	Clay Lumps and Friable Particles in Aggregate
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test
AASHTO T 195	Determining Degree of Particle Coating of Bituminous Aggregate Mixtures
AASHTO T 209	Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt
AASHTO T 255	Total Moisture Content of Aggregate by Drying
AASHTO T 308	Asphalt Binder

AASHTO T 312	Voids in Mineral Aggregate				
ASTM C-88	Soundness of Aggregates				
ASTM C-117	Material Fines				
ASTM D-1559	Plastic Flow of Bituminous Mixtures				
ASTM D-979 Practice for Sampling Bituminous Paving Mixtures					
Utah State Department Test Procedures:					
UDOT Materials Manual of Instruction					

UDOT Minimum Sampling and Testing Requirements

END OF SECTION P-400

ITEM P-500

PORTLAND CEMENT CONCRETE PAVEMENT

DESCRIPTION

500-1.1 General. The work set forth in this section consists of the Contractor's preparation and submittal of an appropriate concrete mix design, including the Contractor's options with respect thereto, discussion of appropriate equipment for use by the Contractor and the placement of pavement composed of portland cement concrete, with reinforcement and without reinforcement constructed on a prepared underlying surface in accordance with these specifications and shall conform to the lines, grades, thickness, and typical cross sections shown on the drawings.

The portland cement concrete pavement shall be placed without reinforcement, except for dowels and localized reinforcement placed at the locations shown on the drawings.

It is the intention of this Section P-500 that all concrete placed shall be in accordance with good construction practices and meet or exceed all standards for quality and durability of airfield pavements of the highest quality.

Section headings used in this Section P-500 or any other part of this Contract are for convenience only and shall not be used in the interpretation of this Section P-500 or any other section or subsection of this Contract so as to indicate that phrases or clauses describing standards, tests, equipment, workmanship, material descriptions, characteristics or results to be achieved are confined to the Section heading under which they appear. Any requirement appearing in one location shall be as binding as if appearing in all. It is the intention of this contract that the work will result in an end concrete product which is dense, homogeneous, without segregation, and which is of the highest quality to meet or exceed all standards of quality in the industry and of the government, with a durability of at least 20 years.

MATERIALS

500-2.1 Aggregates.

a. Reactivity. Fine and Coarse aggregates to be used in all concrete shall be evaluated and tested by the Contractor for alkali-aggregate reactivity in accordance with ASTM C 1260 and ASTM C 1567. The laboratory conducting the tests shall be accredited under ASTM C 1077. Fine and coarse aggregates shall be evaluated separately in accordance to ASTM C 1260. In addition each aggregate source shall be evaluated separately. Test results that have a measured expansion of less than 0.10 percent at 28 days meet the requirements of these specifications. Should any of the test data indicate an expansion of greater than 0.10 percent, the aggregates shall be rejected, or additional testing by the Contractor utilizing ASTM C 1567 shall be performed.

ASTM C 1567 shall be used to include one of the three options below (or approved combinations of the options) for each individual fine and course aggregates. The test requires at least one comparator reading every 3 or 4 days and a comparator reading at 28 days after the zero reading. The report shall include a graph of percent length change data at each reading from the time of the zero reading to the end of the 28-day period.

TECHNICAL SPECIFICATIONS

(1). Proportioning of Mortar. Utilize the Contractor's proposed low alkali Portland cement and Class "F" flyash in combination for the test proportioning. The laboratory shall use 1 part of cementitious materials (the Contractor's proposed percentage of Portland cement plus flyash) to 2.25 parts of graded aggregate. Use a water-cementitious materials ratio equal to 0.47 by mass. The cementitious material combination shall be determined that will meet all the requirements of these specifications and that which will lower the expansion to less 0.10 percent at 28 days for each individual aggregate. Class "F" flyash shall be used at a minimum rate of 20 percent of the total cementitious material by mass.

(2). Proportioning of Mortar. Utilize the Contractor's proposed low alkali Portland cement and ground granulated blast furnace (GGBF) slag cement in combination for the test proportioning. The laboratory shall use 1 part of cementitious materials (the Contractor's proposed percentage of Portland cement plus GGBF slag) to 2.25 parts of graded aggregate. Use a water-cementitious materials ratio equal to 0.47 by mass. The cementitious material quantity shall be that which will meet all the requirements of these specifications and that which will lower the expansion to less than 0.10 percent at 28 days for each individual aggregate.

(3). Proportioning of Mortar. Utilize a high alkali Portland cement (0.9% total alkali +/- 0.1%) and a lithium nitrate admixture. The lithium nitrate admixture may be used in combination with either Class "F" flyash, Class N pozzolan, or ground granulated blast furnace (GGBF) slag, at a dosage rate as recommended by the supplier.

If Lithium Nitrate is being evaluated, with or without the supplemental cementitious materials, the testing shall be in accordance with COE CRD-C 662.

If any of the above- testing options do not lower the expansion to less than 0.10 percent at 28 days, for individual aggregate(s) the aggregate(s) shall be rejected and the contractor shall submit new aggregate sources and retest. The results of testing shall be submitted to the Engineer for evaluation and acceptance.

Aggregates from different sources shall be weighed and batched separately at the concrete batch plant.

b. Fine Aggregate. Fine aggregate shall conform to the requirements of ASTM C 33. Gradation shall meet the requirements of Table 1 when tested in accordance with ASTM C 136, except as may otherwise be qualified under Section 6 of ASTM C 33. The amount of deleterious material in the fine aggregate shall not exceed the following limits by mass:

DELETERIOUS MATERIAL				
Material	Material Percentage			
	by Mass			
Clay lumps and friable particles ASTM C 142	1.0			
Material finer than 0.075 mm (No. 200 sieve) ASTM C 117	3.0			
Lightweight particles ASTM C 123 using a medium with a	0.5			
density of 2.0 Mg/cubic meter (Sp. Gr. of 2.0)				
Total of all above	3.0			

TABLE 1.GRADATION FOR FINE AGGREGATE				
(ASTM C 33)			
Sieve Designation	Percentage by Weight			
(Square Openings)	Passing Sieves			
3/8 in. (9.5 mm)	100			
No. 4 (4.75 mm)	95 - 100			
No. 8 (2.36 mm)	80 - 100			
No. 16 (1.18 mm)	50 - 85			
No. 30 (600 micro-m)	25 - 60			
No. 50 (300 micro-m)	10 - 30			
No. 100 (150 micro-m)	2 - 10			
No. 200 (75 micro-m)	1 - 3			

c. Coarse Aggregate. Coarse aggregate shall conform to the requirements of ASTM C 33. Gradation, within the separated size groups, shall meet the requirements of Table 2 when tested in accordance with ASTM C 136. When the nominal maximum size of the aggregate is greater than 1 inch, the aggregates shall be furnished in two size groups.

Aggregates delivered to the mixer shall consist of crushed stone, crushed or uncrushed gravel, air-cooled blast furnace slag, crushed recycled concrete pavement, or a combination thereof. The aggregate shall be composed of clean, hard, uncoated particles and shall meet the requirements for deleterious substances contained in ASTM C 33, Class 5S. Dust and other coating shall be removed from the aggregates by washing. The aggregate in any size group shall not contain more than 8 percent by weight of flat or elongated pieces when tested in accordance with ASTM D 4791. A flat or elongated particle is one having a ratio between the maximum and the minimum dimensions of a circumscribing rectangular prism exceeding 3 to 1.

The percentage of wear shall be no more than 40 when tested in accordance with ASTM C 131 or ASTM C 535.

TABLE 2. GRADATION FOR COARSE AGGREGATE ASTM C 33					
		Percer	ntage by Weight	Passing Sieves	
Sieve Des	signations	From 1 1/2	" to No. 4	From 1" to No. 4	
(square o	penings)	(38.1 mm -	4.75 mm)	(25.0 mm - 4.75 mm)	
		#4 #67 #57			
in.	mm	1 1/2" - 3/4"	3/4" - No.4	1" - No.4	
2	50.8	100			
1 1/2	38.1	90 - 100		100	
1	25.0	20 - 55	100	95 - 100	
3/4	19.0	0 - 15	90 - 100		
1/2	12.5			25 - 60	
3/8	9.5	0 - 5	20 - 55		
No. 4	4.75		0 - 10	0 - 10	
No. 8	2.36		0 - 5	0 - 5	

d. Aggregate Susceptibility to Disintegration (D) Cracking. Aggregates that have a history of D-cracking shall not be used. Prior to approval of mixture design and production of Portland cement concrete

TECHNICAL SPECIFICATIONS

the Contractor shall submit written certification that the aggregate does not have a history of D-Cracking and that the aggregate meets the specified Utah Department of Transportation (UDOT) requirements.

(1) Other sources of crushed stone aggregate shall be approved if the durability factor as determined by ASTM C 666 is greater than or equal to 95 and all other quality test requirements within these specifications are fulfilled. The Engineer will consider and reserves final approval of other State classification procedures.

(2) Crushed gravel and sand-gravel aggregates shall not be required to meet freeze-thaw durability ratings. These aggregates shall be approved for use in concrete by UDOT and shall meet all other criteria within these specifications.

500-2.2 Cement. Cement shall conform to the requirements of ASTM C 150 Type II low alkali cement. Total alkalis (Na20 & K20) of the cement secured for the production of concrete shall be independently verified in accordance with ASTM C 114.

If for any reason, cement becomes partially set or contains lumps of caked cement, it shall be rejected. Cement salvaged from discarded or used bags shall not be used.

Only cements containing less than 0.6% equivalent alkali or cements that can demonstrate a positive reduction in the expansion created by alkali-silica reactions shall be used.

All portland cement shall be of the same brand and type unless otherwise approved in writing by the Engineer.

500-2.3 Cementitious Materials.

a. Fly Ash. Fly ash shall meet the requirements of ASTM C 618, Class F or N with the exception of loss of ignition, where the maximum shall be less than 6 percent. Class F or N flyash for use in mitigating alkali-silica reactivity shall have a Calcium Oxide (CaO) content of less than 13 percent and a total equivalent alkali content less than 3 percent. Flyash such as is produced in furnace operations using liming materials or soda ash (sodium carbonate) as an additive shall not be acceptable. The Contractor shall furnish the previous three most recent, consecutive ASTM C-618 reports for each source of flyash proposed in the mix design, and shall furnish each additional report as they become available during the project. The reports can be used for acceptance or the material may be tested independently by the Engineer.

b. Blast Furnace Slag (Slag Cement). Ground Granulated Blast Furnace (GGBF) slag shall conform to ASTM C 989, Grade 100 or 120. GGBF shall be used only at a rate between 25 and 55 percent of the total cementitious material by mass.

500-2.4 Premolded Joint Filler. Premolded joint filler for expansion joints shall conform to the requirements of ASTM D 1751 or ASTM D 1752 Type II and shall be compatible with the joint sealant material. The filler for each joint shall be furnished in a single piece for the full depth and width required for the joint, unless otherwise specified by the Engineer. When the use of more than one piece is required for a joint, the abutting ends shall be fastened securely and held accurately to shape by stapling or other positive fastening means satisfactory to the Engineer. The joint filler shall be pre-punched to accommodate dowels where required.

500-2.5 Joint Sealer. The joint sealer for the joints in the concrete pavement shall meet the requirements of Crafco Roadsaver 221, or approved equal, and shall be installed as specified in the drawings.
500-2.6 Steel Reinforcement. Reinforcing shall consist of epoxy-coated deformed steel bars conforming to the requirements of ASTM A 615 or A 996, and shall not be less than Grade 60. Mats shall be assembled by tying bars together with wire at all intersections. Epoxy coating shall meet the requirements of ASTM A 775

500-2.7 Dowel Bars. Dowel bars shall be plain steel bars conforming to ASTM A 615 or ASTM A 966 and shall be free from burring or other deformation restricting slippage in the concrete. High strength dowel bars shall conform to ASTM A 714, Class 2, Type S, Grade I, II or III, Bare Finish. Before delivery to the construction site each dowel bar shall be epoxy coated in conformance with ASTM A 775/A 775M. Metal or plastic collars shall be full circular device supporting the dowel until the epoxy hardens.

500-2.8 Water. Water used in mixing or curing shall be clean and free of oil, salt, acid, alkali, sugar, vegetable, or other substances injurious to the finished product. Water will be tested in accordance with the requirements of AASHTO T 26. Water known to be of potable quality may be used without testing.

500-2.9 Cover Material for Curing. Curing materials shall be a liquid membrane-forming compound for curing concrete and shall conform to the requirements of ASTM C 309, Type 2, Class A, wax base only.

500-2.10 Admixtures. The use of any material added to the concrete mix shall be approved by the Engineer. The Contractor shall submit certificates indicating that the material to be furnished meets all of the requirements indicated below. In addition, the Engineer may require the Contractor to submit complete test data from an approved laboratory showing that the material to be furnished meets all of the requirements of the cited specifications. Subsequent tests may be made of samples taken by the Engineer from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved.

a. Air-Entraining Admixtures. Air-entraining admixtures shall meet the requirements of ASTM C 260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entrainment agent and any water reducer admixture shall be compatible.

b. Chemical Admixtures. Water-reducing, set retarding, and set-accelerating admixtures shall meet the requirements of ASTM C 494, including the flexural strength test.

500-2.11 Epoxy-Material for Installing Dowels. Epoxy-resin used to anchor dowels in pavements shall conform to the requirements of ASTM C 881, Type I, Grade 3, Class C. Class A or B shall be used when the surface temperature of the hardened concrete is below 60 degrees F (16 degrees C).

500-2.12 Epoxy Material for Core Holes. Epoxy-resin used for bonding concrete filler to the walls of core holes shall conform to the requirements of ASTM C 881, Type V.

500-2.13 Epoxy Material for Spall Repair. Epoxy resin mortars for spall repair shall be Type III, Grade 1 and conform to the following properties:

PROPERTY	VALUE
Compressive Strength	9,000 psi
Density	74 lb/CF
Shear Bond Strength	800 psi
Shrinkage	0% (filled mortar)
Cure Time	300 F. (00 C.): 6 hours 700 F. (21.10 C.): 1 hour 900 F. (32.20 C.): 20 minutes
Shelf Life	1 year

500-2.14 Fabric for Econocrete Cracks and Joints. Geotextile fabric to prevent reflective cracking from the econocrete base course through the portland cement concrete pavement shall be a non-woven, needle-punched geotextile fabric having a weight between 3 and 6 ounces per square yard (102 and 203 g/m2).

500-2.15 Material Acceptance. Prior to use of materials, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction. The certification shall show the appropriate ASTM test(s) for each material, the test results, and a statement that the material passed or failed.

The Engineer may request samples for testing, prior to and during production, to verify the quality of the materials and to ensure conformance with the applicable specifications.

MIX DESIGN

500-3.0 Mix Design. The mix design for all Portland Cement Concrete to be placed under this section shall be prepared and tested by a qualified laboratory and shall be certified by the stamp or seal of the responsible professional retained by the Contractor who is in charge of and responsible for the mix design. Certification shall constitute a warranty that the materials selected and the proportions proposed by the Contractor are in full compliance with this section and when properly placed with good workmanship and appropriate construction means, methods and techniques as specifically contemplated by the Contractor under this Contract will result in a concrete meeting or exceeding the requirement of the specifications and of the finished product after taking into account all of the conditions associated with such compliance, including the requirement, if any, for grooving of the pavement surface in order to obtain a skid-free surface.

The inclusion of specific aggregates, cement, additive or other allowed materials within this section shall not require the use of any specific material. The selection of materials and proportions is for the Contractor and its certifying professional to determine in order to achieve the requirements set forth herein, including but not limited to the requirements of Section P-500-5.2.

No work shall be placed until the mix design has been submitted to the Engineer for review and the Engineer has reviewed and taken appropriate action with respect thereto. The Engineer's review shall be for the limited purpose of checking whether the materials selected by the Contractor and certifying professional are permitted or allowed in this section and shall not relieve the Contractor and certifying professional of the responsibility to select and proportion the materials chosen so as to achieve the intent of this section, which is to require the placement of a completed pavement that in all respects meets the highest standards and requirements for rigid concrete pavements of the highest quality. The Engineer's review shall not indicate acceptance or approval of the material proportions or of the specific interactions of such materials as proportioned or of the Contractor's selected means, methods, techniques, sequences or procedures, all of

which remain the responsibility of the Contractor. Approval by the Engineer of specific materials as complying with this Section shall not indicate a representation that the materials and proportions selected will result in an acceptable completed pavement. The responsibility for such assurance remains that of the Contractor and its certifying professional.

Certification by the Contractor's mix design professional shall be a specific warranty that such professional in determining the materials and proportions has considered the appropriateness thereof for use with the specific equipment and means and methods intended for use by the Contractor.

500-3.1 Proportions. Concrete shall be designed to achieve a 28-day flexural strength that meets or exceeds the acceptance criteria contained in paragraph 500-5.2 for a flexural strength of 650 psi (4,500 kPa). In addition, the concrete mix shall be designed to attain such interim strength as necessary to meet the scheduled phase completion times, and to support the construction equipment selected by the Contractor. The mix shall be designed using the procedures contained in Chapter 9 of the Portland Cement Association's manual, "Design and Control of Concrete Mixtures".

The Contractor shall note that to ensure that the concrete actually produced will meet or exceed the acceptance criteria for the specified strength, the mix design average strength must be higher than the specified strength. The amount of overdesign necessary to meet specification requirements depends on the producer's standard deviation of flexural test results and the accuracy that that value can be estimated from historic data for the same or similar materials.

The minimum cementitious material (cement plus fly ash, or GGBFS) shall be 564 pounds per cubic yard (335 kg per cubic meter). The ratio of water to cementitious material, including free surface moisture on the aggregates but not including moisture absorbed by the aggregates shall not be more than 0.45 by weight.

Prior to the start of paving operations and after approval of all material to be used in the concrete, the Contractor shall submit a mix design showing the proportions and flexural strength obtained from the concrete at 7 and 28 days. The mix design shall include copies of test reports, including test dates, and a complete list of materials including type, brand, source, and amount of cement, fly ash, ground slag, coarse aggregate, fine aggregate, water, and admixtures. The fineness modulus of the fine aggregate and the air content shall also be shown. The mix design shall be submitted to the Engineer at least 30 days prior to the start of operations. The submitted mix design shall not be more than 90 days old. Production shall not begin until the mix design is approved in writing by the Engineer. The mix design submittal shall clearly state the target values for slump and air content. The Contractor may submit more than one mix design and each mix design shall have a unique mix design number or product code.

Should a change in sources be made, or admixtures added or deleted from the mix, a new mix design must be submitted to the Engineer for approval.

Flexural strength test specimens shall be prepared in accordance with ASTM C 192 and tested in accordance with ASTM C 78. The mix design shall be workable concrete having a slump for side-form concrete between 1 and 2 inches (25 mm and 50 mm) as determined by ASTM C 143. For vibrated slip-form concrete, the slump shall be between 1/2 inch (13 mm) and 1 1/2 inches (38 mm).

500-3.2 Cementitious Materials.

a. Fly Ash. Fly ash may be used in the mix design. When fly ash is used as a partial replacement for cement, the minimum cement content may be met by considering Portland cement plus fly ash as the total cementitious material. The replacement rate shall be determined from laboratory trial mixes, but shall

be between 20 and 30 percent by weight of the total cementitious material. If fly ash is used in conjunction with ground granular blast furnace slag the maximum replacement rate shall not exceed 10 percent by weight of total cementitious material.

b. Ground Slag. Ground granulated blast-furnace (GGBF) slag may be used in a mix design containing Type I or Type II cement. The slag, or slag plus fly ash if both are used, may constitute between 25 to 55 percent of the total cementitious material by weight. If the concrete is to be used for slipforming operations and the air temperature is expected to be lower than 55 degrees F (13 degrees C) the percent slag shall not exceed 30 percent by weight.

500-3.3 Admixtures.

a. Air-Entraining. Air-entraining admixture shall be added in such a manner that will insure uniform distribution of the agent throughout the batch. The air content of freshly mix air-entrained concrete shall be based upon trial mixes with the materials to be used in the work adjusted to produce concrete of the required plasticity and workability. The percentage of air in the mix shall be 6.0 percent if 1-inch maximum size aggregate is used, or 5.5 percent if 1 1/2-inch maximum size aggregate is used. Air content shall be determined by testing in accordance with ASTM C 231 for gravel and stone coarse aggregate and ASTM C 173 for slag and other highly porous coarse aggregate.

b. Chemical. Water-reducing, set-controlling, and other approved admixtures shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements. Tests shall be conducted on trial mixes, with the materials to be used in the work, in accordance with ASTM C 494.

500-3.4 Concrete Mix Design Testing Laboratory. The Contractor's laboratory used to develop the concrete mix design shall meet the requirements of ASTM C 1077. The laboratory accreditation must be current and listed on the accrediting authority's website. All test methods required for developing the concrete mix design must be listed on the lab accreditation. A copy of the laboratory's current accreditation and accredited test methods shall be submitted to the Engineer prior to start of construction.

500-3.5 Pre-Paving Meeting. A pre-paving meeting will be conducted after approval of the mix design and before constructing the test strip. This meeting will be attended by the Contractor, material suppliers, subcontractors associated with the concrete, the Owner and the testing laboratory. The mix design and procedures for construction, testing and inspection of the test strip and full production paving will be discussed.

P-500-3.6 Test Section. Following review and approval of the concrete mix designs, the Contractor shall construct a Test Section for each of the mix designs as follows:

The test sections shall be part of the initial concrete placement in the first paving operation and shall be approximately 100 feet in length and the width of the Contractor's maximum proposed paving lane width. The test sections shall have the same depth as specified for the construction of the course. The underlying grade or pavement structure upon which the test sections are to be constructed shall be the same as the remainder of the course and placed under the same conditions specified for the work areas represented by the test sections. The equipment used in construction of the test sections shall be the same type and weight to be used on the remainder of the course represented by the test sections.

The Contractor shall demonstrate to the Engineer's satisfaction all requirements listed in this specification.

If the test section(s) should prove to be unsatisfactory, the necessary adjustments to the mix design, plant operation and/or placing procedures shall be made. Additional test sections shall be constructed and evaluated for conformance to the specifications, as required. When test sections do not conform to specification requirements, the pavement shall be removed and replaced at the Contractor's expense. If the test sections are acceptable the concrete will be paid for at the specified contract unit price. Full production shall not begin without the Engineer's approval of the test section.

CONSTRUCTION METHODS

500-4.0 General. The selection of equipment and the means, methods, techniques and sequences necessary to achieve finished pavement meeting or exceeding the requirements of this section shall be the responsibility of the Contractor. The Contractor may propose any combination of equipment and means and methods which in the opinion of the Contractor will be enable it to achieve the required results whether such equipment, means and methods are listed in this Section or not. Equipment referenced in this section is included based on the experience of the Engineer on similar projects and is not an indication that use of such equipment on the work required under this Contract is required or will result in an acceptable finished product. Approval of the Contractor's selected equipment shall not indicate an approval of the Contractor's means, methods, techniques or sequences, which remain the responsibility of the Contractor, and does not constitute or indicate a review of the operating condition of the equipment or the skill, training or capabilities of the Contractor's operators or work force.

500-4.1 Equipment. Equipment necessary for handling materials and performing all parts of the work shall be approved by the Engineer as to design, capacity, and mechanical conditions. However, operation of the equipment as well as training and supervision of the persons operating the equipment shall remain at all times with the Contractor. The equipment shall be at the jobsite sufficiently ahead of the start of paving operations to be examined thoroughly and approved.

a. Batch Plant and Equipment. The batch plant and equipment shall conform to the requirements of ASTM C94.

b. Mixers and Transportation Equipment.

- (1) General. Concrete shall be mixed at a central plant.
- (2) Central plant mixer. Central plant mixers shall conform to the requirements of ASTM C94.

The mixer shall be examined daily for changes in condition due to accumulation of hard concrete or mortar or wear of blades. The pickup and throw-over blades shall be replaced when they have worn down 3/4 inch (19 mm) or more. The Contractor shall have a copy of the manufacturer's design on hand showing dimensions and arrangement of blades in reference to original height and depth.

(3) Truck mixers and truck agitators. Truck mixers used for mixing and hauling concrete and truck agitators used for hauling central-mixed concrete shall conform to the requirements of ASTM C94.

(4) Nonagitator trucks. Nonagitating hauling equipment shall conform to the requirements of ASTM C94.

c. Finishing Equipment. The standard method of constructing concrete pavements and a standard for acceptance shall be with approved slip-form paving equipment designed and skillfully operated so as

to spread, consolidate, screed, and float-finish the freshly placed concrete in one complete pass of the machine such that the end result is a dense and homogeneous pavement which is achieved with a minimum of hand finishing. The paver-finisher shall be a heavy duty, self-propelled machine designed specifically for paving and finishing high quality concrete pavements. It shall weigh at least 2,200 lbs. per foot of paving lane width and powered by an engine having at least 6.0 horsepower per foot of lane width.

Individual placement areas of less than 200 square yards, or irregular areas at locations inaccessible to slipform paving equipment, cement concrete pavement may be placed with approved placement and finishing equipment utilizing stationary side forms. Hand screeding and float finishing may only be utilized on small irregular areas as allowed by the Engineer.

d. Vibrators. Vibrator shall be the internal type. Operating frequency for internal vibrators shall be between 8,000 and 12,000 vibrations per minute. Average amplitude for internal vibrators shall be 0.025-0.05 inches (0.06-0.13 cm).

The number, spacing, and frequency shall be as necessary to provide a dense and homogeneous pavement and meet the recommendations of ACI 309, Guide for Consolidation of Concrete. Adequate power to operate all vibrators shall be available on the paver. The vibrators shall be automatically controlled so that they shall be stopped as forward motion ceases. The Contractor shall provide an electronic or mechanical means to monitor vibrator status. The checks on vibrator status shall occur a minimum of two times per day or when requested by the Engineer.

Hand held vibrators shall be used only in irregular areas, against forms in irregular slabs, around light fixtures and other structures in the pavement, and as necessary to achieve concrete consolidation where it cannot be achieved by equipment-mounted vibrators. Use shall meet the recommendations of ACI 309, Guide for Consolidation of Concrete.

e. Concrete Saws. The Contractor shall provide sawing equipment adequate in number of units and power to complete the sawing to the required dimensions. The Contractor shall provide at least one standby saw in good working order and a supply of saw blades at the site of the work at all times during sawing operations. The Contractor shall provide adequate artificial lighting facilities as required for nighttime work.

f. Side Forms. Straight side forms shall be made of steel and shall be furnished in sections not less than 10 feet (3 m) in length. Forms shall have a depth equal to the pavement thickness at the edge, and a base width equal to or greater than the depth. Flexible or curved forms of proper radius shall be used for curves of 100-foot (31 m) radius or less. Forms shall be provided with adequate devices for secure settings so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment.

Forms with battered top surfaces and bent, twisted or broken forms shall not be used. Built-up forms shall not be used, except as approved by the Engineer. The top face of the form shall not vary from a true plane more than 1/8 inch (3 mm) in 10 feet (3 m), and the upstanding leg shall not vary more than 1/4 inch (6 mm). The forms shall contain provisions for locking the ends of abutting sections together tightly for secure setting. Wood forms may be used under special conditions, when approved by the Engineer.

g. Pavers. The paver shall be fully energized, self-propelled, and designed for the specific purpose of placing, consolidating, and finishing the concrete pavement, true to grade, tolerances, and cross section. It shall be of sufficient weight and power to construct the maximum specified concrete paving lane width as shown in the drawings, at adequate forward speed, without transverse, longitudinal or vertical

instability or without displacement. The paver shall be equipped with electronic or hydraulic horizontal and vertical control devices. The Contractor shall provide a statement, technical data, or certification from the equipment manufacturer indicating that the proposed paving equipment is designed for the proposed paving width, and capable of paving the thickness and mix properties specified.

500-4.2 Form Setting. Forms shall be set sufficiently in advance of the concrete placement to insure continuous paving operation. After the forms have been set to correct grade, the underlying surface shall be thoroughly tamped, either mechanically or by hand, at both the inside and outside edges of the base of the forms. Forms shall be staked into place sufficiently to maintain the form in position for the method of placement.

Form sections shall be tightly locked and shall be free from play or movement in any direction. The forms shall not deviate from true line by more than 1/8 inch (3 mm) at any joint. Forms shall be so set that they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms shall be cleaned and oiled prior to the placing of concrete.

The alignment and grade elevations of the forms shall be checked and corrections made by the Contractor immediately before placing the concrete.

500-4.3 Conditioning of Underlying Surface. The portland cement concrete pavement is to be placed on the surface of the econocrete (lean mix concrete) base course or as specified on the drawings. The underlying surfaces shall be swept with a power broom, all loose debris removed and all core holes filled prior to placing concrete pavement.

If traffic is allowed to use the prepared base, the surface shall be checked and corrected immediately before the placement of concrete. If damage occurs on a stabilized base, it shall be corrected full depth by the Contractor at no cost to the Owner.

To prevent reflective cracking from the econocrete base course through the portland cement concrete pavement, the Contractor shall place a non-woven, needle-punched geotextile fabric at least 4 feet (1.2 m) wide centered over all cracks and joints in the econocrete base course. The fabric shall be secured to the econocrete to the satisfaction of the Engineer to prevent movement prior to paving the overlying course. Costs for fabric placement shall be considered incidental to other items. The underlying surface shall be protected so that it is entirely free of frost when concrete is placed.

500-4.4 Conditioning of Underlying Surface, Side-Form and Fill-In Lane Construction. Not used.

500-4.5 Handling, Measuring, and Batching Material. The batch plant site, layout, equipment, and provisions for transporting material shall assure a continuous supply of material to the work. Stockpiles shall be constructed in such a manner that prevents segregation and intermixing of deleterious materials. Aggregates from different sources shall be stockpiled, weighed and batched separately at the concrete batch plant.

Aggregates that have become segregated or mixed with earth or foreign material shall not be used. All aggregates produced or handled by hydraulic methods, and washed aggregates, shall be stockpiled or binned for draining at least 12 hours before being batched. Rail shipments requiring more than 12 hours will be accepted as adequate binning only if the car bodies permit free drainage.

Batching plants shall be equipped to proportion aggregates and bulk cement, by weight, automatically using interlocked proportioning devices of an approved type. When bulk cement is used, the Contractor shall

use a suitable method of handling the cement from weighing hopper to transporting container or into the batch itself for transportation to the mixer, such as a chute, boot, or other approved device, to prevent loss of cement. The device shall be arranged to provide positive assurance that the cement content specified is present in each batch.

The plant shall be equipped with a numerical recording device that will make a continuous, permanent and accurate record of the weight of cement, gravel, sand, and the amount of water actually used in each batch of concrete. The record shall indicate the type, amount and injection time of any additives used for each batch. The record shall be delivered to the Engineer at the end of each production day. Water measuring devices shall be accurate to within 1 percent of weight and shall not be affected by variations in line pressure or construction conditions.

500-4.6 Mixing Concrete. The concrete may be mixed in a central mix plant or in an onsite batch plant. The mixer shall be of an approved type and capacity. Mixing time shall be measured from the time all materials, except water, are emptied into the drum. All concrete shall be mixed and delivered to the site in accordance with the requirements of ASTM C94.

Mixed concrete from the central mixing plant or onsite batch plant shall be transported in truck mixers, truck agitators, or nonagitating trucks. The elapsed time from the addition of cementitious material to the mix until the concrete is deposited in place at the work site shall not exceed 30 minutes when the concrete is hauled in nonagitating trucks, nor 90 minutes when the concrete is hauled in truck mixers or truck agitators.

Retempering concrete by adding water or by other means will not be permitted. With transit mixers additional water may be added to the batch materials, if approved by the Engineer, and additional mixing performed to increase the slump to meet the specified requirements provided the addition of water is performed within 45 minutes after the initial mixing operations and provided the water/cementitious ratio specified in the approved mix design is not exceeded.

If dump trucks are used, the Contractor shall provide a platform within the job site from which the Engineer can take samples for slump, air content, and strength tests. The height of the platform shall be approximately the height of the top of the concrete in the trucks and shall be a least 20 feet (6.1 m) long and 8 feet (2.4 m) wide. The platform shall have a railing on three sides and stairs (with a handrail) down to the ground level. The platform may be constructed of wood or steel and shall conform to the standards contained in Title 29, Part 1926, Safety and Health Regulations for Construction, United States Department of Labor, latest edition. The Contractor shall supply clear running water to the platform for use in cleaning concrete testing equipment, and 110 volt electrical power outlets and overhead lighting.

500-4.7 Limitations on Mixing and Placing. No concrete shall be mixed, placed, finished or sawcut when natural light is insufficient, unless an adequate and approved artificial lighting system is operated.

a. Cold Weather. Unless authorized in writing by the Engineer, mixing and concreting operations shall be discontinued when a descending air temperature in the shade and away from artificial heat reaches 40 degrees F (4 degrees C) and shall not be resumed until an ascending air temperature in the shade and away from artificial heat reaches 35 degrees F (2 degrees C).

The aggregate shall be free of ice, snow, and frozen lumps before entering the mixer. The temperature of the mixed concrete shall not be less than 50 degrees F (10 degrees C) at the time of placement. Concrete shall not be placed on frozen material nor shall frozen aggregates be used in the concrete.

When concreting is authorized during cold weather, water and/or the aggregates may be heated to not more than 150 degrees F (66 degrees C). The apparatus used shall heat the mass uniformly and shall be arranged to preclude the possible occurrence of overheated areas which might be detrimental to the materials.

b. Hot Weather. During periods of hot weather when the maximum daily air temperature exceeds 85 degrees F (30 degrees C), the following precautions shall be taken.

The forms and/or the underlying surface shall be sprinkled with water immediately before placing the concrete. The concrete shall be placed at the coolest temperature practicable, and in no case shall the temperature of the concrete when placed exceed 90 degrees F (35 degrees C). The aggregates and/or mixing water shall be cooled as necessary to maintain the concrete temperature at or not more than the specified maximum.

The finished surfaces of the newly laid pavement shall be kept damp by applying a water-fog or mist with approved spraying equipment until the pavement is covered by the curing medium. If necessary, wind screens shall be provided to protect the concrete from an evaporation rate in excess of 0.2 psf per hour as determined in accordance with Figure 2.1.5 in ACI 305R, Hot Weather Concreting, which takes into consideration relative humidity, wind velocity, and air temperature.

When conditions are such that problems with plastic cracking can be expected, and particularly if any plastic cracking begins to occur, the Contractor shall immediately take such additional measures as necessary to protect the concrete surface. Such measures shall consist of wind screens, more effective fog sprays, and similar measures commencing immediately behind the paver. If these measures are not effective in preventing plastic cracking, paving operations shall be immediately stopped. Damaged pavement shall be repaired or replaced to the satisfaction of the Engineer and at no cost to the Owner.

c. Temperature Management Program. Prior to the start of paving operation for each day of paving, the Contractor shall provide the Engineer with a Temperature Management Program for the concrete to be placed to assure that uncontrolled cracking is avoided. As a minimum the program shall address the following items:

(1) Anticipated tensile strains in the fresh concrete as related to heating and cooling of the concrete material.

(2) Anticipated weather conditions such as ambient temperatures, wind velocity, and relative humidity.

500-4.8 Placing Concrete. Concrete paving shall be placed using approved slip-form paving equipment as specified in Section 500-4.1 C. Side form paving will not be allowed except for small, irregular placements as specified in Section 500-4.1 C. At any point in concrete conveyance, the free vertical drop of the concrete from one point to another or to the underlying surface shall not exceed 3 feet (1 m). Regardless of the manner of placing the concrete, the finished concrete product must be dense and homogeneous, without segregation and conforming to the standards set forth in this Contract. Grading equipment, including backhoes, trackhoes, and front-end loaders shall not be used to distribute the concrete in front of the paver. Front end loaders will not be used unless the Contractor demonstrates that they can be used without contaminating the concrete or damaging the base course and it is approved by the Engineer.

Hauling equipment or other mechanical equipment can be permitted on adjoining previously constructed pavement when the concrete strength reaches a flexural strength of 550 psi (3 792 kPa) or a compressive strength of 3,500 psi, based on the average of four field cured specimens per 2,000 cubic yards (1 530 cubic

meters) of concrete placed. Also, subgrade and subbase planers, concrete pavers, and concrete finishing equipment may be permitted to ride upon the edges of previously constructed pavement when the concrete has attained a minimum flexural strength of 400 psi (2,800 kPa) or a compressive strength of 2,550 psi (17,600 kPa).

a. Slip-Form Construction. The concrete shall be distributed uniformly into final position by a self propelled slip-form paver without delay. The alignment and elevation of the paver shall be regulated from outside reference lines established for this purpose. The paver shall vibrate the concrete for the full width and depth of the strip of pavement being placed and the vibration shall be adequate to provide a consistency of concrete that will stand normal to the surface with sharp well defined edges. The sliding forms shall be rigidly held together laterally to prevent spreading of the forms.

The plastic concrete shall be effectively consolidated by internal vibration with transverse vibrating units for the full width of the pavement and/or a series of equally placed longitudinal vibrating units. The space from the outer edge of the pavement to longitudinal unit shall not exceed 9 inches for slipform and at the end of the dowels for the fill-in lanes. The spacing of internal units shall be uniform and shall not exceed 18 inches.

The term internal vibration means vibrating units located within the specified thickness of pavement section.

The rate of vibration of each vibrating unit shall be within 8,000 to 12,000 cycles per minute and the amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete along the entire length of the vibrating unit and for a distance of at least one foot. The frequency of vibration or amplitude shall vary proportionately with the rate of travel to result in a uniform density and air content. The paving machine shall be equipped with a tachometer or other suitable device for measuring and indicating the actual frequency of vibrations.

The concrete shall be held at a uniform consistency. The slip-form paver shall be operated with as nearly a continuous forward movement as possible. And all operations of mixing, delivering, and spreading concrete shall be coordinated to provide uniform progress with stopping and starting of the paver held to a minimum. If for any reason it is necessary to stop the forward movement of the paver, the vibratory and tamping elements shall also be stopped immediately. No tractive force shall be applied to the machine, except that which is controlled from the machine.

Temporary headers at the start and at the completion of slip form paving operations shall be placed a minimum of 10 feet beyond the designated paving joint. The concrete shall be sawcut full depth at the joint and the concrete removed and disposed of at no cost to the Owner.

When concrete is being placed adjacent to an existing pavement, that part of the equipment which is supported on the existing pavement shall be equipped with protective pads on crawler tracks or rubber-tired wheels on which the bearing surface is offset to run a sufficient distance from the edge of the pavement to avoid breaking the pavement edge.

b. Side-Form Construction. Side form sections shall be straight, free from warps, bends, indentations, or other defects. Defective forms shall be removed from the work. Metal side forms shall be used except at end closures and transverse construction joints where straight forms of other suitable material may be used.

Side forms may be built up by rigidly attaching a section to either top or bottom of forms. If such build-up is attached to the top of metal forms, the build-up shall also be metal.

The width of the base of all forms shall be equal to at least 80 percent of the specified pavement thickness.

Side forms shall be of sufficient rigidity, both in the form and in the interlocking connection with adjoining forms, that springing will not occur under the weight of subgrading and paving equipment or from the pressure of the concrete. The Contractor shall provide sufficient forms so that there will be no delay in placing concrete due to lack of forms.

Before placing side forms, the underlying material shall be at the proper grade. Side forms shall have full bearing upon the foundation throughout their length and width of base and shall be placed to the required grade and alignment of the finished pavement. They shall be firmly supported during the entire operation of placing, compacting, and finishing the pavement.

Immediately in advance of placing concrete and after all subbase operations are completed, side forms shall be trued and maintained to the required line and grade for a distance sufficient to prevent delay in placing.

Side forms shall remain in place at least 12 hours after the concrete has been placed, and in all cases until the edge of the pavement no longer requires the protection of the forms. Curing compound shall be applied to the concrete immediately after the forms have been removed.

Side forms shall be thoroughly cleaned and oiled each time they are used and before concrete is placed against them.

Concrete shall be spread, screeded, shaped and consolidated by one or more self-propelled machines. These machines shall uniformly distribute and consolidate concrete without segregation so that the completed pavement will conform to the required cross section with a minimum of handwork.

The number and capacity of machines furnished shall be adequate to perform the work required at a rate equal to that of concrete delivery.

Concrete for the full paving width shall be effectively consolidated by internal vibrators without causing segregation. Internal type vibrators' rate of vibration shall be not less than 7,000 cycles per minute. Amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete more than one foot from the vibrating element. The Contractor shall furnish a tachometer or other suitable device for measuring and indicating frequency of vibration.

Power to vibrators shall be connected so that vibration ceases when forward or backward motion of the machine is stopped.

The provisions relating to the frequency and amplitude of internal vibration shall be considered the minimum requirements and are intended to ensure adequate density in the hardened concrete.

c. Consolidation Testing. The provisions relating to the frequency and amplitude of internal vibration shall be considered the minimum requirements and are intended to ensure adequate density in the hardened concrete. If a lack of consolidation of the concrete is suspected by the Engineer, referee testing may be required. Referee testing of hardened concrete will be performed by cutting cores from the finished pavement after a minimum of 24 hours curing. Density determinations will be made based on the water content of the core as taken. ASTM C 642 shall be used for the determination of core density in the

saturated-surface dry condition. Referee cores will be taken at the minimum rate of one for each 500 cubic yards of pavement, or fraction thereof.

The average density of the cores shall be at least 97 percent of the original mix design density, with no cores having a density of less than 96 percent of the original mix design density.

Failure to meet the above requirements will be considered as evidence that the minimum requirements for vibration are inadequate for the job conditions, and additional vibrating units or other means of increasing the effect of vibration shall be employed so that the density of the hardened concrete, as indicated by further referee testing, shall conform to the above listed requirements. Concrete found to be in non-conformance with the above requirements shall be removed and replaced at the Contractor's expense.

500-4.9 Strike-Off of Concrete and Placement of Reinforcement. Following the placing of the concrete, it shall be struck off to conform to the cross section shown on the drawings and to an elevation such that when the concrete is properly consolidated and finished, the surface of the pavement shall be at the elevation shown on the drawings. When reinforced concrete pavement is placed in two layers, the bottom layer shall be struck off to such length and depth that the sheet of reinforcing steel fabric or bar mat may be laid full length on the concrete in its final position without further manipulation. The reinforcement shall be placed directly upon the concrete, after which the top layer of the concrete shall be placed, struck off, and screeded. If any portion of the bottom layer of concrete has been placed more than 30 minutes without being covered with the top layer or if initial set has taken place, it shall be removed and replaced with freshly mixed concrete at the Contractor's expense. When reinforced concrete is placed in one layer, the reinforcement may be positioned in advance of concrete placement or it may be placed in plastic concrete by mechanical or vibratory means after spreading.

Reinforcing steel, at the time concrete is placed, shall be free of mud, oil, or other organic matter that may adversely affect or reduce bond. Reinforcing steel with rust, mill scale or a combination of both will be considered satisfactory, provided the minimum dimensions, weight, and tensile properties of a hand wirebrushed test specimen are not less than the applicable ASTM specification requirements.

500-4.10 Joints. Joints shall be constructed as shown on the drawings and in accordance with these requirements. All joints shall be constructed with their faces perpendicular to the surface of the pavement and finished or edged as shown on the drawings. Joints shall not vary more than 1/2 inch (13 mm) from their designated position and shall be true to line with not more than 1/4-inch (6 mm) variation in 10 feet (3 m). The surface across the joints shall be tested with a 10-foot (3 m) straightedge as the joints are finished and any irregularities in excess of 1/4 inch (6 mm) shall be corrected before the concrete has hardened. All joints shall be so prepared, finished, or cut to provide a groove of uniform width and depth as shown on the drawings.

a. Construction. Longitudinal construction joints shall be slip-formed or formed against side forms.

Transverse construction joints shall be installed at the end of each day's placing operations and at any other points within a paving lane when concrete placement is interrupted for more than 30 minutes or it appears that the concrete will obtain its initial set before fresh concrete arrives. The installation of the joint shall be located at a planned contraction or expansion joint. If placing of the concrete is stopped, the Contractor shall remove the excess concrete back to the previous planned joint.

b. Contraction. Contraction joints shall be installed at the locations and spacing as shown on the drawings. Contraction joints shall be installed to the dimensions required by forming a groove or cleft in

the top of the slab while the concrete is still plastic or by sawing a groove into the concrete surface after the concrete has hardened. When the groove is formed in plastic concrete the sides of the grooves shall be finished even and smooth with an edging tool. If an insert material is used, the installation and edge finish shall be according to the manufacturer's instructions. The groove shall be finished or cut clean so that spalling will be avoided at intersections with other joints. Grooving or sawing shall produce a slot at least 1/8 inch (3 mm) wide and to the depth shown on the drawings.

c. Expansion. Expansion joints shall be installed as shown on the drawings. The premolded filler of the thickness as shown on the drawings, shall extend for the full depth and width of the slab at the joint, except for space for sealant at the top of the slab. The filler shall be securely staked or fastened into position perpendicular to the proposed finished surface. A cap shall be provided to protect the top edge of the filler and to permit the concrete to be placed and finished. After the concrete has been placed and struck off, the cap shall be carefully withdrawn leaving the space over the premolded filler. The edges of the joint shall be finished and tooled while the concrete is still plastic. Any concrete bridging the joint space shall be removed for the full width and depth of the joint.

d. Keyways. Not used.

e. Tie bars. Tie bars shall consist of deformed bars installed in joints as shown on the drawings. Tie bars shall be placed at right angles to the centerline of the concrete slab and shall be spaced at intervals shown on the plans.

f. Dowel bars. Dowel bars shall be placed across joints in the manner as shown on the drawings. They shall be of the dimensions and spacings as shown and held rigidly in the middle of the slab depth in the proper horizontal and vertical alignment by an approved assembly device to be left permanently in place. The assembly device shall be clean, dry, and free of rust at the time of placement. The dowel bars shall be rigid enough to permit complete assembly as a unit ready to be lifted and placed into position. The portion of each dowel bar shown on the drawings to receive a debonding lubricant shall be thoroughly coated with grease or an approved lubricant, to prevent the concrete from bonding to that portion of the dowel. Where butt-type joints with dowels are installed, the exposed end of the dowel shall also be coated with a debonding lubricant.

Dowels bars at longitudinal construction joints shall be bonded in drilled holes.

g. Installation. All devices used for the installation of expansion joints shall be approved by the Engineer.

The top of an assembled joint device shall be set at the proper distance below the pavement surface and the elevation shall be checked. Such devices shall be set to the required position and line and shall be securely held in place by stakes or other means to the maximum permissible tolerances during the pouring and finishing of the concrete. The premolded joint material shall be placed and held in a vertical position; if constructed in sections, there shall be no offsets between adjacent units. Grout disks shall be used to retain the grout in the hole until it hardens. Any dowels with voids in the grout shall be cut off and a new dowel installed next to it.

Dowel bars and assemblies shall be checked for position and alignment. The maximum permissible tolerances on dowel bar alignment shall be in accordance with paragraph 500-5.2e(6). During the concrete placement operation, it is advisable to place plastic concrete directly on dowel assemblies immediately prior to passage of the paver to help maintain dowel position and alignment within maximum permissible tolerances.

When concrete is placed using slip-form pavers, dowel bars shall be placed in longitudinal construction joints by bonding the dowel bars into holes drilled into the hardened concrete. The concrete shall have achieved a minimum flexural strength of 400 psi before the holes are drilled. It shall be the Contractor's responsibility to provide samples and testing required to ensure compliance with the minimum strength requirement prior to installation of the dowel bars. Holes approximately 1/8-inch to 1/4-inch (3 to 6 mm) greater in diameter than the dowel bar shall be drilled with rotary-type core drills that must be held securely in place to drill perpendicularly into the vertical face of the pavement slab. Rotary-type percussion drills may be used provided that spalling of concrete does not occur. Any damage of the concrete shall be repaired by the Contractor in a method approved by the Engineer. Dowel bars shall be bonded in the drilled holes using an epoxy resin material. Installation procedures shall be adequate to insure that the area around dowels is completely filled with epoxy grout. Epoxy shall be injected into the back of the hole and displaced by the insertion of the dowel bar. Bars shall be completely inserted into the hole and shall not be withdrawn and reinserted creating air pockets in the epoxy around the bar. Grout disks will be required to retain the grout in the hole until it hardens. Any dowel with voids in the grout shall be cut off and a new dowel installed next to it. The Contractor shall furnish a template for checking the position and alignment of the dowels. Dowel bars shall not be installed less than 6 inches from a transverse joint and shall not interfere with dowels in the transverse direction

h. Sawing of Joints. Joints shall be cut as shown on the drawings. Equipment shall be as described in paragraph 500-4.1. The circular cutter shall be capable of cutting a groove in a straight line and shall produce a slot at least 1/8 inch (3 mm) wide and to the depth shown on the drawings. The top portion of the slot shall be widened by sawing to provide adequate space for joint sealers as shown on the drawings. The widening shall be accomplished in a separate sawing, as part of the sealing operation. Sawing shall commence as soon as the concrete has hardened sufficiently to permit cutting without chipping, spalling, or tearing and before uncontrolled shrinkage cracking of the pavement occurs. Sawing for joint widening shall be no sooner than 7 days after concrete placement. Sawing shall be carried on both during the day and night as required. The joints shall be sawed at the required spacing, consecutively in sequence of the remaining cure period. Curing compound shall not be applied, and used as the cure method, to any final concrete face that is to receive a sealant. Slurry from sawing of joints shall not be allowed to dry and all slurry and debris produced in the sawing of joints shall be immediately removed by vacuuming and washing.

500-4.11 Final Strike-Off, Consolidation, and Finishing.

a. Sequence. The sequence of operations shall be the strike-off, floating and removal of laitance, straight edging, and final surface finish. The addition of superficial water to the surface of the concrete to assist in finishing operations will not be permitted. Any concrete that is placed, consolidated, or finished and results in mortar or excess laitance on the surface, or segregated mix, shall be removed and replaced at the Contractor's expense. Full panel removal and replacement to the nearest joint shall be required for any of this type of defective concrete that has been in place for over 2 hours.

b. Finishing at Joints. The concrete adjacent to joints shall be compacted or firmly placed without voids or segregation against the joint material; it shall be firmly placed without voids or segregation under and around all load-transfer devices, joint assembly units, and other features designed to extend into the pavement. Concrete adjacent to joints shall be mechanically vibrated as required in paragraph 500-4.8. After the concrete has been placed and vibrated adjacent to the joints, the finishing machine shall be operated in a manner to avoid damage or misalignment of joints. If uninterrupted operations of the finishing machine, to, over, and beyond the joints, cause segregation of concrete, damage to, or

misalignment of the joints, the finishing machine shall be stopped when the screed is approximately 8 inches (20 cm) from the joint. Segregated concrete shall be removed from the front of and off the joint; and the forward motion of the finishing machine shall be resumed. Thereafter, the finishing machine may be run over the joint without lifting the screed, provided there is no segregated concrete immediately between the joint and the screed or on top of the joint.

c. Machine Finishing. The concrete shall be spread as soon as it is placed, and it shall be struck off and screeded by a finishing machine as specified in paragraph 500-4.1.c. The machine shall go over each area as many times and at such intervals as necessary to give to proper consolidation and to leave a surface of uniform texture. Excessive operation over a given area shall be avoided. When side forms are used, the tops of the forms shall be kept clean by an effective device attached to the machine, and the travel of the machine on the forms shall be maintained true without lift, wobbling, or other variation tending to affect the precision finish. During the first pass of the finishing machine, a uniform ridge of concrete shall be maintained ahead of the front screed for its entire length. When in operation, the screed shall be moved forward with a combined longitudinal and transverse shearing motion, always moving in the direction in which the work is progressing, and so manipulated that neither end is raised from the side forms during the striking-off process. If necessary, this shall be repeated until the surface is of uniform texture, true to grade and cross section, and free from porous areas.

d. Hand Finishing. Hand finishing methods will not be permitted, except under the following conditions: in the event of breakdown of the mechanical equipment, hand methods may be used to finish the concrete already deposited on the grade; in areas of narrow widths or of irregular dimensions where operation of the mechanical equipment is impractical. Concrete, as soon as placed, shall be struck off and screeded. An approved portable screed shall be used. A second screed shall be provided for striking off the bottom layer of concrete when reinforcement is used.

The screed for the surface shall be a least 2 feet (0.6 m) longer than the maximum width of the slab to be struck off. It shall be of approved design in accordance with 500-4.1.c, sufficiently rigid to retain its shape, and shall be constructed either of metal or of other suitable material covered with metal. Consolidation shall be attained by the use of suitable vibrators in accordance with 500-4.1.d.

e. Floating. After the concrete has been struck off and consolidated, it shall be further smoothed and trued by means of a longitudinal float using one of the following methods:

(1) Hand Method. Long-handled floats shall not be less than 12 feet (3.6 m) in length and 6 inches (15 cm) in width, stiffened to prevent flexibility and warping. The float shall be operated from foot bridges spanning but not touching the concrete or from the edge of the pavement. Floating shall pass gradually from one side of the pavement to the other. Forward movement along the centerline of the pavement shall be in successive advances of not more than one-half the length of the float. Any excess water or laitance in excess of 1/8-inch (3 mm) thick shall be removed and wasted.

(2) Mechanical method. The Contractor may use a machine composed of a cutting and smoothing float(s), suspended from and guided by a rigid frame and constantly in contact with, the side forms or underlying surface. If necessary, long-handled floats having blades not less than 5 feet (1.5 m) in length and 6 inches (15 cm) in width may be used to smooth and fill in open-textured areas in the pavement. When the crown of the pavement will not permit the use of the mechanical float, the surface shall be floated transversely by means of a long-handled float. Care shall be taken not to work the crown out of the pavement during the operation. After floating, any excess water and laitance in excess of 1/8-inch (3 mm) thick shall be removed and wasted. Successive drags shall be lapped one-half the length of the blade.

f. Straightedge Testing and Surface Correction. After the pavement has been struck off and while the concrete is still plastic, it shall be tested for trueness with a Contractor furnished 16-foot (5 m) straightedge swung from handles 3 feet (1 m) longer than one-half the width of the slab. The straightedge shall be held in contact with the surface in successive positions parallel to the centerline and the whole area gone over from one side of the slab to the other, as necessary. Advancing shall be in successive stages of not more than one-half the length of the straightedge. Any excess water and laitance in excess of 1/8-inch (3 mm) thick shall be removed from the surface of the pavement and wasted. Any depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. High areas shall be cut down and refinished. Special attention shall be given to assure that the surface across joints meets the smoothness requirements of paragraph 500-5.2e(3). Straightedge testing and surface corrections shall continue until the entire surface is found to be free from observable departures from the straightedge and until the slab conforms to the required grade and cross section. The use of long-handled wood floats shall be confined to a minimum; they may be used only in emergencies and in areas not accessible to finishing equipment.

500-4.12 Surface Texture. The surface of the pavement shall be finished with either a brush or broom finish for all newly constructed concrete pavements. It is important that the texturing equipment not tear or unduly roughen the pavement surface during the operation. Any imperfections resulting from the texturing operation shall be corrected to the satisfaction of the Engineer.

a. Brush or Broom Finish. A brush or broom finish shall be applied when the water sheen has practically disappeared. The equipment shall operate transversely across the pavement surface, providing corrugations that are uniform in appearance and approximately 1/16 of an inch (2 mm) in depth.

- b. Burlap Drag Finish. Not used.
- c. Artificial Turf Finish. Not used.

500-4.13 Skid Resistant Surfaces.

a. Wire Combing. A skid resistant surface shall be provided on all new concrete pavements by wire combing. The wire combing technique shall use steel combs or tines of various dimensions to form a groove-like texture in the plastic concrete pavement and shall provide grooves that are approximately 1/8 inch (3 mm) wide by 1/8 inch (3 mm) deep spaced 1/2 inch (13 mm) center to center. The wire combing shall be constructed over the full pavement width. The equipment shall operate transversely across the pavement surface, perpendicular to the longitudinal joints.

b. Saw-Cut Grooving. If shown on the drawings, a skid resistant surface shall be provided by construction of saw cut grooves, per Item P-621. Submission of the mix design as required by this section shall constitute a warranty by the Contractor and certifying professional that the mix design, including the hardness and other characteristics of the selected aggregate, as well as other mix design characteristics, including the adequacy of the paste to aggregate bond, are appropriate for the Contractor's proposed grooving operations, including but not limited to the means, methods, techniques and sequences to be used in grooving. It shall be the specific obligation of the Contractor to determine the time from placement to grooving that will, in combination with proper materials and placement, result in a completed, grooved surface that remains firm and in-tact without tearing, raveling, dislodgment or loss of aggregate on the surface of the grooved surfaces.

500-4.14 Curing. Immediately after finishing operations are completed and marring of the concrete will not occur, the entire surface of the newly placed concrete shall be cured with an impervious membrane for a 7-day cure period as described below. No other method of curing will be allowed. Failure to provide sufficient cover material, or lack of water to adequately take care of both curing and other requirements, shall be cause for immediate suspension of concreting operations. The concrete shall not be left exposed for more than 1/2 hour during the 7-day curing period.

When a two-sawcut method is used to construct the contraction joint, the curing compound shall be applied to the sawcut immediately after the initial cut has been made. The sealant reservoir shall not be sawed until after the curing period has been completed. When the one cut method is used to construct the contraction joint, the joint shall be cured with wet rope, wet rags, or wet blankets. The rags, ropes, or blankets shall be kept moist for the duration of the curing period.

a. Impervious Membrane Method. The entire surface of the pavement shall be sprayed uniformly with white pigmented curing compound immediately after the finishing of the surface and before the set of the concrete has taken place. The curing compound shall not be applied during rainfall. Curing compound shall be applied by mechanical sprayers under pressure at the rate of 1 gallon (4 liters) to not more than 150 square feet (14 square meters). The spraying equipment shall be of the fully atomizing type equipped with a tank agitator. At the time of use, the compound shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. During application the compound shall be stirred continuously by mechanical means. Hand spraying of odd widths or shapes and concrete surfaces exposed by the removal of forms will be permitted. When hand spraying is approved by the Engineer, a double application rate shall be used to insure coverage. The curing compound shall be of such character that the film will harden within 30 minutes after application. Should the film become damaged from any cause, including sawing operations, within the required curing period, the damaged portions shall be repaired immediately with additional compound or other approved means. Upon removal of side forms, the sides of the exposed slabs shall be protected immediately to provide a curing treatment equal to that provided for the surface. The use of flyash or set-retarding admixtures may delay the occurrence of bleed water. Curing shall be applied after the bleed water is gone from the surface.

- b. Polyethylene Films. Not used.
- c. Waterproof Paper. Not used.
- d. White Burlap-Polyethylene Sheets. Not used.
- e. Water Method. Not used.

500-4.15 Removing Forms. Unless otherwise specified, forms shall not be removed from freshly placed concrete until it has set for at least 12 hours and hardened sufficiently to permit removal without chipping, spalling, or tearing. After the forms have been removed, the sides of the slab shall be cured as outlined in one of the methods indicated in paragraph 500-4.14. Major honeycombed areas shall be considered as defective work and shall be removed and replaced in accordance with paragraph 500-5.2(f).

500-4.16 Sealing Joints. The joint sealer for the joints in the concrete pavement shall meet the requirements of Crafco Roadsaver 221, or approved equal, and shall be installed as specified in the drawings.

500-4.17 Protection Of Pavement. The Contractor shall protect the pavement and its appurtenances against any traffic. This shall include flaggers to direct traffic and the erection and maintenance of

warning signs, lights, pavement bridges, crossovers, and protection of unsealed joints from intrusion of foreign material, etc. Any damage to the pavement occurring prior to final acceptance shall be repaired or the pavement replaced at the Contractor's expense.

The Contractor shall have available at all times, materials for the protection of the edges and surface of the unhardened concrete. Such protective materials shall consist of rolled polyethylene sheeting at least 4 mils (0.1 mm) thick of sufficient length and width to cover the plastic concrete slab and any edges. The sheeting may be mounted on either the paver or a separate movable bridge from which it can be unrolled without dragging over the plastic concrete surface. When rain appears imminent, all paving operations shall stop and all available personnel shall begin covering the surface of the unhardened concrete with the protective covering. The sheeting shall be held in place by suitable materials placed in a manner that will not damage the concrete surface, but will prevent the sheeting from being blown loose by wind and jet blast.

Damaged pavements shall be removed and replaced at the Contractor's expense. Slabs shall be removed to the full depth, width, and length of the slab. The Engineer may evaluate the damage to determine if diamond grinding can correct the surface and provide the required smoothness, grade, and thickness required by the Contract.

All embedments in the pavement surface shall be made by diamond coring or sawing in a manner that will not chip or spall the surface.

a. Protection in Cold Weather. The concrete shall be maintained at a temperature of at least 50 degrees F (10 degrees C) for a period of 72 hours after placing and at a temperature above freezing for the remainder of the curing time. The Contractor shall be responsible for the quality and strength of the concrete placed during cold weather, and any concrete injured by frost action shall be removed and replaced at the Contractor's expense.

When the average daily temperature is below 40 degrees F (4 degrees C), curing shall consist of covering the newly laid pavement with insulated concrete blankets, which shall be retained in place for 10 days. The insulated blankets shall be secured to avoid being blown away. Admixture for curing or temperature control may be used only when authorized by the Engineer.

When concrete is being placed and the air temperature may be expected to drop below 35 degrees F (2 degrees C), a sufficient supply of insulated concrete blankets shall be provided on the jobsite. Any time the temperature may be expected to reach the freezing point during the day or night, the blankets so provided shall be spread over the pavement to prevent freezing of the concrete.

The period of time such protection shall be maintained shall not be less than 10 days. A minimum of 3 days is required when high early strength concrete is used.

500-4.18 Opening To Traffic. The pavement shall not be opened to traffic until test specimens molded and cured in accordance with ASTM C 31 have attained a flexural strength of 550 pounds per square inch (3,792 kPa) when tested in accordance with ASTM C 78. If such tests are not conducted, the pavement shall not be opened to traffic until 14 days after the concrete was placed. Prior to opening the pavement to construction traffic, all joints shall either be sealed or protected from damage to the joint edge and intrusion of foreign materials into the joint. As a minimum, backer rod or tape may be used to protect the joints from foreign matter intrusion. The pavement shall be cleaned before opening for normal operations.

500-4.19 Repair, Removal, Replacement of Slabs.

a. General. New pavement slabs that are broken, spalled, contain cracks or are otherwise defective or unacceptable shall be removed and replaced or repaired, as specified hereinafter at no cost to the Owner. Spalls along joints shall be repaired as specified. Removal of partial slabs is not permitted. Removal and replacement shall be full depth, shall be full width of the slab and the limit of removal shall be normal to the paving lane and to each original joint. The Engineer will determine whether cracks extend full depth of the pavement and may require cores to be drilled on the crack to determine depth of cracking. Such cores shall be 4-inch (100 mm) diameter, shall be drilled by the Contractor and shall be filled by the Contractor with a well consolidated concrete mixture bonded to the walls of the hole with epoxy resin, using approved procedures. Drilling of cores and refilling holes shall be at no expense to the Owner. All epoxy resin used in this work shall conform to ASTM C 881, Type V. Repair of cracks as described in this section shall not be allowed if in the opinion of the Engineer the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of cracks shall be allowed in any panel that demonstrates segregated aggregate with a significant absence of coarse aggregate in the upper one-eighth (1/8th) inch of the pavement surface.

All removal and replacement operations shall be carefully controlled to prevent damage to the surrounding concrete pavement to remain and to the underlying material to remain in place. All saw cuts along the perimeter of the repair area shall be made perpendicular to the slab surface.

b. Shrinkage Cracks. Shrinkage cracks, which do not exceed 4 inches in depth, shall be cleaned and then pressure injected with epoxy resin, Type IV, Grade 1, using procedures as approved. Care shall be taken to assure that the crack is not widened during epoxy resin injection. All epoxy resin injection shall take place in the presence of the Engineer. Shrinkage cracks, which exceed 4 inches in depth, shall be treated as full depth cracks in accordance with paragraphs 4.19b and 4.19c.

c. Slabs With Cracks through Interior Areas. Interior area is defined as that area more than 6 inches (600 mm) from either adjacent original transverse joint. The full slab shall be removed and replaced at no cost to the Owner, when there are any full depth cracks, or cracks greater than 4" in depth, that extend into the interior area.

d. Cracks Close to and Parallel to Joints. All cracks essentially parallel to original joints, extending full depth of the slab, and lying wholly within 6 inches either side of the joint shall be treated as specified hereinafter. Any crack extending more than 6 inches (600 mm) from the joint shall be treated as specified above in subparagraph "Slabs With Cracks Through Interior Area."

(1) Full Depth Cracks Present, Original Joint Not Opened. When the original uncracked joint has not opened, the crack shall be sawed and sealed, and the original joint filled with epoxy resin as specified below. The crack shall be sawed with equipment specially designed to follow random cracks. The reservoir for joint sealant in the crack shall be formed by sawing to a depth of 3/4 inch (19 mm), plus or minus 1/16 inch (1.6 mm), and to a width of 5/8 inch (16 mm), plus or minus 1/8 inch (3.2 mm). Any equipment or procedure which causes raveling or spalling along the crack shall be modified or replaced to prevent such raveling or spalling. The joint sealant shall be a liquid sealant as specified. Installation of joint seal shall be as specified for sealing joints or as directed. If the joint sealant reservoir has been sawed out, the reservoir and as much of the lower saw cut as possible shall be filled with epoxy resin, Type IV, Grade 2, thoroughly tooled into the void using approved procedures. If only the original narrow saw cut has been made, it shall be cleaned and pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. If filler type material has been used to form a weakened plane in the transverse joint, it shall be completely sawed out and the saw cut pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. Where a parallel crack goes part way across paving lane and then intersects and

follows the original joint which is cracked only for the remained of the width, it shall be treated as specified above for a parallel crack, and the cracked original joint shall be prepared and sealed as originally designed.

(2) Full Depth Cracks Present, Original Joint Also Cracked. At a joint, if there is any place in the lane width where a parallel crack and a cracked portion of the original joint overlap, the entire slab containing the crack shall be removed and replaced for the full lane width and length.

e. Removal and Replacement of Full Slabs. Where it is necessary to remove full slabs and leave adjacent concrete in place, all edges of the slab shall be cut full depth at the joint with a concrete saw, through any dowels. The joint face shall be sawed or otherwise trimmed so that there is no abrupt offset in any direction greater than 1/2 inch and no gradual offset greater than 1 inch when tested in a horizontal direction with a Contractor-provided 12 foot straightedge.

In addition, relief cuts offset approximately one foot from those sawcuts along the joint lines shall be made to reduce the likelihood of damaging the edges of pavement to be retained. The slab shall be further divided by sawing full depth, at appropriate locations, and each piece lifted out and removed. Suitable equipment shall be used to provide a truly vertical lift, and approved safe lifting devices shall be used for attachment to the slabs.

No in-place demolition by impact methods shall be allowed. If sawcutting extends into joints between existing slabs to remain, the existing joint treatment (expansion material and sealant) shall be restored. If sawcuts extend into the concrete of existing slabs that are otherwise intended to remain, these slabs shall be completely replaced by the Contractor, at no cost to the Owner.

When a slab is replaced, new dowels shall be installed on the joints as detailed for the original construction. On doweled joints within existing slabs, the new dowels shall be offset horizontally from the original positions. The holes drilled in adjacent slabs for the new dowels shall be at the midpoints between the cut dowels of the original construction. The spacing of new dowels from the slab corners shall be determined by the Engineer

Placement of concrete shall be as specified for original construction. Prior to placement of new concrete, the underlying material (unless it is stabilized) shall be re-compacted and shaped as specified in the appropriate section of these specifications. The surfaces of all four joint faces shall be cleaned of all loose material and contaminants and coated with a double application of membrane forming curing compound as bond breaker. Care shall be taken to prevent any curing compound from contacting dowels. The resulting joints around the new slab shall be prepared and sealed as specified for original construction.

f. Repairing Spalls Along Joints. If any spall penetrates half the depth of the slab or more, the entire slab shall be removed and replaced as specified above. Spall repair procedures along joints shall be as described and as approved by the Engineer. Repair of spalls as described in this section shall not be allowed if, in the opinion of the Engineer, the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of spalls shall be allowed in any panel that demonstrates segregated aggregate with a significant absence of coarse aggregate in the upper one-eighth (1/8th) inch of the pavement surface.

Where directed, spalls along joints of new slabs, and along parallel cracks used as replacement joints, shall be repaired by first making a vertical saw cut at least 1 inch (25 mm) outside the spalled area and to a depth of at least 3 inches (75 mm). Saw cuts shall be straight lines forming rectangular areas. The concrete between the saw cut and the joint, or crack, shall be chipped out to remove all unsound concrete and at

least 1/2 inch (12 mm) of visually sound concrete. The cavity thus formed shall be thoroughly cleaned with high-pressure water jets supplemented with compressed air to remove all loose material.

A trained technician from the epoxy repair material manufacturer shall be provided by the Contractor to be on site prior to any spall repair to confirm that Contractor's substrate preparation method conforms to manufacturer's recommendations, and to witness Contractor's patching methods to confirm that all patching is performed in accordance with the manufacturer's specifications. Manufacture's technician shall remain on-site through completion of at least five (5) spall repairs, and shall provide field instruction to Contractor and SLCDA staff as requested. Immediately before filling the cavity, a prime coat of epoxy resin, Type III, Grade I, shall be applied to the dry cleaned surface of all sides and bottom of the cavity, except any joint face. The prime coat shall be applied in a thin coating and scrubbed into the surface with a stiff-bristle brush. Pooling of epoxy resin shall be avoided. The cavity shall be filled with low slump Portland cement concrete or mortar or with epoxy resin concrete or mortar. Concrete shall be used for larger spalls, generally those more than 1/2 cu. ft. (0.014 cu. meter) in size, and mortar shall be used for the smaller ones.

Any spall less than 0.1 cubic feet (0.003 cubic meter) shall be repaired only with epoxy resin mortar or a Grade III epoxy resin. Portland cement concrete and mortar mixtures shall be proportioned as directed and shall be mixed, placed, consolidated, and cured as directed. Epoxy resin mortars shall be made with Type III, Grade 1, epoxy resin, using proportions and mixing and placing procedures as recommended by the manufacturer and approved by the Engineer. The epoxy resin materials shall be placed in the cavity in layers not over 2 inches (50 mm) thick. The time interval between placement of additional layers shall be such that the temperature of the epoxy resin material does not exceed 140°F (60°C) at any time during hardening. Mechanical vibrators and hand tampers shall be used to consolidate the concrete or mortar. Any repair material on the surrounding surfaces of the existing concrete shall be removed before it hardens.

Where the spalled area abuts a joint, pre-molded joint filler in accordance with 500-2.4 shall be installed to prevent bond at the joint face. A reservoir for the joint sealant shall be sawed to the dimensions required for other joints, or as required to be routed for cracks. The reservoir shall be thoroughly cleaned and sealed with the sealer specified for the joints. Repair of spalls as described in this section shall not be allowed if in the opinion of the Engineer the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of spalls shall be allowed in any panel that demonstrates segregated aggregate with a significant absence of coarse aggregate in the upper one-eighth (1/8th) inch of the pavement surface.

500-4.20 Existing Concrete Pavement Removal and Repair.

All operations shall be carefully controlled to prevent damage to the concrete pavement and to the underlying material to remain in place. All saw cuts along the perimeter of the removal area shall be made perpendicular to the slab surface.

a. Removal of Existing Pavement Slab. When it is necessary to remove existing concrete pavement and leave adjacent concrete in place, the removal shall be as specified in Paragraph 500-4.19.e.

b. Edge Repair. The edge of existing concrete pavement against which new pavement abuts shall be protected from damage at all times. Areas that are damaged during construction shall be repaired at no cost to the Owner; repair of previously existing damage areas will be paid for as listed in the bid schedule.

(1) Spall Repair. Spalls shall be repaired where indicated and where directed. Repair materials and procedures shall be as previously specified in subparagraph "Repairing Spalls Along Joints."

(2) Underbreak Repair. Any pavement slab that has underbreak damage as a result of Contractor's activities shall be removed and replaced in its entirety in accordance with paragraph 500-4.9.e.

(3) Underlying Material. The underlying material adjacent to the edge of and under the existing pavement which is to remain in place shall be protected from damage or disturbance during removal operations and until placement of new concrete, and shall be shaped as shown on the drawings or as directed. Sufficient material shall be kept in place outside the joint line to prevent disturbance (or sloughing) of material under the pavement that is to remain in place. Any material under the portion of the concrete pavement to remain in place, which is disturbed or loses its compaction shall be carefully removed and replaced. The void shall be completely filled with concrete and thoroughly consolidated. Care should be taken to produce an even, vertical joint face matching the existing pavement. The underlying material outside the joint line shall be thoroughly compacted and moist when new concrete is placed.

MATERIAL ACCEPTANCE

500-5.1 Acceptance Sampling and Testing. All acceptance sampling and testing necessary to determine conformance with the requirements specified in this section with the exception of coring for thickness determination, will be performed by the Engineer at no cost to the Contractor. The Contractor shall bear the cost of providing curing facilities for the strength specimens, per paragraph 500-5.1a(3), and coring and filling operations, per paragraph 500-5.1b(1).

Testing organizations performing these tests shall meet the requirements of ASTM C 1077. The laboratory accreditation must be current and listed on the accrediting authority's website. All test methods required for the acceptance testing and sampling must be listed on the lab accreditation. A copy of the laboratory's current accreditation and accredited tests shall be submitted to the Engineer prior to the start of construction.

Acceptance testing and sampling as provided in this section is for the purposes of determining the Contractor's right to periodic payments for completed work on an interim basis. Acceptance hereunder does not indicate final acceptance and is without prejudice to the right of the Engineer and Sponsor to revoke any previously extended acceptance for any reason set forth herein, including the overall failure of the completed pavement to present a competent and durable pavement placed and resulting in a finished pavement meeting in all respects and regards the highest standards applicable to durable rigid concrete pavements for use in airfield and runway applications. Contractor acknowledges that concrete meeting these material acceptance criteria may not otherwise be acceptable due to conditions such as lack of consolidation, lack of homogeneous quality, lack of density, lack of durability or otherwise and the acceptance criteria in this section are not exclusive as to the final acceptance or quality of the concrete.

Concrete shall be accepted for strength and thickness on a lot basis. A lot shall consist of:

one day's production not to exceed 4,000 square yards (3,344 square meters), in which case the day's placement shall be split into two or more equal lots not exceeding 4,000 square yards (3,344 square meters) each

a. Slump and Air Content. The concrete shall be accepted with respect to slump and air content if the slump and air content test results are within the suspension limits of the "Control Chart Limits" table in paragraph P-500-6.3b based on the target values of the approved mix design. Slump tests shall be made in accordance with ASTM C 143. Air Tests shall be made in accordance with ASTM C 231.

An air and slump test shall be performed on the first three truckloads of concrete produced at the start of operations each day and the first three truckloads produced after any scheduled shutdown, or any non-scheduled shutdown. Additional tests shall be made on a random basis throughout the day by the use of a random number table. The number of additional tests required shall be determined by the Engineer. If the first test on a truckload of concrete is not within the suspension limits, a second test on the same truck load shall be made immediately. If the second test is within the suspension limits, the concrete will be accepted in respect to slump test and entrained air content. If the second test is not within the suspension limits, the truckload shall be rejected.

b. Flexural Strength.

(1) Sampling. Each lot shall be divided into four equal sublots. One sample shall be taken for each sublot from the plastic concrete delivered to the job site. Sampling locations shall be determined by the Engineer in accordance with random sampling procedures contained in ASTM D 3665. The concrete shall be sampled in accordance with ASTM C 172.

(2) Testing. Two (2) specimens shall be made from each sample. Specimens shall be made in accordance with ASTM C 31 and the flexural strength of each specimen shall be determined in accordance with ASTM C 78. The flexural strength for each sublot shall be computed by averaging the results of the two test specimens representing that sublot.

Immediately prior to testing for flexural strength, the beam shall be weighed and measured for determination of a sample unit weight. Measurements shall be made for each dimension; height, depth, and length, at the mid-point of the specimen and reported to the nearest tenth of an inch. The weight of the specimen shall be reported to the nearest 0.1 pound. The sample unit weight shall be calculated by dividing the sample weight by the calculated volume of the sample. This information shall be reported as companion information to the measured flexural strength for each specimen.

Steel molds shall be used in the fabrication of the beams and the samples shall be transported while in the molds. The curing, except for the initial cure period, will be accomplished using the immersion in saturated lime water method.

Slump, air content, and temperature tests will also be conducted by the quality assurance laboratory for each set of strength test samples, per ASTM C 31.

(3) Curing. The Contractor shall provide adequate facilities for the initial curing of beams. During the 24 hours after molding, the temperature immediately adjacent to the specimens must be maintained in the range of 60 to 80 degrees F (16 to 27 degrees C), and loss of moisture from the specimens must be prevented. The specimens may be stored in tightly constructed wooden boxes, temporary buildings at construction sites, under wet burlap in favorable weather, or in heavyweight closed plastic bags, or using other suitable methods, provided the temperature and moisture loss requirements are met.

(4) Acceptance. Acceptance of pavement for flexural strength will be determined by the Engineer in accordance with paragraph 500-5.2b.

c. Pavement Thickness.

(1) Sampling. Each lot shall be divided into four equal sublots and one core shall be taken by the Contractor for each sublot. The lot for thickness testing shall represent the same material as the lot for

flexural strength. Sampling locations shall be determined by the Engineer in accordance with random sampling procedures contained in ASTM D 3665. Areas, such as thickened edges, with planned variable thickness, shall be excluded from sample locations.

Cores shall be neatly cut with a core drill. The Contractor shall furnish all tools, labor, and materials for cutting samples and filling the cored holes at no additional cost to the Owner. Core holes shall be filled by the Contractor with a non-shrink grout approved by the Engineer within one day after sampling.

(2) Testing. The thickness of the cores shall be determined by the Engineer by the average caliper measurement in accordance with ASTM C 174.

(3) Acceptance. Acceptance of pavement for thickness shall be determined by the Engineer in accordance with paragraph 500-5.2c.

d. Partial Lots. When operational conditions cause a lot to be terminated before the specified number of tests have been made for the lot, or when the Contractor and Engineer agree in writing to allow overages or minor placements to be considered as partial lots, the following procedure will be used to adjust the lot size and the number of tests for the lot.

Where three sublots have been produced, they shall constitute a lot. Where one or two sublots have been produced, they shall be incorporated into the next lot or the previous lot and the total number of sublots shall be used in the acceptance criteria calculation, i.e., n=5 or n=6.

e. Outliers. All individual flexural strength tests within a lot shall be checked for an outlier (test criterion) in accordance with ASTM E 178, at a significance level of 5 percent. Outliers shall be discarded, and the PWL shall be determined using the remaining test values.

500-5.2 Acceptance Criteria.

a. General. Acceptance will be based on the following characteristics of the completed pavement:

(1)	Flexural strength	(4)	Grade
(2)	Thickness	(5)	Edge slump

(3) Smoothness (6) Dowel bar alignment

All pavement in its in-place completed condition shall in addition to the foregoing represent concrete pavement of the highest quality and shall be dense and homogenous and of a uniform consistency throughout with non-segregated, evenly distributed aggregate throughout all sections of the pavement. A top surface which is deficient in an even and uniform distribution of coarse aggregate to a depth greater than 1/8th inch shall not be acceptable and shall cause rejection of any panel in which such condition occurs.

Flexural strength and thickness shall be evaluated for acceptance on a lot basis using the method of estimating percentage of material within specification limits (PWL). Acceptance using PWL considers the variability (standard deviation) of the material and the testing procedures, as well as the average (mean) value of the test results to calculate the percentage of material that is above the lower specification tolerance limit (L).

Acceptance for flexural strength will be based on the criteria contained in accordance with paragraph 500-5.2e(1). Acceptance for thickness will be based on the criteria contained in paragraph 500-5.2e(2).

Acceptance for smoothness will be based on the criteria contained in paragraph 500-5.2e(3). Acceptance for grade will be based on the criteria contained in paragraph 500-5.2e(4).

The Engineer may at any time, not withstanding previous plant acceptance, reject and require the Contractor to dispose of any batch of concrete mixture which is rendered unfit for use due to contamination, segregation, or improper slump. Such rejection may be based on only visual inspection. In the event of such rejection, the Contractor may take a representative sample of the rejected material in the presence of the Engineer, and if it can be demonstrated in the laboratory, in the presence of the Engineer, that such material was erroneously rejected, payment will be made for the material at the contract unit price. The payment will be based on the surface area of full depth pavement that could have been constructed with the batch of rejected load. There will be no other compensation due the Contractor for erroneously rejected material.

b. Flexural Strength. Acceptance of each lot of in-place pavement for flexural strength shall be based on PWL. The Contractor shall target production quality to achieve 90 PWL or higher.

c. Pavement Thickness. Acceptance of each lot of in-place pavement shall be based on PWL. The Contractor shall target production quality to achieve 90 PWL or higher.

d. Percentage of Material Within Limits (PWL). The percentage of material within limits (PWL) shall be determined in accordance with procedures specified in Section P-600.

The lower specification tolerance limit (L) for flexural strength and thickness shall be:

LOWER SPECIFICATION TOLERANCE LIMIT (L)			
Flexural Strength	$0.93 \times$ strength specified in paragraph 500-3.1		
Thickness	Plan Thickness for the Lot, in inches – 0.00 inches		

e. Acceptance Criteria.

(1) Flexural Strength. If the PWL of the lot equals or exceeds 90 percent, the lot shall be acceptable. Acceptance and payment for the lot shall be determined in accordance with paragraph 500-8.1.

(2) Thickness. If the PWL of the lot equals or exceeds 90 percent, the lot shall be acceptable. Acceptance and payment for the lot shall be determined in accordance with paragraph 500-8.1.a.

(3) Smoothness. As soon as the concrete has hardened sufficiently, the pavement surface shall be tested with a Contractor furnished 16-foot (5 m) straightedge. Surface smoothness deviations shall not exceed 1/4 inch (6 mm) from a 16-foot (5 m) straightedge placed in any direction, including placement along and spanning any pavement joint edge.

Areas in a slab showing high spots of more than 1/4 inch (6 mm) but not exceeding 1/2 inch (13 mm) in 16 feet (5 m) shall be marked and immediately ground down with an approved grinding machine to an elevation that will fall within the tolerance of 1/4 inch (6 mm) or less. Where the departure from correct cross section exceeds 1/2 inch (13 mm), the pavement shall be removed and replaced at the expense of the Contractor when so directed by the Engineer.

The surface of the ground pavement shall have a texture consisting of grooves between 0.090 and 0.130 inches wide. The peaks and ridges shall be approximately 1/32 inch higher than the bottom of the grooves.

The pavement shall be left in a clean condition. The removal of all of the slurry resulting from the grinding operation shall be continuous. The grinding operation should be controlled so the residue from the operation does not flow across other lanes of pavement. Records shall be maintained showing all smoothness measurements.

(4) Grade. An evaluation of grade shall be evaluated on the first day of placement and then every 5 days or less so adjustments can be made to paving operations if measurements do not meet specification requirements. The Contractor must submit the survey data, performed, stamped and signed by a licensed surveyor, to the Engineer by the following day after measurements have been taken. The Engineer will compare the Contractor-surveyed grades with the grades shown on the contract drawings and document the analysis. An evaluation of the surface grade shall be made by the Engineer for compliance to the tolerances contained below. Records shall be maintained showing all grade measurements.

Lateral Deviation. Lateral deviation from established alignment of the pavement edge shall not exceed plus or minus 0.10 foot (30 mm) in any lane.

Vertical Deviation. Vertical deviation from established grade shall not exceed plus or minus 0.04 foot (12 mm) at any point. Vertical survey shall be conducted on the high point of each joint intersection and compared to the plan elevations to determine the vertical deviation.

The finished grade of each lot will be determined by running levels at all joint intersections to determine the elevation of the completed pavement. The Contractor shall coordinate and pay the cost of all surveying and the surveying shall be performed by a licensed surveyor. The documentation, stamped and signed by a Utah-licensed surveyor, shall be provided by the Contractor to the Engineer. When more than 15 percent of all the measurements within a lot are outside the specified tolerance, or if any one shot within the lot deviates 3/4 inch (19 mm) or more from planned grade, the Contractor shall not be permitted. Isolated high points may be ground off provided that the course thickness is not greater than ¹/₄ inch deficient in the design thickness.

(5) Edge Slump. When slip-form paving is used, not more than 15 percent of the total free edge of each 500 foot (150 m) segment of pavement, or fraction thereof, shall have an edge slump exceeding 1/4 inch (6 mm), and none of the free edge of the pavement shall have an edge slump exceeding 3/8 inch (10 mm). (The total free edge of 500 feet (150 m) of pavement will be considered the cumulative total linear measurement of pavement edge originally constructed as nonadjacent to any existing pavement; i.e., 500 feet (150 m) of paving lane originally constructed as a separate lane will have 1,000 feet (300 m) of free edge, 500 feet (150 m) of fill-in lane will have no free edge, etc.). The area affected by the downward movement of the concrete along the pavement edge shall be limited to not more than 18 inches (457 mm) from the edge. When excessive edge slump cannot be corrected before the concrete has hardened, the area with excessive edge slump shall be removed and replaced at the expense of the Contractor when so directed by the Engineer.

(6) Dowel Bar Alignment. Dowel bars and assemblies shall be checked for position and alignment. The maximum permissible tolerance on dowel bar alignment in each plane, horizontal and vertical, shall not exceed 2 percent or 1/4 inch per foot (20 mm per meter) of a dowel bar. Vertical alignment of dowels shall be measured parallel to the designed top surface of the pavement, except for those across the crown or other grade change joints. Dowels across crowns and other joints at grade changes, shall be measured to a level surface. Horizontal alignment shall be checked perpendicular to the joint edge.

f. Removal and Replacement of Concrete. Any area or section of concrete that is removed and replaced shall be removed and replaced back to planned joints. The removal and replacement shall be in accordance with paragraph 500-4.19 of this specification.

g. Final Acceptance. Final acceptance and payment shall be determined based on a combination of the foregoing factors and such other tests and criteria as shall be necessary to determine before final acceptance and payment that the in-place concrete pavement meets all requirements set forth in this section and the Contract as a whole and represents concrete pavement of the highest quality as required herein. Such additional testing may include but is not limited to petrographic examination conducted pursuant to ASTM C 856. Any one or any combination of the following factors in addition to the acceptance criteria set forth herein shall be sufficient cause for precluding final acceptance and rescission of prior interim acceptance:

(1) Concrete which evidences aggregate loss with any risk of foreign object debris (FOD) shall be considered unacceptable. The tolerance for FOD generation shall be considered zero.

(2) Concrete which is not of a uniform consistency and/or presents segregation or does not demonstrate even distribution of coarse and fine aggregate particles shall be considered unacceptable.

(3) Concrete which is cracked, spalled, raveled or torn shall be considered unacceptable unless it is in the sole judgment of the Engineer repairable as set forth herein.

CONTRACTOR QUALITY CONTROL

500-6.1 Quality Control Program. The Contractor shall develop a Quality Control Program that meets the approval of the Engineer. The program shall address all elements that affect the quality of the pavement including but not limited to:

a.	Mix Design	e.	Proportioning	i.	Dowel Placement and Alignment
b.	Aggregate Gradation	f.	Mixing and Transportation	j.	Flexural Strength
c.	Quality of Materials	g.	Placing and Consolidation	k.	Finishing and Curing
d.	Stockpile Management	h.	Joints	1.	Surface Smoothness

500-6.2 Quality Control Testing. The Contractor shall perform all quality control tests necessary to control the production and construction processes applicable to this specification and as set forth in the Quality Control Program. The testing program shall include, but not necessarily be limited to, tests for aggregate gradation, aggregate moisture content, slump, and air content.

A Quality Control Testing Plan shall be developed as part of the Quality Control Program.

a. Fine Aggregate.

(1) Gradation. A sieve analysis shall be made at least twice daily in accordance with ASTM C 136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt.

(2) Moisture Content. If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C 70 or ASTM C 566. If an electronic moisture meter is used, a control chart shall be produced indicating moisture readings and calibration reports entered for the project records.

b. Coarse Aggregate.

(1) Gradation. A sieve analysis shall be made at least twice daily for each size of aggregate. Tests shall be made in accordance with ASTM C 136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt.

(2) Moisture Content. If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C 566. If an electronic moisture meter is used, a control chart shall be produced indicating moisture readings and calibration reports entered for the project records.

c. Slump. A minimum of four slump tests shall be performed for each lot of material produced in accordance with the lot size defined in Section 500-5.1. At least one test shall be made for each sublot. Slump tests shall be performed in accordance with ASTM C 143 from material randomly sampled from material discharged from trucks at the paving site. Material samples shall be taken in accordance with ASTM C 172.

d. Air Content. A minimum of four air content tests, shall be performed for each lot of material produced in accordance with the lot size defined in Section 500-5.1. At least one test shall be made for each sublot. Air content tests shall be performed in accordance with ASTM C 231 for gravel and stone coarse aggregate and ASTM C 173 for slag or other porous coarse aggregate, from material randomly sampled from trucks at the paving site. Material samples shall be taken in accordance with ASTM C 172.

e. At least four unit weight and yield tests shall be made in accordance with ASTM C 138. The samples shall be taken in accordance with ASTM C 172 and at the same time as the air content tests.

500-6.3 Control Charts. The Contractor shall maintain linear control charts for fine and coarse aggregate gradation, slump, and air content.

Control charts shall be posted in a location satisfactory to the Engineer and shall be kept up to date at all times. As a minimum, the control charts shall identify the project number, the contract item number, the test number, each test parameter, the Action and Suspension Limits, or Specification Limits, applicable to each test parameter, and the Contractor's test results. The Contractor shall use the control charts as part of a process control system for identifying potential problems and assignable causes before they occur. If the Contractor's projected data during production indicates a potential problem and the Contractor is not taking satisfactory corrective action, or if the Contractor fails to create and maintain the required control charts, the Engineer may halt production or acceptance of the material. No additional contract time or costs will be allowed for delays caused by Contractor. The Engineer may reject any concrete produced, based on nonconformance with any requirement of this specification.

a. Fine and Coarse Aggregate Gradation. The Contractor shall record the running average of the last five gradation tests for each control sieve on linear control charts. Specification limits contained in Tables 1 and 2 shall be superimposed on the Control Chart for job control.

b. Slump and Air Content. The Contractor shall maintain linear control charts both for individual measurements and range (i.e. difference between highest and lowest measurements) for slump and air content in accordance with the following Action and Suspension Limits.

CONTROL CHART LIMITS						
Control	Individual M	easurements	Range Suspension			
Parameter	Action Limit	Suspension Limit	Limit (between 2			
			consecutive tests)			
Slip Form:	Slip Form:					
Slump	0 to 1.5 inch (0-38mm)	0 to 2.0 inch (0-50mm)	1.5 inch (38 mm)			
Air Content	+/- 1.2%	+/- 1.8%	+/- 2.5%			
Side Form						
Slump	0.5 to 2.0 inch (13-50mm)	0 to 3.0 inch (0-75mm)	1.5 inch (38mm)			
Air Content	+/- 1.2%	+/- 1.8%	+/- 2.5%			

The individual measurement control charts shall use the mix design target values as indicators of central tendency for the air content.

500-6.4 Corrective Action. The Contractor Quality Control Program shall indicate that appropriate action shall be taken when the process is believed to be out of control. The Contractor Quality Control Program shall detail what action will be taken to bring the process into control and shall contain sets of rules to gauge when a process is out of control. As a minimum, a process shall be deemed out of control and corrective action taken if any one of the following conditions exists.

a. Fine and Coarse Aggregate Gradation. When two consecutive averages of five tests are outside of the Tables 1 or 2 specification limits, immediate steps, including a halt to production, shall be taken to correct the grading.

b. Fine and Coarse Aggregate Moisture Content. Whenever the moisture content of the fine or coarse aggregate changes by more than 0.5 percent, the scale settings for the aggregate batcher(s) and water batcher shall be adjusted.

c. Slump. The Contractor shall halt production and make appropriate adjustments whenever:

(1) one point falls outside the Suspension Limit line for individual measurements or range; or

(2) two points in a row fall outside the Action Limit line for individual measurements.

d. Air Content. The Contractor shall halt production and adjust the amount of air-entraining admixture whenever:

(1) one point falls outside the Suspension Limit line for individual measurements or range; or

(2) two points in a row fall outside the Action Limit line for individual measurements.

Whenever a point falls outside the Action Limits line, the air-entraining admixture dispenser shall be calibrated to ensure that it is operating correctly and with good reproducibility.

METHOD OF MEASUREMENT

500-7.1 Portland cement concrete pavement shall be measured by the number of square yards for plain or reinforced pavement as specified in-place, completed and accepted. No separate measurement will be made whether the pavement is 10" or 12.5" for thickened edge slabs.

BASIS OF PAYMENT

500-8.1 Payment. Payment for concrete pavement accepted on an interim basis shall be made at the contract unit price per square yard for plain or reinforced pavement as specified, adjusted in accordance with paragraph 500-8.1a, subject to the limitation that:

Such payment is on an interim basis and is subject to reversal in the event final acceptance is not achieved.

The total project payment for concrete pavement shall not exceed 100 percent of the product of the contract unit price and the total number of square yards of concrete pavement used in the accepted work (See Note 2 under Table 3).

Payment shall be full compensation for all labor, materials, reinforcing steel, tools, equipment, and incidentals required to complete the work as specified herein and on the drawings.

a. Basis of Adjusted Payment. The pay factor for each individual lot shall be calculated in accordance with Table 3. A pay factor shall be calculated for both flexural strength and thickness. The lot pay factor shall be the higher of the two values when calculations for both flexural strength and thickness are 100 percent or higher. The lot pay factor shall be the product of the two values when only one of the calculations for either flexural strength or thickness is 100 percent or higher. The lot pay factor shall be the lower of the two values when calculations for both flexural strength and thickness are less than 100 percent.

TABLE 3.PRICE ADJUSTMENT SCHEDULE 1			
Percentage of Material Within Specification Limits (PWL)	Lot Pay Factor (Percent of Contract Unit Price)		
96 - 100	106		
90 - 95	PWL + 10		
75 - 90	0.5PWL + 55		
55 - 74	1.4PWL - 12		
Below 55	Reject 2		

- ¹ Although it is theoretically possible to achieve a pay factor of 106 percent for each lot, actual payment in excess of 100 percent shall be subject to the total project payment limitation specified in paragraph 500-8.1.
- ² The lot shall be removed and replaced. However, the Engineer may decide to allow the rejected lot to remain. In that case, if the Engineer and Contractor agree in writing that the lot shall not

be removed, it shall be paid for at 50 percent of the contract unit price and the total project payment limitation shall be reduced by the amount withheld for the rejected lot.

For each lot accepted, the adjusted contract unit price shall be the product of the lot pay factor for the lot and the contract unit price. Payment shall be subject to the total project payment limitation specified in paragraph 500-8.1. Payment in excess of 100 percent for accepted lots of concrete pavement shall be used to offset payment for accepted lots of concrete pavement that achieve a lot pay factor less than 100 percent.

b. Payment. Payment shall be made under:

Item P-500 Portland Cement Concrete Pavement (10 Inch)..... Per Square Yard

TESTING REQUIREMENTS

ASTM C 39	Compressive Strength of Cylindrical Concrete Specimens
ASTM C 42	Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete
ASTM C 70	Surface Moisture in Fine Aggregate
ASTM C 78	Test for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)
ASTM C 114	Chemical Analysis of Hydraulic Cement
ASTM C 117	Test Method for Material Finer Than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 123	Test Method for Lightweight Particles in Aggregate
ASTM C 131	Test for Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine
ASTM C 136	Sieve Analysis of Fine and Coarse Aggregates
ASTM C 138	Test for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
ASTM C 142	Test Method for Clay Lumps and Friable Particles in Aggregates
ASTM C 143	Test for Slump of Hydraulic Cement Concrete
ASTM C 172	Sampling Freshly Mixed Concrete
ASTM C 173	Test for Air Content of Freshly Mixed Concrete by the Volumetric Method
ASTM C 174	Measuring Thickness of Concrete Elements Using Drilled Concrete Cores
ASTM C 192	Practice for Making and Curing Concrete Test Specimens in the Laboratory

ASTM C 227	Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)		
ASTM C 231	Test for Air Content of Freshly Mixed Concrete by the Pressure Method		
ASTM C 289	Potential Alkali-Silica Reactivity of Aggregates (Chemical Method)		
ASTM C 295	Petrographic Examination of Aggregates for Concrete		
ASTM C 311	Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland Cement Concrete		
ASTM C 535	Test for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine		
ASTM C 566	Total Evaporable Moisture Content of Aggregates by Drying		
ASTM C 642	Test for Density, Absorption, and Voids in Hardened Concrete		
ASTM C 666	Resistance of Concrete to Rapid Freezing and Thawing		
ASTM C 1077	Standard Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation		
ASTM C 1260	Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)		
ASTM C 1567	Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)		
ASTM D 3665	Random Sampling of Paving Materials		
ASTM D 4791	Test Method for Flat or Elongated Particles in Coarse Aggregate		
ASTM E 178	Dealing with Outlying Observations		
AASHTO T 26	Quality of Water to be Used in Concrete		
COE CRD-C 662 (2009) Determining the Potential Alkali-Silica Reactivity of Combinations of U.S. Army Corps of Cementitious Materials, Lithium Nitrate Admixture and Aggregate Engineers			

MATERIAL REQUIREMENTS

(USACE) (Accelerated Mortar-Bar Method)

ASTM A 184	Specification for Fabricated Deformed Steel Bar Mats for Concrete Reinforcement
ASTM A 615	Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
ASTM A 714	Specification for High-Strength Low-Alloy Welded and Seamless Steel Pipe

ASTM A 775/775M Specification for Epoxy-Coated Steel Reinforcing Bars

- ASTM A 996 Specification for Rail-Steel and Axle Steel Deformed Bars for Concrete Reinforcement
- ASTM C 33 Specification for Concrete Aggregates
- ASTM C 94 Specification for Ready-Mixed Concrete
- ASTM C 150 Specification for Portland Cement
- ASTM C 171 Specification for Sheet Materials for Curing Concrete
- ASTM C 260 Specification for Air-Entraining Admixtures for Concrete
- ASTM C 309 Specification for Liquid Membrane-Forming Compounds for Curing Concrete
- ASTM C 494 Specification for Chemical Admixtures for Concrete
- ASTM C 595 Specification for Blended Hydraulic Cements
- ASTM C 618 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete
- ASTM C 881 Specification for Epoxy-Resin Base Bonding System for Concrete
- ASTM C 989 Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars
- ASTM D 1751 Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
- ASTM D 1752 Specification for Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction
- ACI 305R Hot Weather Concreting
- ACI 306R Cold Weather Concreting
- ACI 309 Guide for Consolidation of Concrete

END OF SECTION P-500

THIS PAGE INTENTIONALLY BLANK

SECTION P-603

BITUMINOUS TACK COAT

DESCRIPTION

603-1.1 This item shall consist of preparing and treating a bituminous or concrete surface with bituminous material in accordance with these specifications and in reasonably close conformity to the lines shown on the plans.

MATERIALS

603-2.1 Bituminous Materials. The bituminous material shall be emulsified asphalt and shall conform to the requirements of Table 1.

		Application Temperature		
Type and Grade	Specification	Degrees F	Degrees C	
Emulsified Asphalt SS-1, SS-1h CSS-1, CSS-1h	ASTM D 977 ASTM D 2397	75 - 130 75 - 130	25 - 55 25 - 55	

TABLE 1. BITUMINOUS MATERIAL

603-2.2 Submittals. Prior to placement of the bituminous tack coat, the Contractor shall submit certification to the Engineer for all material covered by this specification section that will be used on the project. The certification shall show the appropriate ASTM tests for the material, the name of the company certifying the tests, the date of the tests, the test results and a statement that the material did or did not comply with the applicable specifications. Tests older than 90 days shall not be used. The submittal shall include the name of the manufacturer or producer, the material source, and the proposed application rate.

Tests and certifications for emulsified asphalt shall be conducted after the appropriate amount of water has been added and the material is ready for use on the project.

Submittals shall comply with procedures set forth in the "Shop Drawing and Sample Submittals" section of the General Conditions. Allow ten days for review by the Engineer, excluding delivery time to and from the Contractor.

CONSTRUCTION METHODS

603-3.1 Weather Limitations. The tack coat shall be applied only when the existing surface is dry and the atmospheric temperature is above 60 degrees Fahrenheit (15 degrees C). The temperature requirements may be waived, but only when so directed by the Engineer.

603-3.2 Equipment. The Contractor shall provide equipment for heating and applying the bituminous material.

The distributor shall be designed, equipped, maintained and operated so that bituminous material at even heat may be applied uniformly on variable widths of surface at the specified rate. The allowable variation from the specified rate shall not exceed 10 percent. Distributor equipment shall include a tachometer, pressure gauges, volume-measuring devices or a calibrated tank, and a thermometer for measuring temperatures of tank contents. The distributor shall be self-powered and shall be equipped with a power unit for the pump and full circulation spray bars adjustable laterally and vertically.

If the distributor is not equipped with an operable quick shut off valve, the tack operations shall be started and stopped on building paper. The Contractor shall remove blotting sand prior to asphalt concrete lay down operations at no additional expense to the owner.

A power broom and/or blower shall be provided for any required cleaning of the surface to be treated.

603-3.3 Application of Bituminous Material. Immediately before applying the tack coat, the full width of surface to be treated shall be swept with a power broom and/or air blast to remove all loose dirt and other objectionable material.

Emulsified asphalt may be diluted by adding additional water only when directed by the Engineer and shall be applied a sufficient time in advance of the paver to ensure that all water has evaporated before any of the overlying mixture is placed on the tacked surface.

The bituminous material including vehicle or solvent shall be uniformly applied with a bituminous distributor at the rate of 0.05 to 0.15 gallons per square yard (0.24 to 0.72 liters per square meter) depending on the condition of the existing surface. The type of bituminous material and application rate shall be approved by the Engineer prior to application.
Following the application, the surface shall be allowed to cure without being disturbed for such period of time as may be necessary to permit drying out and setting of the tack coat. This period shall be determined by the Engineer. The surface shall then be maintained by the Contractor until the next course has been placed. Suitable precautions shall be taken by the Contractor to protect the surface against damage during this interval.

603-3.4 Bituminous Material-Contractor's Responsibility. Samples of the bituminous material that the Contractor proposes to use, together with a statement as to its source and character, must be submitted and approved before use of such material begins, as described in paragraph P-603-2.2 Submittals. The Contractor shall require the manufacturer or producer of the bituminous material to furnish material subject to this and all other pertinent requirements of the contract. Only satisfactory materials so demonstrated by service tests, shall be acceptable.

The Contractor shall furnish the vendor's certified test reports for each lot of bituminous material. The Engineer may use the local state DOT agency supplier certification program for approval instead of the test reports. Any of the certifications shall not be interpreted as a basis of final acceptance. Samples may be taken and tested for verification by the Engineer when material is delivered to the site.

603-3.5 Freight and Weigh Bills. Before the final estimate is allowed, the Contractor shall file with the Engineer receipted bills when railroad shipments are made and certified weigh bills when materials are received in any other manner, of the bituminous materials actually used in the construction covered by the contract. The Contractor shall not remove bituminous material from the tank car or storage tank until the initial outage and temperature measurements have been taken by the Engineer, nor shall the car or tank be released until the final outage has been taken by the Engineer. Copies of freight bills and weigh bills shall be furnished to the Engineer during the progress of the work.

METHOD OF MEASUREMENT

603-4.1 No separate measurement will be made for bituminous tack coat.

BASIS OF PAYMENT

603-5.1 There shall be no separate payment for bituminous tack coat material. Payment for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specifications.

MATERIAL REQUIREMENTS

ASTM D 977	Specification for Emulsified Asphalt
ASTM D 1250	Guide for Petroleum Measurement Tables
ASTM D 2397	Specification for Cationic Emulsified Asphalt
Asphalt Institute Manual MS-6 Table IV-3	Asphalt Pocketbook of Useful Information (Temperature - Volume Corrections for Emulsified Asphalts)

END OF SECTION P-603

SECTION P-610

STRUCTURAL PORTLAND CEMENT CONCRETE

DESCRIPTION

610-1.1 This item shall consist of either plain or reinforced structural Portland cement concrete, prepared and constructed in accordance with these specifications, at the locations and of the form and dimensions shown on the plans.

MATERIALS

610-2.1 General. Only approved materials, conforming to the requirements of these specifications, shall be used in the work. They may be subjected to inspection and tests at any time during the progress of their preparation or use. The source of supply of each of the materials shall be approved by the Engineer before delivery or use is started. Representative preliminary samples of the materials shall be submitted by the Contractor, when required, for examination and test. Materials shall be stored and handled to insure the preservation of their quality and fitness for use and shall be located to facilitate prompt inspection. All equipment for handling and transporting materials and concrete must be clean before any material or concrete is placed therein.

In no case shall the use of pit-run or naturally mixed aggregates be permitted. Naturally mixed aggregate shall be screened and washed and all fine and coarse aggregates shall be stored separately and kept clean. The mixing of different kinds of aggregates from different sources in one storage pile or alternating batches of different aggregates will not be permitted.

Aggregates shall be tested for deleterious reactivity with alkalis in the cement that may cause excessive expansion of the concrete. Acceptance of aggregates shall be based upon satisfactory evidence furnished by the Contractor that the aggregates, combined with other mixture constituents, do not produce excessive expansion in the concrete. This evidence shall include service records of concrete of comparable properties under similar conditions or exposure and certified records of tests by a testing laboratory that meets the requirements of ASTM C 1077. Tests shall be made in accordance with ASTM C 1260. Test specimens shall be produced using all components (e.g. coarse aggregate, fine aggregate, cement and fly ash ...) to be included in the produced concrete. If the mean expansion of the test specimens, tested in accordance with ASTM C 1260, does not exceed 0.10 percent at 16 days from casting the aggregates shall be accepted. If the mean expansion at 16 days is greater than 0.10 percent but less than 0.15 percent, the aggregate may be accepted based upon satisfactory service records and acceptance of the aggregate by a State Highway Department specifically addressing Alkali-Silica Reactivity. If the expansion is greater than 0.15 percent, the aggregate shall not be accepted for use.

610-2.2 Coarse Aggregate. The coarse aggregate for concrete shall meet the requirements of ASTM C 33. Crushed stone aggregate shall have a durability factor, as determined by ASTM C 666, greater than or equal to 95. The Engineer may consider and reserve final approval of other State classification procedures addressing aggregate durability.

Coarse aggregate shall be well graded from coarse to fine and shall meet one of the gradations shown in Table 1, using ASTM C 136.

The maximum size of coarse aggregate to be used shall be subject to the following:

The nominal maximum size of aggregate shall not be larger than one-fifth of the narrowest dimension between sides of forms, one-third the depth of slabs, nor three-fourths of the minimum clear distance between reinforcing bars or between bars and forms, whichever is least.

610-2.3 Fine Aggregate. The fine aggregate for concrete shall meet the requirements of ASTM C 33.

The fine aggregate shall be well graded from fine to coarse and shall meet the grading requirements of Table 2, when tested in accordance with ASTM C 136.

Blending will be permitted, if necessary, in order to meet the gradation requirements for fine aggregate. Fine aggregate deficient in the percentage of material passing the No. 50 mesh sieve may be accepted, provided that such deficiency does not exceed 5 percent and is remedied by the addition of pozzolanic or cementitious materials other than portland cement, as specified in P-610-2.6 on admixtures, in sufficient quantity to produce the required workability as approved by the Engineer.

Sieve Designation	Percentage by Weight Passing Sieves						
(Square Openings)	2"	1 1/2"	1"	3/4"	1/2"	3/8"	No. 4
No. 4 to 3/4" (4.75-19.0 mm)			100	90-100		20-55	0-10
No. 4 to 1" (4.75-25.0 mm)		100	90-100		25-60		0-10
No. 4 to 1 1/2" (4.75-37.5 mm)	100	95-100		35-70		10-30	0-5

 TABLE 1. GRADATION FOR COARSE AGGREGATE

Sieve Designation (Square Openings)	Percentage by Weight Passing Sieves
3/8 inch (9.5 mm)	100
No. 4 (4.75 mm)	95 - 100
No. 16 (1.18 mm)	45 - 80
No. 30 (0.60 mm)	25 - 55
No. 50 (0.30 mm)	10 - 30
No. 100 (0.15 mm)	2 - 10

TABLE 2. GRADATION FOR FINE AGGREGATE

610-2.4 Cement. Cement shall conform to ASTM C 150 and shall be Type II, low alkali.

The Contractor shall furnish vendor's certified test reports for each carload, or equivalent, of cement shipped to the project. The report shall be delivered to the Engineer before permission to use the cement is granted. All such test reports shall be subject to verification by testing sample materials received for use on the project.

610-2.5 Water. The water used in concrete shall be free from sewage, oil, acid, strong alkalies, vegetable matter, and clay and loam. If the water is of questionable quality, it shall be tested in accordance with AASHTO T 26.

610-2.6 Admixtures. The use of any material added to the concrete mix shall be approved by the Engineer. Before approval of any material, the Contractor shall be required to submit the results of complete physical and chemical analyses made by an acceptable testing laboratory. Subsequent tests shall be made of samples taken by the Engineer from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved.

Fly ash may be used in the mix design. When fly ash is used as a partial replacement for portland cement, the minimum cement content may be met by considering portland cement plus fly ash as the total cement amount. Fly ash shall meet the requirements of ASTM C 618, Class F. The percentage of fly ash shall be between 15 and 25 percent by weight of the total cementitious material.

Air-entraining admixtures shall meet the requirements of ASTM C 260. Air-entraining admixtures shall be added at the mixer in the amount necessary to produce the specified air content.

Water-reducing, set-controlling admixtures shall meet the requirements of ASTM C 494, Type A, waterreducing or Type D, water-reducing and retarding. Water-reducing admixtures shall be added at the mixer separately from air-entraining admixtures in accordance with the manufacturer's printed instructions.

610-2.7 Premolded Joint Material. Premolded joint material for expansion joints shall meet the requirements of ASTM D 1751 or ASTM D 1752.

2

610-2.8 Joint Sealer. The sealer for joints shall meet the requirements of ASTM D 5893 unless otherwise specified in the proposal or approved by the Engineer.

610-2.9 Steel Reinforcement. Concrete reinforcing shall consist of deformed bars of structural billet steel meeting ASTM A 615, deformed bars of rail steel meeting ASTM A 996 or welded wire fabric meeting ASTM A 185. Steel reinforcement shall be Grade 60 or as noted on the drawings.

610-2.10 Cover Materials for Curing. Curing materials shall conform to one of the following specifications:

a.	Waterproof Paper for Curing Concrete	ASTM C 171	
b.	Polyethylene Sheeting for Curing Concrete	ASTM C 171	
c.	Liquid Membrane-Forming Compounds for Curing Concrete	ASTM C 309,	Туре

610-2.11 Calcium Chloride. When calcium chloride is permitted by the Engineer in the concrete as an accelerator, it shall meet the requirements of ASTM D 98. Calcium chloride may be used in the structural portland cement concrete only upon written approval by the Engineer, and in accordance with paragraph P-610-3.18.

610-2.12 Submittals Prior to placement of the structural portland cement concrete, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction. The certification shall show the appropriate ASTM or AASHTO specifications or tests for the material, the name of the company performing the tests, the date of the tests, the test results and a statement that the material did or did not comply with the applicable specifications. Tests older than six months shall not be used. The submittal shall include the following:

- a. name of the suppliers or vendors
- b. sieve analysis of coarse and fine aggregates
- c. cement
- d. admixtures
- e. premolded joint material
- f. joint sealer
- g. cover materials for curing
- h. mix design (See paragraph P-610-3.2 for design criteria.)
 - water/cement ratio
 - water content
 - cement content
 - fly ash content
 - slump
 - air content
 - compressive strength at 7 days and 28 days
 - mix identification number

Submittals shall comply with procedures set forth in the "Shop Drawing and Sample Submittals" section of the General Conditions. Allow 10 days for review by the Engineer, excluding delivery time to and from the Contractor.

No concrete shall be placed until the submittal has been accepted by the Engineer and returned to the Contractor.

CONSTRUCTION METHODS

610-3.1 General. The Contractor shall furnish all labor, materials and services necessary for and incidental to, the completion of all work as shown on the drawings and specified herein. All machinery and equipment owned or controlled by the Contractor, which he proposes to use on the work, shall be of sufficient size to meet the requirements of the work, and shall be such as to produce satisfactory work; all work shall be subject to the inspection and approval of the Engineer.

610-3.2 Concrete Composition. Unless noted otherwise on the plans, structural portland cement concrete shall meet the following criteria:

Maximum water/cement ratio -	0.44
Minimum cement content -	564 pounds/cubic yard (335 kg/cubic meter)
Maximum slump -	4 inches (100 mm)
Air content -	5 percent \pm 1 percent
Minimum compressive strength -	4,000 psi (27.5 MPa) at 28 days

The slump shall be determined according to ASTM C 143, air content shall be determined according to ASTM C 231 and compressive strength shall be determined by test cylinders made in accordance with ASTM C 31 and tested in accordance with ASTM C 39.

610-3.3 Acceptance Sampling and Testing. Concrete will be accepted on the basis of the slump, air content, and compressive strength specified in paragraph P-610-3.2. The concrete shall be sampled in accordance with ASTM C 172. Acceptance for compressive strength shall be based on the average compressive strength of 3 cylinders at age 28 days.

The Contractor shall cure and store the test specimens under such conditions as directed. The Engineer will make the actual tests on the specimens at no expense to the Contractor.

610-3.4 Proportioning and Measuring Devices. When package cement is used, the quantity for each batch shall be equal to one or more whole sacks of cement. The aggregates shall be measured separately by weight. If aggregates are delivered to the mixer in batch trucks, the exact amount for each mixer charge shall be contained in each batch compartment. Weighing boxes or hoppers shall be approved by the Engineer and shall provide means of regulating the flow of aggregates into the batch box so that the required and exact weight of aggregates can be readily obtained.

610-3.5 Consistency. The consistency of the concrete shall be checked by the slump test specified in ASTM C 143.

610-3.6 Mixing. Concrete may be mixed at the construction site, at a central point, or wholly or in part in truck mixers. The concrete shall be mixed and delivered in accordance with the requirements of ASTM C 94.

610-3.7 Mixing Conditions. The concrete shall be mixed only in quantities required for immediate use. Concrete shall not be mixed while the air temperature is below 40 degrees Fahrenheit (4 degrees C) without permission of the Engineer. If permission is granted for mixing under such conditions, aggregates or water, or both, shall be heated and the concrete shall be placed at a temperature not less than 50 degrees F (10 degrees C) nor more than 100 degrees F (38 degrees C). The Contractor shall be held responsible for any defective work, resulting from freezing or injury in any manner during placing and curing, and shall replace such work at his/her expense.

Retempering of concrete by adding water or any other material shall not be permitted.

The delivery of concrete to the job shall be in such a manner that batches of concrete will be deposited at uninterrupted intervals.

610-3.8 Forms. Concrete shall not be placed until all the forms and reinforcements have been inspected and approved by the Engineer. Forms shall be of suitable material and shall be of the type, size, shape, quality and strength to build the structure as designed on the plans. The forms shall be true to line and grade and shall be mortar-tight and sufficiently rigid to prevent displacement and sagging between supports. The Contractor shall bear responsibility for their adequacy. The surfaces of forms shall be smooth and free from irregularities, dents, sags and holes.

The internal ties shall be arranged so that, when the forms are removed, no metal will show in the concrete surface or discolor the surface when exposed to weathering. All forms shall be wetted with water or with a nonstaining mineral oil which shall be applied shortly before the concrete is placed. Forms shall be constructed so that they can be removed without injuring the concrete or concrete surface. The forms shall not be removed before the expiration of at least 30 hours from vertical faces, walls, slender columns and similar structures; forms supported by false work under slabs, beams, girders, arches and similar construction shall not be removed until tests indicate that at least 60 percent of the design strength of the concrete has developed.

610-3.9 Placing Reinforcement. All reinforcement shall be accurately placed, as shown on the plans, and shall be firmly held in position during concreting. Bars shall be fastened together at intersections. The reinforcement shall be supported by approved metal chairs. Shop drawings, lists and bending details shall be supplied by the Contractor when required.

610-3.10 Embedded Items. Before placing concrete, any items that are to be embedded shall be firmly and securely fastened in place as indicated. All such items shall be clean and free from coating, rust, scale, oil or any foreign matter. The embedding of wood shall be avoided. The concrete shall be vibrated and consolidated around and against embedded items.

610-3.11 Placing Concrete. All concrete shall be placed during daylight, unless otherwise approved. The concrete shall not be placed until the depth and character of foundation, the adequacy of forms and falsework and the placing of the steel reinforcing have been approved. Concrete shall be placed as soon as practical after mixing and in no case later than 1 hour after water has been added to the mix. The method and manner of placing shall be such to avoid segregation and displacement of the reinforcement. Troughs, pipes and chutes shall be used as an aid in placing concrete when necessary. Dropping the concrete a distance of more than 5 feet (1.5 m), or depositing a large quantity at one point, will not be permitted. Concrete shall be placed upon clean, damp surfaces, free from running water, or upon properly consolidated soil.

The concrete shall be compacted with suitable mechanical vibrators operating within the concrete. When necessary, vibrating shall be supplemented by hand spading with suitable tools to assure proper and adequate compaction. Vibrators shall be manipulated so as to work the concrete thoroughly around the reinforcement and embedded fixtures and into corners and angles of the forms. The vibration at any joint shall be of sufficient duration to accomplish compaction but shall not be prolonged to the point where segregation occurs. Concrete deposited under water shall be carefully placed in a compact mass in its final position by means of a tremie, a closed bottom dump bucket or other approved method and shall not be disturbed after being deposited.

610-3.12 Construction Joints. When the placing of concrete is suspended, necessary provisions shall be made for joining future work before the placed concrete takes its initial set. For the proper bonding of old and new concrete, such provisions shall be made for grooves, steps, keys, dovetails, reinforcing bars or other devices as may be prescribed. The work shall be arranged so that a section begun on any day shall be finished during daylight of the same day. Before depositing new concrete on or against concrete which has hardened, the surface of the hardened concrete shall be cleaned by a heavy steel broom, roughened slightly, wetted and covered with a neat coating of cement paste or grout.

610-3.13 Expansion Joints. Expansion joints shall be constructed at such points and of such dimensions as may be indicated on the drawings. The premolded filler shall be cut to the same shape as that of the surfaces being joined. The filler shall be fixed firmly against the surface of the concrete already in place in such a manner that it will not be displaced when concrete is deposited against it.

610-3.14 Defective Work. Any defective work disclosed after the forms have been removed shall be immediately removed and replaced. If any dimensions are deficient or if the surface of the concrete is bulged, uneven or shows honeycomb, which in the opinion of the Engineer cannot be repaired satisfactorily, the entire section shall be removed and replaced at the expense of the Contractor.

610-3.15 Surface Finish. All exposed concrete surfaces shall be true, smooth, and free from open or rough spaces, depressions or projections. The concrete in horizontal plane surfaces shall be brought flush with the finished top surface at the proper elevation and shall be struck-off with a straightedge and floated. Mortar finishing shall not be permitted nor shall dry cement or sand-cement mortar be spread over the concrete during the finishing of horizontal plane surfaces.

When directed, the surface finish of exposed concrete shall be a rubbed finish. If forms can be removed while the concrete is still green, the surface shall be pointed and wetted and then rubbed with a wooden float until

all irregularities are removed. If the concrete has hardened before being rubbed, a carborundum stone shall be used to finish the surface. When approved, the finishing can be done with a rubbing machine.

610-3.16 Curing and Protection. All concrete shall be properly cured and protected by the Contractor. The work shall be protected from the elements, flowing water and from defacement of any nature during the building operations. The concrete shall be cured as soon as it has sufficiently hardened by covering with an approved material. Water-absorptive coverings shall be thoroughly saturated when placed and kept saturated for a period of at least 3 days. All curing mats or blankets shall be sufficiently weighted or tied down to keep the concrete surface covered and to prevent the surface from being exposed to currents of air. Where wooden forms are used, they shall be kept wet at all times until removed to prevent the opening of joints and drying out of the concrete. Traffic shall not be allowed on concrete surfaces for 7 days after the concrete has been placed.

610-3.17 Drains or Ducts. Drainage pipes, conduits and ducts that are to be encased in concrete shall be installed by the Contractor before the concrete is placed. The pipe shall be held rigidly so that it will not be displaced or moved during the placing of the concrete.

610-3.18 Cold Weather Protection. When concrete is placed at temperatures below 40 degrees Fahrenheit (4 degrees C), the Contractor shall provide satisfactory methods and means to protect the mix from injury by freezing. The aggregates, or water, or both shall be heated in order to place the concrete at temperatures between 50 degrees and 100 degrees Fahrenheit (10 degrees and 38 degrees C).

Calcium chloride may be incorporated in the mixing water when directed by the Engineer. Not more than 2 pounds (907 g) of Type 1 nor more than 1.6 pounds (726 g) of Type 2 shall be added per bag of cement. After the concrete has been placed, the Contractor shall provide sufficient protection such as blankets, cover, canvas, framework, heating apparatus, etc., to enclose and protect the structure and maintain the temperature of the mix at not less than 50 degrees Fahrenheit (10 degrees C) until at least 60 percent of the designed strength has been attained.

610-3.19 Joint Sealing. All joints which require sealing shall be thoroughly cleaned and any excess mortar or concrete shall be cut out with proper tools. Joint sealing shall not be started until after final curing and shall be done only when the concrete is completely dry. The cleaning and sealing shall be carefully done with proper equipment and in a manner to obtain a neat looking joint free from excess filler. Follow manufacturer's recommendations for installation of joint sealant.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

610-4.1 There shall be no separate measurement or payment for furnishing, placing, curing, or handling of structural portland cement concrete. Payment for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specification sections.

TESTING REQUIREMENTS

AASHTO T 26	Method of Test for Quality of Water to be Used in Concrete
ASTM C 31	Practice for Making and Curing Concrete Test Specimens in the Field
ASTM C 39	Test Method for Compressive Strength of Cylindrical Concrete Specimens
ASTM C 136	Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate
ASTM C 138	Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
ASTM C 143	Test Method for Slump of Hydraulic-Cement Concrete
ASTM C 172	Practice for Sampling Freshly Mixed Concrete
ASTM C 231	Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
ASTM C 666	Test Method for Resistance of Concrete to Rapid Freezing and Thawing
ASTM C 1077	Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation
ASTM C 1260	Test Method Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)

MATERIAL REQUIREMENTS

ASTM A 185	Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement
ASTM A 615	Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
ASTM A 996	Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement
ASTM C 33	Specification for Concrete Aggregates

ASTM C 94	Specification for Ready-Mixed Concrete
ASTM C 150	Specification for Portland Cement
ASTM C 171	Specification for Sheet Materials for Curing Concrete
ASTM C 260	Specification for Air-Entraining Admixtures for Concrete
ASTM C 309	Specification for Liquid Membrane-Forming Compounds for Curing Concrete
ASTM C 494	Specification for Chemical Admixtures for Concrete
ASTM C 618	Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete
ASTM D 98	Specification for Calcium Chloride
ASTM D 1190	Specification for Concrete Joint Sealer, Hot-Poured Elastic Type
ASTM D 1751	Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
ASTM D 1752	Specification for Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction
ASTM D 3405	Specification for Joint Sealants, Hot-Applied, for Concrete and Asphalt Pavements
ASTM D 5839	Specification for Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.

FAA Northwest Mountain Region Notice C-2 has been incorporated into this specification.

END OF SECTION P-610

SECTION P-620

PAVEMENT MARKING

DESCRIPTION

620-1.1. This item shall consist of the painting of numbers, markings and stripes and/or the removing of temporary and permanent markings and stripes on the surface of taxiways, roads, aprons and runways in accordance with these specifications and at the locations shown on the plans or as directed by the Engineer.

MATERIALS

620-2.1 Materials Acceptance. The Contractor shall furnish manufacturer's certified test reports for materials shipped to the project. The certified test reports shall include a statement that the materials meet the specification requirements. The reports can be used for material acceptance or the Engineer may perform verification testing. The reports shall not be interpreted as a basis for payment. The Contractor shall notify the Engineer upon arrival of a shipment of materials to the site.

620-2.2 Paint. Paint shall be waterborne in accordance with the requirements of paragraph P-620-2.2a. Paint shall be furnished in White-37925, Yellow-33538 or 33655, Red-31136, Black-37038, Blue-35090, and/or Pink (1 part Red-31136 to 2 parts White-37925), as shown on the plans, in accordance with Federal Standard No. 595B.

a. <u>Waterborne</u>. Paint shall meet the requirements of Federal Specification TT-P-1952E Type II.

620-2.3 Reflective Media.

- a. <u>Airfield</u>. Glass beads used for airfield pavement markings shall meet the requirements of Federal Specification TT-B-1325D, Type IV.
- b. <u>Landside</u>. Glass beads used for landside roadways and parking lots shall meet the requirements of AASHTO M 247 Type I.

Glass beads shall be treated with adhesion promoting and/or flotation coatings as specified by the manufacturer of the paint.

620-2.4 Submittals. Prior to delivering materials, the Contractor shall submit the manufacturer's data for all materials covered by this specification section that will be used on the project. Include in the submittal certified test reports as specified in paragraph P-620-2.1.

Submittals shall comply with procedures set forth in the "Shop Drawing and Sample Submittals" section of the General Conditions. Allow 10 days for review by the Engineer, excluding delivery time to and from the Contractor.

CONSTRUCTION METHODS

620-3.1 Weather Limitations. The painting shall be performed only when the surface is dry and when the surface temperature is at least 45 degrees Fahrenheit (7 degrees C) and rising and when the pavement surface temperature is at least 5 degrees Fahrenheit (2.7 degrees C) above the dew point. Markings shall not be applied when the pavement temperature is greater than 120 degrees F (49 degrees C).

620-3.2 Equipment. Equipment shall include the apparatus necessary to properly clean the existing surface, a mechanical marking machine, a bead dispensing machine, and such auxiliary hand painting equipment as may be necessary to satisfactorily complete the job.

The mechanical marker shall be an atomizing spray-type or airless type marking machine suitable for application of traffic paint. It shall produce an even and uniform film thickness at the required coverage and shall apply markings of uniform cross sections and clear-cut edges without running or spattering and without over spray.

620-3.3 Preparation of Surface. Immediately before application of the paint, the surface shall be dry and free from dirt, grease, oil, laitance or other foreign material that would reduce the bond between the paint and the pavement. The area to be painted shall be cleaned by sweeping and blowing or by other methods as required to remove all dirt, laitance and loose materials without damage to the pavement surface. Use of any chemicals or impact abrasives during surface preparation shall be approved in advance by the Engineer. Paint shall not be applied to portland cement concrete pavement until the concrete in the areas to be painted is clean of curing material unless otherwise approved by the Engineer. Sandblasting or high-pressure water shall be used to remove curing material from concrete surfaces.

620-3.4 Layout of Markings. On those sections of pavement where no previously applied markings are available to serve as a guide, the proposed markings shall be laid out in advance of the paint application. Unless noted otherwise all paint markings, except black, shall receive glass beads. The Engineer shall determine the accuracy and acceptance of alignment.

620-3.5 Application. Markings shall be applied at the locations and to the dimensions and spacing shown on the plans. Paint shall not be applied until the layout and condition of the surface have been approved by the Engineer.

The edges of the markings shall not vary from a straight line more than 1/2 inch (12 mm) in 50 feet (15 m) and the dimensions and spacings shall be within the following tolerances:

DIMENSION AND SPACING	TOLERANCE
36 inches (910 mm) or less	\pm 1/2 inch (12 mm)
Greater than 36 inches to 6 feet (910 mm to 1.85 m)	\pm 1 inch (25 mm)
Greater than 6 feet to 60 feet (1.85 to 18.3 m)	± 2 inches (51 mm)
Greater than 60 feet (18.3 m)	\pm 3 inches (76 mm)

The paint shall be mixed in accordance with the manufacturer's instructions and applied to the pavement with a marking machine at the rate(s) shown in Table 1. The addition of thinner will not be permitted. A period of at least 24 hours shall elapse between placement of a bituminous surface course or seal coat and application of the paint unless otherwise directed by the Engineer.

Paint Type	Paint square feet per gallon, ft ² /gal (square meters per liter, m ² /1)	Glass Beads AASHTO M 247, Type I (landside only) pounds per gallon of paint, lb./gal. (kilograms per liter of paint, kg/1)	Glass Beads, Fed Spec TT-B-1325D, Type IV pounds per gallon of paint, lb./gal. (kilograms per liter of paint, kg/1)
Waterborne (permanent)	115 ft²/gal maximum (2.8 m²/l)	6.0 lb/gal minimum (0.72 kg/l)	
Waterborne (permanent)	90 ft²/gal maximum (2.2 m²/l)		8 lb./gal. Minimum (1.0 kg/1)
Waterborne (temporary)	230 ft²/gal maximum (5.6 m²/l)	6.0 lb/gal minimum (0.72 kg/1)	
Waterborne (temporary)	180 ft²/gal maximum (4.4 m²/l)		8 lb./gal. minimum (1.0 kg/1)

TABLE 1. APPLICATION RATES FOR PAINT AND GLASS BEADS

Glass beads shall be distributed upon all paint markings (except black), unless noted otherwise, immediately after application of the paint. A dispenser shall be furnished which is properly designed for attachment to the marking machine and suitable for dispensing glass beads. Glass beads shall be applied at the rate(s) shown in Table 1. Glass beads shall not be applied to black paint. Glass beads shall adhere to the cured paint or all marking operations shall cease until corrections are made.

All emptied containers shall be returned to the paint storage area for checking by the Engineer. The containers shall not be removed from the airport or destroyed until authorized by the Engineer.

620-3.6 Protection. After application of the paint, all markings shall be protected from damage until the paint is dry. All surfaces shall be protected from excess moisture and/or rain and from

disfiguration by splatter, splashes, spillage or drippings of paint. The Contractor shall remove from the site all debris, waste, loose or unadhered reflective media, and by-products generated by the surface preparation and application operations to the satisfaction of the Engineer. The Contractor shall dispose of these wastes in strict compliance with all applicable state, local, and Federal environmental statutes and regulations.

620-3.7 Marking Removal. Paint or tape markings to be removed shall be removed as follows:

a. **Paint Removal**. The existing paint marking shall be completely removed by using a water and/or sandblast operation that is not deleterious to the pavement. Other methods may be used. Sandblasting with steel shot is <u>not</u> allowed. The method used shall be approved by the Engineer. More than one pass in each direction may be required to completely remove the existing paint from the pavement surface.

All debris from the paint removal operation is to be cleaned up with vacuum-type sweepers as the work progresses to the satisfaction of the Engineer.

In addition to vacuum broom sweeping, the sandblasting media may be removed by blowing with high volume compressed air. The sandblasting media must be blown clear of all pavement including shoulders. Care shall be taken by the Contractor to protect the existing pavement surface and all other appurtenances that could be damaged by air-borne debris from the cleaning operations.

b. **Tape Removal**. Temporary tape markings shall be removed within two hours after the placement of the permanent marking.

METHOD OF MEASUREMENT

620-4.1. The quantity of pavement marking obliteration to be paid for shall be the number of square feet of marking obliterated, complete, in place, in conformance with these specifications and accepted by the Engineer.

620-4.2. The quantity of pavement marking (permanent) to be paid for shall be the number of square feet of marking, complete, in place, in conformance with these specifications and accepted by the Engineer.

BASIS OF PAYMENT

620-5.1. Payment shall be made at the respective contract price per square foot. The price for pavement marking paint shall include reflective media (glass beads). This price shall be full compensation for furnishing all materials and for all preparation, layout, application or installation of materials and for all labor, tools, equipment, and incidentals necessary to complete the item.

620-5.2. Payment shall be made at the respective contract price per square foot. This price shall be full compensation for furnishing all materials and for all preparation, layout, application or installation of materials and for all labor, tools, equipment, and incidentals necessary to complete the item.

Payment will be made under:

P-620-1	Pavement Marking Obliteration	Per Square Foot
P-620-2	Pavement Marking (Permanent) with Retroreflective Beads	Per Square Foot
P-620-3	Pavement Marking (Permanent) without Beads - Black	Per Square Foot

TESTING REQUIREMENTS

ASTM D 1155 Test Method for Roundness of G	Glass Spheres
--	---------------

ASTM D 1213 Test Method for Crushing Resistance of Glass Spheres

MATERIAL REQUIREMENTS

- Fed. Spec. TT-B-1325D Beads (Glass Spheres) Retroreflective
- Fed. Spec. TT-P-1952E Paint, Traffic and Airfield Marking, Waterborne
- Federal Standard 595B Colors Used in Governmental Procurement

END OF SECTION P-620

THIS PAGE INTENTIONALLY BLANK

SECTION P-621

TRAFFIC SIGNS

DESCRIPTION

621-1 The item of work to be performed under this section shall consist of furnishing and erecting signs, as shown on the contract drawings and in accordance with these specifications. This may also include the removal, modification and relocation of existing signs.

All work shall conform to the requirements Section 02890, Retroreflective Sheeting, and Section 02891, Traffic Signs, of the Utah Department of Transportation Metric Standard Specifications for Road and Bridge Construction, latest edition (2017), with the following additions and modifications.

GENERAL REQUIREMENTS

621-2.1 Existing Surfaces and Utilities. Where existing surfaces are damaged by the Contractor they must be repaired to match existing conditions. This includes but is not limited to asphalt and concrete paving. Use caution when excavating around existing utility lines and contact the utility company representative if any contact is made with any existing utility line. This does not relieve the Contractor from responsibility for damages incurred.

621-2.2 Shop Inspection. <u>All signs are to be inspected by the Engineer</u> before delivery to the installation site, to assure conformance and quality. Request for inspection to be provided by Contractor in a timely manner.

621-2.3 Shop Drawings. The Contractor must submit to the Engineer four (4) copies of shop drawings 10 days prior to fabrication, showing sign layout, sign construction including joining details, anchoring, and bracing or framing for each sign.

621-2.4 Maintenance of Traffic and Safeguards. The Contractor shall be responsible for the maintenance, control and the safeguarding of pedestrian and vehicular traffic within and immediately abutting the areas where his/her work is being conducted. The Contractor shall provide and maintain on a 24-hour basis if required, all necessary safeguards such as flagging personnel, warning signs, barricades and warning lights. Whenever, in the opinion of the Engineer, the Contractor has not provided sufficient or proper safety precautions and safeguards, he/she shall do so immediately and to whatever extent the Engineer deems advisable.

Special care shall be exercised to prevent vehicles and pedestrians from falling into open excavations or being otherwise harmed as a result of the work. The Contractor shall, in all cases, hold the Owner harmless for any and all damages resulting from any of his operations.

621-2.5 Maintenance of Airport Operations. If any aspect of normal airport operations (including but not limited to vehicular traffic) needs to be interrupted for completion of the work, this must be coordinated with the office of the Director of Airports. A minimum of 72 hours notice must be given prior to any such interruption.

621-2.6 Project Clean-Up. Concrete and paint splatters and other stains from all causes on exposed surfaces including posts, concrete, and paving shall be removed to the satisfaction of the Engineer.

MATERIAL

621-3.1 Concrete. All concrete shall be furnished, placed, cured and tested in accordance with the requirements of Section P-610.

621-3.2 Reinforcing Steel. Reinforcing steel shall conform to the requirements of ASTM A-615 for deformed bars of structural billet steel or ASTM A-996 for deformed bars of rail steel. Steel reinforcement shall be grade 60 or as noted on the drawings.

621-3.3 Structural Steel. Structural steel for sign supports shall conform to ASTM A-36. Pipe for sign supports shall conform to ASTM A-53 and shall be Grade B unless otherwise noted on the drawings.

Bolts shall be ASTM A-307 unless otherwise noted on the drawings.

All structural steel, bolts, nuts and washers shall be galvanized in compliance with ASTM A-123 prior to fabrication.

621-3.4 Sign Panels. All sign face blanks will be constructed of sheet aluminum with a minimum thickness of 0.125 inches for signs larger than 9 square feet, and a minimum thickness of 0.080 inches for signs less than 9 square feet.

621-3.5 Paint. The paint in this section is for all surfaces (sign posts, connections, bracing assemblies, etc.) that are to be painted except sign faces and color anodized aluminum surfaces. All work is to be shop painted. Site painting to be limited to required touch-up work only.

All paints and paint products shall be of the highest quality available within the categories of material required.

The prime coat, intermediate coat, and finish coat of paint shall be of compatible materials from the same manufacturer.

The finish coat of paint shall be a color and texture that matches dark bronze color anodized aluminum. Color samples shall be submitted to the Engineer for approval prior to painting.

When it is required that the finish paint color shall match a sign color other than the standard sign colors specified in the Manual on Uniform Traffic Control Devices (MUTCD), the color shall be as follows:

Blue-Ditzler Automotive Color 12375Green-Ditzler Automotive Color 41780White-Ditzler Automotive Color 8000

621-3.6 Wood Sign Post. Wood Sign posts shall be pressure treated, construction grade wood meeting the requirements of Section 06055-Timber Treatment of the Utah Department of Transportation Metric Standard Specifications For Road and Bridge Construction, latest edition.

FABRICATION

621-4.1 Sign Lettering: Style and Spacing. Sign letters shall be Helvetica Medium. Exceptions to this are signs which shall conform to the requirements of MUTCD, latest revision, for the type of sign specified on the drawings.

The Contractor shall prepare complete detailed layouts of each sign and obtain the Engineer's approval prior to fabrication.

Adhesive applications of copy and artwork shall be performed only by workman skilled in high quality lettering and signing. Letters and artwork shall conform exactly in style, shape and letter spacing to the layouts provided. Lines shall be sharply cut and true.

A border the same color as the copy shall be placed on all signs in accordance with the MUTCD. On all guide and informational signs, this border shall be a reflective material conforming to the requirements of the MUTCD. The border shall have radius corners to match the sign panel. The border on all guide and informational signs shall be placed 1/2-inch from the panel edge. The width of the border shall be 1/2-inch for signs 4.0 feet or less in the maximum dimension and 3/4-inch for signs greater than 4.0 feet in the maximum dimension.

All joints shall be backed to prevent light leaks.

Aluminum shall have a dark bronze color anodized finish.

All signs will have radius corners. The border corner radius will be 8% of the height of the sign (maximum 12-inch radius).

All parts necessary for assembly or attachment shall be constructed of dull aluminum, galvanized steel or stainless steel. Anything attached to the sign face is to be painted to match the color of the sign face prior to attachment.

Protective gasketing shall be provided at all bolted connections on the front side and back side of the sign.

Retroreflective Sheeting shall be per Section 02890, Retroreflective Sheeting of the 2017 Edition UDOT specifications.

Signs shall be cleaned after installation to the satisfaction of the Engineer. The Contractor shall not use cleaning solvents that would be harmful to the sign finish.

P-621-4.2 Painting of Steel.

Bare steel shall be finished as follows:

- a. Blast clean or hand clean the steel to remove all deleterious materials.
- b. Pretreat the bare metal surface before priming using Vinyl Butyral Resin.
- c. Primer: Red lead, Alkyd Oil Resin.
- d. First Paint Coat: Exterior Alkyd Enamel, Semi-Gloss.
- e. Second Paint Coat: Exterior Alkyd Enamel, Gloss.

Galvanized steel shall be painted in the same manner as bare steel, except the primer to be used shall be Zinc Dust - Zinc Oxide in lieu of Red Lead.

621-4.3 Sign Assemblies and Mounting Devices. All signpost assemblies and/or mounting devices shall be designed by the Contractor so that the completed sign shall withstand a thirty (30) pound per square foot wind loading minimum. The Contractor shall submit four (4) copies of the assembly design to the Engineer for approval prior to fabrication. Refer to the drawings for the applicable type of supports and framing system required for each sign.

The assemblies and mounting devices, including all connective hardware items, shall be furnished and installed by the same Contractor who constructs the signs to insure proper fitting and connection of all parts. All assemblies are to be shop fabricated. All corners and seams are to be continuously welded. Exposed welds shall be ground smooth or flush. Exposed bolted connections are to be neatly finished and as flush as possible to bolted surfaces. All framing members shall be structural steel or aluminum.

CONSTRUCTION METHODS

621-5.1 General. This section includes excavation and backfill information necessary for the construction of bases, footings, post holes and supports as shown on the drawings.

It is intended that the sign base footings be drilled and the concrete poured against undisturbed soil. If soil conditions are encountered so that drilling is not possible, excavation and backfill shall conform to these specifications.

621-5.2 Excavation. Drill footings to the depth indicated on the drawings. The bearing surface for the footings is to be undisturbed. If disturbed, the Contractor is to replace it with P-610 concrete.

Remove excess earth from the project site, and deliver it to an area on Airport property as directed by the Engineer.

621-5.3 Fill. Material from excavation may be used if approved by the Engineer for concrete bases and footings. Selected backfill material for post holes shall be fine sandy gravel free from organic matter with no individual particles exceeding 1-1/2" in maximum size.

621-5.4 Backfill. Compact with power-operated equipment to 90% maximum density as determined by ASTM D-1557 in layers not to exceed six (6) inches. The post holes shall be of sufficient dimensions to allow placement and thorough compaction of selected backfill material completely around the post. Special precautions shall be taken to prevent any wedging action against footing and bases.

621-5.5 Placement of Signs. All reflectorized signs shall be turned 3 degrees away from a line perpendicular to the pavement edge of the oncoming traffic lanes. The signs shall be inspected at night by the Engineer, and if specular glare occurs, from failure to install the signs at 3 degrees from perpendicular as stipulated, the Contractor shall at his own expense adjust the angle of placement to improve the legibility of the sign. All sign posts shall be plumb and signs level.

621-5.6 Sign Relocation. To remove and relocate existing signs, the Contractor may chose to remove the existing posts, in one of the following ways or an approved alternative method:

- a. Pull the sign post out of ground. No separate payment will be made for backfilling, sodding, and asphalt or concrete patching.
- b. Cut the sign post off level with the existing ground using a saw or torch. The post holes shall be filled with concrete.

Relocated signs are to be removed per method "a" above unless otherwise directed by the Engineer.

621-5.7 Sign Modification. Signs to be modified shall be removed, modified and reinstalled at the direction of the Engineer.

METHOD OF MEASUREMENT

621-6.1 New Sign. The method of measurement for this item will be measured on a per each basis for new signs.

621-6.2. New Sign Post. The method of measurement for this item will be measured on a per each basis for new sign posts.

621-6.3. Relocate Sign and Sign Post. The method of measurement for this item will be measured on a per each basis for sign and sign posts relocated.

621-6.4. Remove Sign. The method of measurement for this item will be measured on a per each basis for sign removed.

BASIS OF PAYMENT

621-7.1 New Sign. The basis of payment for this item will be made at the contract unit price per each sign to be installed. The basis of payment shall be full compensation for all materials, labor, tools, equipment and all incidentals necessary to complete the signing to the satisfaction of the Engineer.

621-7.1 New Sign Post. The basis of payment for this item will be made at the contract unit price per each sign post to be installed. The basis of payment shall be full compensation for all materials, labor, tools, equipment and all incidentals necessary to complete the signing to the satisfaction of the Engineer.

621-7.3 Relocate Sign and Sign Post. The basis of payment for this item will be made at the contract unit price per each existing sign face(s) removed and reinstalled on an existing sign post at the location as shown on the drawings or as directed by the Engineer. If an existing relocated sign face is damaged due to the Contractor's negligence, the Contractor shall replace that sign face at his own cost. The basis of payment shall be full compensation for all materials, labor, tools, equipment and all incidentals necessary to complete the signing to the satisfaction of the Engineer.

621-7.4. Remove Sign. The basis of payment for this item will be made at the contract unit price per each sign removed as shown on the drawings or as directed by the Engineer. The basis of payment shall be full compensation for all materials, labor, tools, equipment and all incidentals necessary to complete the removal of all signs including associated posts and foundations to the satisfaction of the Engineer.

Payment will be made under:

P-621-1	New Sign	Per Each
P-621-2	New Sign Post	Per Each
P-621-3	Relocate Sign and Sign Post	Per Each
P-621-4	Remove Sign	Per Each

TESTING AND MATERIAL REQUIREMENTS

ASTM A-36	Structural Steel			
ASTM A-53	Pipe-Welded and Seamless			
ASTM A-123	Zinc Coatings on Steel			
ASTM A-307	Carbon Steel Threaded Fasteners			
ASTM A-615	Deformed Steel Bars			
ASTM A-996	Rail Steel Deformed Bars			
ASTM D-1557	Moisture Density of Soil.			
Utah Department of Transportation Metric Standard Specifications for Road and Bridges Construction, Latest Edition (2017) Section 02890 and 0289	Traffic Signs and Timber			
Section 02890 and 02891.				

Manual on Uniform Traffic Control Services - Applicable sections.

END OF SECTION P-621

THIS PAGE INTENTIONALLY BLANK

SECTION D-701

PIPE FOR STORM DRAINS AND CULVERTS

DESCRIPTION

701-1.1 This item shall consist of the construction of pipe culverts, storm drains, and glycol collection piping in accordance with these specifications and in reasonably close conformity with the lines and grades shown on the drawings.

MATERIALS

701-2.1 Materials shall meet the requirements shown on the drawings and specified below.

a. **Non-reinforced Concrete Pipe** shall be Class 3 non-reinforced concrete pipe unless shown otherwise in the contract documents.

b. **Reinforced Concrete Pipe (RCP)** shall be Class V unless indicated otherwise in the contract documents.

c. **High Density Polyethylene (HDPE)** pipe shall be the standard dimension ratio and pipe class as shown in the contract documents. Protection shall be provided from ultraviolet light degradation using not less than 2 percent carbon black well dispersed in the resin. Polyethylene resins shall conform to Type PE 3408 or better.

701-2.2 Pipe. The pipe shall be of the type called for on the drawings or in the proposal and shall be in accordance with the following appropriate requirements.

Non-Reinforced Concrete Pipe	ASTM C 14
Reinforced Concrete Pipe	ASTM C 76
High Density Polyethylene Pipe	ASTM D 3035
Butt Heat Fusion PE Fittings	ASTM D 3261
High Density Polyethylene Pipe and Fittings	ASTM D 3350
Heat Fusion Joints	ASTM D 2657

701-2.3 Concrete. Concrete for pipe cradles shall have a minimum compressive strength of 2,000 psi (13.8 MPa) at 28 days and conform to the requirements of ASTM C 94.

701-2.4 Rubber Gaskets. Rubber gaskets for rigid (concrete) pipe shall conform to the requirements of ASTM C 443. Unless noted otherwise all rigid pipe joints shall have rubber gaskets.

701-2.5 Joint Mortar. Not used.

701-2.6 Joint Fillers. Not used.

701-2.7 Plastic Gaskets. Not used.

701-2.8. Controlled Low Strength Material (CLSM). Controlled low strength material shall conform to the requirements of Section P-153. When CLSM is used all joints shall have gaskets.

701-2.9 Pipe Foundation Stabilization. Where directed by the Engineer, pipe foundation stabilization shall consist of one of the following:

a. **Pipe Foundation Stabilization Material.** Sewer rock conforming to the gradation requirements shown in Table 1 shall be used for foundation stabilization under pipe, where necessary, as described in paragraph 701-3.1.

TABLE 1. GRADATION REQUIREMENTS FOUNDATION STABILIZATION MATERIAL

Sieve Designations	Percentage by Weight
(Square Openings)	Passing Sieves
2 inch (50.0 mm) 1 inch (25.0 mm) 1/2 inch (12.5 mm)	$95 - 100 \\ 60 - 70 \\ 4 - 6$

b. **Cobble Stabilization.** Cobble stabilization for pipe foundations, where directed by the Engineer, shall be in accordance with Section P-152

701-2.10 Bedding Material. Pipe bedding material shall be hard, durable stone or slag conforming to the gradation requirements shown in Table 2.

701-2.11 Pipe Zone Backfill. The pipe zone is that zone in a backfilling operation which supports and surrounds the pipe barrel, and extends to 12 inches (0.30 m) above the top of the pipe barrel. Unless noted otherwise on the drawings, in the specifications or directed by the Engineer, backfill material in the pipe zone shall meet the following criteria.

Backfill material in the pipe zone shall consist of imported, clean, well-graded coarse sand conforming to the gradation requirements shown in Table 2.

Sieve Designations	Percentage by Weight
(Square Openings)	Passing Sieves
3/4 inch (19 mm) 3/8 inch (9.5 mm) No. 4 (4.75 mm) No. 16 (1.18 mm) No. 200 (0.075 mm)	$ 100 \\ 78-92 \\ 55 - 67 \\ 28 - 38 \\ 7 - 11 $

TABLE 2. GRADATION REQUIREMENTSPIPE ZONE BACKFILL MATERIAL

701-2.12 Submittals. Prior to installation of the pipe, the Contractor shall submit certification to the Engineer for those materials proposed for use during construction. The certification shall show the appropriate ASTM or AASHTO tests for the material, the name of the company performing the tests or certifying the material, the date of certification, the test results and a statement that the material did or did not comply with the applicable specifications. Tests older than 90 days shall not be used for bedding and backfill materials. Submittals for bedding and backfill materials shall include the material source, sieve analysis, maximum density, and optimum moisture content. Tests for gradation shall conform to ASTM C 136 and C 117.

Submittals shall comply with procedures set forth in Section 00700, General Conditions, Article 3.9. Allow ten days for review by the Engineer, excluding delivery time to and from the Contractor.

CONSTRUCTION METHODS

701-3.1 Excavation. The width of the pipe trench shall be sufficient to permit satisfactory jointing of the pipe and thorough tamping of the bedding material under and around the pipe, but it shall not be less than the external diameter of the pipe plus 6 inches (150 mm) on each side. The trench walls shall be approximately vertical.

Where rock, hardpan, or other unyielding material is encountered, the Contractor shall remove it from below the foundation grade for a depth of at least 12 inches (300 mm) or one-half inch (12 mm) for each foot of fill over the top of the pipe (whichever is greater) but not more than three-quarters of the nominal diameter of the pipe. The width of the excavation shall be at least 1 foot (30 cm) greater than the horizontal outside diameter of the pipe. The excavation below grade shall be backfilled with selected fine compressible material, such as silty clay or loam, and lightly compacted in layers not over 6 inches (150 mm) in uncompacted depth to form a uniform but yielding foundation.

Where a firm foundation is not encountered at the grade established, due to soft, spongy, or other unstable soil, the unstable soil shall be removed and replaced with approved foundation stabilization material for the full trench width. The Engineer shall determine the depth of removal necessary. The granular material shall be compacted to provide adequate support for the pipe. To minimize the width of the pipe trench, a cage, box or tight sheathing shall be used in the trench. If sheathing is used below the top of the pipe, it shall not be removed, but cut off above the top of the pipe and left in place. If required, pumping of ground water shall be performed by the Contractor at no additional cost to the Owner.

The excavation for pipes that are placed in embankment fill shall not be made until the embankment has been completed to a height above the top of the pipe as shown on the drawings.

Excavated material not used as backfill in the trench shall be disposed of off-site. The Contractor will not be allowed to spread these materials adjacent to the trench.

701-3.2 Bedding. All pipes shall be placed on a bedding material as shown on the drawings. All granular bedding shall be compacted by hand and/or pneumatic tampers to provide a firm, stable base for construction of structures or the laying of pipe.

a. **Concrete Pipe.** When no bedding class is specified or detailed on the drawings, the requirements for Class B bedding shall apply.

Class B bedding shall consist of a bed of granular material having a thickness of at least 6 inches (150 mm) below the bottom of the pipe and extending up around the pipe for a depth of not less than 30 percent of the pipe's vertical outside diameter. The layer of bedding material shall be shaped to fit the pipe for at least 10 percent of the pipe's vertical diameter and shall have recesses shaped to receive the bell of bell and spigot pipe. The bedding material shall meet the gradation requirements of Table 2.

b. **Polyethylene and PVC Pipe.** When no bedding detail is specified or shown on the plans, the bedding shall have a thickness of at least 6 inches (150 mm) below the bottom of the pipe and extend up around the pipe for a depth of not less than 50 percent of the pipe's vertical outside diameter. The bedding material shall meet the gradation requirements of Table 2.

701-3.3 Laying Pipe. The pipe laying shall begin at the lowest point of the trench and proceed upgrade. The lower segment of the pipe shall be in contact with the bedding throughout its full length. Bell or groove ends of rigid pipes and outside circumferential laps of flexible pipes shall be placed facing upgrade.

701-3.4 Joining Pipe.

a. **Concrete Pipe.** Concrete pipe shall be bell and spigot type. The method of joining pipe sections shall be such that the ends are fully entered and the inner surfaces are reasonably flush and even. Joints shall be made with rubber gaskets. Rubber ring gaskets shall be installed to form a flexible watertight seal. Both the bell and spigot ends shall be lubricated immediately prior to joining.

b. **Polyethylene Pipe.** Sections of HDPE pipe shall be joined by thermal butt-fusion and shall be in compliance with manufacturer's recommendations and ASTM F 2620 and ASTM D 3261. Fusing pipe and fittings shall be done by a factory certified joining technician. Furnish certifications to Engineer prior to commencing with work.

701-3.5 Backfilling. Pipes shall be inspected before any backfill is placed and any pipe sections found to be out of alignment, unduly settled, or damaged shall be removed and relaid or replaced at the Contractor's expense. Contractor shall provide safe access for inspectors during placement and backfill.

Backfill material within the pipe zone above the bedding shall conform to the gradation requirements of paragraph 701-2.11 and Table 2, unless noted otherwise on the plans. The pipe zone is that zone in a backfilling operation, which supports and surrounds the pipe barrel, and extends to 12 inches (300 mm) above the top of the pipe barrel.

Trench backfill material above the pipe zone shall be as indicated on the drawings or as directed by the Engineer. Trench backfill shall be placed and compacted in successive horizontal layers of not more than 8 inches in loose depth for the full width of the trench, unless otherwise approved by the Engineer.

When no backfill detail is shown on the plans, the trench backfill material above the pipe zone shall meet the following criteria:

- a. **Pavement Areas.** Material and compaction requirements shall meet the criteria of Section P-154 Subbase Course.
- b. **Non-pavement Areas.** Material shall be native soil compacted in accordance with Section P-152 Excavation and Embankment.

When the top of the pipe is even with or below the top of the trench, the backfill shall be compacted in layers not exceeding 6 inches (150 mm) on both sides of the pipe and shall be brought up one foot (30 cm) above the top of the pipe or to natural ground level, whichever is greater.

When the top of the pipe is above the top of the trench, the backfill shall be compacted in layers not exceeding 6 inches (150 mm) and shall be brought up evenly on both sides of the pipe to 1 foot (30 cm) above the top of the pipe. The width of backfill on each side of the pipe for the portion above the top of the trench shall be equal to twice the pipe's diameter, or 12 feet (3.5 m), whichever is less.

Care shall be exercised to thoroughly compact the backfill material under the haunches of the pipe without displacing the pipe. Material shall be brought up evenly on both sides of the pipe.

701-3.6 CLSM or Flowable Fill. If the drawings show CLSM or flowable fill to be used as backfill material, the construction methods in Section P-153 Controlled Low-Strength Material (CLSM) shall apply. If CLSM is used with polyethylene pipe, the pipe must be anchored to the ground at intervals not exceeding 4 feet (1.2 m) using a method approved by the Engineer.

701-3.7 Connections. All pipe connections to existing or new storm drain boxes, manholes, or cleanout boxes shall be watertight.

For reinforced concrete pipe connecting to existing or new storm drain boxes or manholes, the structure will be core drilled and the pipe shall be placed to extend into the storm drain box or manhole. The pipe shall be cut flush with the interior wall of the box or manhole and shall be sealed with a non-shrink grout.

For HDPE pipe connecting to existing storm drain boxes or manholes, the structure will be core drilled oversize and the pipe shall be placed to extend into the storm drain box or manhole. The HDPE pipe shall have a pipe anchor/thrust isolator located in the structure's wall as shown on the drawings.

For HDPE pipe connecting to new storm drain boxes or manholes, the structure shall have circular openings oversized to accept the pipe. The HDPE pipe shall have a pipe anchor/thrust isolator located in the structure's wall as shown on the drawings.

The cutting of the pipe flush with the interior of the box or manhole, and grouting of the pipe connection shall not be completed until the pipe temperature has stabilized to within 10 degrees of the surrounding ground temperature and has been backfilled to prevent shrinkage and expansion.

701-3.8 Pipe Anchors. Pipe anchors for polyethylene pipe shall be installed as shown on the drawings and in accordance with the pipe manufacturer's recommendations.

701-3.9 Pipe Removal. Any pipe to be removed shall be legally disposed of off airport property at an approved disposal facility. After removal of the pipe the trench shall be backfilled and compacted with material meeting the specifications of P-152 Excavation and Embankment. All costs associated with backfilling and compacting after pipe is removed shall be incidental to pipe removal bid item.

701-3.10 Acceptance Testing. All pipes and connections shall be checked for leakage and debris using a video camera and recorder after the entire pipe system, boxes and covers are backfilled and ready for final acceptance. The video shall stop and observe each joint within the piping to check for leakage and integrity. Any leakage shall be repaired and sealed with an approved material and the pipe shall be videoed again after the leak repair. Debris shall be removed from the storm drain lines. All video recording and leak repair shall be performed by the Contractor. Video recordings shall be submitted to the Engineer in DVD format or other format acceptable to the Engineer. Concrete pipe will not be accepted if the groundwater infiltration rate is greater than 0.16 gallons per hour per inch diameter per 100 feet (0.0783 liters per hour per mm diameter per 100 meters). HDPE pipe will not be accepted if any groundwater infiltration is observed. In addition, all HDPE pressure pipe shall be pressure tested at 150 percent of operating design pressure per the manufacturer's specifications. Bleed all air from the line prior to starting test. Test pressure shall be maintained constant for 2 hours without any drop or leakage per the Plastic Pipe Institute guidelines. All HDPE non-pressure pipe shall be air pressure tested at low pressure according to ASTM F 1417. Pressure testing of pipe shall be completed with the pipe in its final position in the pipe trench.

METHOD OF MEASUREMENT

701-4.1 Install 15" Class V RCP Storm Drain Pipe. The length of pipe shall be measured in linear feet of pipe in place, completed, and approved. It shall be measured along the centerline of the pipe from end or inside face of structure to the end or inside face of structure, whichever is applicable. All fittings shall be included in the footage as typical pipe sections in the pipe being measured. Pipe installed within sleeves shall be measured as the length of the sleeve and no more.

BASIS OF PAYMENT

701-5.1 Pipe. Payment will be made at the contract unit price per linear foot for furnishing and installing 15" Class V RCP Storm Drain Pipe. This unit price per linear foot shall be full compensation for all material, labor, tools, equipment and incidentals necessary to complete the work to the satisfaction of the Engineer and shall include pipe, fittings, connections, bends, tees, and installation, pipe trench excavation, pipe foundation stabilization, furnishing, placing and compacting bedding material, furnishing and placing controlled low strength material, furnishing and placing of all materials necessary to patch a cut pavement section, disposal of excavated materials, connections to structures, dewatering and acceptance testing (including video recording).

Payment will be made under:

Item D-701 15" Class V RCP Storm Drain Pipe..... Per Linear Foot

TESTING REQUIREMENTS

- ASTM C 117 Test Method for Material Finer than 75 µm (No. 200) Sieve in Mineral Aggregate by Washing
- ASTM C 136 Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate

MATERIAL REQUIREMENTS

- ASTM C 14 Concrete Sewer, Storm Drain, and Culvert Pipe
- ASTM C 76 Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
- ASTM C 94 Ready Mixed Concrete
- ASTM C 443 Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets
- ASTM D 2657 Standard Practice for Heat Fusion Joining of Polyolefin Pipe and Fittings
- ASTM D 3035 Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter
- ASTM D 3261 Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing
- ASTM D 3350 Specification for Polyethylene Plastics Pipe and Fittings Materials
- ASTM F 1417 Standard Practice for Installation Acceptance of Plastic Non-pressure Sewer Lines Using Low-Pressure Air

END OF SECTION D-701

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION D-751

MANHOLES, CATCH BASINS, INLETS AND INSPECTION HOLES

DESCRIPTION

751-1.1 This item shall consist of the construction of manholes, catch basins, drop inlets, storm drain boxes, cleanout boxes, miscellaneous utility boxes, and inspection holes, in accordance with these specifications and at the specified locations, lines, grades and dimensions shown on the plans or required by the Engineer.

The work shall also include adjusting existing drop inlets, storm drain boxes, cleanout boxes, manholes and other utility boxes to new grades.

MATERIALS

751-2.1 Brick. Not used.

751-2.2 Mortar. Not used.

751-2.3 Concrete. Plain and reinforced concrete used in structures, connections of pipes with structures and the support of structures or frames shall conform to the requirements of Section P-610.

751-2.4 Precast Concrete Pipe Manhole Risers, Conical Tops and Grade Rings. Precast concrete manhole risers, conical tops (cones), and grade rings shall conform to the requirements of ASTM C 478. Unless otherwise specified, the risers shall have an inside diameter of 48 inches (1,200 mm) and the grade rings shall have an inside diameter of not less than 30 inches (760 mm). Conical tops shall be the eccentric type.

751-2.5 Corrugated Metal. Corrugated metal, if required, shall conform to the requirements of AASHTO M 36.

751-2.6 Frames, Covers and Grates. The castings shall conform to one of the following requirements:

- a. Structural steel for grates and frames shall conform to the requirements of ASTM A 283, Grade D.
- b. Ductile iron castings shall conform to the requirements of ASTM A 536.

All castings or structural steel units shall conform to the dimensions shown on the plans and shall be designed to support the loadings, aircraft gear configuration and/or direct loading specified, unless otherwise noted on drawings.

Each frame and cover or grate unit shall be provided with fastening members to prevent it from being dislodged by traffic but which will allow easy removal for access to the structure.

All castings shall be thoroughly cleaned. After fabrication, structural steel units shall be and given two coats of approved bituminous paint.

751-2.7 Steps. Not used.

CONSTRUCTION METHODS

751-3.1 Unclassified Excavation.

- a. The Contractor shall do all excavation for structures and structure footings to the lines and grades or elevations, shown on the plans or as directed by the Engineer. The excavation shall be of sufficient size to permit the placing of the full width and length of the structure or structure footings shown. The elevations of the bottoms of footings, as shown on the plans, shall be considered as approximate only; and the Engineer may order, in writing, changes in dimensions or elevations of footings necessary to secure a satisfactory foundation.
- b. Boulders, logs or any other objectionable material encountered in excavation shall be removed. All rock or other hard foundation material shall be cleaned of all loose material and cut to a firm surface either level, stepped or serrated, as directed by the Engineer. All seams or crevices shall be cleaned out and grouted. All loose and disintegrated rock and thin strata shall be removed. When concrete is to rest on a surface other than rock, special care shall be taken not to disturb the bottom of the excavation, and excavation to final grade shall not be made until just before the concrete or reinforcing is to be placed.
- c. The Contractor shall do all bracing, sheathing or shoring necessary to implement and protect the excavation and the structure as required for safety or conformance to governing laws. The cost of bracing, sheathing or shoring shall be included in the unit price bid for the structure.
- d. Unless otherwise provided, bracing, sheathing, or shoring involved in the construction of this item shall be removed by the Contractor after the completion of the structure. Removal shall be effected in a manner which will not disturb or mar finished masonry. The cost of removal shall be included in the unit price bid for the structure.
- e. After each excavation is completed, the Contractor shall notify the Engineer to that effect; and concrete or reinforcing steel shall be placed after the Engineer has approved the depth of the excavation and the character of the foundation material.

751-3.2 Brick Structures. Not used.
751-3.3 Concrete Structures. Concrete structures shall be built on prepared foundations, conforming to the dimensions and form indicated on the plans. The construction shall conform to the requirements specified in Section P-610. Any reinforcement required shall be placed as indicated on the plans and shall be approved by the Engineer before the concrete is poured.

Invert channels shall be constructed where indicated on the plans and shall be shaped accurately so as to be smooth, uniform and cause minimum resistance to flowing water. The interior bottom shall be sloped downward toward the outlet.

Where concrete structures are to be raised to grade, the cover (or grate) and frame shall be removed and the box raised to the proper elevation by removing a minimum of 6 inches (150 mm) of existing concrete, exposing the reinforcing steel, extending the reinforcing steel, and placing new concrete. Where the extension exceeds 4 inches (100 mm), horizontal steel consisting of No. 4 rebar shall be placed at a spacing not to exceed 6 inches (150 mm). Prior to placing new concrete, a bonding agent shall be placed on the existing concrete. Where concrete structures are to be lowered, the concrete shall be removed to 12 inches (300 mm) below the new elevation and new concrete placed, as described above.

The top of all concrete structures in paved areas shall be held down and blocked out or have concrete removed, a minimum of 12 inches (300 mm) below finish grade until the completion of the paving process. After a minimum of three days the structure shall be brought to final grade, as shown on the plans.

The grates and frames removed from existing drop inlets shall remain the property of the Airport and shall not be re-used unless indicated on the plans or directed by the Engineer. If not re-used, they shall be delivered to the Airport storage yard at no additional cost to the Owner.

751-3.4 Precast Concrete Pipe Structures. Precast concrete pipe structures, if required, shall be constructed on prepared or previously placed slab foundations and shall conform to the dimensions and locations shown on the plans. All precast concrete pipe sections necessary to build a completed structure shall be furnished. The different sections shall fit together readily, and all jointing and connections shall be cemented with mortar, unless shown otherwise on the detail or directed by the Engineer. The top of the upper precast concrete pipe member shall be suitably formed and dimensioned to receive the metal frame and cover or grate, or other cap, as required. Provision shall be made for any connections for lateral pipe, including drops and leads that may be installed in the structure. The flow lines shall be smooth, uniform and cause minimum resistance to flow.

751-3.5 Corrugated Metal Structures. Not used.

751-3.6 Inlet and Outlet Pipes. Inlet and outlet pipes shall extend through the walls of the structures for a sufficient distance beyond the outside surface to allow for connections but shall be cut off flush with the wall on the inside surface, unless otherwise directed. For concrete structures, the mortar shall be placed around these pipes so as to form a tight, neat connection.

751-3.7 Placement and Treatment of Castings, Frames and Fittings. All castings, frames and fittings shall be placed in the positions indicated on the plans or as directed by the Engineer, and shall be set true to line and to correct elevation. If frames or fittings are to be set in concrete or cement mortar, all anchors

or bolts shall be in place and position before the concrete or mortar is placed. The unit shall not be disturbed until the mortar or concrete has set.

When frames or fittings are to be placed upon previously constructed masonry, the bearing surface or masonry shall be brought true to line and grade and shall present an even bearing surface in order that the entire face or back of the unit will come in contact with the masonry. The unit shall be set in mortar beds and anchored to the masonry as indicated on the plans or as directed and approved by the Engineer. All units shall set firm and secure.

After the frames or fittings have been set in final position and the concrete or mortar has been allowed to harden for seven days, then the grates or covers shall be placed and fastened down.

751-3.8 Installation of Steps. The steps shall be installed as indicated on the plans or as directed by the Engineer. When the steps are to be set in concrete, they shall be placed and secured in position before the concrete is poured. The steps shall not be disturbed or used until the concrete or mortar has hardened for at least seven days.

When steps are required with precast concrete pipe structures, they shall be cast into the sides of the pipe at the time the pipe sections are manufactured or set in place after the structure is erected by drilling holes in the concrete and securing the steps in place with epoxy-resin.

751-3.9 Backfilling.

- a. After a structure has been completed, the area around it shall be filled with approved material, in horizontal layers not to exceed 8 inches (200 mm) in loose depth and compacted to the density required in Section P-152. Each layer shall be deposited all around the structure to approximately the same elevation. The top of the fill shall meet the elevation shown on the plans or as directed by the Engineer.
- b. Backfilling shall not be placed against any structure until permission is given by the Engineer. In the case of concrete, such permission shall not be given until the concrete has been in place seven days, or until tests made by the laboratory under supervision of the Engineer establish that the concrete has attained sufficient strength to provide a factor of safety against damage or strain in withstanding any pressure created by the backfill or the methods used in placing it.
- c. Backfill shall not be measured for direct payment. Performance of this work shall be considered as a subsidiary obligation of the Contractor covered under the contract unit price for the structure involved.

751-3.10 Cleaning and Restoration of Site. After the backfill is completed, the Contractor shall dispose of all surplus material, dirt and rubbish from the site. Surplus dirt may be deposited in embankments, shoulders, or as directed by the Engineer. The Contractor shall restore all disturbed areas to their original condition.

After all work is completed, the Contractor shall remove all tools and equipment, leaving the entire site free, clear, and in good condition.

751-3.11 Removal of Existing Concrete Utility Structures. Any manhole, catch basin, drop inlet, storm drain box, cleanout box, miscellaneous utility box, or inspection hole to be removed shall be completely removed, unless shown otherwise on the plans or directed otherwise by the Engineer. Prior to excavation, all pipes shall be cut outside the structure and plugged as directed by the Engineer. Cost of box removal shall be considered incidental and there will be no separate payment for this work.

METHOD OF MEASUREMENT

751-4.1 Adjustment of utility structures to grade shall be measured by the unit per each.

BASIS OF PAYMENT

751-5.1 The accepted quantities of utility structures to be adjusted to grade will be paid for at the contract unit price per each, complete and in place. This price shall be full compensation for furnishing all materials and for all preparation, excavation, adjusting, backfilling and placing of the materials, including concrete and reinforcing cap; furnishing and installation of such specials and connections to pipes and other structures as may be required to complete the item as shown on the plans; and for all labor, equipment, tools and incidentals necessary to complete the structure.

Payment will be made under:

D-751-1	Adjust Existing Electrical Junction Box	Per Each
D-751-2	Relocate Existing Communication Handhole	Per Each
D-751-3	Remove Existing Electrical Manhole	Per Each
D-751-4	Adjust Water Valve	Per Each
D-751-5	Adjust Water Manhole	Per Each
D-751-6	Adjust Storm Drain Manhole	Per Each
D-751-7	Adjust Sanitary Sewer Manhole	Per Each
D-751-8	Install New Catch Basin	Per Each
D-751-9	Install New Curb Inlet	Per Each
D-751-10	Adjust Curb Inlet to Solid Frame and Grate	Per Each
D-751-11	Remove Existing Valve Assembly From Catch Basin	Per Each

MATERIAL REQUIREMENTS

ASTM A 283	Specification for Low and Intermediate Tensile Strength Carbon Steel Plates
ASTM A 536	Specification for Ductile Iron Castings
ASTM C 150	Specification for Portland Cement
ASTM C 478	Specification for Precast Reinforced Concrete Manhole Sections
ASTM D 4101	Specification for Propylene Plastic Injection and Extrusion Materials
AASHTO M 36	Specification for Zinc Coated (Galvanized) Corrugated Iron or Steel Culverts and Underdrains

END OF SECTION D-751

SECTION D-756

CONCRETE CURB & GUTTER, GATE ACCESS APRONS AND SIDEWALK

DESCRIPTION

756-1.1 The work to be performed under this section shall consist of constructing concrete curb and gutter, highback curb, driveway, sidewalk, etc. as shown on the drawings or as directed by the Engineer. These items shall be constructed to the lines, grades and dimensions as indicated on the drawings or as directed by the Engineer.

MATERIAL

756-2.1 Concrete. This item shall meet the requirements of Section P-610 with the exception that concrete placed with a slip form/extrusion machine shall have a maximum slump of 2-1/2 inches.

756-2.2 Untreated Base Course. Aggregate material to be placed under concrete structures such as curb and gutter, high back curb, etc. shall conform to the requirements of Section P-239.

756-2.3 Expansion Joint Filler. Filler material for expansion joints shall conform to the requirements of ASTM D-994, D-1751, or D-1752 and shall be 2-inch thick.

CONSTRUCTION METHODS

756-3.1 Subgrade Preparation. The subgrade shall be excavated or filled with suitable material to the grades and lines shown on the drawings. All soft yielding and otherwise unsuitable material shall be removed and replaced with suitable material. In areas of fill, the embankment shall be compacted to a minimum of 1.0 foot outside of the form lines. Density of the subgrade in fill and cut areas shall conform to the requirements of Section P-152. The prepared subgrade shall be checked and accepted by the Engineer prior to placement of the aggregate base.

756-3.2 Base Course Preparation. The required base course material to be used shall be placed at the depths shown on the drawings. Density of the compacted material shall conform to the requirements of Section P-239. The prepared base shall be checked and accepted by the Engineer prior to placement of the aggregate base.

756-3.3 Placement of Concrete. The Contractor shall place the concrete in accordance with the details and to the lines and grades as shown on the drawings. The grade shall not vary more than ± 0.02 feet in every 10 feet.

The Contractor shall have the option to use a slipform/extrusion machine or hand forms for the placement of concrete.

The slipform/extrusion equipment shall be subject to approval by the Engineer. The extrusion machine so approved shall be so designed to place, spread consolidate, screed, and finish the concrete in one complete pass in such a manner that a minimum of hand finishing will be necessary to provide a dense and homogeneous concrete section. The machine shall slope, vibrate, and/or extrude the concrete for the full depth of the concrete section being placed. It shall be operated with as nearly a continuous forward movement as possible. All operations of mixing, delivery, and spreading shall be so coordinated as to provide uniform progress, with a minimum of starting and stopping of the machine.

The forms used in hand forming shall be of wood, metal, or other suitable material that is straight and free from warp and having sufficient strength to resist the pressure of the concrete without displacement. All curved sections of concrete shall be constructed to smooth radial lines with no tangent breaks. The front and back forms shall extend to the full depth of the concrete. All forms shall be staked and braced to prevent any horizontal or vertical movement until their removal. They shall be cleaned and coated with a form-release agent before concrete is placed against them. The concrete shall then be deposited into the forms and tamped, spaded or mechanically vibrated for thorough consolidation.

756-3.4 Concrete Curb & Gutter. The concrete curb and gutter shall be type 7B or as shown on the drawings. It shall be constructed in conformity with the lines, grades, slopes, form and dimensions shown on the drawings. In construction of curb and gutter, the entire structure shall be built simultaneously and no joint or line of cleavage shall be made between the curb and the gutter. The space in back of the curb shall be backfilled with approved material to the elevation shown on the drawings and compacted with mechanical tampers.

756-3.5 Concrete Valley Gutter. The concrete Valley gutter shall be type No. 12 or as shown on the drawings. It shall be constructed in conformity with the lines, grades, slopes, form and dimensions shown on the drawings.

756-3.6 Concrete Highback Curb. The concrete highback curb shall be type 13A or as shown on the drawings. It shall be constructed in conformity with the lines, grades, slopes, form and dimensions shown on the drawings.

756-3.7 Concrete Ramp (Bike Path). The concrete ramp shall be constructed to the grades and dimensions and at the locations shown on the drawings or as directed by the Engineer.

756-3.8 Concrete Sidewalk and Pads. The concrete sidewalk and pads shall be constructed to the lines, grades and dimensions and at the locations shown on the drawings or as directed by the Engineer.

756-3.9 Block Wall. The block wall shall be constructed to the lines, grades and dimensions and at the locations shown on the drawings or as directed by the Engineer and includes all concrete work, steel reinforcing, footings, weep holes, drainage fabric and porous backfill.

756-3.11 General.

- a. The concrete shall be placed in one course on the subgrade to the full depth shown on the drawings. The full quantity of concrete required shall be deposited in as near its final position as practicable in one operation; the placing shall be completed with shovels. Spades shall be used along the edges to bring the concrete into uniform and complete contact with the forms. Hand tampers, approved by the Engineer, shall be used for compacting. A heavy iron shod straight edge shall be used for striking off the concrete at the proper elevation. Wood floats shall be used for bringing the material to a uniform surface, and after the surface has partially set, all edges shall be finished with an approved edging tool having a one half inch radius. The surface shall then be finished with a wood float or by floating with a steel trowel as directed by the Engineer. On steep grades the surface shall be roughened as directed by the Engineer.
- b. Retempering concrete that has partly set will not be permitted. Concrete that for any reason has been mixed too wet shall be wasted. Wasted concrete shall be disposed of by the Contractor in a manner satisfactory to the Engineer.
- c. Immediately after the finishing operations have been completed, a liquid curing compound conforming to the following specifications and acceptable to the Engineer shall be applied by the Contractor. A paraffin base liquid curing compound containing not less than 45 percent of non-volatile material shall be used, and when tested in accordance with ASTM C-156, it shall retain within the specimen at the end of 3 days at least 90 percent of the original water used in the mix. It shall not react with the concrete or contain any poisonous or harmful material. The compound shall not produce any darkening of the natural concrete color. Samples of approximately 1 quart for each 50 barrels of material shall be delivered to the Engineer for testing purposes at least 14 days before use of the material. It shall be delivered on the job in the original containers and each container shall show the name of the manufacturer and the quantity of material in each container.
- d. The curing compound shall be applied to the surface of the concrete in two uniform coats, each coat being applied at the rate of 1 gallon per 200 square feet of surface. If for any reason the application of the first coat is delayed, then the concrete shall be kept wet by sprinkling or some other method satisfactory to the Engineer, until the curing compound can be applied. The curing compound shall be applied with pressure spraying equipment of such type and capacity that it will readily handle the material which is to be applied. The spraying equipment shall be in first-class mechanical condition and shall be approved by the Engineer before being used. Duplicate pressure spraying outfits shall be kept on the job.
- e. The edges may be cured in the same manner and using the same materials as described above immediately after the removal of the forms or, if approved by the Engineer, the edges may be cured by backfilling with saturated earth immediately after the removal of the forms, keeping it wet for 7 days.
- f. If for any reason, work is discontinued for a period long enough for the concrete to become set or partially set, then a construction joint shall be provided, preferably at a transverse expansion joint or if that is impracticable, then at a transverse contraction joint. A bulkhead shall be placed between and at right angles to the side forms and at right angles to the surface of the pavement. It shall extend through the full depth of the pavement and the upper edge shall be set flush with the upper edge of the forms. The concrete shall be finished against this bulkhead to the full depth of the pavement and any excess concrete

shall be wasted. All work shall be done to the satisfaction of the Engineer before work is stopped.

756-3.12 Concrete Curb and Gutter and Sidewalk.

- a. The sidewalk shall be built four (4) inches thick except at and through driveways where the thickness shall be eight (8) inches thick. Concrete sidewalk built at and through driveways shall be as shown on the drawing or as directed by the Engineer.
- b. Place score lines at intervals equal to the width of the sidewalk. In curbs and gutters, place score lines at intervals not exceeding ten (10) feet. These score lines shall not be more than one-quarter (1/4) of an inch in depth.
- c. In addition to the score lines, all concrete sidewalks and curb and gutter shall be marked transversely with a marking tool at intervals not to exceed 12 feet or 10 feet for sidewalk and curb and gutter respectively. Where curb and gutter is adjacent to concrete pavement, align the joints with the pavement joints where practical. Each contraction joint shall be finished with an edging tool and shall be cut to a depth of one-quarter (1/4) of the slab thickness. Additional contraction joints shall be provided as shown on the drawings or as directed by the Engineer or as further described in this specification.
- d. Transverse expansion joints shall be constructed in all concrete sidewalk at intervals not to exceed forty (40) feet and shall be one-half (2) of an inch in thickness. For sidewalks, place expansion joints at the end and beginning of all walk returns, between the sidewalk and buildings abutting said sidewalk, around all poles, hydrants, manhole frames and/or other structures coming within or immediately adjacent to the sidewalk area, and at such other points as shown on the drawing or as directed by the Engineer. The width of the expansion joint abutting curbs shall be a special joint one (1) inch wide by eight (8) inches deep with the top set flush with the specified grade of the top of curb. All expansion joints shall extend the full depth of the concrete pavement being placed, and shall be used to hold the expansion joint rigidly and securely in place during the sidewalk construction.

For curb and gutter, construct one-half (2) inch joints at the end of all returns, except where drain gutter transitions extend beyond the curb return; in which case place them at the ends of the drain gutter transition. Construct no joints in curb returns. Where monolithic curb and gutter is constructed adjacent to concrete pavement, place expansion joints at end and beginning of curb returns.

Expansion joints shall be placed in driveway centerlines of driveways that are greater than 20 feet in width. These joints shall be the full depth of the concrete plus one (1) inch with the top set flush with the top of the concrete.

e. The expansion joint filler to be used shall be a prepared resilient, nonextruding joint filler approved by the Engineer. It shall be cut or molded to the proper dimensions and shall be so placed in relation to the surface of the pavement as to allow for pouring of the joint sealer compound.

- f. All expansion joints and contraction joints constructed in concrete shall be sealed by a hot poured rubberized asphalt joint sealing compound that is resilient and adherent to the concrete to prevent infiltration of water and foreign substances into and through the joints. The joint sealing compound used shall first be submitted to and approved by by the engineer prior to use. The compound shall be handled and placed as directed to the satisfaction of the Engineer.
- g. All the above joint fillers and sealers shall be furnished and properly placed at the expense of the Contractor, unless otherwise directed.

METHOD OF MEASUREMENT

756-4.1 Concrete Valley Gutter. Method of measurement and basis of payment for this item will be made at the contract unit price per square yard of concrete constructed and accepted.

756-4.2 Concrete Curb and Gutter. Method of measurement and basis of payment for this item will be made at the contract unit price per linear foot of concrete curb and gutter constructed and accepted.

756-4.3 Install Bollards. Method of measurement and basis of payment for this item will be made at the contract unit price per each bollard constructed and accepted.

756-4.4 Reinstall Block Wall. Method of measurement and basis of payment for this item will be made at the contract unit price per linear foot constructed and accepted.

756-4.5 Concrete Ramp (Bike Path). Method of measurement and basis of payment for this item will be made at the contract unit price per each constructed and accepted.

756-4.5 Concrete Island. Method of measurement and basis of payment for this item will be made at the contract unit price per square yard constructed and accepted.

Refer to sections P-152 or P-239 for subgrade preparation which shall be incidental for the above items.

BASIS OF PAYMENT

D-756-5.1 Concrete Valley Gutter. The basis of payment for the installation of Concrete Valley Gutter shall be full compensation for materials, tools, equipment, forms, labor, joints, reinforcement bars, curing compounds, wiring, grounds and all incidental items necessary to fully complete these items.

D-756-5.2 Concrete Curb and Gutter. The basis of payment for the installation of Concrete Curb and Gutter shall be full compensation for materials, tools, equipment, forms, labor, joints, reinforcement bars, curing compounds, wiring, grounds and all incidental items necessary to fully complete these items.

D-756-5.3 Install Bollards. The basis of payment for the installation of Bollards shall be full compensation for materials, tools, equipment, forms, labor, joints, curing compounds, steel casings, foundations and all incidental items necessary to fully complete these items.

D-756-5.4 Reinstall Block Wall. The basis of payment for the reinstallation of the Block Wall shall be full compensation for materials, tools, equipment, excavation, backfill, reinforcing mesh and all incidental items necessary to fully complete these items, including replacing any damaged blocks.

D-756-5.5 Concrete Ramp (Bike Path). The basis of payment for the installation of Concrete Ramp (Bike Path) shall be full compensation for materials, tools, equipment, forms, labor, joints, reinforcement bars, curing compounds, wiring, grounds and all incidental items necessary to fully complete these items.

D-756-5.6 Concrete Island. The basis of payment for the installation of Concrete Island shall be full compensation for materials, tools, equipment, forms, labor, joints, reinforcement bars, curing compounds, wiring, grounds and all incidental items necessary to fully complete these items.

Payment will be made under:

D-756-1	Concrete Valley Gutter	Per Square Yard
D-756-2	Concrete Curb and Gutter	Per Linear Foot
D-756-3	Install Bollards	Per Each
D-756-4	Reinstall Block Wall	Per Linear Foot
D-756-5	Concrete Ramp (Bike Path)	Per Each
D-756-6	Concrete Island	Per Square Yard

TESTING AND MATERIAL REQUIREMENTS

ASTM C-156	Water Retention by Concrete Curing Material
ASTM D-994	Preformed Expansion Joint Filler
ASTM D-1751	Preformed Expansion Joint Filler
ASTM D-1752	Preformed Sponge Rubber and Cork Fillers

END OF SECTION D-756

SECTION F-162

CHAIN-LINK FENCES

DESCRIPTION

F-162-1.1 This item shall consist of furnishing and erecting a chain-link fence and/or gates in accordance with these specifications and the details shown on the plans and in conformity with the lines and grades shown on the plans or established by the Engineer.

MATERIALS

F-162-2.1 Fabric. The chain-link fence fabric shall be a woven 9-gauge galvanized steel wire in a 2-inch (50 mm) mesh and shall meet the requirements of ASTM A 392, Class 2.

F-162-2.3 Posts, Rails and Braces. Posts, rails, and braces shall conform to the requirements of ASTM F 1043 or ASTM F 1083 as follows:

Galvanized tubular steel pipe shall conform to the requirements of Group IA, (Schedule 40) coatings conforming to Type A, or Group IC (High Strength Pipe), External coating Type B, and internal coating Type B or D.

Posts, rails, and braces, with the exception of galvanized steel conforming to ASTM F 1043 or ASTM F 1083, Group IA, type A, or aluminum alloy, shall demonstrate the ability to withstand testing in salt spray in accordance with ASTM B 117 as follows:

External:	1,000 hours with a maximum of 5 percent red rust
Internal:	650 hours with a maximum of 5 percent red rust

The dimensions of the posts, rails, and braces shall be in accordance with Tables I through VI of Federal Specification RR-F-191/3D.

F-162-2.4 Gates. Gate frames shall consist of galvanized steel pipe and shall conform to the specifications for the same material under paragraph F- 162-2.3. The fabric shall be of the same type material as used in the fence.

Structural members of gates shall be fully welded by a method that will provide a continuous weld on all sides and faces of joints at exposed edges. Surplus welding material shall be removed.

F-162-2.5 Wire Ties and Tension Wires. Wire ties for use in conjunction with a given type of fabric shall be of the same material and coating weight identified with the fabric type. Tension wire shall be 7-gauge marcelled steel wire with the same coating as the fabric type and shall conform to ASTM A 824.

All material shall conform to Federal Specification RR-F-191/4 Latest Revision.

F-162-2.6 Miscellaneous Fittings and Hardware. Miscellaneous steel fittings and hardware for use with zinc-coated steel fabric shall be of commercial grade steel or better quality, wrought or cast as appropriate to

TECHNICAL SPECIFICATIONS

the article, and sufficient in strength to provide a balanced design when used in conjunction with fabric posts, and wires of the quality specified herein. All steel fittings and hardware shall be protected with a zinc coating applied in conformance with ASTM A 153. Barbed wire support arms shall withstand a load of 250 pounds (113 kg) applied vertically to the outermost end of the arm.

F-162-2.7 Concrete. Concrete shall be of a commercial grade with a minimum 28-day compressive strength of 2,500 psi (17.2 MPa).

F-162-2.8 Marking. Each roll of fabric shall carry a tag showing the kind of base metal (steel, aluminum, or aluminum alloy number), kind of coating, the gauge of the wire, the length of fencing in the roll, and the name of the manufacturer. Posts, wire, and other fittings shall be identified as to manufacturer, kind of base metal (steel, aluminum, or aluminum alloy number), and kind of coating.

F-162-2.9 Submittals. Prior to purchasing fence materials, the Contractor shall submit information to the Engineer for those materials proposed for use during construction. The submittal shall show the appropriate ASTM or Federal Specification and a statement that the material does or does not comply with the applicable specification. The submittal shall include the following items:

- a. chain-link fabric
- b. pipe for posts, rails and braces
- c. wire ties
- d. tension wires
- e. fittings and hardware
- f. concrete

Submittals shall comply with procedures set forth in the "Shop Drawing and Sample Submittals" section of the General Conditions. Allow ten days for review by the Engineer, excluding delivery time to and from the Contractor.

No material shall be delivered until the submittal has been accepted by the Engineer and returned to the Contractor.

CONSTRUCTION METHODS

F-162-3.1 Clearing Fence Line. All trees, brush, stumps, logs, large rocks, and other debris which would interfere with proper construction of the fence in the required location shall be removed a minimum width of 4 feet (1.2 m) on each side of the centerline of the fence before starting fencing operations. Unless there is a separate bid item in the bid schedule, the cost of removing and disposing of the material shall not constitute a pay item and shall be considered incidental to fence construction.

The site of the fence shall be graded to remove surface irregularities so that the fence will conform to the general contour of the ground with no sudden changes in vertical alignment.

F-162-3.2 Installing Posts. All posts shall be set in concrete at the required dimensions, depths, and spacing shown on the plans. The post holes shall be in proper alignment so that there is a minimum of 3 inches (75 mm) of concrete on all sides of the posts.

The concrete shall be thoroughly compacted around the posts by tamping or vibrating and shall have a smooth finish slightly higher than the ground and sloped to drain away from the posts. All posts shall be set plumb and to the required grade and alignment. No materials shall be installed on the posts, nor shall the posts be disturbed in any manner within 7 days after the individual post footing is completed.

Should rock or pavement be encountered at a depth less than the planned footing depth, a hole 2 inches (50 mm) larger than the greatest dimension of the posts shall be drilled to a depth of 12 inches (300 mm). After the posts are set, the remainder of the drilled hole shall be filled with grout, composed of one part Portland cement and two parts mortar sand. Any remaining space above the rock or pavement shall be filled with concrete in the manner described above.

In lieu of drilling through the rock, the rock may be excavated to the required footing depth. No extra compensation shall be made for drilling or rock excavation.

F-162-3.3 Installing Top Rails. The top rail shall be continuous and shall pass through the post tops. The coupling used to join the top rail lengths shall allow for expansion.

F-162-3.4 Installing Braces. Horizontal brace rails, with diagonal truss rods and turnbuckles, shall be installed at all terminal posts.

F-162-3.5 Installing Fabric. The wire fabric shall be firmly attached to the posts and braced in the manner shown on the plans. All wire shall be stretched taut and shall be installed to the required elevations. The fence shall generally follow the contour of the ground, with the bottom of the fence fabric no less than 1 inch (25 mm) or more than 2 inches (50 mm) from the ground surface. Grading shall be performed where necessary to provide a neat appearance. All holes and low areas remaining after installation shall be filled with suitable soil, gravel, or other material acceptable to the Engineer and compacted.

At locations of small natural swales or drainage ditches and where it is not practical to have the fence conform to the general contour of the ground surface, longer posts may be used and multiple strands of barbed wire stretched thereon to span the opening below the fence. The vertical clearance between strands of barbed wire shall be 6 inches (150 mm) or less.

Tension wire is required for all fence installations.

P-162-3.6 Electrical Grounds. Electrical grounds shall be constructed at 500-foot (150 m) intervals, maximum. The ground shall be accomplished with a copper clad rod 6 feet (2.4 m) long and a minimum of 5/8 inch (15 mm) in diameter driven vertically until the top is 6 inches (150 mm) above the ground surface. A No. 6 solid copper conductor shall be clamped to the rod and to the fence in such a manner that each element of the fence is grounded. Installation of ground rods shall not constitute a pay item and shall be considered incidental to fence construction.

F-162-3.7 Existing Fence Connections. Wherever the new fence joins an existing fence, either at a corner or at the intersection of straight fence lines, a corner post with a brace post shall be set at the junction and braced the same as herein described for corner posts.

If the connection is made at other than the corner of the new fence, the last span of the old fence shall contain a brace span.

F-162-3.8 Removal of Existing Fence. The Contractor may choose to remove the existing fence posts using one of the following methods or an approved alternative:

- 1. Pull the post out of the ground and backfill and patch the post hole. No separate payment will be made for backfilling, sodding, and asphalt or concrete patching.
- 2. Saw cut or torch cut off the post level with the existing grade, and fill the post with concrete or grout.

Posts are to be removed per method 1 above unless otherwise directed by the Engineer.

F-162-3.9 Modify (Extend) Existing Fence Posts. If the existing fence post is in good condition the Contractor may use a sleeve, and splice existing post to the required height to accommodate the new 6-foot fabric. All splices shall be full seam welds to prevent the extended post from being removed. Clean and apply zinc paint to all welded surfaces. If existing post is not in good condition it shall be removed and replaced as described above in section F-162-3.2 and F-162-3.8.1.

F-162-3.10 Clean Up. The Contractor shall remove from the vicinity of the completed work all tools, equipment, extra fence parts, etc. used during construction.

METHOD OF MEASUREMENT

F-162-4.1. Method of measurement for installation of new 8-foot high security chain link fence including 3 barbed wires on extenders will be per LF for each of the types and sizes designated in the plans.

F-162-4.2. Method of measurement for installation of temporary barrier fence will be per LF for each of the types and sizes designated in the plans. SLCDA will provide the jersey barriers and the contractor will install the temporary chain link fence on top per details in the plans.

F-162-4.3. Method of measurement for installation of new post and chain fence will be per LF for each of the types and sizes designated in the plans.

BASIS OF PAYMENT

F-162-5.1. Payment for installation of new 8-foot high security chain link fence including 3 barbed wires on extenders will be made at the contract unit price per LF for each of the types and sizes designated in the plans.

F-162-5.2. Payment for installation of new temporary barrier fence including 3 barbed wires on extenders will be made at the contract unit price per LF for each of the types and sizes designated in the plans. SLCDA will provide the jersey barriers but the contractor will pick up provided barriers from stock yard and will install the temporary chain link fence on top per details in the plans.

F-162-5.3. Payment for installation of new post and chain fence will be made at the contract unit price per LF for each of the types and sizes designated in the plans.

The price shall be full compensation for furnishing all materials, and for all preparation, demolition, erection, and installation of these materials, and for all labor, tools, equipment, and all incidentals necessary to complete the item.

Payment Will Be Made Under:

F-162-1	Install 8-foot High Security Chain-Link Fence, CompletePer	Linear Foot
F-162-2	Install Temporary Barrier Fence, CompletePer	Linear Foot
F-162-3	Install Post and Chain Fence, CompletePer	Linear Foot

MATERIAL REQUIREMENTS

ASTM A 123	Specification for Zinc (Hot-Dip Galvanized) Coating on Iron and Steel Products
ASTM A 153	Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
ASTM A 392	Specification for Zinc-Coated Steel Chain-Link Fence Fabric
ASTM A 446	Specification for Steel Sheet, Zinc-Coated (Galvanized) by the Hot-Dip Process, Structural (Physical) Quality
ASTM A 653	Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
ASTM A 824	Specification for Metallic-Coated Steel Marcelled tension Wire for Use with Chain Link Fence
ASTM A 1011	Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength, Low-Alloy and High-Strength Low-Alloy with Improved Formability
ASTM B 117	Practice for Operating Salt Spray (Fog) Apparatus
ASTM F 1043	Specification for Strength and Protective Coatings on Metal Industrial Chain Link Fence Framework
ASTM F 1083	Specification for Pipe, Steel, Hot-Dipped Zinc-Coated (Galvanized) Welded, for Fence Structures
ASTM G 152	Operating open Flame (Carbon-Arc) Light Apparatus for Exposure of Nonmetallic Materials
ASTM G 153	Operating Enclosed Carbon-Arc Light Apparatus for Exposure of Nonmetallic Materials
ASTM G 154	Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials

ASTM G 155	Operating (Xenon-Arc) Light Apparatus for Exposure of Nonmetallic Materials.
Fed. Spec.	Fencing, Wire and Post, Metal (Chain-Link Fence Posts, RR-F-191/3D Top Rails and Braces)
Fed. Spec. RR-F-191/4D	Fencing, Wire and Post, Metal (Chain-Link Fence Accessories)

END OF SECTION F-162

SECTION 26000-SITE

INSTALLATION OF ELECTRICAL SYSTEMS

Description

26000-1.1 Related Documents

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 26 Specification Sections, apply to this Section.
 - 1. 260526 Grounding and Bonding for Electrical Systems
 - 2. 260529 Hangers and Supports for Electrical Systems
 - 3. 260533 Raceways and Boxes for Electrical Systems
 - 4. 260543 Underground Ducts and Raceways for Electrical Systems
 - 5. 260533 Identification for Electrical Systems
 - 6. 260416 Panelboards

26000-1.2 Description of Work

- A. The contract documents indicate the extent of electrical work. Provide all labor, materials, equipment, supervision and service necessary for a complete electrical system as shown on the drawings and described in this specification section.
- B. Panel Boards
- C. Conductors and Cables. This section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less. Types of conductors and cables in this section include the following Copper Conductors. Applications for conductors and cables required for project include:
 - 1. Feeders.
 - 2. Branch Circuits
- D. Types of raceways in this section include the followings:
 - 1. Rigid Metal Conduit
 - 2. PVC Externally Coated Rigid Steel Conduit
 - 3. Flexible Metal Conduit
 - 4. Liquid-tight Flexible Metal Conduit
 - 5. Rigid Non-metallic Conduit

Method of Measurement

26000-2.1 AVI Equipment Rack will be measured for payment on a lump sum basis for each system installed with all components in place, accepted, and ready for operation. Components include: equipment racks, AC panels, cabinets, conduits, cables, housekeeping pads, bollards and incidentals.

Basis of Payment

26000-3.1 Payment will be made at the contract lump sum price for each AVI Equipment Rack. The price shall be full compensation for furnishing all materials and for all preparation, assembly, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete this item in accordance with the provisions and intent of the plans and specifications.

Payment will be made under the following bid items:

26000 Installation of AVI Equipment Rack, Complete...... Per Lump Sum

END OF SECTION 26000-SITE

SECTION 260519-SITE

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 2000 V and less.
 - 2. Connectors, splices, and terminations rated 2000 V and less.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductors: Copper, complying with NEMA WC 70/ICEA S-95-658.
 - 1. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

260519-SITE-1

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Branch Circuits: Copper. Stranded for all conductors.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Complete raceway installation between conductor and cable termination points prior to pulling conductors and cables.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

3.5 **IDENTIFICATION**

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - c. Inspect compression applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor with respect to ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.
- B. Cables will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

PART 4 - METHOD OF MEASUREMENT

4.1 Cable shall be measured by the linear foot for each type of cable installed.

PART 5 - BASIS OF PAYMENT

5.1 The accepted quantities of items shall be paid for at the contract unit price for the items listed below. The price shall include all materials, tools, equipment, and incidentals necessary to complete the item.

Payment will be made under the following bid items:

260519-1	No. 2 AWG, 600V, Cable Installed in Conduit	.Per Linear Foot
260519-2	No. 8 AWG, 600V, Cable Installed in Conduit	.Per Linear Foot
260519-3	No. 10 AWG, 600V, Cable Installed in Conduit	Per Linear Foot

END OF SECTION 260519

SECTION 260526-SITE

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 5. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
- D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- J. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

K. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

2.4 **GROUNDING ELECTRODES**

- A. Ground Rods: Copper-clad 3/4 inch by 10 feet (19 mm by 3 m).
- B. Ground Plates: 1/4 inch (6 mm) thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare copper conductor, No. 6 AWG minimum.
 - 1. Bury at least 15 inches (380 mm) below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-

copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
- C. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
- D. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare copper, not less than No. 6 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches (50 mm) below final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

Method of Measurement and Basis of Payment

260526-4.1 There shall be no separate measurement or payment for work items included in Section 260526 - Grounding and Bonding for Electrical Systems. Payment for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specification sections.

END OF SECTION 260526

260526-SITE-5

THIS PAGE INTENTIONALLY BLANK

SECTION 260529-SITE

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Nonmetallic support systems.
 - d. Trapeze hangers.
 - e. Clamps.
 - f. Turnbuckles.
 - g. Sockets.
 - h. Eye nuts.
 - i. Saddles.
 - j. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 - 1. Trapeze hangers. Include product data for components.
 - 2. Steel slotted-channel systems.
 - 3. Equipment supports.

TECHNICAL SPECIFICATIONS

1.3 INFORMATIONAL SUBMITTALS

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Manufacturers of Unistrut, B-Line, Kindorf or approved equal.
 - 2. Material: Galvanized steel.
 - 3. Channel Width: 1-5/8 inches (41.25 mm).
 - 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 - 7. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Stainless-steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 5. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs and RMCs may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.

- 4. To Existing Concrete: Expansion anchor fasteners.
- 5. To Steel: Beam clamps MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
- 6. To Light Steel: Sheet metal screws.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa) 28-day compressive-strength concrete.
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

Method of Measurement and Basis of Payment

260529-4.1 There shall be no separate measurement or payment for work items included in Section 260529 - Hangers and Supports for Electrical Systems. Payment for furnishing all materials and for all

preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specification sections.

END OF SECTION 260529

THIS PAGE INTENTIONALLY BLANK

260529-SITE-6

SECTION 260543-SITE

UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Direct-buried conduit, ducts, and duct accessories.
 - 2. Concrete-encased conduit, ducts, and duct accessories.
 - 3. Handholes and boxes.
 - 4. Manholes.

1.2 DEFINITIONS

A. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including separators and miscellaneous components.
 - 2. Include ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Include accessories for manholes, handholes, boxes, and other utility structures.
 - 4. Include warning tape.
 - 5. Include warning planks.
- B. Shop Drawings:
 - 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole frame support rings.
 - e. Include Ladder details.
 - f. Include grounding details.
 - g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 - h. Include joint details.

- 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
- C. Sustainable Design Submittals:

1.4 INFORMATIONAL SUBMITTALS

- A. Source quality-control reports.
- B. Field quality-control reports.

1.5 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.7 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.
- B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR DUCTS AND RACEWAYS

A. Comply with ANSI C2.

260543-SITE-2
2.2 CONDUIT

- A. Rigid Steel Conduit: Galvanized. Comply with ANSI C80.1.
- B. Underground Plastic Utilities Duct: NEMA TC 2, UL 651, ASTM F 512, Type EPC-80 and Type EPC-40, with matching fittings complying with NEMA TC 3 by same manufacturer as the duct.
- C. Underground Plastic Utilities Duct: NEMA TC 6 & 8, ASTM F 512, UL 651A, Type HDPE with matching fittings complying with NEMA TC 9 by same manufacturer as the duct.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 NONMETALLIC DUCTS AND DUCT ACCESSORIES

- A. Manufacturers: Carlon, Centex, or approved equal
- B. Underground Plastic Utilities Duct: NEMA TC 2, UL 651, ASTM F 512, Type EPC-40, with matching fittings complying with NEMA TC 3 by same manufacturer as the duct.
- C. Underground Plastic Utilities Duct: UL 651A, Type HDPE with a wall thickness ratio of SDR-11 and matching fittings complying with NEMA TC 9 by same manufacturer as the duct.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.
- E. Duct Accessories:
 - 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of ducts with which used, and selected to provide minimum duct spacing indicated while supporting ducts during concreting or backfilling.
 - 2. Warning Tape: Underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."
- F. Duct Accessories:
 - 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of ducts with which used, and selected to provide minimum duct spacing indicated while supporting ducts during concreting or backfilling.
 - 2. Warning Tape: Underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify owner if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by owner.

3.2 UNDERGROUND DUCT APPLICATION

A. Underground Ducts Crossing Paved Paths, Walks and Driveways Type EPC-40-PVC, encased in reinforced concrete.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 - 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 - 4. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

- A. Excavation and Backfill: Compaction as specified in P-152, but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching as required by SLCDA.

3.5 DUCT INSTALLATION

- A. Install ducts according to NEMA TCB 2.
- B. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes, to drain in both directions.
- C. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm) both horizontally and vertically, at other locations unless otherwise indicated.

.

- D. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
- E. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) ducts, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell without reducing duct line slope and without forming a trap in the line.
 - 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct banks with calculated expansion of
 - 3. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.
- F. Direct-Buried Duct Banks:
 - 1. Excavate trench bottom to provide firm and uniform support for duct bank. Comply with requirements for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 - 3. Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet (6 m) of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches (150 mm) between tiers.
 - 4. Depth: Install top of duct bank at least 36 inches (900 mm) below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Install ducts with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and signal ducts.
 - 7. Elbows: Install manufactured duct elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 8. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

- 9. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction.
 - a. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct bank.
- G. Warning Tape: Bury warning tape approximately 12 inches (300 mm) above all concreteencased ducts and duct banks. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of ductbank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Cast-in-Place Manhole Installation:
 - 1. Finish interior surfaces with a smooth-troweled finish.
 - 2. Windows for Future Duct Connections: Form and pour concrete knockout panels.
- B. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- C. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- D. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 **FIELD QUALITY CONTROL**

- A. Perform the following tests and inspections and prepare test reports:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a obstructions and retest.
 - 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.9 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump. Remove foreign material.

PART 4 - METHOD OF MEASUREMENT

- 4.1 2-way, 2" PVC Conduit shall be measured by the linear foot.
- 4.2 2-way, 4" PVC Conduit shall be measured by the linear foot.
- 4.3 Remove Conduit and Cable shall be measured together by the linear foot and not measured separately, based on the length of the trench.
- 4.4 1-way, 2" PVC Conduit shall be measured by the linear foot.

PART 5 - BASIS OF PAYMENT

5.1 The accepted quantities of items shall be paid for at the contract unit price for the items listed below. The price shall include all materials, excavation, flowable backfill tools, equipment, and incidentals necessary to complete the item.

Payment will be made under the following bid items:

260543-1	2-way, 2" PVC Conduit	.Per Linear Foot
260543-2	2-way, 4" PVC Conduit	Per Linear Foot
260543-3	Remove Conduit and Cable	.Per Linear Foot
260543-4	1-way, 2" PVC Conduit	Per Linear Foot

END OF SECTION 260543

SECTION 260553-SITE

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels, including arc-flash warning labels.
 - 8. Miscellaneous identification products.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C) ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.
- C. Self-Adhesive Labels:
 - 1. Preprinted, 3-mil- (0.08-mm-) thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 - a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the cable or raceway diameter, such that the clear shield overlaps the entire printed legend.
 - b. Nominal Size: 3.5-by-5-inch (76-by-127-mm).
 - 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.4 BANDS AND TUBES:

A. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F (93 deg C). Comply with UL 224.

2.5 TAPES AND STENCILS:

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.
- C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.
- D. Underground-Line Warning Tape
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE"
 - c. Inscriptions for Orange-Colored Tapes: "OPTICAL FIBER CABLE".

2.6 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch (0.38 mm) thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

2.7 SIGNS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches (129 sq. cm), minimum 1/16-inch- (1.6-mm-).
 - b. For signs larger than 20 sq. inches (129 sq. cm), 1/8 inch (3.2 mm) thick.
 - c. Engraved legend with black letters on white face.

- d. Self-adhesive.
- e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

- A. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D 638: 12,000 psi (82.7 MPa).
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 **PREPARATION**

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.
- H. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
- I. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- J. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- K. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

3.3 IDENTIFICATION SCHEDULE

- A. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where

splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

- B. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- C. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- D. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
- E. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.
- H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Selfadhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- J. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.

- 1. Comply with NFPA 70E and ANSI Z535.4.
- K. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic 4 inches (100 mm) high.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment To Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchgear.
 - e. Switchboards.
 - f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - g. Substations.
 - h. Emergency system boxes and enclosures.
 - i. Motor-control centers.
 - j. Enclosed switches.
 - k. Enclosed circuit breakers.
 - l. Enclosed controllers.
 - m. Variable-speed controllers.
 - n. Push-button stations.
 - o. Power-transfer equipment.
 - p. Contactors.
 - q. Remote-controlled switches, dimmer modules, and control devices.
 - r. Battery-inverter units.
 - s. Battery racks.
 - t. Power-generating units.

- u. Monitoring and control equipment.
- v. UPS equipment.

Method of Measurement and Basis of Payment

260553-4.1 There shall be no separate measurement or payment for work items included in Section 260553 - Identification for Electrical Systems. Payment for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specification sections.

END OF SECTION 260553

SECTION 262416-SITE

PANELBOARDS

DESCRIPTION

262416-1.1 Summary

- A. Section Includes:
 - 1. Distribution panelboards.

262416-1.2 Definitions

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. SPD: Surge protective device.
- G. VPR: Voltage protection rating.

262416-1.3 Action Submittals

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.

- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.
- 8. Key interlock scheme drawing and sequence of operations.

262416-1.4 Informational Submittals

A. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

262416-1.5 Closeout Submittals

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals, include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

262416-1.6 Quality Assurance

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

262416-1.7 Delivery, Storage, And Handling

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NECA 407.

262416-1.8 Field Conditions

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
 - 3. Comply with NFPA 70E.

262416-1.9 Warranty

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 12 months from date of Substantial Completion.

Material

262416-2.1 Panelboards and Load Centers Common Requirements

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.
- D. Enclosures: Surface mounted, dead-front cabinet.
 - 1. Rated for environmental conditions at installed location.
 - a. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Height: 84 inches (2.13 m) maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Finishes:
 - a. Panels and Trim: Galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel same finish as panels and trim.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- E. Incoming Mains:
 - 1. Location: Convertible between top and bottom.

- 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- F. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- G. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
 - 9. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- H. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- I. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 10 percent.
- J. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or

manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

- 1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
- 2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.
- K. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

262416-2.2 Performance Requirements

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 3. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

262416-2.3 Power Panelboards

- A. Panelboards: NEMA PB 1, distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 4. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- C. Mains: Circuit breaker.
- D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Plug-in circuit breakers.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices: Fused switches.
- G. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 - 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 - 2. External Control-Power Source: 120-V branch circuit.

TECHNICAL SPECIFICATIONS

262416-2.4 Disconnecting And Overcurrent Protective Devices

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application.

262416-2.5 Identification

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in transparent card holder.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
- D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

Construction Methods

262416-3.1 Examination

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NECA 407.

- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

262416-3.2 Installation

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Mount top of trim 84 inches (2286 mm) above finished floor unless otherwise indicated.
- G. Mount panelboard cabinet plumb and rigid without distortion of box.
- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) 1 1/4 inch (32 mm) in depth. Orient steel slotted supports vertically.
- J. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- L. Install filler plates in unused spaces.

- M. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- N. Mount spare fuse cabinet in accessible location.

262416-3.3 Identification

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

262416-3.4 Field Quality Control

- A. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

262416-3.5 Adjusting

F. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

Method of Measurement and Basis of Payment

262416-4.1 There shall be no separate measurement or payment for work items included in Section 262416-SITE Panelboards. Payment for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, tools, equipment and incidentals necessary to complete this item shall be included in their respective item of work under other technical specification sections.

END OF SECTION 262416-SITE

SECTION 265613-SITE

LIGHTING POLES AND STANDARDS

Description

265613-1.1 Related Documents

A. 265619 Specification Sections, apply to this Section.

265613-1.2 Summary

- A. Section Includes:
 - 1. Poles and accessories for support of luminaires.

265613-1.3 Definitions

- A. EPA: Equivalent projected area.
- B. Luminaire: Complete lighting fixture.
- C. Pole: Luminaire-supporting structure, including tower used for large-area illumination.
- D. Standard: See "Pole."

265613-1.4 Action Submittals

- A. Product Data: For each pole, accessory, and luminaire-supporting and -lowering device, arranged as indicated.
 - 1. Include data on construction details, profiles, EPA, cable entrances, materials, dimensions, weight, rated design load, and ultimate strength of individual components.
 - 2. Include finishes for lighting poles and luminaire-supporting devices.
 - 3. Anchor bolts.
 - 4. Manufactured pole foundations.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of poles and pole accessories.

- 4. Foundation construction details, including material descriptions, dimensions, anchor bolts, support devices, and calculations, signed and sealed by a professional engineer licensed in the state of installation.
- 5. Anchor bolt templates keyed to specific poles and certified by manufacturer.
- 6. Method and procedure of pole installation. Include manufacturer's written installations.
- C. Samples: For each exposed lighting pole, standard, and luminaire-supporting device and for each color and texture specified.

265613-1.5 Informational Submittals

- A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements according to AASHTO LTS-6-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations signed and sealed by a professional engineer.
- B. Qualification Data: For Installer and testing agency.
- C. Source quality-control reports.
- D. Field quality-control reports.
- E. Sample Warranty: Manufacturer's standard warranty.

265613-1.6 Closeout Submittals

- A. Operation and Maintenance Data: For poles and luminaire-lowering devices to include in emergency, operation, and maintenance manuals.
 - 1. Include pole inspection and repair procedures.

265613-1.7 Maintenance Material Submittals

A. Pole repair materials.

265613-1.8 Delivery, Storage, And Handling

- A. Package aluminum poles for shipping according to ASTM B 660.
- B. Store poles on decay-resistant skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- C. Retain factory-applied pole wrappings on metal poles until right before pole installation. Handle poles with web fabric straps.

265613-1.9 Warranty

- 1. Warranty Period: Five years from date of Substantial Completion.
- 2. Warranty Period for Corrosion Resistance: Five years from date of Substantial Completion.
- 3. Warranty Period for Color Retention: Five years from date of Substantial Completion.

Material

265613-2.1 Performance Requirements

- A. Seismic Performance: Foundation and pole shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 4. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
 - 5. Component Importance Factor: 1.0.
- B. Strength Analysis: For each pole, multiply the actual EPA of luminaires and brackets by a factor of 1.1 to obtain the EPA to be used in pole selection strength analysis.
- C. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

265613-2.2 Aluminum Poles

- A. Contractor shall provide a light pole per size and type indicated on the plans or approved equal.
- B. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adaptor fitting welded to pole, allowing the bracket to be bolted to the pole-mounted adapter, then bolted together with stainless-steel bolts.
 - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire. Match pole material and finish.
- C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- D. Grounding and Bonding Lugs: Bolted 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- E. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.
 - 1. Materials: Compatible with poles and standards as well as to substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.

- 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
- F. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- G. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: Platinum Silver.
- H. Powder-Coat Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair powder coat bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Powder coat shall comply with AAMA 2604.
 - a. Electrostatic applied powder coating; single application with a minimum 2.5- to 3.5-mils dry film thickness; cured according to manufacturer's instructions. Coat interior and exterior of pole for equal corrosion protection.
 - b. Color: Platinum Silver.

265613-2.3 Steel Poles

- A. Poles: Comply with ASTM A 500/A 500M, Grade B carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.
- B. Pole shall be designed in accordance with AASHTO 2001 Design Criteria.
 - a. Wind Speed: 100 MPH
 - b. Gust Factor: 1.00
 - c. Recurrence interval: 50 years

Defection Criteria:

- d. 2.00" Maximum sway allowed in 100 mph Wind
- e. Pole deflection is defined as movement from far left to far right way distance.

- C. The pole manufacturer shall furnish a certificate of compliance covering the poles and including compliance with deflection requirements.
- D. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adaptor fitting welded to pole, allowing the bracket to be bolted to the pole-mounted adapter, then bolted together with galvanized-steel bolts.
- E. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- F. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.
 - 1. Materials: Compatible with poles and standards as well as the substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
- G. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size indicated, and accessible through handhole.
- H. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- I. Intermediate Handhole and Cable Support: Weatherproof, 3-by-5-inch (76-by-130-mm) handhole located at midpoint of pole, with cover for access to internal welded attachment lug for electric cable support grip.
- J. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported load multiplied by a 5.0 safety factor.
- K. Galvanized Finish: After fabrication, hot-dip galvanize according to ASTM A 123/A 123M.

265613-2.4 Pole Accessories

A. Base Covers: Manufacturers' standard metal units, finished same as pole, and arranged to cover pole's mounting bolts and nuts.

265613-2.5 Mounting Hardware

- A. Anchor Bolts: Manufactured to ASTM F 1554, Grade 55, with a minimum yield strength of 55,000 psi (380,000 kPa).
 - 1. Galvanizing: Hot dip galvanized according to ASTM A 153, Class C.
 - 2. Bent rods per manufacturers recommendations
 - 3. Threading: Uniform National Coarse, Class 2A.
- B. Nuts: ASTM A 563, Grade A, Heavy-Hex
 - 1. Galvanizing: Hot dip galvanized according to ASTM A 153, Class C.
 - 2. Four> nuts provided per anchor bolt.
- C. Washers: ASTM F 436, Type 1.
 - 1. Galvanizing: Hot dip galvanized according to ASTM A 153, Class C.
 - 2. Two washers provided per anchor bolt.

265613-2.6 General Finish Requirements

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

Construction Methods

265613-3.1 Examination

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine poles, luminaire-mounting devices, lowering devices, and pole accessories before installation. Components that are scratched, dented, marred, wet, moisture damaged, or visibly damaged are considered defective.
- C. Examine roughing-in for foundation and conduit to verify actual locations of installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

265613-3.2 Pole Foundation

A. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123 M; and with top-plate and mounting bolts to match pole-base flange and strength required to support pole, luminaire, and accessories. Concrete, reinforcement, and formwork are specified in Section P-610 "Cast-in-Place Concrete."

- B. Anchor Bolts: Install plumb using manufacturer-Retain "Alignment" Paragraph below if luminaire alignment for desired light distribution depends on alignment of pole.
- C. Alignment: Align poles as indicated.
- D. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Section P-610 "Cast-in-Place Concrete."
- E. Foundation-Mounted Poles: Mount pole with leveling nuts and tighten top nuts to torque level according to pole manufacturer's written instructions.
 - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 - 3. Install base covers unless otherwise indicated.
 - 4. Use a short piece of 1/2 -inch (13-mm) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
- F. Poles and Pole Foundations Set in Concrete-Paved Areas: Install poles with a minimum 6-inch-(150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of the adjacent concrete slab. Fill unpaved ring with pea gravel. Insert material to a level 1 inch (25 mm) below top of concrete slab.
- G. Raise and set pole using web fabric slings (not chain or cable) at locations indicated by manufacturer.

265613-3.3 Corrosion Prevention

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum using insulating fittings or treatment.
- B. Steel Conduits: In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50-percent overlap.

265613-3.4 Grounding

- A. Ground Metal Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole unless otherwise indicated.
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground Nonmetallic Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

- 1. Install grounding electrode for each pole.
- 2. Install grounding conductor and conductor protector.
- 3. Ground metallic components of pole accessories and foundation.

265613-3.5 Identification

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

265613-3.6 Field Quality Control

- A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Inspect poles for nicks, mars, dents, scratches, and other damage.
 - 2. System function tests.

Method of Measurement

265613-4.1 Removal of poles and foundations shall be measured by each pole or foundation removed 12" below existing surface.

265613-4.2 Removal of transformers and power frames shall be measured for payment by each transformer and associated power frame removed.

Basis of Payment

265613-5.1 The accepted quantities of poles and foundation removed shall be paid for at the contract unit price for the items listed below. This price shall be full compensation for the disconnection from the electrical system, removing and disposing of all cable associated with removed items, removing and disposing of all handholes associated with removed items, removing and disposing of the existing foundation, site restoration which includes filling all voids with concrete, and for all materials, tools, equipment, and incidentals necessary to complete the item in accordance with the provisions and intent of the plans and specifications. This payment shall also include the transportation of salvaged materials to the Owner's designated location.

265613-5.2 The accepted quantities of transformer pads and power frames removed shall be paid for at the contract unit price for the items listed below. This price shall be full compensation for the disconnection from the electrical system, removing and disposing of all conduit and cable associated with removed items, removing and disposing of all power frames associated with removed items, removing and disposing of the existing foundation, site restoration which includes filling all voids with concrete, and for all materials, tools, equipment, and incidentals necessary to complete the item in accordance with the provisions and intent of the plans and specifications. This payment shall also include the transportation of salvaged materials to the Owner's designated location.

Payment will be made under the following bid items:

265613-1	Remove Pole and Foundation	Per Each
265613-2	Remove Transformer Pad and Power Frame, Complete	Per Each

END OF SECTION 265613

This Page Intentionally Blank

SECTION 265619-SITE

EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. 265613 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 - 2. Luminaire supports.
 - 3. Luminaire Pole Foundations

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color rendering index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
- B. Manufacturer: Kim Lighting AR Series, Halophane HMLED3 Series.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaire.
 - 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type.

- a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
- b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- 6. Wiring diagrams for power, control, and signal wiring.
- 7. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.
- C. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- D. Samples: For each luminaire and for each color and texture indicated with factory-applied finish.
- E. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.
- F. Delegated-Design Submittal: For luminaire supports.
 - 1. Include design calculations for luminaire supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing laboratory providing photometric data for luminaires.
- B. Product Certificates: For each type of the following:
 - 1. Luminaire.
- C. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
- D. Source quality-control reports.
- E. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Provide luminaires from a single manufacturer for each luminaire type.
 - 1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS

- A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.
- B. Mark locations of exterior luminaires for approval by owner prior to the start of luminaire installation.

1.11 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:

- a. Structural failures, including luminaire support components.
- b. Faulty operation of luminaires and accessories.
- c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
- 2. Warranty Period: 2 year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. UL Compliance: Comply with UL 1598 and listed for wet location.
- D. L70 lamp life of 50,000 hours.
- E. Internal driver.
- F. Nominal Operating Voltage: 240 VAC or 480VAC, as indicated.
- G. In-line Fusing: On the primary for each luminaire.
- H. Lamp Rating: Lamp marked for outdoor use.
- I. Source Limitations: Obtain luminaires from single source from a single manufacturer.
- J. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.
2.3 LUMINAIRE TYPES

- A. Area and Site:
 - 1. Mounting: Pole.
 - 2. Luminaire-Mounting Height: As indicated.
 - 3. Distribution: Type V.
 - 4. Diffusers and Globes: Clear, UV-stabilized acrylic.
 - 5. Housings:
 - a. Extruded-aluminum housing and heat sink.
 - b. Powder-coat finish.

2.4 MATERIALS

- A. Metal Parts: Free of burrs and sharp corners and edges.
- B. Sheet Metal Components: Stainless steel. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- G. Housings:
 - 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 - 2. Provide filter/breather for enclosed luminaires.
- H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

- 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage and coating.
 - c. CCT and CRI for all luminaires.

2.5 FINISHES

- A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - a. Color: Platinum Silver.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

265619-SITE-6

3.2 TEMPORARY LIGHTING

A. If approved by the owner, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Install lamps in each luminaire.
- D. Fasten luminaire to structural support.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- F. Wiring Method: Install cables in raceways. Conceal raceways and cables.
- G. Coordinate layout and installation of luminaires with other construction.
- H. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.5 **IDENTIFICATION**

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

265619-SITE-7

3.6 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Verify operation of photoelectric controls.
 - 3. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- C. Luminaire will be considered defective if it does not pass tests and inspections.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

PART 4 - METHOD OF MEASUREMENT

4.1 Light poles will be measured for payment on a unit basis per each, for each type installed as completed units in place, accepted, and ready for operation.

PART 5 – BASIS OF PAYMENT

5.1 The accepted quantities of items shall be paid for at the contract unit price for the items listed below. The price shall include all materials, including new junction boxes, tools, equipment, excavations, foundations, backfill, and incidentals necessary to complete the item.

Payment will be made under the following bid items:

265619-1Roadway Light Pole with 1 Fixture, Complete......Per Each265619-2Relocate Roadway Light Pole and Fixture on New Foundation, Complete.....Per Each

END OF SECTION 265619

265619-SITE-8

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete mixture.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement.
- D. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of formwork.

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Material certificates.
- C. Material test reports.
- D. Floor surface flatness and levelness measurements.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- B. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code Reinforcing Steel."

- D. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- E. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
- F. Preinstallation Conference: Conduct conference at Project site.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: As indicated in the General Structural Notes.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: As indicated in the General Structural Notes
- B. Normal-Weight Aggregates: ASTM C 33, graded.
 - 1. Maximum Coarse-Aggregate Size: As indicated in the General Structural Notes.
- C. Water: ASTM C 94/C 94M and potable.

2.4 ADMIXTURES

A. Air-Entraining Admixture: ASTM C 260.

- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.5 FIBER REINFORCEMENT

A. Synthetic Micro-Fiber: As indicated in the General Structural Notes.

2.6 WATERSTOPS

- A. Flexible Rubber Waterstops: CE CRD-C 513, with factory-installed metal eyelets, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
- B. Chemically Resistant Flexible Waterstops: Thermoplastic elastomer rubber waterstops with factory-installed metal eyelets, for embedding in concrete to prevent passage of fluids through joints; resistant to oils, solvents, and chemicals. Factory fabricate corners, intersections, and directional changes.
- C. Flexible PVC Waterstops: CE CRD-C 572, with factory-installed metal eyelets, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
- D. Self-Expanding Butyl Strip Waterstops: Manufactured rectangular or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete, 3/4 by 1 inch
- E. Self-Expanding Rubber Strip Waterstops: Manufactured rectangular or trapezoidal strip, bentonite-free hydrophilic polymer modified chloroprene rubber, for adhesive bonding to concrete, 3/8 by 3/4 inch

2.7 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
- F. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, nondissipating
- G. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 - 1. VOC Content: Curing and sealing compounds shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- H. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 - 1. VOC Content: Curing and sealing compounds shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.8 CONCRETE MIXTURES

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
- B. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
- C. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
- D. Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: As indicated in the General Structural Notes.
 - 2. Maximum Water-Cementitious Materials Ratio: As indicated in the General Structural Notes
 - 3. Slump Limit: As indicated in the General Structural Notes
 - 4. Air Content: As indicated in the General Structural Notes.
 - 5. Synthetic Micro-Fiber: As indicated in the General Structural Notes

2.9 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.10 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 - When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Chamfer Exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inchesand seal with manufacturer's recommended tape.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- C. Cold-Weather Placement: Comply with ACI 306.1.
- D. Hot-Weather Placement: Comply with ACI 301.

3.7 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and

defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

- 1. Apply to concrete surfaces to receive a rubbed finish.
- C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces to receive trowel finish.
- C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces exposed to view.
 - 2. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft. long straightedge resting on two high spots and placed anywhere on the surface does not exceed 3/16 inch.
- D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

3.9 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x hbefore and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.
 - 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.10 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.11 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

END OF SECTION 033000

SECTION 03 3546 - PENETRATING LIQUID FLOOR TREATMENTS FOR CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes penetrating liquid floor treatments for finished cast-in-place concrete slabs.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
 - 1. Laboratory Test Reports: For liquid floor treatments and curing and sealing compounds, indicating compliance with requirements for low-emitting materials.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Material Certificates: For the following, signed by manufacturers:
 - 1. Floor and slab treatments.
- C. Minutes of preinstallation conference.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer, approved by penetrating liquid floor treatment manufacturer, who employs on Project personnel qualified to apply penetrating liquid floor treatments specified.
- B. Mockups: Area of cast concrete slab-on-grade to demonstrate typical floor treatment and standard of workmanship.

03 3546 - 1

- 1. Apply treatment to slab-on-grade area of approximately 50 sq. ft., in location as directed by Architect.
- 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

PART 2 - PRODUCTS

2.1 LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Curecrete Distribution Inc.; Ashford Formula.
 - b. Euclid Chemical Company (The); an RPM company; Euco Diamond Hard.
 - c. PROSOCO, Inc; Consolideck LS.
 - d. US SPEC, Division of US MIX Company; US SPEC Industraseal.
 - e. W.R. Meadows, Inc; LIQUI-HARD.
 - 2. Products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 LIQUID FLOOR TREATMENT APPLICATION

- A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.
 - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 - 2. Do not apply to concrete that is less than 28 days' old.
 - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.
- B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

TECHNICAL SPECIFICATIONS

3.2 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION 03 3546

$B \hspace{0.1in} L \hspace{0.1in} A \hspace{0.1in} N \hspace{0.1in} K \hspace{0.1in} P \hspace{0.1in} A \hspace{0.1in} G \hspace{0.1in} E$

SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Framing with dimension lumber.
 - 2. Shear wall panels.
 - 3. Wood blocking and nailers.
 - 4. Wood furring
 - 5. Plywood backing panels.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements.

1.3 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.
- B. Evaluation Reports: For the following, from ICC-ES:
 - 1. Wood-preservative-treated wood.
 - 2. Fire-retardant-treated wood.
 - 3. Engineered wood products.
 - 4. Shear panels.
 - 5. Power-driven fasteners.
 - 6. Powder-actuated fasteners.
 - 7. Expansion anchors.
 - 8. Metal framing anchors.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Certified Wood: Materials shall be produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship."
 - 1. Dimension lumber framing.
 - 2. Laminated-veneer lumber.
 - 3. Parallel-strand lumber.
 - 4. Prefabricated wood I-joists.
 - 5. Rim boards.
 - 6. Miscellaneous lumber.
- B. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
 - 3. Provide dressed lumber, S4S, unless otherwise indicated.
- C. Maximum Moisture Content of Lumber: 19 percent for 2-inch nominal thickness or less, no limit for more than 2-inch nominal thickness unless otherwise indicated.
- D. Engineered Wood Products: Provide engineered wood products acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.
 - 1. Allowable Design Stresses: Provide engineered wood products with allowable design stresses, as published by manufacturer, that meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
- D. Application: Treat items indicated on Drawings, and the following:
 - 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, and similar concealed members in contact with masonry or concrete.
 - 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 - 4. Wood framing members that are less than 18 inches above the ground in crawlspaces or unexcavated areas.
 - 5. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 DIMENSION LUMBER FRAMING

- A. Non-Load-Bearing Interior Partitions: Construction or No. 2 grade.
 - 1. Application Interior partitions not indicated as load-bearing.
 - 2. Species:
 - a. Mixed southern pine; SPIB.
 - b. Northern species; NLGA.
 - c. Eastern softwoods; NeLMA.
 - d. Western woods; WCLIB or WWPA.
- B. Framing Other Than Non-Load-Bearing Interior Partitions: No. 2 grade.
 - 1. Application: Framing other than interior partitions not indicated as load-bearing.
 - 2. Species:
 - a. Douglas fir-larch; WCLIB or WWPA.
 - b. Douglas fir-larch (north); NLGA.

2.4 ENGINEERED WOOD PRODUCTS

- A. Engineered Wood Products, General: Products shall contain no urea formaldehyde.
- B. Laminated-Veneer Lumber: Structural composite lumber made from wood veneers with grain primarily parallel to member lengths, evaluated and monitored according to ASTM D 5456 and manufactured with an exterior-type adhesive complying with ASTM D 2559.
- C. Rim Boards: Product designed to be used as a load-bearing member and to brace wood I-joists at bearing ends, complying with research/evaluation report for I-joists.
 - 1. Material: All-veneer product
 - 2. Thickness: 1-1/4 inches

3. Provide performance-rated product complying with APA PRR-401, rim board grade, factory marked with APA trademark indicating thickness, grade, and compliance with APA standard.

2.5 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.
 - 4. Cants.
 - 5. Furring.
 - 6. Grounds.
- B. For items of dimension lumber size, provide No. 2 grade lumber of any species.

2.6 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M
- B. Power-Driven Fasteners: NES NER-272.
- C. Bolts: Steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers.

2.7 METAL FRAMING ANCHORS

- A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
- B. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. <u>Simpson Strong-Tie Co., Inc</u>.
 - 2. <u>USP Structural Connectors</u>.
- C. Allowable Design Loads: Provide products with allowable design loads, as published by manufacturer, that meet or exceed those of basis-of-design products. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

- D. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A 653/A 653M, G60 coating designation.
 - 1. Use for interior locations unless otherwise indicated.
- E. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; structural steel (SS), highstrength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.
 - 1. Use for wood-preservative-treated lumber and where indicated.

2.8 MISCELLANEOUS MATERIALS

- A. Sill-Sealer Gaskets: Glass-fiber-resilient insulation, fabricated in strip form, for use as a sill sealer; 1-inch nominal thickness, compressible to 1/32 inch; selected from manufacturer's standard widths to suit width of sill members indicated.
- B. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to suit width of sill members indicated.
- C. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry to other construction; scribe and cope as needed for accurate fit. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.
- B. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.
- C. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.
- D. Install fire-retardant treated plywood backing panels with classification marking of testing agency exposed to view.
- E. Shear Wall Panels: Install shear wall panels to comply with manufacturer's written instructions.
- F. Metal Framing Anchors: Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.
- G. Do not splice structural members between supports unless otherwise indicated.

- H. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
- I. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.
- J. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. NES NER-272 for power-driven fasteners.
 - 2. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code.
 - 3. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.

3.2 PROTECTION

- A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
- B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061000

SECTION 06 1053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Wood blocking and nailers.
 - 2. Plywood backing panels.
- B. Related Requirements:
 - 1. Section 06 1600 "Sheathing" for sheathing.

1.3 DEFINITIONS

- A. Boards or Strips: Lumber of less than 2 inches nominal size in least dimension.
- B. Dimension Lumber: Lumber of 2 inches nominal or greater size but less than 5 inches nominal size in least dimension.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5664.
 - 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

- B. Evaluation Reports: For the following, from ICC-ES:
 - 1. Preservative-treated wood.
 - 2. Fire-retardant-treated wood.
 - 3. Power-driven fasteners.
 - 4. Post-installed anchors.
 - 5. Metal framing anchors.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
 - 3. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal thickness or less, 19 percent for more than 2-inch nominal thickness unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

06 1053 - 2

- 2. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
 - 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece.
- D. Application: Treat all miscellaneous carpentry unless otherwise indicated.

2.3 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.
 - 4. Furring.
- B. Dimension Lumber Items: Construction or No. 2 grade lumber of any of the following species:
 - 1. Hem-fir (north); NLGA.
 - 2. Spruce-pine-fir; NLGA.
 - 3. Hem-fir; WCLIB or WWPA.
 - 4. Western woods; WCLIB or WWPA.
- C. Concealed Boards: 15 percent maximum moisture content of any of the following species and grades:
 - 1. Hem-fir or hem-fir (north), Construction or No. 2 Common grade; NLGA, WCLIB, or WWPA.
 - 2. Western woods, Construction or No. 2 Common grade; WCLIB or WWPA.
- D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.
- F. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.4 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, in thickness indicated or, if not indicated, not less than 3/4-inch nominal thickness.

2.5 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Screws for Fastening to Metal Framing: ASTM C1002, length as recommended by screw manufacturer for material being fastened.
- D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

2.6 METAL FRAMING ANCHORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cleveland Steel Specialty Co</u>.
 - 2. <u>KC Metals Products, Inc</u>.
 - 3. <u>Phoenix Metal Products, Inc</u>.
 - 4. <u>Simpson Strong-Tie Co., Inc</u>.
 - 5. <u>USP Structural Connectors</u>.
- B. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A653/A653M, G60 coating designation.
 - 1. Use for interior locations unless otherwise indicated.
- C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; Structural Steel (SS), highstrength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.
 - 1. Use for wood-preservative-treated lumber and where indicated.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.
- B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate furring, nailers, blocking, and similar supports to comply with requirements for attaching other construction.
- C. Install plywood backing panels by fastening to block wall; coordinate locations with utilities requiring backing panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency exposed to view.
- D. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.
- E. Do not splice structural members between supports unless otherwise indicated.
- F. Provide blocking and framing as indicated and as required to support facing materials, fixtures, toilet accessories, railings, specialty items, and trim.
 - 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.
- G. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 - 1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.
 - 2. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal thickness.
 - 3. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. and to solidly fill space below partitions.
 - 4. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet o.c.
- H. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
- I. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

- 1. Use inorganic boron for items that are continuously protected from liquid water.
- 2. Use copper naphthenate for items not continuously protected from liquid water.
- J. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code.
 - 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.
 - 3. ICC-ES evaluation report for fastener.
- K. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 INSTALLATION OF WOOD BLOCKING AND NAILER

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

3.3 **PROTECTION**

- A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
- B. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 06 1053

SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Wall sheathing.
 - 2. Roof sheathing.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements.

1.3 INFORMATIONAL SUBMITTALS

- A. Evaluation Reports: For following products, from ICC-ES:
 - 1. Preservative-treated plywood.

PART 2 - PRODUCTS

2.1 WOOD PANEL PRODUCTS

- A. Emissions: Products shall meet the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Certified Wood: For the following wood products, provide materials produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship":
 - 1. Plywood.
 - 2. Oriented strand board.
 - 3. Particleboard underlayment.
 - 4. Hardboard underlayment.

- C. Plywood:
- D. Oriented Strand Board: DOC PS 2.

2.2 WALL SHEATHING

- A. Plywood Wall Sheathing: Exterior, Structural I sheathing.
- B. Oriented-Strand-Board Wall Sheathing: Exposure 1, Structural I sheathing.

2.3 ROOF SHEATHING

- A. Plywood Roof Sheathing: Exterior, Structural I sheathing.
- B. Oriented-Strand-Board Roof Sheathing: Exposure 1, Structural I sheathing.

2.4 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M

2.5 MISCELLANEOUS MATERIALS

- A. Adhesives for Field Gluing Panels to Framing: Formulation complying with APA AFG-01 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.
 - 1. Adhesives shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. NES NER-272 for power-driven fasteners.
 - 2. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."
 - 3. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's "International Residential Code for One- and Two-Family Dwellings."
- D. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

3.2 WOOD STRUCTURAL PANEL INSTALLATION

- A. General: Comply with applicable recommendations in APA Form No. E30, "Engineered Wood Construction Guide," for types of structural-use panels and applications indicated.
- B. Fastening Methods: Fasten panels as indicated below:
 - 1. Wall and Roof Sheathing:
 - a. Nail to wood framing. Apply a continuous bead of glue to framing members at edges of wall sheathing panels.
 - b. Screw to cold-formed metal framing.
 - c. Space panels 1/8 inch apart at edges and ends.
- C. Seal sheathing joints according to sheathing manufacturer's written instructions.
 - 1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient amount of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
 - 2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel silicone emulsion sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION 061600

B L A N K P A G E

SECTION 06 4116 - PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Plastic-laminate-faced architectural cabinets and lockers.
 - 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-faced architectural cabinets unless concealed within other construction before cabinet installation.
- B. Related Requirements:
 - 1. Section 06 1053 "Miscellaneous Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing cabinets and concealed within other construction before cabinet installation.
 - 2. Division 12 sections for countertops at millwork.

1.3 COORDINATION

A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to support loads imposed by installed and fully loaded cabinets.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product, including panel products high-pressure decorative laminate adhesive for bonding plastic laminate and cabinet hardware and accessories.
- B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.

- 1. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
- 2. Show locations and sizes of cutouts and holes for items installed in architectural plasticlaminate cabinets.
- 3. Apply WI Certified Compliance Program label to Shop Drawings.
- C. Samples for Initial Selection: For each type of exposed finish.
- D. Samples for Verification: For the following:
 - 1. Plastic Laminates: 8 by 10 inches, for each type, color, pattern, and surface finish required.
 - a. Provide one sample applied to core material with specified edge material applied to one edge.
 - 2. Thermoset Decorative Panels: 8 by 10 inches 12 by 12 inches, for each color, pattern, and surface finish.
 - a. Provide edge banding on one edge.
 - 3. Corner Pieces:
 - a. Cabinet-front frame joints between stiles and rails and at exposed end pieces, 18 inches high by 18 inches wide by 6 inches deep.
 - b. Miter joints for standing trim.
 - 4. Exposed Cabinet Hardware and Accessories: One full-size unit for each type and finish.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Certificates: For the following:
 - 1. Thermoset decorative panels.
 - 2. High-pressure decorative laminate.
 - 3. Adhesives.
- C. Quality Standard Compliance Certificates: WI Certified Compliance Program.

1.7 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful inservice performance.
 - 1. Shop Certification: AWI's Quality Certification Program accredited participant or WI's Certified Compliance Program licensee.

- B. Installer Qualifications: Fabricator of products.
- C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver cabinets until painting and similar operations that could damage woodwork have been completed in installation areas. If cabinets must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 percent during the remainder of the construction period.
- B. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 - 1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed, and indicate measurements on Shop Drawings.
- C. Established Dimensions: Where cabinets are indicated to fit to other construction, establish dimensions for areas where cabinets are to fit. Provide allowance for trimming at site and for minor vertical adjustments, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 ARCHITECTURAL CABINET FABRICATORS

- A. Fabricators: Subject to compliance with requirements, provide products by one of the following:
 - 1. Boswell Wasatch Mill.
 - 2. Contempo Cabinet & Mill.
 - 3. Fetzer Architectural Woodwork
 - 4. Fondell Architectural Woodwork, Inc.
 - 5. Granite Mill & Fixture Co.
 - 6. Huetter Mill & Cabinet Inc.

- 7. Hurco Design and Manufacturing.
- 8. Johnson Brothers Planing Mill Inc.
- 9. Masterpiece Millwork.
- 10. MC Mill & Design
- 11. Pacific Cabinets, Inc.
- 12. Riverwoods Mill, Inc.
- 13. Westmark Products, Inc.

2.2 PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

- A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of architectural plastic-laminate cabinets indicated for construction, finishes, installation, and other requirements.
 - 1. Provide inspections of fabrication and installation together with labels and certificates from WI certification program indicating that woodwork complies with requirements of grades specified.
 - 2. The Contract Documents contain selections chosen from options in the quality standard and additional requirements beyond those of the quality standard. Comply with those selections and requirements in addition to the quality standard.
- B. Grade: Custom.
- C. Type of Construction: Frameless.
- D. Cabinet, Door, and Drawer Front Interface Style: Flush overlay.
- E. High-Pressure Decorative Laminate PL-1,: NEMA LD 3, grades as indicated or if not indicated, as required by woodwork quality standard.
 - 1. Basis of Design Products: Subject to compliance with requirements, provide products PL-1, as indicated on Finish Legend in the Drawings, or equivalent high-pressure decorative laminates approved by Architect prior to bid and complying with requirements, by one of the following:
 - a. Arborite.
 - b. Formica Corporation.
 - c. Pionite; a Panolam Industries International, Inc. brand.
 - d. Wilsonart International Holdings.
- F. Laminate Cladding for Exposed Surfaces:
 - 1. Horizontal Surfaces: Grade HGS.
 - 2. Postformed Surfaces: Grade HGP.
 - 3. Vertical Surfaces: Grade HGS.
 - 4. Edges: Grade HGS PVC edge banding, 0.12-inch-thick, matching laminate in color, pattern, and finish.
 - 5. Pattern Direction: Vertically for drawer fronts, doors, and fixed panels.
- G. Materials for Semiexposed Surfaces:
- 1. Surfaces Other Than Drawer Bodies: Thermoset decorative panels.
 - a. Edges of Thermoset Decorative Panel Shelves: PVC or polyester edge banding.
 - b. For semiexposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, NEMA LD 3, Grade VGS.
- 2. Drawer Sides and Backs: Thermoset decorative panels with PVC or polyester edge banding.
- 3. Drawer Bottoms: Thermoset decorative panels.
- H. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.
- I. Cabinet Door Fronts: Edge band door fronts on all four sides and seal with durable finish for easy cleaning.
- J. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
 - 1. Join subfronts, backs, and sides with glued rabbeted joints supplemented by mechanical fasteners or glued dovetail joints.
- K. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As selected by Architect from laminate manufacturer's full range.

2.3 WOOD MATERIALS

- A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.
 - 1. Wood Moisture Content: 5 to 10 percent.
- B. Core Materials at Wet Areas: At areas within 4 inches of finish floors in laboratories, classrooms, restrooms, janitorial closets, or any area where water may be present, use exterior grade plywood or lumber rated by AWI for exterior use.
- C. Composite Wood Products: Products shall be made using ultra-low-emitting formaldehyde resins as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.
 - 1. Medium-Density Fiberboard: ANSI A208.2, Grade 130, made with binder containing no urea formaldehyde.
 - 2. Particleboard: ANSI A208.1, Grade M-2, made with binder containing no urea formaldehyde.
 - 3. Softwood Plywood: DOC PS 1. Exterior Grade.
 - 4. Veneer-Faced Panel Products (Hardwood Plywood): HPVA HP-1, made with adhesive containing no urea formaldehyde.

5. Thermoset Decorative Panels: Particleboard or medium-density fiberboard finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for test methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.4 CABINET HARDWARE AND ACCESSORIES

- A. Butt Hinges: 2-3/4-inch, five-knuckle steel hinges made from 0.095-inch-thick metal, and as follows:
 - 1. Semiconcealed Hinges for Flush Doors: BHMA A156.9, B01361.
 - 2. Semiconcealed Hinges for Overlay Doors: BHMA A156.9, B01521.
- B. Cabinet Pulls:
 - 1. Basis of Design: 5102-SS 4" CC Stainless Steel Solid Wire Pull by GlideRite Hardware.
 - a. Size: 4-5/16 inches long with 1-9/32-inch projection; 5/16-inch dia.
 - b. Finish: Stainless steel.
- C. Catches: Magnetic catches, BHMA A156.9, B03141.
- D. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081.
- E. Shelf Rests: BHMA A156.9, B04013; metal, two-pin type with shelf hold-down clip.
- F. Drawer Slides: BHMA A156.9.
 - 1. Grade 1 and Grade 2: Side mounted and extending under bottom edge of drawer; fullextension type; stainless steel or Nylon rollers.
 - 2. Grade 1HD-100 and Grade 1HD-200: Side mounted; full-overtravel-extension type; zinc-plated-steel ball-bearing slides.
 - 3. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 1.
 - 4. For drawers more than 3 inches high but not more than 6 inches high and not more than 24 inches wide, provide Grade 1HD-100.
 - 5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-200.
- G. Door Locks: BHMA A156.11, E07121.
- H. Drawer Locks: BHMA A156.11, E07041.
- I. Door and Drawer Silencers: BHMA A156.16, L03011.
- J. Identification Plates for Lockers: Etched, embossed, or stamped plastic plates, with numbers and letters at least 3/8 inch high.
- K. Padlock Hasp: Nonmoving steel padlock loop.

- L. Hooks: Manufacturer's standard ball-pointed type hooks, aluminum or steel; zinc plated.
- M. Coat Rods: 1-inch- diameter steel tube or rod, chrome finished.
- N. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 - 1. Satin Stainless Steel: BHMA 630.
- O. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.
- P. Grommets for Cable Passage through Cabinets: 2-inch OD, black, molded-plastic grommets and matching plastic caps with slot for wire passage.
 - 1. Product: Subject to compliance with requirements, provide "OG series" by Doug Mockett & Company, Inc.

2.5 MISCELLANEOUS MATERIALS

- A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln dried to less than 15 percent moisture content.
- B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrousmetal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
- C. Adhesives: Use adhesives that meet the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.6 FABRICATION

- A. Fabricate cabinets to dimensions, profiles, and details indicated.
 - 1. Fabricate cabinets to meet or exceed the latest AWI Quality Standards, Custom grade or better, except where more stringent requirements are specified.
- B. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
 - 1. Notify Architect seven days in advance of the dates and times woodwork fabrication will be complete.
- C. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

D. Seal interior joints in cabinets where sinks are installed using sealant product specified in Section 07 9200 "Joint Sealants."

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.

3.2 INSTALLATION

- A. Grade: Install cabinets to comply with quality standard grade of item to be installed.
- B. Assemble cabinets and complete fabrication at Project site to the extent that it was not completed in the shop.
- C. Install cabinets level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
- D. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- E. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing. Use fine finishing nails for exposed fastening, countersunk and filled flush with woodwork.
 - 1. Use filler matching finish of items being installed.
- F. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 - 1. Install cabinets with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
 - 2. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head sheet metal screws through metal backing or metal framing behind wall finish or toggle bolts through metal backing or metal framing behind wall finish.

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective cabinets, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.
- B. Clean, lubricate, and adjust hardware.

C. Clean cabinets on exposed and semiexposed surfaces.

3.4 **PROTECTION**

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, to ensure products are without damage or deterioration at time of Substantial Completion.

END OF SECTION 06 4116

$B \hspace{0.1in} L \hspace{0.1in} A \hspace{0.1in} N \hspace{0.1in} K \hspace{0.1in} P \hspace{0.1in} A \hspace{0.1in} G \hspace{0.1in} E$

SECTION 066400 - PLASTIC PANELING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes plastic sheet paneling.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For plastic paneling and trim accessories.

PART 2 - PRODUCTS

2.1 PLASTIC SHEET PANELING

- A. Glass-Fiber-Reinforced Plastic Paneling: Gelcoat-finished, glass-fiber-reinforced plastic panels complying with ASTM D 5319. Panels shall be USDA accepted for incidental food contact.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a.	Crane Composites, Inc.	www.cranecomposites.com
b.	<u>Glasteel</u> .	www.glasteel.com
c.	Marlite.	www.marlite.com
d.	Nudo Products, Inc.	www.nudo.com
e.	Parkland Plastics, Inc.	www.parklandplastics.com

- 2. Surface-Burning Characteristics: As follows when tested by a qualified testing agency according to ASTM E 84. Identify products with appropriate markings of applicable testing agency.
 - a. Flame-Spread Index: 25 or less.
 - b. Smoke-Developed Index: 450 or less.
- 3. Nominal Thickness: Not less than 0.075 inch.
- 4. Surface Finish: As selected by Architect from manufacturer's full range.
- 5. Color: As selected by Architect from manufacturer's full range.

2.2 ACCESSORIES

- A. Trim Accessories: Manufacturer's standard one-piece vinyl extrusions designed to retain and cover edges of panels. Provide division bars, inside corners, outside corners, and caps as needed to conceal edges.
 - 1. Color: As selected by Architect from manufacturer's full range.
- B. Adhesive: As recommended by plastic paneling manufacturer and with a VOC content of 50 g/L or less.
- C. Adhesive: As recommended by plastic paneling manufacturer and that complies with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- D. Sealant: Mildew-resistant, single-component, neutral-curing silicone sealant recommended by plastic paneling manufacturer and complying with requirements in Section 079200 "Joint Sealants."
 - 1. Sealant shall have a VOC content of 250 g/L or less.
 - 2. Sealant shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 PREPARATION

- A. Clean substrates of substances that could impair adhesive bond, including oil, grease, dirt, and dust.
- B. Condition panels by unpacking and placing in installation space before installation according to manufacturer's written recommendations.
- C. Lay out paneling before installing. Locate panel joints to provide equal panels at ends of walls not less than half the width of full panels or so that trimmed panels at corners are not less than 12 inches wide.

3.2 INSTALLATION

- A. Install plastic paneling according to manufacturer's written instructions.
- B. Install panels in a full spread of adhesive.
- C. Install trim accessories with adhesive and nails.

- D. Fill grooves in trim accessories with sealant before installing panels, and bed inside corner trim in a bead of sealant.
- E. Maintain uniform space between panels and wall fixtures. Fill space with sealant.
- F. Remove excess sealant and smears as paneling is installed. Clean with solvent recommended by sealant manufacturer and then wipe with clean dry cloths until no residue remains.

END OF SECTION 066400

B L A N K P A G E

SECTION 07 1113 - BITUMINOUS DAMPPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Cold-applied, emulsified-asphalt dampproofing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 FIELD CONDITIONS

- A. Weather Limitations: Proceed with application only when existing and forecasted weather conditions permit dampproofing to be performed according to manufacturers' written instructions.
- B. Ventilation: Provide adequate ventilation during application of dampproofing in enclosed spaces. Maintain ventilation until dampproofing has cured.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain primary dampproofing materials and primers from single source from single manufacturer. Provide auxiliary materials recommended in writing by manufacturer of primary materials.

2.2 PERFORMANCE REQUIREMENTS

A. VOC Content: Products shall comply with VOC content limits of authorities having jurisdiction unless otherwise indicated.

07 1113 - 1

2.3 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

- A. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - 1. APOC, Inc; a division of Gardner Industries;
 - 2. <u>BASF Corporation</u>; MasterSeal 610, 614, & 615 (Pre-2014: Hydrocide 600, 700, & 700B).
 - 3. <u>ChemMasters, Inc</u>;.
 - 4. <u>Euclid Chemical Company (The); an RPM company;</u>.
 - 5. <u>Henry Company</u>;
 - 6. <u>Mar-flex Waterproofing & Building Products</u>; Mar-flex ArmorBlock 361 Dampproofing.
 - 7. <u>W.R. Meadows, Inc</u>;
- B. Brush and Spray Coats: ASTM D1227, Type III, Class 1.

2.4 AUXILIARY MATERIALS

- A. Furnish auxiliary materials recommended in writing by dampproofing manufacturer for intended use and compatible with bituminous dampproofing.
- B. Emulsified-Asphalt Primer: ASTM D1227, Type III, Class 1, except diluted with water as recommended in writing by manufacturer.
- C. Patching Compound: Epoxy or latex-modified repair mortar of type recommended in writing by dampproofing manufacturer.
- D. Protection Course: Extruded-polystyrene board insulation, unfaced, ASTM C578, Type X, 1/2 inch thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for surface smoothness, maximum surface moisture content, and other conditions affecting performance of the Work.
- B. Proceed with application only after substrate construction and penetrating work have been completed and unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean, prepare, and treat substrates according to manufacturer's written instructions. Provide clean, dust-free, and dry substrates for dampproofing application.
- B. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with dampproofing. Prevent dampproofing materials from entering and clogging weep holes and drains.

07 1113 - 2

- C. Clean substrates of projections and substances detrimental to dampproofing work; fill voids, seal joints, and remove bond breakers if any.
- D. Apply patching compound to patch and fill tie holes, honeycombs, reveals, and other imperfections.

3.3 APPLICATION, GENERAL

- A. Comply with manufacturer's written instructions for dampproofing application, cure time between coats, and drying time before backfilling unless otherwise indicated.
 - 1. Apply dampproofing to provide continuous plane of protection.
 - 2. Apply additional coats if recommended in writing by manufacturer or to achieve a smooth surface and uninterrupted coverage.
- B. Where dampproofing footings and foundation walls, apply from finished-grade line to top of footing; extend over top of footing and down a minimum of 6 inches over outside face of footing.
 - 1. Extend dampproofing 12 inches onto intersecting walls and footings, but do not extend onto surfaces exposed to view when Project is completed.
 - 2. Install flashings and corner protection stripping at internal and external corners, changes in plane, construction joints, cracks, and where indicated as "reinforced," by embedding an 8-inch-wide strip of asphalt-coated glass fabric in a heavy coat of dampproofing. Dampproofing coat for embedding fabric is in addition to other coats required.

3.4 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

A. Concrete Foundations: Apply two brush or spray coats at not less than 1.5 gal./100 sq. ft. for first coat and 1 gal./100 sq. ft. for second coat

3.5 **PROTECTION**

- A. Protect installed insulation drainage panels from damage due to UV light, harmful weather exposures, physical abuse, and other causes. Provide temporary coverings where panels are subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.
- B. Correct dampproofing that does not comply with requirements; repair substrates, and reapply dampproofing.

END OF SECTION 07 1113

B L A N K P A G E

SECTION 07 2100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:1. Glass-fiber blanket insulation.
- B. Related Requirements:
 - 1. Section 09 2900 "Gypsum Board" for sound attenuation blanket used as acoustic insulation.

1.3 ACTION SUBMITTALS

A. Product Data: For the following:1. Glass-fiber blanket insulation.

1.4 INFORMATIONAL SUBMITTALS

- A. Installer's Certification: Listing type, manufacturer, and R-value of insulation installed in each element of the building thermal envelope.
 - 1. Sign, date, and post the certification in a conspicuous location on Project site.
- B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- C. Research Reports: For foam-plastic insulation, from ICC-ES.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect foam-plastic board insulation as follows:
 - 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.

07 2100 - 1

- 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
- 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 GLASS-FIBER BLANKET INSULATION

- A. Glass-Fiber Blanket Insulation, Kraft Faced: ASTM C665, Type II (nonreflective faced), Class C (faced surface not rated for flame propagation); Category 1 (membrane is a vapor barrier).
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. <u>Knauf Insulation</u>.
 - d. <u>Owens Corning</u>.
 - 2. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.2 ACCESSORIES

- A. Insulation for Miscellaneous Voids:
 - 1. Glass-Fiber Insulation: ASTM C764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E84.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Install insulation that is undamaged, dry, and unsolled and that has not been left exposed to ice, rain, or snow at any time.
- C. Install insulation with manufacturer's R-value label exposed after insulation is installed.

07 2100 - 2

- D. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.
- E. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.
- F.

3.3 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

- A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:
 - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 - 3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 - 4. Attics: Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves.
 - 5. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
 - 6. For wood-framed construction, install blankets according to ASTM C1320 and as follows:
 - a. With faced blankets having stapling flanges, lap blanket flange over flange of adjacent blanket to maintain continuity of vapor retarder once finish material is installed over it.
 - 7. Vapor-Retarder-Faced Blankets: Tape joints and ruptures in vapor-retarder facings, and seal each continuous area of insulation to ensure airtight installation.
 - a. Exterior Walls: Set units with facing placed toward exterior of construction.
 - b. Interior Walls: Set units with facing placed toward areas of high humidity.
- B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 - 1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft.

3.4 **PROTECTION**

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes.

07 2100 - 3

B. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 07 2100

SECTION 07 2500 - WEATHER BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wrap.
 - 2. Flexible flashing.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For building wrap, include data on air and water-vapor permeance based on testing according to referenced standards.
- B. Shop Drawings: Show details of building wrap at terminations, openings, and penetrations. Show details of flexible flashing applications.

1.4 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For water-resistive barrier and flexible flashing, from ICC-ES.

PART 2 - PRODUCTS

2.1 WATER-RESISTIVE BARRIER

- A. Building Wrap: ASTM E1677, Type I air barrier; with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, when tested according to ASTM E84; UV stabilized; and acceptable to authorities having jurisdiction.
 - 1. <u>Basis-of-Design Product:</u> Subject to compliance with requirements, provide <u>DuPont</u> <u>Safety and Construction</u>; Tyvek CommercialWrap or a comparable product by one of the following:
 - a. <u>Dow Chemical Company (The)</u>.

07 2500 - 1

- b. <u>Raven Industries, Inc</u>.
- c. <u>TYPAR</u>.
- 2. Water-Vapor Permeance: Not less than 30 perms per ASTM E96/E96M, Desiccant Method (Procedure A).
- 3. Air Permeance: Not more than 0.002 cfm/sq. ft. at 0.3-inch wg when tested according to ASTM E2178.
- 4. Allowable UV Exposure Time: Not less than three months.
- 5. Flame Propagation Test: Materials and construction shall be as tested according to NFPA 285.
- B. Building-Wrap Tape: Pressure-sensitive plastic tape recommended by building-wrap manufacturer for sealing joints and penetrations in building wrap.

2.2 FLEXIBLE FLASHING

- A. Butyl Rubber Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than [0.025 inch] [0.030 inch] [0.040 inch].
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>DuPont Safety and Construction</u>; DuPont Flashing Tape.
 - b. <u>GCP Applied Technologies Inc</u>.; Vycor Butyl Self Adhered Flashing.
 - c. <u>Protecto Wrap Company</u>; BT-25 XL.
 - d. <u>Raven Industries, Inc</u>; Fortress Flashshield.
 - 2. Flame Propagation Test: Materials and construction shall be as tested according to NFPA 285.
- B. Primer for Flexible Flashing: Product recommended in writing by flexible flashing manufacturer for substrate.
- C. Nails and Staples: Product recommended in writing by flexible flashing manufacturer and complying with ASTM F1667.

2.3 DRAINAGE MATERIAL

- A. Drainage Material: Product shall maintain a continuous open space between water-resistive barrier and exterior cladding to create a drainage plane and shall be used under siding.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>CavClear/Archovations, Inc</u>.; CavClear Rainscreen Mat.
 - b. <u>DuPont Safety and Construction</u>; Tyvek Stucco Wrap.
 - c. <u>Insulfoam; Carlisle Construction Materials Company</u>; R-Tech Insulation.
 - d. <u>Mortar Net Solutions</u>; DriPlaneTM drainage plane for exterior rainscreen systems.
 - e. <u>TYPAR</u>; TYPAR® Drainable Wrap.
 - 2. Flame Propagation Test: Materials and construction shall be as tested according to NFPA 285.

TECHNICAL SPECIFICATIONS

PART 3 - EXECUTION

3.1 WATER-RESISTIVE BARRIER INSTALLATION

- A. Cover exposed exterior surface of sheathing with water-resistive barrier securely fastened to framing immediately after sheathing is installed.
- B. Cover sheathing with water-resistive barrier as follows:
 - 1. Cut back barrier 1/2 inch on each side of the break in supporting members at expansionor control-joint locations.
 - 2. Apply barrier to cover vertical flashing with a minimum 4-inch overlap unless otherwise indicated.
- C. Building Wrap: Comply with manufacturer's written instructions and warranty requirements.
 - 1. Seal seams, edges, fasteners, and penetrations with tape.
 - 2. Extend into jambs of openings and seal corners with tape.

3.2 FLEXIBLE FLASHING INSTALLATION

- A. Apply flexible flashing where indicated to comply with manufacturer's written instructions.
 - 1. Prime substrates as recommended by flashing manufacturer.
 - 2. Lap seams and junctures with other materials at least 4 inches except that at flashing flanges of other construction, laps need not exceed flange width.
 - 3. Lap flashing over water-resistive barrier at bottom and sides of openings.
 - 4. Lap water-resistive barrier over flashing at heads of openings.
 - 5. After flashing has been applied, roll surfaces with a hard rubber or metal roller to ensure that flashing is completely adhered to substrates.

3.3 DRAINAGE MATERIAL INSTALLATION

A. Install drainage material over building wrap and flashing to comply with manufacturer's written instructions.

END OF SECTION 07 2500

BLANK PAGE

SECTION 07 4616 - ALUMINUM SIDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes aluminum soffit.
- B. Related Requirements:
 - 1. Section 06 1000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
 - 2. Section 07 2500 "Weather Barriers" for weather-resistive barriers.

1.3 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples for Initial Selection: For aluminum soffit including related accessories.
- C. Samples for Verification:
 - 1. 12-inch-long-by-actual-width Sample of soffit.
 - 2. 12-inch-long-by-actual-width Samples of trim and accessories.

1.6 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of aluminum soffit.
- B. Sample Warranty: For special warranty.

07 4616 - 1

TECHNICAL SPECIFICATIONS

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish full lengths of aluminum soffit including related accessories, in a quantity equal to 2 percent of amount installed.

1.9 QUALITY ASSURANCE

- A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 - 1. Build mockups for soffit including accessories.
 - a. Size: 48 inches long.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with labels intact until time of use.
- B. Store materials on elevated platforms, under cover, and in a dry location.

1.11 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including cracking, fading, and deforming.
 - b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Fading is defined as loss of color, after cleaning with product recommended by manufacturer, of more than 4 Hunter color-difference units as measured according to ASTM D2244.

3. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 ALUMINUM SOFFIT

- A. Aluminum Soffit: Formed and coated product complying with AAMA 1402.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Gentek Building Products, Inc</u>.
 - b. <u>Kaycan Ltd</u>.
 - c. <u>Mastic Home Exteriors; PLY GEM Siding Group</u>.
 - d. Norandex Building Materials Distribution, Inc.
 - e. <u>Rollex Corporation</u>.
- B. Pattern: 6-inch exposure in V-grooved, single-board style.
- C. Texture: Smooth.
- D. Ventilation: Provide perforated soffit.
- E. Nominal Thickness: 0.024 inch.
- F. Finish: Manufacturer's standard three-coat PVDF.
 - 1. Colors: As selected by Architect from manufacturer's full range of colors.

2.3 ACCESSORIES

- A. Aluminum Accessories: Where aluminum accessories are indicated, provide accessories complying with AAMA 1402.
 - 1. Texture: Smooth.
 - 2. Nominal Thickness: 0.024 inch.
 - 3. Finish: Manufacturer's standard three-coat PVDF.
- B. Fasteners:
 - 1. For fastening to wood, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1 inch into substrate.

07 4616 - 3

- 2. For fastening to metal, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1/4 inch, or three screw-threads, into substrate.
- 3. For fastening aluminum, use aluminum fasteners. Where fasteners are exposed to view, use prefinished aluminum fasteners in color to match item being fastened.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of aluminum soffit and related accessories.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

3.3 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.
 - 1. Center fasteners in elongated nailing slots without binding siding to allow for thermal movement.
- B. Install aluminum soffit and related accessories according to AAMA 1402.
 - 1. Install fasteners no more than 24 inches o.c.
- C. Install joint sealants as specified in Section 07 9200 "Joint Sealants" and to produce a weathertight installation.

3.4 ADJUSTING AND CLEANING

- A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.
- B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 07 4616

SECTION 07 4646 - FIBER-CEMENT SIDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes fiber-cement siding.
- B. Related Requirements:
 - 1. Section 06 1000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
 - 2. Section 07 2500 "Weather Barriers" for weather-resistive barriers.

1.3 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples for Initial Selection: For fiber-cement siding including related accessories.
- C. Samples for Verification: For each type, color, texture, and pattern required.
 - 1. 12-inch-long-by-actual-width Sample of siding.
 - 2. 12-inch-long-by-actual-width Samples of trim and accessories.

1.6 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of fiber-cement siding.

07 4646 - 1

- B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fiber-cement siding.
- C. Research/Evaluation Reports: For each type of fiber-cement siding required, from ICC-ES.
- D. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish full lengths of fiber-cement siding including related accessories, in a quantity equal to 2 percent of amount installed.

1.9 QUALITY ASSURANCE

- A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 - 1. Build mockups for fiber-cement siding including accessories.
 - a. Size: 48 inches long by 60 inches high.
 - b. Include outside corner on one end of mockup and inside corner on other end.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with labels intact until time of use.
- B. Store materials on elevated platforms, under cover, and in a dry location.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.

- 1. Failures include, but are not limited to, the following:
 - a. Structural failures including cracking and deforming.
 - b. Deterioration of materials beyond normal weathering.
- 2. Warranty Period: 25 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 FIBER-CEMENT SIDING

- A. General: ASTM C1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E136; with a flame-spread index of 25 or less when tested according to ASTM E84.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation</u>.
 - b. <u>GAF</u>.
 - c. James Hardie Building Products, Inc.
 - d. <u>Nichiha Fiber Cement</u>.
- B. Labeling: Provide fiber-cement siding that is tested and labeled according to ASTM C1186 by a qualified testing agency acceptable to authorities having jurisdiction.
- C. Nominal Thickness: Not less than 5/16 inch.
- D. Horizontal Pattern: Boards 7-1/4 to 7-1/2 inches wide in plain style.
 - 1. Texture: Smooth.
- E. Factory Priming: Manufacturer's standard acrylic primer.

2.3 ACCESSORIES

- A. Siding Accessories, General: Provide starter strips, edge trim, outside and inside corner caps, and other items as recommended by siding manufacturer for building configuration.
 - 1. Provide accessories matching color and texture of adjacent siding unless otherwise indicated.

- B. Decorative Accessories: Provide the following fiber-cement decorative accessories as indicated:
 - 1. Trim Boards.
- C. Flashing: Provide aluminum flashing complying with Section 07 6200 "Sheet Metal Flashing and Trim" at window and door heads and where indicated.
 - 1. Finish for Aluminum Flashing: Siliconized polyester coating.
- D. Fasteners:
 - 1. For fastening to wood, use siding nails of sufficient length to penetrate a minimum of 1 inch into substrate.
 - 2. For fastening fiber cement, use stainless-steel fasteners.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of fiber-cement siding and related accessories.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

3.3 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.
 - 1. Do not install damaged components.
 - 2. Install fasteners no more than 24 inches o.c.
- B. Install joint sealants as specified in Section 07 9200 "Joint Sealants" and to produce a weathertight installation.

3.4 ADJUSTING AND CLEANING

- A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.
- B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 07 4646

BLANK PAGE

SECTION 07 5419 - POLYVINYL-CHLORIDE (PVC) ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:1. Mechanically fastened, polyvinyl chloride (PVC) roofing system.
- B. Related Requirements:
 - 1. Section 06 1000 "Rough Carpentry" for wood nailers, curbs, and blocking; and for woodbased, structural-use roof deck panels.
 - 2. Section 07 6200 "Sheet Metal Flashing and Trim" for metal roof flashings and counterflashings.
 - 3. Section 07 7100 "Roof Specialties" for premanufactured copings and roof edge flashings.
 - 4. Section 07 9200 "Joint Sealants" for joint sealants, joint fillers, and joint preparation.

1.3 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D1079 and glossary in NRCA's "The NRCA Roofing Manual: Membrane Roof Systems" apply to work of this Section.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Roofing Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, air barrier Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule, and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.

- 7. Review governing regulations and requirements for insurance and certificates if applicable.
- 8. Review temporary protection requirements for roofing system during and after installation.
- 9. Review roof observation and repair procedures after roofing installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For insulation and roof system component fasteners, include copy of FM Approvals' RoofNav listing.
- B. Shop Drawings: Include roof plans, sections, details, and attachments to other work, including the following:
 - 1. Layout and thickness of insulation.
 - 2. Base flashings and membrane terminations.
 - 3. Flashing details at penetrations.
 - 4. Roof plan showing orientation of steel roof deck and orientation of roof membrane, fastening spacings, and patterns for mechanically fastened roofing system.
 - 5. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
 - 6. Tie-in with air barrier.
- C. Samples for Verification: For the following products:
 - 1. Roof membrane and flashing, of color required.
- D. Wind Uplift Resistance Submittal: For roofing system, indicating compliance with wind uplift performance requirements.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and manufacturer.
- B. Manufacturer Certificates:
 - 1. Performance Requirement Certificate: Signed by roof membrane manufacturer, certifying that roofing system complies with requirements specified in "Performance Requirements" Article.
 - a. Submit evidence of compliance with performance requirements.
 - 2. Special Warranty Certificate: Signed by roof membrane manufacturer, certifying that all materials supplied under this Section are acceptable for special warranty.
- C. Product Test Reports: For roof membrane and insulation, tests performed by independent qualified testing agency indicating compliance with specified requirements.
- D. Evaluation Reports: For components of roofing system, from ICC-ES.

07 5419 - 2

- E. Field Test Reports:
 - 1. Fastener-pullout test results and manufacturer's revised requirements for fastener patterns.
- F. Field quality-control reports.
- G. Sample Warranties: For manufacturer's special warranties.

1.7 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For roofing system to include in maintenance manuals.
- B. Certified statement from existing roof membrane manufacturer stating that existing roof warranty has not been affected by Work performed under this Section.

1.8 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer that is listed in FM Approvals' RoofNav for roofing system identical to that used for this Project.
- B. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight.
 - 1. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.
- C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.
- D. Handle and store roofing materials, and place equipment in a manner to avoid permanent deflection of deck.

1.10 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.

1.11 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of roofing system that fail in materials or workmanship within specified warranty period.
 - 1. Special warranty includes roof membrane, base flashings, roof insulation, fasteners, cover boards, substrate board, and other components of roofing system.
 - 2. Warranty Period: 20 years from date of Substantial Completion.
- B. Special Project Warranty: Submit roofing Installer's warranty, on warranty form at end of this Section, signed by Installer, covering the Work of this Section, including all components of roofing system such as roof membrane, base flashing, roof insulation, fasteners, cover boards, substrate boards, vapor retarders, and walkway products, for the following warranty period:
 - 1. Warranty Period: Two years from date of Substantial Completion.
- C. Wind Warranty: Provide warranty of roofing membrane against winds in excess of 90 mph.
- D. Special Warranty: Provide a special PV Overburden warranty.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Installed roofing and base flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Roof system and flashings shall remain watertight.
 - 1. Accelerated Weathering: Roof membrane shall withstand 2000 hours of exposure when tested according to ASTM G152, ASTM G154, or ASTM G155.
 - 2. Impact Resistance: Roof membrane shall resist impact damage when tested according to ASTM D3746, ASTM D4272/D4272M, or the "Resistance to Foot Traffic Test" in FM Approvals 4470.
- B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required, as demonstrated by roof membrane manufacturer based on testing and field experience.
- C. FM Approvals' RoofNav Listing: Roof membrane, base flashings, and component materials shall comply with requirements in FM Approvals 4450 or FM Approvals 4470 as part of a
roofing system, and shall be listed in FM Approvals' RoofNav for Class 1 or noncombustible construction, as applicable. Identify materials with FM Approvals Certification markings.

- 1. Fire/Windstorm Classification: Class 1A-90.
- 2. Hail-Resistance Rating: FM Global Property Loss Prevention Data Sheet 1-34 MH.
- D. ENERGY STAR Listing: Roofing system shall be listed on the DOE's ENERGY STAR "Roof Products Qualified Product List" for low-slope roof products.
- E. Energy Performance: Roofing system shall have an initial solar reflectance of not less than 0.70 and an emissivity of not less than 0.75 when tested according to CRRC-1.
- F. Exterior Fire-Test Exposure: ASTM E108 or UL 790, Class A; for application and roof slopes indicated; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- G. Fire-Resistance Ratings: Comply with fire-resistance-rated assembly designs indicated. Identify products with appropriate markings of applicable testing agency.

2.2 POLYVINYL CHLORIDE (PVC) ROOFING

- A. PVC Sheet: ASTM D4434/D4434M, Type III, fabric reinforced.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Johns Manville; a Berkshire Hathaway company; JM PVC SD Plus or a comparable product by one of the following:
 - a. Carlisle SynTec Incorporated.
 - b. GAF.

2.

- c. Mule-Hide Products Co., Inc.
- d. Sika Sarnafil.
- Thickness: 60 mills.
- 3. Exposed Face Color: Tan.
- B. Source Limitations: Obtain components for roofing system from roof membrane manufacturer.

2.3 AUXILIARY ROOFING MATERIALS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with other roofing components.
 - 1. Adhesives and Sealants: Comply with VOC limits of authorities having jurisdiction.
- B. Sheet Flashing: Manufacturer's standard sheet flashing of same material, type, reinforcement, thickness, and color as PVC sheet.
- C. Prefabricated Pipe Flashings: As recommended by roof membrane manufacturer.
- D. Bonding Adhesive: Manufacturer's standard.

- E. Water-Based, Fabric-Backed Membrane Adhesive: Roofing system manufacturer's standard water-based, cold-applied adhesive formulated for compatibility and use with fabric-backed membrane roofing.
- F. Slip Sheet: Manufacturer's standard, of thickness required for application.
- G. Metal Termination Bars: Manufacturer's standard, predrilled stainless steel or aluminum bars, approximately 1 by 1/8 inch thick; with anchors.
- H. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosionresistance provisions in FM Approvals 4470, designed for fastening roofing components to substrate, and acceptable to roofing system manufacturer.
- I. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, preformed inside and outside corner sheet flashings, T-joint covers, lap sealants, termination reglets, and other accessories.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
 - 2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing system installation according to roofing system manufacturer's written instructions. Remove sharp projections.
- B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.
- C. Perform fastener-pullout tests according to roof system manufacturer's written instructions.
 - 1. Submit test result within 24 hours of performing tests.
 - a. Include manufacturer's requirements for any revision to previously submitted fastener patterns required to achieve specified wind uplift requirements.

07 5419 - 6

3.3 INSTALLATION OF ROOFING, GENERAL

- A. Install roofing system according to roofing system manufacturer's written instructions, FM Approvals' RoofNav listed roof assembly requirements, and FM Global Property Loss Prevention Data Sheet 1-29.
- B. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at end of workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

3.4 INSTALLATION OF MECHANICALLY FASTENED ROOF MEMBRANE

- A. Mechanically fasten roof membrane over area to receive roofing according to roofing system manufacturer's written instructions.
- B. Unroll roof membrane and allow to relax before installing.
- C. For in-splice attachment, install roof membrane with long dimension perpendicular to steel roof deck flutes.
- D. Start installation of roofing in presence of roofing system manufacturer's technical personnel.
- E. Accurately align roof membrane, and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- F. Mechanically fasten or adhere roof membrane securely at terminations, penetrations, and perimeter of roofing.
- G. Apply roof membrane with side laps shingled with slope of roof deck where possible.
- H. In-Seam Attachment: Secure one edge of PVC sheet using fastening plates or metal battens centered within seam, and mechanically fasten PVC sheet to roof deck.
- I. Seams: Clean seam areas, overlap roof membrane, and hot-air weld side and end laps of roof membrane and sheet flashings to ensure a watertight seam installation.
 - 1. Test lap edges with probe to verify seam weld continuity. Apply lap sealant to seal cut edges of roof membrane and sheet flashings.
 - 2. Verify field strength of seams a minimum of twice daily, and repair seam sample areas.
 - 3. Repair tears, voids, and lapped seams in roof membrane that do not comply with requirements.
- J. Spread sealant bed over deck-drain flange at roof drains, and securely seal roof membrane in place with clamping ring.

3.5 INSTALLATION OF BASE FLASHING

A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.

- B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.
- C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.
- D. Clean seam areas, overlap, and firmly roll sheet flashings into the adhesive. Hot-air weld side and end laps to ensure a watertight seam installation.
- E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to inspect substrate conditions, surface preparation, roof membrane application, sheet flashings, protection, and drainage components, and to furnish reports to Architect.
- B. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion, in presence of Architect, and to prepare inspection report.
- C. Repair or remove and replace components of roofing system where inspections indicate that they do not comply with specified requirements.
- D. Additional testing and inspecting, at Contractor's expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.7 PROTECTING AND CLEANING

- A. Protect roofing system from damage and wear during remainder of construction period. When remaining construction does not affect or endanger roofing, inspect roofing system for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- B. Correct deficiencies in or remove roofing system that does not comply with requirements, repair substrates, and repair or reinstall roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 07 5419

SECTION 07 7100 - ROOF SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:1. Roof-edge specialties.
- B. Related Requirements:
 - 1. Section 06 1053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.
 - 2. Section 07 9200 "Joint Sealants" for field-applied sealants between roof specialties and adjacent materials.
- C. Preinstallation Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, roofing-system testing and inspecting agency representative, roofing Installer, roofing-system manufacturer's representative, Installer, structural-support Installer, and installers whose work interfaces with or affects roof specialties, including installers of roofing materials and accessories.
 - 2. Examine substrate conditions for compliance with requirements, including flatness and attachment to structural members.
 - 3. Review special roof details, roof drainage, and condition of other construction that will affect roof specialties.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For roof specialties.
 - 1. Include plans, elevations, expansion-joint locations, keyed details, and attachments to other work. Distinguish between plant- and field-assembled work.
 - 2. Include details for expansion and contraction; locations of expansion joints, including direction of expansion and contraction.
 - 3. Indicate profile and pattern of seams and layout of fasteners, cleats, clips, and other attachments.
 - 4. Detail termination points and assemblies, including fixed points.

07 7100 - 1

- 5. Include details of special conditions.
- C. Samples: For each type of roof specialty and for each color and texture specified.
- D. Samples for Initial Selection: For each type of roof specialty indicated with factory-applied color finishes.
- E. Samples for Verification:
 - 1. Include Samples of each type of roof specialty to verify finish and color selection, in manufacturer's standard sizes.
 - 2. Include roof-edge specialties reglets and counterflashings made from 12-inch lengths of full-size components in specified material, and including fasteners, cover joints, accessories, and attachments.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Product Certificates: For each type of roof specialty.
- C. Product Test Reports: For roof-edge flashings, for tests performed by a qualified testing agency.
- D. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer offering products meeting requirements that are FM Approvals listed for specified class.
- B. Source Limitations: Obtain roof specialties approved by manufacturer providing roofing-system warranty specified in Section 07 5419 Polyvinyl-Chloride (PVC) Roofing.
- C. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and set quality standards for fabrication and installation.
 - 1. Build mockup of typical roof edge as shown on Drawings.
 - 2. Build mockup of typical roof edge, including fascia, approximately 10 feet long, including supporting construction, seams, attachments, underlayment, and accessories.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Do not store roof specialties in contact with other materials that might cause staining, denting, or other surface damage. Store roof specialties away from uncured concrete and masonry.
- B. Protect strippable protective covering on roof specialties from exposure to sunlight and high humidity, except to extent necessary for the period of roof-specialty installation.

1.8 FIELD CONDITIONS

- A. Field Measurements: Verify profiles and tolerances of roof-specialty substrates by field measurements before fabrication, and indicate measurements on Shop Drawings.
- B. Coordination: Coordinate roof specialties with flashing, trim, and construction of parapets, roof deck, roof and wall panels, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.9 WARRANTY

- A. Roofing-System Warranty: Roof specialties are included in warranty provisions in Section 07 5419 Polyvinyl-Chloride (PVC) Roofing.
- B. Special Warranty on Painted Finishes: Manufacturer agrees to repair finish or replace roof specialties that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Roof specialties shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.
- B. FM Approvals' Listing: Manufacture and install roof-edge specialties that are listed in FM Approvals' "RoofNav" and approved for windstorm classification, Class 1-90. Identify materials with FM Approvals' markings.

- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of thermal movements. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 ROOF-EDGE SPECIALTIES

- A. Roof-Edge Fascia: Manufactured, two-piece, roof-edge fascia consisting of snap-on metal fascia cover in section lengths not exceeding 12 feet and a continuous metal receiver with integral drip-edge cleat to engage fascia cover and secure single-ply roof membrane. Provide matching corner units.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Berridge Manufacturing Company</u>.
 - b. <u>Drexel Metals</u>.
 - c. <u>Fabral</u>.
 - d. <u>Metal-Era, Inc</u>.
 - e. <u>OMG, Inc</u>.
 - 2. Formed Aluminum Sheet Fascia Covers: Aluminum sheet, 0.050 inch thick.
 - a. Surface: Smooth, flat finish.
 - b. Finish: Two-coat fluoropolymer.
 - c. Color: As selected by Architect from manufacturer's full range.
 - 3. Corners: Factory mitered and mechanically clinched and sealed watertight.
 - 4. Splice Plates: Concealed, of same material, finish, and shape as fascia cover.
 - 5. Receiver: Extruded aluminum, 0.080 inch thick.

2.3 MATERIALS

- A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A653/A653M, G90 coating designation.
- B. Aluminum Sheet: ASTM B209, alloy as standard with manufacturer for finish required, with temper to suit forming operations and performance required.
- C. Aluminum Extrusions: ASTM B221, alloy and temper recommended by manufacturer for type of use and finish indicated, finished as follows:
- D. Stainless Steel Sheet: ASTM A240/A240M or ASTM A666, Type 304.

2.4 UNDERLAYMENT MATERIALS

- A. Self-Adhering, High-Temperature Sheet: Minimum 30 to 40 mils thick, consisting of slipresisting polyethylene-film top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with release-paper backing; cold applied. Provide primer when recommended by underlayment manufacturer.
 - 1. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
 - a. <u>Carlisle WIP Products; a brand of Carlisle Construction Materials; WIP 300HT.</u>
 - b. <u>GCP Applied Technologies Inc</u>.; Grace Ice and Water Shield HT.
 - c. <u>Henry Company</u>; Blueskin PE200 HT.
 - d. Metal-Fab Manufacturing, a Drexel Metals Company; MetShield.
 - e. <u>Owens Corning</u>; WeatherLock Specialty Tile and Metal Underlayment.
 - f. <u>Protecto Wrap Company</u>; Protecto Jiffy Seal Ice & Water Guard HT.
 - 2. Thermal Stability: ASTM D1970/D1970M; stable after testing at 240 deg F.
 - 3. Low-Temperature Flexibility: ASTM D1970/D1970M; passes after testing at minus 20 deg F.

2.5 MISCELLANEOUS MATERIALS

- A. Fasteners: Manufacturer's recommended fasteners, suitable for application and designed to meet performance requirements. Furnish the following unless otherwise indicated:
 - 1. Exposed Penetrating Fasteners: Gasketed screws with hex washer heads matching color of sheet metal.
 - 2. Fasteners for Aluminum: Aluminum or Series 300 stainless steel.
 - 3. Fasteners for Stainless Steel Sheet: Series 300 stainless steel.
 - 4. Fasteners for Zinc-Coated (Galvanized) Steel Sheet: Series 300 stainless steel or hot-dip zinc-coated steel according to ASTM A153/A153M or ASTM F2329.
- B. Elastomeric Sealant: ASTM C920, elastomeric silicone polymer sealant of type, grade, class, and use classifications required by roofing-specialty manufacturer for each application.

2.6 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- D. Coil-Coated Galvanized-Steel Sheet Finishes:

07 7100 - 5

- 1. High-Performance Organic Finish: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with ASTM A755/A755M and coating and resin manufacturers' written instructions.
 - a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
- E. Coil-Coated Aluminum Sheet Finishes:
 - 1. High-Performance Organic Finish: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - a. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
- F. Aluminum Extrusion Finishes:
 - 1. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.
- B. Examine walls, roof edges, and parapets for suitable conditions for roof specialties.
- C. Verify that substrate is sound, dry, smooth, clean, sloped for drainage where applicable, and securely anchored.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF UNDERLAYMENT

- A. Self-Adhering Sheet Underlayment: Apply primer if required by manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation. Apply wrinkle free, in shingle fashion to shed water, and with end laps of not less than 6 inches staggered 24 inches between courses. Overlap side edges not less than 3-1/2 inches. Roll laps with roller. Cover underlayment within 14 days.
 - 1. Apply continuously under roof-edge specialties and reglets and counterflashings.
 - 2. Coordinate application of self-adhering sheet underlayment under roof specialties with requirements for continuity with adjacent air barrier materials.

07 7100 - 6

3.3 INSTALLATION, GENERAL

- A. Install roof specialties according to manufacturer's written instructions. Anchor roof specialties securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, underlayments, sealants, and other miscellaneous items as required to complete roof-specialty systems.
 - 1. Install roof specialties level, plumb, true to line and elevation; with limited oil-canning and without warping, jogs in alignment, buckling, or tool marks.
 - 2. Provide uniform, neat seams with minimum exposure of solder and sealant.
 - 3. Install roof specialties to fit substrates and to result in weathertight performance. Verify shapes and dimensions of surfaces to be covered before manufacture.
 - 4. Torch cutting of roof specialties is not permitted.
 - 5. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.
 - 1. Coat concealed side of uncoated aluminum roof specialties with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
 - 2. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof specialties for waterproof performance.
- C. Expansion Provisions: Allow for thermal expansion of exposed roof specialties.
 - 1. Space movement joints at a maximum of 12 feet with no joints within 18 inches of corners or intersections unless otherwise indicated on Drawings.
 - 2. When ambient temperature at time of installation is between 40 and 70 deg F, set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures.
- D. Fastener Sizes: Use fasteners of sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.
- E. Seal concealed joints with butyl sealant as required by roofing-specialty manufacturer.
- F. Seal joints as required for weathertight construction. Place sealant to be completely concealed in joint. Do not install sealants at temperatures below 40 deg F.

3.4 INSTALLATION OF ROOF-EDGE SPECIALTIES

- A. Install cleats, cants, and other anchoring and attachment accessories and devices with concealed fasteners.
- B. Anchor roof edgings with manufacturer's required devices, fasteners, and fastener spacing to meet performance requirements.

3.5 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Remove temporary protective coverings and strippable films as roof specialties are installed. On completion of installation, clean finished surfaces, including removing unused fasteners, metal filings, pop rivet stems, and pieces of flashing. Maintain roof specialties in a clean condition during construction.
- C. Replace roof specialties that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 07 7100

SECTION 07 9200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Silicone joint sealants.
 - 2. Nonstaining silicone joint sealants.
 - 3. Urethane joint sealants.
 - 4. Mildew-resistant joint sealants.
 - 5. Latex joint sealants.
 - 6. Butyl sealants.
 - 7. Acoustical joint sealants.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Sustainable Design Submittals:
 - 1. Product Data: For sealants, indicating VOC content.
 - 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.
- C. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
- D. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- wide joints formed between two 6-inch- long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- E. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.

- 2. Joint-sealant manufacturer and product name.
- 3. Joint-sealant formulation.
- 4. Joint-sealant color.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.
- C. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.
- D. Preconstruction Field-Adhesion-Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.
- E. Field-Adhesion-Test Reports: For each sealant application tested.
- F. Sample Warranties: For special warranties.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.
- C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.7 PRECONSTRUCTION TESTING

- A. Preconstruction Laboratory Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.
 - 1. Adhesion Testing: Use ASTM C 794 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.

- 2. Compatibility Testing: Use ASTM C 1087 to determine sealant compatibility when in contact with glazing and gasket materials.
- 3. Stain Testing: Use ASTM C 1248 to determine stain potential of sealant when in contact with masonry substrates.
- 4. Submit manufacturer's recommended number of pieces of each type of material, including joint substrates, joint-sealant backings, and miscellaneous materials.
- 5. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
- 6. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures, including use of specially formulated primers.
- 7. Testing will not be required if joint-sealant manufacturers submit data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, staining of, and compatibility with joint substrates and other materials matching those submitted.
- B. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:
 - 1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
 - 2. Conduct field tests for each kind of sealant and joint substrate.
 - 3. Notify Architect seven days in advance of dates and times when test joints will be erected.
 - 4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.
 - a. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1.1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - 1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 - 5. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
 - 6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.8 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.9 WARRANTY

- A. Special Installer's Warranty: Installer agrees to provide labor and materials required to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 - 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 - 2. Disintegration of joint substrates from causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system shall comply with the following:
 - 1. Architectural sealants shall have a VOC content of 250 g/L or less.
 - 2. Sealants and sealant primers for nonporous substrates shall have a VOC content of 250 g/L or less.
 - 3. Sealants and sealant primers for nonporous substrates shall have a VOC content of 775 g/L or less.
 - 4. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- C. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.
- D. Provide pick-resistant joint sealants at detention areas.

2.2 NONSTAINING SILICONE JOINT SEALANTS

- A. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; Dow Corning® 795 Silicone Building Sealant.
 - b. GE Construction Sealants; Momentive Performance Materials Inc.; Silpruf NB.
 - c. Sika Corporation; Joint Sealants; Sikasil WS-295.

2.3 URETHANE JOINT SEALANTS

- A. Urethane, S, NS, 25, NT: Single-component, nonsag, nontraffic-use, plus 25 percent and minus 25 percent movement capability, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Corporation; Construction Systems; MasterSeal CR 195 (Pre-2014: Sonolastic Ultra).
 - b. Bostik, Inc; Chem-Calk 915.
 - c. Sika Corporation; Joint Sealants; Sikaflex Textured Sealant.
- B. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Corporation; Construction Systems; MasterSeal SL 1 (Pre-2014: Sonolastic SL1).
 - b. Pecora Corporation; NR-201.
 - c. Polymeric Systems, Inc; Flexiprene 952.
- C. Urethane, M, P, 25, T, NT: Multicomponent, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C 920, Type M, Grade P, Class 25, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. BASF Corporation; Construction Systems; MasterSeal SL 2 (Pre-2014: Sonolastic SL2).
 - b. Bostik, Inc; Chem-Calk 555-SL.
 - c. Pecora Corporation; Urexpan NR 200.
 - d. Sika Corporation; Joint Sealants; Sikaflex 2c SL.

2.4 MILDEW-RESISTANT JOINT SEALANTS

- A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.
- B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; DOW CORNING® 786 SILICONE SEALANT -.
 - b. GE Construction Sealants; Momentive Performance Materials Inc.; SCS1700 Sanitary.
 - c. Pecora Corporation; Pecora 860.

2.5 BUTYL JOINT SEALANTS

- A. Butyl-Rubber-Based Joint Sealants: ASTM C 1311.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 - a. Bostik, Inc; Chem-Calk 300.
 - b. Pecora Corporation; BC-158.

2.6 LATEX JOINT SEALANTS

- A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Franklin International; Titebond Painter's Plus Caulk.
 - b. May National Associates, Inc.; a subsidiary of Sika Corporation; Bondaflex Sil-A 700.
 - c. Pecora Corporation; AC-20.

2.7 ACOUSTICAL JOINT SEALANTS

- A. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer's standard nonsag, paintable, nonstaining latex acoustical sealant complying with ASTM C 834.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Accumetric LLC; BOSS 826 Acoustical Sound Sealant.
 - b. Franklin International; Titebond GREENchoice Professional Acoustical Smoke & Sound Sealant.

- c. GE Construction Sealants; Momentive Performance Materials Inc.; RCS20 Acoustical.
- d. Grabber Construction Products; Acoustical Sealant GSC.
- e. Pecora Corporation; AC-20 FTR or AIS-919.
- f. USG Corporation; SHEETROCK
- 2. Colors of Exposed Acoustical Joint Sealants: As selected by Architect from manufacturer's full range of colors.

2.8 DETENTION AREA JOINT SEALANTS

- A. General: Use pick-proof, tamper-resistant joint sealants at exposed detention areas. Substitutions for products indicated below must be approved in writing by Architect prior to bidding.
- B. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Pick-Proof Joint Sealant:
 - a. Products:
 - 1) Sikaflex-2c NS; Sika Corporation.
 - 2) DynaFlex SC; Pecora Corporation.
 - 3) Scotch-Seal 1252; 3M.

2.9 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Adfast; Adseal BR 2600.
 - b. Alcot Plastics Ltd.; ALCOT Standard Backer Rod.
 - c. BASF Corporation; Construction Systems; MasterSeal 920 & 921(Pre-2014: Sonolastic Backer Rod).
- B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.10 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:

- a. Metal.
- b. Glass.
- c. Porcelain enamel.
- d. Glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.

- 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
- 3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.4 INSTALLATION OF ACOUSTICAL JOINT SEALANTS

A. Comply with acoustical joint-sealant manufacturer's written installation instructions unless more stringent requirements apply.

3.5 FIELD QUALITY CONTROL

- A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 - 1. Extent of Testing: Test completed and cured sealant joints as follows:
 - a. Perform 10 tests for the first 1000 feet of joint length for each kind of sealant and joint substrate.
 - b. Perform one test for each 1000 feet of joint length thereafter or one test per each floor per elevation.
 - 2. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 - 3. Inspect tested joints and report on the following:
 - a. Whether sealants filled joint cavities and are free of voids.
 - b. Whether sealant dimensions and configurations comply with specified requirements.
 - c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.
 - 4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.
 - 5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.
- B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other

requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.6 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.7 **PROTECTION**

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.8 JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Exterior joints in horizontal traffic surfaces.
 - 1. Joint Locations:
 - a. Isolation and contraction joints in cast-in-place concrete slabs.
 - b. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, M, P, 25, T, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- B. Joint-Sealant Application: Exterior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Control and expansion joints in unit masonry.
 - b. Joints between metal panels.
 - c. Joints between different materials listed above.
 - d. Perimeter joints between materials listed above and frames of doors, windows, and louvers.
 - e. Control and expansion joints in overhead surfaces.
 - f. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
 - 4. Joint-Sealant Color for Joints in Masonry Veneer: Custom color as selected by Architect.
- C. Joint-Sealant Application: Interior joints in horizontal traffic surfaces.
 - 1. Joint Locations:

- a. Isolation joints in cast-in-place concrete slabs.
- b. Control and expansion joints in tile flooring.
- c. Other joints as indicated on Drawings.
- 2. Joint Sealant: Urethane, S, P, 25, T, NT.
- 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- D. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Control and expansion joints on exposed interior surfaces of exterior walls.
 - b. Tile control and expansion joints in non-wet areas.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Urethane, S, NS, 25, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
 - 4. Joint-Sealant Color for Joints in Tile: Custom color as selected by Architect.
- E. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement.
 - 1. Joint Locations:
 - a. Control joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints between interior wall surfaces and frames of interior doors, windows, and elevator entrances.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Acrylic latex.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- F. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces.
 - 1. Joint Locations:
 - a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 - b. Tile control and expansion joints in wet areas.
 - c. Other joints as indicated on Drawings.
 - 2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
 - 4. Joint-Sealant Color for Joints in Tile: Custom color as selected by Architect.
- G. Joint-Sealant Application: Concealed mastics.
 - 1. Joint Locations:
 - a. Aluminum thresholds.
 - b. Sill plates.

- 2. Joint Sealant: Butyl-rubber based.
- 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- H. Joint-Sealant Application: Acoustical.
 - 1. Joint Locations:
 - a. Gypsum Board walls
 - 2. Joint Sealant: Acoustical sealant.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- I. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal surfaces in detention areas.
 - 1. Joint Locations:
 - a. Control joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints between interior wall surfaces and frames of interior doors, windows, and elevator entrances.
 - c. Other joints in detention areas.
 - 2. Joint Sealant: Pick-proof joint sealant.
 - 3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 07 9200

$B \hspace{0.1in} L \hspace{0.1in} A \hspace{0.1in} N \hspace{0.1in} K \hspace{0.1in} P \hspace{0.1in} A \hspace{0.1in} G \hspace{0.1in} E$

SECTION 08 1113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:1. Exterior standard steel doors and frames.
- B. Related Requirements:
 - 1. Section 08 7100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

- A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.
- B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.

08 1113 - 1

- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 - 7. Details of anchorages, joints, field splices, and connections.
 - 8. Details of accessories.
 - 9. Details of moldings, removable stops, and glazing.
- C. Samples for Initial Selection: For hollow-metal doors and frames with factory-applied color finishes.
- D. Samples for Verification:
 - 1. Finishes: For each type of exposed finish required, prepared on Samples of not less than 3 by 5 inches.
 - 2. Fabrication: Prepare Samples approximately 12 by 12 inches to demonstrate compliance with requirements for quality of materials and construction:
 - a. Doors: Show vertical-edge, top, and bottom construction; core construction; and hinge and other applied hardware reinforcement. Include separate section showing glazing if applicable.
 - b. Frames: Show profile, corner joint, floor and wall anchors, and silencers. Include separate section showing fixed hollow-metal panels and glazing if applicable.
- E. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.7 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

08 1113 - 2

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch- high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ceco Door; ASSA ABLOY.
 - 2. Curries Company; ASSA ABLOY.
 - 3. Deansteel Manufacturing Company, Inc.
 - 4. Fleming Door Products Ltd.; Assa Abloy Group Company.
 - 5. Gensteel Doors, Inc.
 - 6. Pioneer Industries.
 - 7. Republic Doors and Frames.
 - 8. Rocky Mountain Metals, Inc.
 - 9. Steelcraft; an Allegion brand.

2.2 PERFORMANCE REQUIREMENTS

A. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than 0.50 deg Btu/F x h x sq. ft. when tested according to ASTM C 518.

2.3 EXTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Extra-Heavy-Duty Doors and Frames: SDI A250.8, Level 3; SDI A250.4, Level A.
 - 1. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches.
 - c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch (16 gage), with minimum A40 coating.
 - d. Edge Construction: Model 2, Seamless.
 - e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 - f. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.
 - g. Bottom Edges: Close bottom edges of doors with end closures or channels of same material as face sheets. Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape.

- h. Core: Polyisocyanurate.
- 2. Frames:
 - a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch (16 gage), with minimum A40 coating.
 - b. Construction: Full profile welded.
- 3. Exposed Finish: Prime.

2.4 FRAME ANCHORS

- A. Jamb Anchors:
 - 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
 - 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet. Anchor grouted doors at masonry walls every 16 inches or less vertically.
 - 3. Postinstalled Expansion Anchor: Minimum 3/8-inch-diameter bolts with expansion shields or inserts, with manufacturer's standard pipe spacer.
- B. Material: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M; hot-dip galvanized according to ASTM A 153/A 153M, Class B.

2.5 MATERIALS

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
- D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
- E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- F. Glazing: Comply with requirements in Section 08 8000 "Glazing."

08 1113 - 4

2.6 FABRICATION

- A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 - 1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
- B. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 - 2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.

2.7 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

- A. General: Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.
- B. Hollow-Metal Frames: Comply with SDI A250.11.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.

08 1113 - 5

- a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
- b. Install frames with removable stops located on secure side of opening.
- 2. Fire-Rated Openings: Install frames according to NFPA 80.
- 3. Floor Anchors: Secure with postinstalled expansion anchors.
- 4. Solidly pack mineral-fiber insulation inside frames.
- 5. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 - 1. Non-Fire-Rated Steel Doors: Comply with SDI A250.8.
 - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 - 3. Smoke-Control Doors: Install doors according to NFPA 105.

3.3 CLEANING AND TOUCHUP

- A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION 08 1113

SECTION 08 3113 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes access doors and frames for walls and ceilings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples: For each type of access door and frame and for each finish specified, complete assembly minimum 6 by 6 inches in size.
- C. Product Schedule: For access doors and frames.

1.4 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of applicable room name and number in which access door is located.

1.5 QUALITY ASSURANCE

- A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of firerated door assemblies shall meet the qualifications set forth in NFPA 80, section 5.2.3.1 and the following:
 - 1. Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Access Doors and Frames: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, according to NFPA 252 or UL 10B.

2.2 ACCESS DOORS AND FRAMES

- A. Flush Access Doors with Concealed Flanges:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Acudor Products, Inc</u>.
 - b. <u>Babcock-Davis</u>.
 - c. <u>Elmdor/Stoneman Manufacturing Company</u>; a division of Acorn Engineering <u>Company</u>.
 - d. JL Industries, Inc.; a division of the Activar Construction Products Group.
 - e. <u>Larsens Manufacturing Company</u>.
 - f. <u>Maxam Metal Products Limited</u>.
 - g. <u>MIFAB, Inc</u>.
 - h. <u>Milcor; Commercial Products Group of Hart & Cooley, Inc</u>.
 - i. <u>Nystrom</u>.
 - j. <u>Williams Bros. Corporation of America (The)</u>.
 - 2. Description: Face of door flush with frame; with concealed flange for FRP installation and concealed hinge.
 - 3. Locations: Wall.
 - 4. Door Size: 12"x12".
 - 5. Stainless Steel Sheet for Door: Nominal 0.062-inch, 16 gage, ASTM A480/A480M No. 4 finish.
 - 6. Frame Material: Same material and thickness as door.
 - 7. Latch and Lock: Cam latch, screwdriver operated.

2.3 MATERIALS

- A. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
- B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A879/A879M, with cold-rolled steel sheet substrate complying with ASTM A1008/A1008M, Commercial Steel (CS), exposed.
- C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.
- D. Stainless Steel Plate, Sheet, and Strip: ASTM A240/A240M or ASTM A666, Type 304. Remove tool and die marks and stretch lines, or blend into finish.

08 3113 - 2

- E. Stainless Steel Flat Bars: ASTM A666, [**Type 304**] [**Type 316**]. Remove tool and die marks and stretch lines, or blend into finish.
- F. Aluminum Extrusions: ASTM B221, Alloy 6063.
- G. Aluminum Sheet: ASTM B209, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.
- H. Frame Anchors: Same material as door face.
- I. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A153/A153M or ASTM F2329.

2.4 FABRICATION

- A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
- B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
- C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.
 - 1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.
 - 2. For concealed flanges with plaster bead for full-bed plaster applications, provide zinccoated expanded-metal lath and exposed casing bead welded to perimeter of frames.
- D. Latch and Lock Hardware:
 - 1. Quantity: Furnish number of latches and locks required to hold doors tightly closed.
 - 2. Keys: Furnish two keys per lock and key all locks alike.
 - 3. Mortise Cylinder Preparation: Where indicated, prepare door panel to accept cylinder specified in Section 08 7100 "Door Hardware."

2.5 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

08 3113 - 3

- D. Stainless Steel Finishes:
 - 1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
 - 2. Polished Finish: ASTM A480/A480M No. 4 finish. Grind and polish surfaces to produce uniform finish, free of cross scratches.
 - a. Run grain of directional finishes with long dimension of each piece.
 - b. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

3.3 FIELD QUALITY CONTROL

- A. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- B. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

3.4 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 08 3113
SECTION 08 3213 - SLIDING ALUMINUM-FRAMED GLASS DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes sliding aluminum-framed glass doors for exterior locations.
- B. Related Requirements:
 1. Section 08 7100 "Door Hardware" for hardware not specified in Section 08 3213.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, fabrication methods, dimensions of individual components and profiles, hardware, finishes, and operating instructions.
- B. Shop Drawings: For sliding aluminum-framed glass doors.
 - 1. Include plans, elevations, sections, and details.
 - 2. Detail attachments to other work, and between units, if any.
 - 3. Include hardware and required clearances.
- C. Samples for Initial Selection: For each type of sliding aluminum-framed glass door indicated.
 - 1. Include Samples of hardware and accessories involving color selection.
- D. Samples for Verification: For sliding aluminum-framed glass doors and components required, prepared on Samples of size indicated below:
 - 1. Main Framing Member: 12-inch-long section with weather stripping, glazing bead, and factory-applied color finish.
 - 2. Hardware: Full-size units with factory-applied finish.

08 3213 - 1

E. Product Schedule: For sliding aluminum-framed glass doors. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, manufacturer, and testing agency.
- B. Product Test Reports: For each sliding aluminum-framed glass door, for tests performed by a qualified testing agency, and for each class and performance grade indicated, tested at AAMA gateway size.
- C. Field quality-control reports.
- D. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes, weather stripping, operable panels, and operating hardware to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A manufacturer capable of fabricating sliding aluminum-framed glass doors that meet or exceed performance requirements indicated and of documenting this performance by inclusion in lists and by labels, test reports, and calculations.
- B. Installer Qualifications: An installer acceptable to sliding aluminum-framed glass door manufacturer for installation of units required for this Project.
- C. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 - 1. Build mockup for sliding aluminum-framed glass doors, as shown on Drawings.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 WARRANTY

- A. Manufacturer's Special Warranty: Manufacturer agrees to repair or replace components of sliding aluminum-framed glass doors that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:

08 3213 - 2

- a. Failure to meet performance requirements.
- b. Structural failures including excessive deflection.
- c. Excessive water leakage or air infiltration.
- d. Faulty operation of movable panels and hardware.
- e. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
- f. Failure of insulating glass.
- 2. Warranty Period:
 - a. Sliding Door: Five years from date of Substantial Completion.
 - b. Insulating-Glass Units: 10 years from date of Substantial Completion.
 - c. Aluminum Finish: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arcadia Architectural Products, Inc</u>.
 - 2. <u>Avanti Systems, Inc</u>.
 - 3. <u>C.R. Laurence Co., Inc</u>.
 - 4. <u>EFCO Corporation</u>.
 - 5. <u>Kawneer North America, an Arconic company</u>.
 - 6. <u>Nana Wall Systems, Inc</u>.
 - 7. <u>Wausau Window and Wall Systems; Apogee Wausau Group, Inc.</u>
 - 8. <u>YKK AP America Inc</u>.
- B. Source Limitations: Obtain sliding aluminum-framed glass doors from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Product Standard: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 for minimum standards of performance, materials, components, accessories, and fabrication unless more stringent requirements are indicated.
 - 1. Product Certification: AAMA certified with label attached to each door.
- B. Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440 as follows:
 - 1. Minimum Performance Class: Class AW.
 - 2. Minimum Performance Grade: Grade 45.
- C. Thermal Transmittance: NFRC 100 maximum total fenestration product U-factor of 0.45 Btu/sq. ft. x h x deg F.

- D. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum total fenestration product SHGC of 0.38.
- E. Condensation-Resistance Factor (CRF): Provide sliding aluminum-framed glass doors tested for thermal performance according to AAMA 1503, showing a CRF of 45.
- F. Thermal Movements: Provide sliding aluminum-framed glass doors, including anchorage, that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
- G. Sound Transmission Class (STC): Rated for not less than 28 STC when tested for laboratory sound transmission loss according to ASTM E90 and determined by ASTM E413.
- H. Outside-Inside Transmission Class (OITC): Rated for not less than 27 OITC when tested for laboratory sound transmission loss according to ASTM E90 and determined by ASTM E1332.
- 2.3 SLIDING ALUMINUM-FRAMED GLASS DOORS
 - A. Frames and Door Panels: Fabricated from aluminum extrusions complying with AAMA/WDMA/CSA 101/I.S.2/A440.
 - 1. Thermally Improved Construction: Fabricate frames and door panels with an integral, concealed, low-conductance thermal barrier located between exterior and interior surfaces in a manner that eliminates direct metal-to-metal contact.
 - B. Threshold and Sill Cap/Track: Provide extruded-aluminum threshold and track of thickness, dimensions, and profile indicated; designed to comply with performance requirements indicated and to drain to the exterior; with manufacturer's standard finish.

2.4 GLAZING

- A. Glass and Glazing: Manufacturer's standard glazing system that produces weathertight seal. Comply with requirements indicated in Section 08 8000 "Glazing."
 - 1. Glass: ASTM C1036, Type 1, q3, Category II safety glass complying with testing requirements in 16 CFR 1201.
 - 2. Safety Glazing Labeling: Permanently mark safety glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
 - 3. Tint: Gray.
 - 4. Insulating-Glass Units: ASTM E2190, certified through IGCC as complying with requirements of IGCC.

- a. Filling: Fill space between glass lites with air.
- b. Low-E Coating: Manufacturer's standard.

2.5 HARDWARE

- A. General: Provide manufacturer's standard hardware, fabricated from a corrosion-resistant material compatible with aluminum complying with AAMA 907 and designed to smoothly operate, tightly close, and securely lock sliding aluminum-framed glass doors.
- B. Door Pulls: Provide manufacturer's standard pull.
 - 1. Color and Finish: As selected by Architect from manufacturer's full range.
- C. Lock: Install manufacturer's keyed cylinder lock and locking device on each movable panel, lockable from the inside only. Adjust locking device to allow unobstructed movement of the panel across adjacent panel in the direction indicated.
 - 1. Keying System: Keyed to match other building entrances.

2.6 ACCESSORIES

- A. Fasteners: Noncorrosive and compatible with door members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to the greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.
- B. Anchors, Clips, and Accessories: Provide anchors, clips, and accessories of aluminum, nonmagnetic stainless steel, or zinc-coated steel or iron for sliding aluminum-framed glass doors, complying with ASTM B456 or ASTM B633 for SC 3 severe service conditions; provide sufficient strength to withstand design pressure indicated.
 - 1. Windborne-Debris Resistance: Provide anchors of same design used in windborne-debris resistance testing.

2.7 FABRICATION

- A. Fabricate sliding aluminum-framed glass doors in sizes indicated. Include a complete system for assembling components and anchoring doors.
- B. Fabricate sliding aluminum-framed glass doors that are reglazable without dismantling panel framing.
- C. Weather Stripping: Provide full-perimeter weather stripping for each door panel.
- D. Weep Holes: Provide weep holes and internal drainage passages to conduct infiltrating water to exterior.

- E. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation.
- F. Factory-Glazed Fabrication: Glaze sliding aluminum-framed glass doors in the factory where practical and possible for applications indicated. Comply with requirements in Section 08 8000 "Glazing" and with AAMA/WDMA/CSA 101/I.S.2/A440.

2.8 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.9 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine openings, substrates, structural support, anchorage, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Verify rough opening dimensions, levelness of threshold substrate, and operational clearances.
- C. Examine wall flashings, vapor retarders, water and weather barriers, and other built-in components to ensure a coordinated, weathertight sliding aluminum-framed glass door installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with Drawings, Shop Drawings, and manufacturer's written instructions for installing doors, hardware, accessories, and other components.

08 3213 - 6

- B. Install sliding aluminum-framed glass doors level, plumb, square, true to line, without distortion, without warp or rack of frames and panels, and without impeding thermal movement; anchored securely in place to structural support; and in proper relation to wall flashing, vapor retarders, air barriers, water/weather barriers, and other adjacent construction.
- C. Set sill members in bed of sealant or with gaskets, as indicated, to provide weathertight construction.
- D. Install sliding aluminum-framed glass doors and components to drain condensation, water penetrating joints, and moisture migrating within doors to the exterior.
- E. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 - 1. Testing and inspecting agency will interpret tests and state in each report whether tested work complies with or deviates from requirements.
- B. Testing Services: Test and inspect installed sliding aluminum-framed glass doors as follows:
 - 1. Testing Methodology: Test sliding aluminum-framed glass doors for air infiltration and water resistance according to AAMA 502.
 - 2. Air-Infiltration Testing:
 - a. Test Pressure: That required to determine compliance with AAMA/WDMA/CSA 101/I.S.2/A440 performance class indicated.
 - b. Allowable Air-Leakage Rate: 1.5 times the applicable AAMA/WDMA/CSA 101/I.S.2/A440 rate for product type and performance class rounded down to one decimal place.
 - 3. Water-Resistance Testing:
 - a. Test Pressure: Two-thirds times test pressure required to determine compliance with AAMA/WDMA/CSA 101/I.S.2/A440 performance grade indicated.
 - b. Allowable Water Infiltration: No water penetration.
 - 4. Testing Extent: Three sliding aluminum-framed glass doors of each type as selected by Architect and a qualified independent testing and inspecting agency. Conduct tests after perimeter sealants have cured.
 - 5. Test Reports: Prepared according to AAMA 502.
- C. Sliding aluminum-framed glass door will be considered defective if it does not pass tests and inspections.

TECHNICAL SPECIFICATIONS

3.4 ADJUSTING, CLEANING, AND PROTECTION

- A. Lubricate hardware and moving parts.
- B. Adjust operating panels and screens to provide a tight fit at contact points and weather stripping for smooth operation, without binding, and a weathertight closure. Adjust hardware for proper alignment, smooth operation, and proper latching without unnecessary force or excessive clearance.
- C. Clean exposed surfaces immediately after installing sliding aluminum-framed glass doors. Avoid damaging protective coatings and finishes. Remove nonpermanent labels, excess sealants, glazing materials, dirt, and other substances.
- D. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.
- E. Protect sliding aluminum-framed glass door surfaces from contact with contaminating substances resulting from construction operations. If contaminating substances contact sliding aluminum-framed glass door surfaces, remove contaminants immediately according to manufacturer's written instructions.
- F. Refinish or replace sliding aluminum-framed glass doors with damaged finishes.
- G. Replace damaged components.

END OF SECTION 08 3213

SECTION 08 5113 - ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes aluminum windows for exterior locations.
- B. Related Requirements:
 - 1. Section 083213 "Sliding Aluminum-Framed Glass Doors" for coordinating finish among aluminum fenestration units.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Review and discuss the finishing of aluminum windows that is required to be coordinated with the finishing of other aluminum work for color and finish matching.
 - 3. Review, discuss, and coordinate the interrelationship of aluminum windows with other exterior wall components. Include provisions for anchoring, flashing, weeping, sealing perimeters, and protecting finishes.
 - 4. Review and discuss the sequence of work required to construct a watertight and weathertight exterior building envelope.
 - 5. Inspect and discuss the condition of substrate and other preparatory work performed by other trades.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, glazing and fabrication methods, dimensions of individual components and profiles, hardware, and finishes for aluminum windows.
- B. Shop Drawings: For aluminum windows.

08 5113 - 1

- 1. Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.
- C. Samples for Initial Selection: For units with factory-applied finishes.
 - 1. Include Samples of hardware and accessories involving color selection.
- D. Samples for Verification: For aluminum windows and components required, showing full range of color variations for finishes, and prepared on Samples of size indicated below:
 - 1. Exposed Finishes: 2 by 4 inches.
 - 2. Exposed Hardware: Full-size units.
- E. Product Schedule: For aluminum windows. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer and Installer.
- B. Product Test Reports: For each type of aluminum window, for tests performed by a qualified testing agency.
- C. Field quality-control reports.
- D. Sample Warranties: For manufacturer's warranties.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A manufacturer capable of fabricating aluminum windows that meet or exceed performance requirements indicated and of documenting this performance by test reports and calculations.
- B. Installer Qualifications: An installer acceptable to aluminum window manufacturer for installation of units required for this Project.
- C. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 - 1. Build mockup of typical wall area in location as directed by Architect.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace aluminum windows that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure to meet performance requirements.
 - b. Structural failures including excessive deflection, water leakage, condensation, and air infiltration.
 - c. Faulty operation of movable sash and hardware.
 - d. Deterioration of materials and finishes beyond normal weathering.
 - e. Failure of insulating glass.
 - 2. Warranty Period:
 - a. Window: 10 years from date of Substantial Completion.
 - b. Glazing Units: 10 years from date of Substantial Completion.
 - c. Aluminum Finish: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain aluminum windows from single source from single manufacturer.

2.2 WINDOW PERFORMANCE REQUIREMENTS

- A. Product Standard: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 for definitions and minimum standards of performance, materials, components, accessories, and fabrication unless more stringent requirements are indicated.
 - 1. Window Certification: AAMA certified with label attached to each window.
- B. Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440 as follows:
 - 1. Minimum Performance Class: AW.
 - 2. Minimum Performance Grade: 45.
- C. Thermal Transmittance: NFRC 100 maximum whole-window U-factor of 0.30 Btu/sq. ft. x h x deg F.
- D. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum whole-window SHGC of 0.40.
- E. Condensation-Resistance Factor (CRF): Provide aluminum windows tested for thermal performance according to AAMA 1503, showing a CRF of 45.

- F. Thermal Movements: Provide aluminum windows, including anchorage, that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change: 120 deg F ambient; 180 deg F material surfaces.
- G. Sound Transmission Class (STC): Rated for not less than 26 STC when tested for laboratory sound transmission loss according to ASTM E90 and determined by ASTM E413.
- H. Outside-Inside Transmission Class (OITC): Rated for not less than 26 OITC when tested for laboratory sound transmission loss according to ASTM E90 and determined by ASTM E1332.

2.3 ALUMINUM WINDOWS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Arcadia, Inc</u>.
 - 2. <u>Custom Window Company</u>.
 - 3. <u>EFCO Corporation</u>.
 - 4. <u>Kawneer North America, an Arconic company</u>.
 - 5. <u>Manko Window Systems, Inc</u>.
 - 6. <u>Peerless Products Inc</u>.
 - 7. <u>TRACO</u>.
 - 8. <u>Wausau Window and Wall Systems; Apogee Wausau Group, Inc</u>.
 - 9. <u>Winco Manufacturing Co</u>.
 - 10. <u>YKK AP America Inc</u>.
- B. Types: Provide the following types in locations indicated on Drawings:
 - 1. Horizontal sliding.
 - 2. Fixed.
- C. Frames and Sashes: Aluminum extrusions complying with AAMA/WDMA/CSA 101/I.S.2/A440.
 - 1. Thermally Improved Construction: Fabricate frames, sashes, and muntins with an integral, concealed, low-conductance thermal barrier located between exterior materials and window members exposed on interior side in a manner that eliminates direct metal-to-metal contact.
- D. Insulating-Glass Units: ASTM E2190.
 - 1. Glass: ASTM C1036, Type 1, Class 1, q3.
 - a. Tint: Clear.
 - b. Kind: Fully tempered.
 - 2. Lites: As indicated in drawings.

- 3. Filling: Fill space between glass lites with air .
- 4. Low-E Coating: Pyrolytic on second surface.
- E. Glazing System: Manufacturer's standard factory-glazing system that produces weathertight seal.
 - 1. Dual Glazing System:
 - a. Interior Lite: Clear Float Glass.
 - b. Exterior Lite: Insulating-glass unit.
- F. Hardware, General: Provide manufacturer's standard hardware fabricated from aluminum, stainless steel, carbon steel complying with AAMA 907, or other corrosion-resistant material compatible with adjacent materials; designed to smoothly operate, tightly close, and securely lock windows, and sized to accommodate sash weight and dimensions.
 - 1. Exposed Hardware Color and Finish: As selected by Architect from manufacturer's full range.
- G. Horizontal-Sliding Window Hardware:
 - 1. Sill Cap/Track: Extruded-aluminum track with natural anodized finish of dimensions and profile indicated; designed to comply with performance requirements indicated and to drain to the exterior.
 - 2. Locks and Latches: Allow unobstructed movement of the sash across adjacent sash in direction indicated and operated from the inside only.
 - 3. Roller Assemblies: Low-friction design.
- H. Weather Stripping: Provide full-perimeter weather stripping for each operable sash unless otherwise indicated.
- I. Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.4 ACCESSORIES

- A. Integral Ventilating System/Device: Where indicated, provide weather-stripped, adjustable,
- B. Subsills: Thermally broken, extruded-aluminum subsills in configurations indicated on Drawings.
- C. Column Covers: Extruded-aluminum profiles in sizes and configurations indicated on Drawings.
- D. Interior Trim: Extruded-aluminum profiles in sizes and configurations indicated on Drawings.
- E. Panning Trim: Extruded-aluminum profiles in sizes and configurations indicated on Drawings.

08 5113 - 5

F. Receptor System: Two-piece, snap-together, thermally broken, extruded-aluminum receptor system that anchors windows in place.

2.5 INSECT SCREENS

- A. Aluminum Frames: Manufacturer's standard aluminum alloy complying with SMA 1004 or SMA 1201. Fabricate frames with mitered or coped joints or corner extrusions, concealed fasteners, and removable PVC spline/anchor concealing edge of frame.
 - 1. Tubular Framing Sections and Cross Braces: Roll formed from aluminum sheet.

2.6 FABRICATION

- A. Fabricate aluminum windows in sizes indicated. Include a complete system for assembling components and anchoring windows.
- B. Glaze aluminum windows in the factory.
- C. Weather strip each operable sash to provide weathertight installation.
- D. Weep Holes: Provide weep holes and internal passages to conduct infiltrating water to exterior.
- E. Provide water-shed members above side-hinged sashes and similar lines of natural water penetration.
- F. Mullions: Provide mullions and cover plates, matching window units, complete with anchors for support to structure and installation of window units. Allow for erection tolerances and provide for movement of window units due to thermal expansion and building deflections. Provide mullions and cover plates capable of withstanding design wind loads of window units.
- G. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation.

2.7 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

08 5113 - 6

2.8 ALUMINUM FINISHES

- A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
- B. Class I, Clear Anodic Finish: AA-M12C22A41 (Mechanical Finish: nonspecular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 1. Color: As selected by Architect from full range of industry colors and color densities.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine openings, substrates, structural support, anchorage, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Verify rough opening dimensions, levelness of sill plate, and operational clearances.
- C. Examine wall flashings, vapor retarders, water and weather barriers, and other built-in components to ensure weathertight window installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's written instructions for installing windows, hardware, accessories, and other components. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E2112.
- B. Install windows level, plumb, square, true to line, without distortion or impeding thermal movement, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.
- C. Install windows and components to drain condensation, water penetrating joints, and moisture migrating within windows to the exterior.
- D. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 - 1. Testing and inspecting agency will interpret tests and state in each report whether tested work complies with or deviates from requirements.

- B. Testing Services: Testing and inspecting of installed windows shall take place as follows:
 - 1. Testing Methodology: Testing of windows for air infiltration and water resistance shall be performed according to AAMA 502.
 - 2. Air-Infiltration Testing:
 - a. Test Pressure: That required to determine compliance with AAMA/WDMA/CSA 101/I.S.2/A440 performance class indicated.
 - b. Allowable Air-Leakage Rate: 1.5 times the applicable AAMA/WDMA/CSA 101/I.S.2/A440 rate for product type and performance class rounded down to one decimal place.
 - 3. Water-Resistance Testing:
 - a. Test Pressure: Two-thirds times test pressure required to determine compliance with AAMA/WDMA/CSA 101/I.S.2/A440 performance grade indicated.
 - b. Allowable Water Infiltration: No water penetration.
 - 4. Testing Extent: Three windows of each type as selected by Architect and a qualified independent testing and inspecting agency. Windows shall be tested after perimeter sealants have cured.
 - 5. Test Reports: Prepared according to AAMA 502.
- C. Windows will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.4 ADJUSTING, CLEANING, AND PROTECTION

- A. Adjust operating sashes and hardware for a tight fit at contact points and weather stripping for smooth operation and weathertight closure.
- B. Clean exposed surfaces immediately after installing windows. Avoid damaging protective coatings and finishes. Remove excess sealants, glazing materials, dirt, and other substances.
 - 1. Keep protective films and coverings in place until final cleaning.
- C. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.
- D. Protect window surfaces from contact with contaminating substances resulting from construction operations. If contaminating substances do contact window surfaces, remove contaminants immediately according to manufacturer's written instructions.

END OF SECTION 08 5113

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:
 - 1. Mechanical door hardware for the following:
 - a. Swinging doors.
 - 2. Cylinders for door hardware specified in other Sections.
- B. Related Sections:
 - 1. Section 08 1113 "Hollow Metal Doors and Frames" for door silencers provided as part of hollow-metal frames.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples for Initial Selection: For plastic protective trim units in each finish, color, and texture required for each type of trim unit indicated.
- C. Samples for Verification: For exposed door hardware of each type required, in each finish specified, prepared on Samples of size indicated below. Tag Samples with full description for coordination with the door hardware schedule. Submit Samples before, or concurrent with, submission of door hardware schedule.
 - 1. Sample Size: Full-size units or minimum 2-by-4-inch Samples for sheet and 4-inch long Samples for other products.
 - a. Full-size Samples will be returned to Contractor. Units that are acceptable and remain undamaged through submittal, review, and field comparison process may, after final check of operation, be incorporated into the Work, within limitations of keying requirements.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For compliance with accessibility requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for door hardware on doors located in accessible routes.
- C. Warranty: Special warranty specified in this Section.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of door hardware to include in maintenance manuals. Include final hardware schedule.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and an Architectural Hardware Consultant who is available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.
 - 1. Scheduling Responsibility: Preparation of door hardware.
- B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as follows:
 - 1. For door hardware, an Architectural Hardware Consultant (AHC).
- C. Source Limitations: Obtain each type of door hardware from a single manufacturer.
- D. Means of Egress Doors: Latches do not require more than 15 lbf to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- E. Accessibility Requirements: For door hardware on doors in an accessible route, comply with ICC/ANSI A117.1.
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
 - 2. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.
 - 3. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch high.
 - 4. Adjust door closer sweep periods so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches from the latch, measured to the leading edge of the door.

- F. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Inspect and discuss preparatory work performed by other trades.
 - 3. Inspect and discuss electrical roughing-in for electrified door hardware.
 - 4. Review sequence of operation for each type of electrified door hardware.
 - 5. Review required testing, inspecting, and certifying procedures.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.
- B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
- C. Keyed doors will be keyed and installed by Owner.

1.8 COORDINATION

- A. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- B. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of doors and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion, unless otherwise indicated.
 - a. Locks: Five

- b. Exit Devices: Two years from date of Substantial Completion.
- c. Manual Closers: 10 years from date of Substantial Completion.

1.10 MAINTENANCE SERVICE

- A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.
- B. Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door and door hardware operation. Provide parts and supplies that are the same as those used in the manufacture and installation of original products.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

- A. Provide door hardware for each door as scheduled in Part 3 "Door Hardware Schedule" Article to comply with requirements in this Section.
 - 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturers' products.
- B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Schedule" Article. Products are identified by using door hardware designations, as follows:
 - 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in Part 3 "Door Hardware Schedule" Article.
 - 2. References to BHMA Designations: Provide products complying with these designations and requirements for description, quality, and function.

2.2 HINGES

- A. Hinges: BHMA A156.26. Provide template-produced hinges for hinges installed on hollowmetal doors and hollow-metal frames.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Hager Companies 780-157HD.

2.3 MECHANICAL LOCKS AND LATCHES

- A. Lock Functions: As indicated in door hardware schedule.
- B. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 - 1. Bored Locks: Minimum 1/2-inch latchbolt throw.
- C. Lock Backset: 2-3/4 inches, unless otherwise indicated.
- D. Lock Trim:
 - 1. Description: As indicated on hardware schedule.
 - 2.
- E. Strikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 - F. Bored Locks: BHMA A156.2;
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - a. Kaba E-Plex ; Dormakaba Group. 1) E5031-C-WL-626-41

2.4 KEYING

A. Keying System: Keying will be by Owner.

2.5 SURFACE CLOSERS

- A. Surface Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - a. Norton Door Controls; an ASSA ABLOY Group company.
 1) PR7500 Cush 689

2.6 MECHANICAL STOPS AND HOLDERS

A. Wall- and Floor-Mounted Stops: BHMA A156.16; Stainless Steel base metal.

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - a. Trimco 1221-4FF 626.

2.7 DOOR GASKETING

- A. Door Gasketing: BHMA A156.22; air leakage not to exceed 0.50 cfm per foot of crack length for gasketing other than for smoke control, as tested according to ASTM E 283; with resilient or flexible seal strips that are easily replaceable and readily available from stocks maintained by manufacturer.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - Pemko Manufacturing Co.; an ASSA ABLOY Group company.
 1) 290AS x 2891AS 719

2.8 THRESHOLDS

- A. Thresholds: BHMA A156.21; fabricated to full width of opening indicated.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - a. Pemko Manufacturing Co.; an ASSA ABLOY Group company.
 1) 1716A

2.9 OVERHEAD RAIN DRIP

- A. Overhead Rain Drip: fabricated to full width of opening indicated.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - a. Pemko Manufacturing Co.; an ASSA ABLOY Group company.
 1) 346C

2.10 DOOR SWEEP

- A. Door Sweep: fabricated to full width of opening indicated.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by:
 - Pemko Manufacturing Co.; an ASSA ABLOY Group company.
 3452CNB 628

2.11 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rated labels and as otherwise approved by Architect.
 - 1. Manufacturer's identification is permitted on rim of lock cylinders only.
- B. Base Metals: Produce door hardware units of base metal indicated, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18.
- C. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.
 - 2. Fire-Rated Applications:
 - a. Machine Screws: For the following:
 - 1) Hinges mortised to doors or frames.
 - 2) Strike plates to frames.
 - 3) Closers to doors and frames.
 - b. Steel Through Bolts: For the following unless door blocking is provided:
 - 1) Surface hinges to doors.
 - 2) Closers to doors and frames.
 - 3) Surface-mounted exit devices.
 - 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
 - 4. Fasteners for Wood Doors: Comply with requirements in DHI WDHS.2, "Recommended Fasteners for Wood Doors."
 - 5. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.12 FINISHES

- A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance.
- B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
- B. Wood Doors: Comply with DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing. Do not install surface-mounted items until finishes have been completed on substrates involved.
 - 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
 - 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.
- C. Hinges: Install types and in quantities indicated in door hardware schedule but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30

inches of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.

- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
- E. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 07 9200 "Joint Sealants."
- F. Stops: Provide wall stops for doors unless floor or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
- G. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.

3.4 FIELD QUALITY CONTROL

- A. Independent Architectural Hardware Consultant: Owner will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.
 - 1. Independent Architectural Hardware Consultant will inspect door hardware and state in each report whether installed work complies with or deviates from requirements, including whether door hardware is properly installed and adjusted.

3.5 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.
- B. Occupancy Adjustment: Approximately six months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust each item of door hardware, including adjusting operating forces, as necessary to ensure function of doors, door hardware, and electrified door hardware.

3.6 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.
- C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes. Refer to Section 01 7900 "Demonstration and Training."

3.8 DOOR HARDWARE SCHEDULE

A. Hardware set 1:

New Doors 101A, 102 and 103

- 1 ea. Hager 780-157HD 719
- 1 ea. Kaba E5031-C-WL-626-41
- 1 ea. Norton Door Closer PR7500 Cush 689
- 1 ea Pemko Overhead Rain Drip 346C
- 1 ea. Pemko Threshold 1716A
- 1 ea. Pemko Door Sweep 3452CNB 628
- 1 ea. Pemko Weatherstrip 290AS x 2891AS 719
- B. Hardware set 1: New Doors 101B Manufacturer's Standard

END OF SECTION 087100

SECTION 09 2900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
 - 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 - 2. Product Certificates: For materials manufactured within 100 miles (160 km) of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.
 - 3. Product Data: For adhesives and sealants, indicating VOC content.

1.4 QUALITY ASSURANCE

- A. Mockups: Before beginning gypsum board installation, install mockups of at least 100 sq. ft. in surface area to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Install mockups for the following:
 - a. Each level of gypsum board finish indicated for use in exposed locations.
 - 2. Apply or install final decoration indicated, including painting and wallcoverings, on exposed surfaces for review of mockups.
 - 3. Simulate finished lighting conditions for review of mockups.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

TECHNICAL SPECIFICATIONS

1.5 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

- 2.1 GYPSUM BOARD, GENERAL
 - A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.2 INTERIOR GYPSUM BOARD

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Gypsum.
 - 2. CertainTeed Corporation.
 - 3. Georgia-Pacific Building Products.
 - 4. National Gypsum Company.
 - 5. PABCO Gypsum.
 - 6. USG Corporation.
- B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 - 1. Thickness: 5/8 inch.
 - 2. Long Edges: Tapered.
- C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.

- 1. Thickness: 1/2 inch.
- 2. Long Edges: Tapered.

2.3 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized steel sheet.
 - 2. Shapes:
 - a. Cornerbead.
 - b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - c. Expansion (control) joint.

2.4 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475/C 475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
- C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 - 4. Finish Coat: For third coat, use drying-type, all-purpose compound.

2.5 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
 - 1.
- B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

- C. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- D. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Grabber Construction Products.
 - b. Pecora Corporation.
 - c. Specified Technologies, Inc.
 - d. USG Corporation.
 - 2. Sealant shall have a VOC content of 250 g/L or less.
 - 3. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic
- E. Thermal Insulation: As specified in Section 07 2100 "Thermal Insulation."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and framing, with Installer present, for compliance with requirements and other conditions affecting performance.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

- A. Comply with ASTM C 840.
- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

09 2900 - 4

- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- E. Form control and expansion joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.
- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

- A. Install interior gypsum board in the following locations:
 - 1. Type X: Vertical surfaces unless otherwise indicated.
 - 2. Ceiling Type: Ceiling surfaces.
- B. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 - b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
 - 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

TECHNICAL SPECIFICATIONS

3.4 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints at locations indicated on Drawings, or if not indicated, according to ASTM C 840 and in specific locations approved by Architect for visual effect.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners unless otherwise indicated.

3.5 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 2: Panels that are substrate for tile.
 - 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 - a. Primer and its application to surfaces are specified in Section 09 9123 "Interior Painting."
 - 4. Primer and its application to surfaces are specified in Section 09 9123 "Interior Painting."

3.6 **PROTECTION**

- A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.
- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.

09 2900 - 6

2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09 2900

B L A N K P A G E

SECTION 09 5113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes acoustical panels and exposed suspension systems for ceilings. Panel types include the following:
 - 1. Flush edge acoustical panels.
- B. Products furnished, but not installed under this Section, include anchors, clips, and other ceiling attachment devices to be cast in concrete.
- C. Products furnished, but not installed under this Section, include anchors, clips, and other ceiling attachment devices to be cast in concrete.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
 - 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 - 2. Laboratory Test Reports: For ceiling products, indicating compliance with requirements for low-emitting materials.
- C. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of size indicated below.
 - 1. Acoustical Panel: Set of 6-inch- square Samples of each type, color, pattern, and texture.
- D. Delegated-Design Submittal: For seismic restraints for ceiling systems.
 - 1. Include design calculations for seismic restraints including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

TECHNICAL SPECIFICATIONS

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension-system members.
 - 2. Structural members to which suspension systems will be attached.
 - 3. Method of attaching hangers to building structure.
 - a. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose installation is specified in other Sections.
 - 4. Carrying channels or other supplemental support for hanger-wire attachment where conditions do not permit installation of hanger wires at required spacing.
 - 5. Size and location of initial access modules for acoustical panels.
 - 6. Items penetrating finished ceiling and ceiling-mounted items including the following:
 - a. Lighting fixtures.
 - b. Diffusers.
 - c. Grilles.
 - d. Speakers.
 - e. Sprinklers.
 - f. Access panels.
 - g. Perimeter moldings
- B. Qualification Data: For testing agency.
- C. Product Test Reports: For each acoustical panel ceiling, for tests performed by a qualified testing agency.
- D. Evaluation Reports: For each acoustical panel ceiling suspension system and anchor and fastener type, from ICC-ES.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Panels: Full-size panels equal to 2 percent of quantity installed.
 - 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.
 - 3. Hold-Down Clips: Equal to 2 percent of quantity installed.

09 5113 - 2
1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to NVLAP for testing indicated.
- B. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockup of typical ceiling area as shown on Drawings.
 - 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical panels, suspension-system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design seismic restraints for ceiling systems.
- B. Seismic Performance: Acoustical ceiling shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

- C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A materials.
 - 2. Smoke-Developed Index: 50 or less.

2.3 ACOUSTICAL PANELS, GENERAL

- A. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E 1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.
- B. Acoustical Panel Colors and Patterns: Match appearance characteristics indicated for each product type.
 - 1. Where appearance characteristics of acoustical panels are indicated by referencing pattern designations in ASTM E 1264 and not manufacturers' proprietary product designations, provide products selected by Architect from each manufacturer's full range that comply with requirements indicated for type, pattern, color, light reflectance, acoustical performance, edge detail, and size.

2.4 FLUSH EDGE ACOUSTICAL PANELS – ACT-1

- A. Product: Armstrong Ultima
- B. Classification: Provide panels complying with ASTM E 1264 for type, form, and pattern as follows:
 - 1. Type and Form: Type IV, mineral base with membrane-faced overlay; Form 2, water felted.
 - 2. Pattern: E (lightly textured).
- C. Color: White.
- D. NRC: Not less than 0.75.
- E. CAC: Not less than 35.
- F. Edge/Joint Detail: Flush edges.
- G. Thickness: 3/4 inch.
- H. Modular Size: 24 by 24 inches.
- I. Broad Spectrum Antimicrobial Fungicide and Bactericide Treatment: Provide acoustical panels treated with manufacturer's standard antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D 3273 and evaluated according to ASTM D 3274 or ASTM G 21.

TECHNICAL SPECIFICATIONS

2.5 METAL SUSPENSION SYSTEMS, GENERAL

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. CertainTeed Corporation.
 - 3. Chicago Metallic Corporation.
 - 4. USG Interiors, Inc.; Subsidiary of USG Corporation.
- B. Metal Suspension-System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635/C 635M.
- C. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.
 - 1. Structural Classification: Heavy-duty system.
 - 2. End Condition of Cross Runners: Override (stepped) type.
 - 3. Face Design: Flat, flush.
 - 4. Cap Material: Cold-rolled steel or aluminum.
 - 5. Cap Finish: Painted to match color of acoustical unit.

2.6 ACCESSORIES

- A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
 - 1. Anchors in Concrete: Anchors of type and material indicated below, with holes or loops for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to five times that imposed by ceiling construction, as determined by testing according to ASTM E 488 or ASTM E 1512 as applicable, conducted by a qualified testing and inspecting agency.
 - a. Type: Cast-in-place or postinstalled bonded anchors.
 - b. Corrosion Protection: Carbon-steel components zinc plated to comply with ASTM B 633, Class Fe/Zn 5 (0.005 mm) for Class SC 1 service condition.
- B. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:
 - 1. Zinc-Coated, Carbon-Steel Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper.
 - 2. Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.135-inch- diameter wire.
- C. Hanger Rods: Mild steel, zinc coated or protected with rust-inhibitive paint.

- D. Angle Hangers: Angles with legs not less than 7/8 inch wide; formed with 0.04-inch- thick, galvanized-steel sheet complying with ASTM A 653/A 653M, G90 coating designation; with bolted connections and 5/16-inch- diameter bolts.
- E. Seismic Stabilizer Bars: Manufacturer's standard perimeter stabilizers designed to accommodate seismic forces.
- F. Seismic Struts: Manufacturer's standard compression struts designed to accommodate seismic forces.
- G. Seismic Clips: Manufacturer's standard seismic clips designed and spaced to secure acoustical panels in place.
- H. Hold-Down Clips: Where indicated, provide manufacturer's standard hold-down clips spaced 24 inches o.c. on all cross tees.

2.7 METAL EDGE MOLDINGS AND TRIM

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. CertainTeed Corporation.
 - 3. Chicago Metallic Corporation.
 - 4. USG Interiors, Inc.; Subsidiary of USG Corporation.
- B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
 - 1. Provide manufacturer's standard edge moldings that fit acoustical panel edge details and suspension systems indicated and that match width and configuration of exposed runners unless otherwise indicated.
 - 2. For lay-in panels with reveal edge details, provide stepped edge molding that forms reveal of same depth and width as that formed between edge of panel and flange at exposed suspension member.
 - 3. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

2.8 ACOUSTICAL SEALANT

A. Acoustical Sealant: As specified in Section 07 9200 "Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
- B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.
- B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

- A. Install acoustical panel ceilings according to ASTM C 636/C 636M, seismic design requirements, and manufacturer's written instructions.
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 - 4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.

- 6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
- 7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
- 8. Do not attach hangers to steel deck tabs.
- 9. Do not attach hangers to steel roof deck. Attach hangers to structural members.
- 10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
- 11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
- C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.
- D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
 - 3. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
 - 1. Arrange directionally patterned acoustical panels as follows:
 - a. As indicated on reflected ceiling plans.
 - 2. For reveal-edged panels on suspension-system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
 - 3. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.
 - 4. Install hold-down clips in areas indicated, in areas required by authorities having jurisdiction, and for fire-resistance ratings; space as recommended by panel manufacturer's written instructions unless otherwise indicated.
 - 5. Protect lighting fixtures and air ducts to comply with requirements indicated for fire-resistance-rated assembly.

3.4 ERECTION TOLERANCES

- A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet, non-cumulative.
- B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet, non-cumulative.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Perform the following tests and inspections of completed installations of acoustical panel ceiling hangers and anchors and fasteners in successive stages and when installation of ceiling suspension systems on each floor has reached 20 percent completion, but no panels have been installed. Do not proceed with installations of acoustical panel ceiling hangers for the next area until test results for previously completed installations of acoustical panel ceiling hangers show compliance with requirements.
 - 1. Within each test area, testing agency will select one of every 10 power-actuated fasteners and postinstalled anchors used to attach hangers to concrete and will test them for 200 lbf of tension; it will also select one of every two postinstalled anchors used to attach bracing wires to concrete and will test them for 440 lbf of tension.
 - 2. When testing discovers fasteners and anchors that do not comply with requirements, testing agency will test those anchors not previously tested until 20 pass consecutively and then will resume initial testing frequency.
- C. Acoustical panel ceiling hangers, anchors, and fasteners will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 CLEANING

- A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.
- B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09 5113

BLANK PAGE

SECTION 09 6513 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermoplastic-rubber base.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
 - 1. Product Data: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 - 3. Product Data: For sealants, indicating VOC content.
 - 4. Laboratory Test Reports: For sealants, indicating compliance with requirements for lowemitting materials.
 - 5. Laboratory Test Reports: For resilient base products and accessories, indicating compliance with requirements for low-emitting materials.
 - 6. Environmental Product Declaration: For each product.
 - 7. Health Product Declaration: For each product.
 - 8. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.
- C. Samples for Initial Selection: For each type of product indicated, if not indicated in Finish Legend.
- D. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches long.
- E. Product Schedule: For resilient base and accessory products.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

09 6513 - 1

1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 QUALITY ASSURANCE

- A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Coordinate mockups in this Section with mockups specified in other Sections.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.7 FIELD CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following time periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
- C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.2 THERMOSET-RUBBER BASE - RB-1

- A. Basis of Design Subject to compliance with requirements, provide one of the following:
 - 1. 29 Moonrock; Johnsonite; a Tarkett company, as indicated at item RB-1 on Finish Legend in Drawings.
 - 2. Equivalent product, approved by Architect prior to bid and complying with requirements and with Division 01, by one of the following manufacturers.
 - a. Burke Mercer Flooring Products; a division of Burke Industries Inc.
 - b. Johnsonite; a Tarkett company.
 - c. Roppe Corporation, USA.
 - d. VPI Corporation.
- B. Product Standard: ASTM F 1861, Type TP (rubber, thermoplastic).
 - 1. Group: I (solid, homogeneous).
 - 2. Style and Location:
 - a. Style B, Cove: Provide in areas with resilient floor coverings.
- C. Thickness: 0.125 inch.
- D. Height: 4 inches.
- E. Lengths: Coils in manufacturer's standard length.
- F. Outside Corners: Job formed.
- G. Inside Corners: Job formed.
- H. Colors: As indicated on Finish Legend in Drawings.

2.3 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.
 - 1. Adhesives shall have a VOC content of 50 g/L or less.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
- B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- C. Do not install resilient products until they are the same temperature as the space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.
- D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient base.
- B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
- C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
- D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
- E. Do not stretch resilient base during installation.
- F. Preformed Corners: Install preformed corners before installing straight pieces.

09 6513 - 4

- G. Job-Formed Corners:
 - 1. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 - a. Miter corners to minimize open joints.

3.4 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.
- B. Perform the following operations immediately after completing resilient-product installation:
 - 1. Remove adhesive and other blemishes from exposed surfaces.
 - 2. Sweep and vacuum horizontal surfaces thoroughly.
 - 3. Damp-mop horizontal surfaces to remove marks and soil.
- C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 6513

BLANK PAGE

SECTION 09 9113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENT#4S

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on the following exterior substrates:
 - 1. Fiber-cement board.

1.3 DEFINITIONS

- A. MPI Gloss Level 1 (flat): Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
- B. MPI Gloss Level 3 (eggshell): 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
- C. MPI Gloss Level 4 (satin-like): 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
- D. MPI Gloss Level 5 (semigloss): 35 to 70 units at 60 degrees, according to ASTM D523.
- E. MPI Gloss Level 6 (gloss): 70 to 85 units at 60 degrees, according to ASTM D523.
- F. MPI Gloss Level 7 (high gloss): More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 2. Indicate VOC content.
- B. Sustainable Design Submittals:
 - 1. Product Data: For paints and coatings, indicating VOC content.

09 9113 - 1

- C. Samples for Initial Selection: For each type of topcoat product.
- D. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- E. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.

09 9113 - 2

2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Benjamin Moore & Co</u>.
 - 2. Dunn-Edwards Corporation (a Nippon Paint Holdings Co. Ltd. company).
 - 3. <u>PPG Paints</u>.
 - 4. <u>Pratt & Lambert</u>.
 - 5. <u>Rodda Paint Co</u>.
 - 6. <u>Sherwin-Williams Company (The)</u>.
 - 7. Tnemec.
 - 8. Other manufacturers as scheduled.
- B. Products: Subject to compliance with requirements, provide one of the products listed in the Exterior Painting Schedule for the paint category indicated.
 - 1. Substitutions: Comply with Section 01 6000 "Product Requirements" and Section 01 2500 "Substitution Procedures."
 - 2. Equivalent Products: Substitutions of comparable products by other manufacturers will be considered prior to bid if the product complies with specified product requirements and is the same in quality and appearance to the specified product, as judged solely by the Architect.

2.2 PAINT, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated. Products shall be listed in its "MPI Approved Products Lists" unless indicated otherwise.
 - 1. Substitutions of products not listed on the "MPI Approved Products Lists" may be considered if product data for the product is provided that clearly indicates that the product meets or exceeds all MPI requirements.
- B. Material Compatibility:

- 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
- 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- C. VOC Content: For field applications, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 g/L.
 - 2. Nonflat Paints and Coatings: 100 g/L.
 - 3. Dry-Fog Coatings: 150 g/L.
 - 4. Primers, Sealers, and Undercoaters: 100 g/L.
 - 5. Rust-Preventive Coatings: 250 g/L.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 g/L.
 - 7. Pretreatment Wash Primers: 420 g/L.
- D. Colors: As selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Fiber-Cement Board: 12 percent.
- C. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

09 9113 - 4

- D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
 - 3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
 - 6. Do not paint finish copper, bronze, chromium plate, nickel, stainless steel, anodized aluminum, or monel metal except as explicitly indicated or specified.
- B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed to view:
 - a. Equipment, including panelboards and switch gear.
 - b. Uninsulated metal piping.
 - c. Uninsulated plastic piping.
 - d. Pipe hangers and supports.
 - e. Metal conduit.
 - f. Plastic conduit.
 - g. Tanks that do not have factory-applied final finishes.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

- A. Cement Board Substrates:
 - 1. Water-Based Light Industrial Coating System MPI EXT 3.3C:

- a. Prime Coat: Primer, alkali resistant, water based, MPI #3.
 - 1) Benjamin Moore: Ultra Spec; Masonry Int/Ext 100 Acrylic Sealer 0608/K608.
 - 2) Dunn-Edwards: Eff-Stop Premium; Interior/Exterior Masonry Primer/Sealer - ESPR00-1.
 - 3) PPG Architectural: PPG Paints; Perma-Crete Interior/Exterior Alkali Resistant Primer 4-603XI.
 - 4) Rodda Paint Co.: Prime Solutions; First Coat Bonding Primer 501601.
 - 5) Sherwin-Williams: Loxon; Loxon Concrete & Masonry Primer A24W8300/LX02W0050.
- b. Intermediate Coat: Light industrial coating, exterior, water based, matching topcoat.
- c. Topcoat: Light industrial coating, exterior, water based (MPI Gloss Level 3), MPI #161.
 - 1) Dunn-Edwards ENDURACOAT; Interior/Exterior Eggshell Industrial Maintenance Coating ENCT30.
 - 2) PPG Architectural PPG; Pitt-Tech Plus Int/Ext Satin DTM Industrial Enamel 90-1110.
 - 3) Rodda Paint Co. PROTECH High Performance; Multi Master VST Satin/Eggshell 438901.
 - 4) Sherwin-Williams Pro Industrial; DTM Acrylic Eg-Shel B66W01251.

END OF SECTION 09 9113

BLANK PAGE

SECTION 09 9123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on the following interior substrates:
 - 1. Gypsum board.
 - 2. Gypsum board wall in Restrooms and behind sinks, and elsewhere where indicated.

1.3 DEFINITIONS

- A. Gloss Level 1 (Flat): Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. Gloss Level 3 (Eggshell): 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. Gloss Level 4 (Satin): 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
- B. Sustainable Design Submittals:
 - 1. Product Data: For paints and coatings, indicating VOC content.
 - 2. Laboratory Test Reports: For paints and coatings, indicating compliance with requirements for low-emitting materials.
- C. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Step coats on Samples to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.

D. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each paint system specified in Part 3.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

1.9 WARRANTY

A. Use paints that carry a minimum 5-year warranty.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Benjamin Moore & Co</u>.
 - 2. Dunn-Edwards Corporation (a Nippon Paint Holdings Co. Ltd. company).
 - 3. <u>PPG Paints</u>.
 - 4. Pratt & Lambert.
 - 5. <u>Sherwin-Williams Company (The)</u>.

2.2 PAINT, GENERAL

- A. MPI Standards: Unless indicated otherwise, provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."
- B. Material Compatibility:
 - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.
- C. VOC Content: For field applications that are inside the weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 g/L.
 - 2. Nonflat Paints and Coatings: 50 g/L.
 - 3. Primers, Sealers, and Undercoaters: 100 g/L.
 - 4. Rust-Preventive Coatings: 100 g/L.
 - 5. Zinc-Rich Industrial Maintenance Primers: 100 g/L.
 - 6. Pretreatment Wash Primers: 420 g/L.
- D. Low-Emitting Materials: For field applications that are inside the weatherproofing system, 90 percent of paints and coatings shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

E. Colors: Close match colors indicated on Finish Legend in Drawings, or if not indicated, as selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Gypsum Board: 12 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
- E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

- 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Gypsum Board Substrates:

c.

- 1. Latex over Latex Sealer System MPI INT 9.2A (Ceilings):
 - a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 - 1) <u>Benjamin Moore</u>: Ultra Spec 500; Waterborne Interior Primer Sealer N534/K534.
 - 2) <u>Dunn-Edwards</u>: VINYLASTIC Premium; Interior Wall Sealer VNPR00-1.
 - 3) <u>PPG Architectural</u>: PPG Paints; Speedhide Zero Interior Zero VOC Latex Sealer 6-4900XI.
 - 4) <u>Pratt & Lambert</u>: Pratt & Lambert; Int/Ext Multi-Purpose Waterborne Primer - P1001.
 - 5) <u>Sherwin-Williams</u>: ProMar 200 Zero; Interior Latex Primer B28W02600/B28WQ2600.
 - b. Intermediate Coat: Latex, interior, matching topcoat.
 - Topcoat: Latex, interior, flat (MPI Gloss Level 1), MPI #53.
 - 1) <u>Benjamin Moore</u>: Super Hide; Zero VOC Interior Flat 355/K355.
 - 2) <u>Dunn-Edwards</u>: EVEREST; Low Odor | Zero VOC Interior Flat Paint EVER10.
 - 3) <u>PPG Architectural</u>: PPG Paints; SPEEDHIDE zero Interior Zero VOC Latex Flat 6-4110XI.
 - 4) <u>Pratt & Lambert</u>: Pratt and Lambert; Fresh Spec Zero VOC Interior Latex Flat Z0289.
 - 5) <u>Sherwin-Williams</u>: ProMar 200 Zero VOC; Interior Latex Flat -B30W12651. High-Performance Architectural Latex System MPI INT 9.2B (Walls):
 - d. Intermediate Coat: Latex, interior, high performance architectural, matching topcoat.
 - e. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI #139.
 - 1) <u>Benjamin Moore</u>: Super Hide; Zero VOC Interior Eggshell 357/K357.
 - 2) <u>Dunn-Edwards</u>: Everest; Low Odor Zero VOC Interior Eggshell Paint EVER30.
 - 3) <u>PPG Architectural</u>: PPG Paints: Speedhide Zero Interior Zero VOC Latex Satin 6-4410XI.
 - 4) <u>Pratt & Lambert</u>: Pro Hide Gold Ultra; Interior Latex Mid Sheen Z9589.

- 5) <u>Sherwin-Williams</u>: ProMar 200 Zero VOC; Interior Latex Eg-Shel B20W12651.
- 2. High-Performance Architectural Latex System MPI INT 9.2B (Epoxy-coated walls in Restrooms, behind sinks, and elsewhere where indicated.)
 - a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 - 1) <u>Benjamin Moore</u>: Ultra Spec 500; Waterborne Interior Primer Sealer N534/K534.
 - 2) <u>Dunn-Edwards</u>: VINYLASTIC Premium; Interior Wall Sealer VNPR00-1.
 - 3) <u>PPG Architectural</u>: PPG Paints; Speedhide Zero Interior Zero VOC Latex Sealer 6-4900XI.
 - 4) <u>Pratt & Lambert</u>: Pratt & Lambert; Int/Ext Multi-Purpose Waterborne Primer - P1001.
 - 5) <u>Sherwin-Williams</u>: ProMar 200 Zero; Interior Latex Primer B28W02600/B28WQ2600.
 - b. Intermediate Coat: Latex, interior, high performance architectural, matching topcoat.
 - c. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI #139.
 - 1) <u>Benjamin Moore</u>: Ultra Spec 500; Waterborne Interior Eggshell N538/K538.
 - 2) <u>Dunn-Edwards</u>: EVEREST; Low Odor | Zero VOC Interior Eggshell Paint EVER30.
 - 3) <u>PPG Architectural</u>: PPG; Diamond Interior Eggshell Paint + Primer PPG53-310.
 - 4) <u>Sherwin-Williams</u>: Pro Industrial; Pre-Catalyzed Epoxy Eg-Shel K45W01151.

END OF SECTION 09 9123

BLANK PAGE

SECTION 09 9600 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of high-performance coating systems on the following substrates:
 - 1. Exterior Substrates:
 - a. Steel.
- B. Related Requirements:
 - 1. Section 05 1200 "Structural Steel Framing" for shop priming of structural steel with primers specified in this Section.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Indicate VOC content.
- B. Sustainable Design Submittals:
 - 1. Product Data: For paints and coatings, indicating VOC content.
- C. Samples for Initial Selection: For each type of topcoat product indicated.
- D. Samples for Verification: For each type of coating system and each color and gloss of topcoat indicated.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- E. Product List: Cross-reference to coating system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

09 9600 - 1

TECHNICAL SPECIFICATIONS

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Coatings: 5 percent, but not less than 1 gal. of each material and color applied.

1.5 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each coating system indicated to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each coating system.
 - a. Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

- A. Apply coatings only when temperature of surfaces to be coated and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply coatings when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
- C. Do not apply exterior coatings in snow, rain, fog, or mist.

09 9600 - 2

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. PPG Architectural Coatings.
 - 2. Sherwin-Williams Company (The).
 - 3. Tnemec Inc.
- B. Products: Subject to compliance with requirements, provide one of the products listed in the Exterior High-Performance Coating Schedule or Interior High-Performance Coating Schedule for the coating category indicated.

2.2 HIGH-PERFORMANCE COATINGS, GENERAL

- A. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
 - 3. Products shall be of same manufacturer for each coat in a coating system.
- B. VOC Content: For field applications that are inside the weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Nonflat Paints and Coatings: 150 g/L.
 - 2. Primers, Sealers, and Undercoaters: 200 g/L.
 - 3. Anticorrosive and Antirust Paints Applied to Ferrous Metals: 250 g/L.
 - 4. Zinc-Rich Industrial Maintenance Primers: 340 g/L.
- C. Colors: As selected by Architect from manufacturer's full range.

2.3 SOURCE QUALITY CONTROL

- A. Testing of Coating Materials: Owner reserves the right to invoke the following procedure:
 - 1. Owner will engage the services of a qualified testing agency to sample coating materials. Contractor will be notified in advance and may be present when samples are taken. If coating materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
 - 2. Testing agency will perform tests for compliance with product requirements.
 - 3. Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with product requirements. Contractor shall remove

09 9600 - 3

noncomplying coating materials from Project site, pay for testing, and recoat surfaces coated with rejected materials. Contractor will be required to remove rejected materials from previously coated surfaces if, on recoating with complying materials, the two coatings are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- C. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and coating systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.
- D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer, but not less than the following:
 - 1. SSPC-SP 6/NACE No. 3.
- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

3.3 APPLICATION

- A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."
 - 1. Use applicators and techniques suited for coating and substrate indicated.
 - 2. Coat surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, coat surfaces behind permanently fixed equipment, cabinets, or furniture with prime coat only.
 - 3. Coat backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not apply coatings over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
- B. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.
- C. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test coatings for dry film thickness.
 - 1. Contractor shall touch up and restore coated surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied coating does not comply with coating manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with coating manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from coating operation. Correct damage to work of other trades by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

TECHNICAL SPECIFICATIONS

3.6 EXTERIOR HIGH-PERFORMANCE COATING SCHEDULE

- A. Steel Substrates:
 - 1. Pigmented Polyurethane over Epoxy System:
 - a. Prime Coat: Primer, epoxy, anti-corrosive, for metal.
 - 1) PPG Coraflon ADS Epoxy Primer ADS 573/ADS574.
 - 1) Tnemec Series 90-97 Tneme-Zinc
 - b. Intermediate Coat: Epoxy, gloss.
 - 1) PPG Coraflon ADS Fluoropolymer.
 - 1) Tnemec Series V69 Hi-Build Epoxoline II
 - c. Topcoat: Fluoropolymer, pigmented.
 - 1) PPG Coraflon ADS Fluoropolymer.
 - 1) Tnemec Series 1070V Fluoronar.

END OF SECTION 09 9600
SECTION 102800 - TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Public-use washroom accessories.
 - 2. Underlavatory guards.
- B. Related Requirements:
 - 1. Section 08 8300 "Mirrors" for frameless mirrors.

1.3 COORDINATION

- A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.
- B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 - 3. Include electrical characteristics.
- B. Samples: Full size, for each exposed product and for each finish specified.
 - 1. Approved full-size Samples will be returned and may be used in the Work.
- C. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.

- 1. Identify locations using room designations indicated.
- 2. Identify accessories using designations indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For accessories to include in maintenance manuals.

1.7 WARRANTY

- A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, visible silver spoilage defects.
 - 2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 PUBLIC-USE WASHROOM ACCESSORIES

- A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.
- B. Toilet Tissue (Jumbo-Roll) Dispenser:
 - 1. San Jamar jumbo roll 9-inch twin, smoke, no label on cover, Oceans style, part #R4090TBK
- C. Automatic Touch-less Paper Towel Dispenser:
 - 1. Palmer, Part #TD024502A Electra HF Black Translucent, No label on cover, Battery operated with low voltage option
- D. Liquid-Soap Dispenser:1. Debs, Part #DEB96576, Hy-Ko Supply Curves, White
- E. Grab Bar:

- 1. Mounting: Flanges with concealed fasteners.
- 2. Material: Stainless steel, 0.05 inch thick.
 - a. Finish: Smooth, No. 4 finish (satin).
- 3. Outside Diameter: 1-1/4 inches.
- 4. Configuration and Length: As indicated on Drawings.

2.3 UNDERLAVATORY GUARDS

- A. Underlavatory Guard:
 - 1. Description: Insulating pipe covering for supply and drain piping assemblies that prevents direct contact with and burns from piping; allow service access without removing coverings.
 - 2. Material and Finish: Antimicrobial, molded plastic, white.

2.4 MATERIALS

- A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.
- B. Brass: ASTM B 19, flat products; ASTM B 16/B 16M, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.
- C. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036inch minimum nominal thickness.
- D. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.
- E. Galvanized-Steel Mounting Devices: ASTM A 153/A 153M, hot-dip galvanized after fabrication.
- F. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.
- G. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).

2.5 FABRICATION

- A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.
- B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

102800 - 3

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
- B. Provide fasteners for all manufacturer provided fastener holes.
- C. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.
- D. Provide solid blocking behind all accessories.

3.2 ADJUSTING AND CLEANING

- A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
- B. Remove temporary labels and protective coatings.
- C. Clean and polish exposed surfaces according to manufacturer's written instructions.

END OF SECTION 102800

SECTION 10 4416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following:
 - 1. Portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to fire extinguishers, including, but not limited to, the following:
 - a. Schedules and coordination requirements.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.
- B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fireprotection cabinet schedule to ensure proper fit and function.

1.5 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.

1.7 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure of hydrostatic test according to NFPA 10.
 - b. Faulty operation of valves or release levers.
 - 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
- B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
 - 1. Provide fire extinguishers approved, listed, and labeled by FM Global.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

- A. Fire Extinguishers: Type, size, and capacity for each mounting bracket indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Amerex Corporation.
 - b. Ansul Incorporated; Tyco International Ltd.
 - c. Badger Fire Protection; a Kidde company.
 - d. Buckeye Fire Equipment Company.
 - e. Fire End & Croker Corporation.
 - f. J. L. Industries, Inc.; a division of Activar Construction Products Group.
 - g. Kidde Residential and Commercial Division; Subsidiary of Kidde plc.
 - h. Larsen's Manufacturing Company.
 - i. Moon-American.

- j. Pem All Fire Extinguisher Corp.; a division of PEM Systems, Inc.
- k. Potter Roemer LLC.
- 1. Pyro-Chem; Tyco Safety Products.
- 2. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B and bar coding for documenting fire extinguisher location, inspections, maintenance, and recharging.
- B. Fire Extinguishers:
 - 1. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 4-A:60-B:C, 10-lb nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.
 - 2. Valves: Manufacturer's standard.
 - 3. Handles and Levers: Stainless steel.
 - 4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B, and bar coding for documenting fire-extinguisher location, inspections, maintenance, and recharging.

2.3 MOUNTING BRACKETS

- A. Mounting Brackets: Manufacturer's standard galvanized steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Amerex Corporation.
 - b. Ansul Incorporated; Tyco International Ltd.
 - c. Badger Fire Protection; a Kidde company.
 - d. Buckeye Fire Equipment Company.
 - e. Fire End & Croker Corporation.
 - f. J. L. Industries, Inc.; a division of Activar Construction Products Group.
 - g. Larsen's Manufacturing Company.
 - h. Potter Roemer LLC.
- B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.
 - 1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.
 - a. Orientation: Vertical.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fire extinguishers for proper charging and tagging.
 - 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 - 1. Mounting Brackets: 54 inches above finished floor to top of fire extinguisher.
- B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.
 - 1. Use mounting brackets instead of cabinets in Mechanical Rooms and elsewhere where indicated.

END OF SECTION 10 4416

SECTION 10 5113 - METAL LOCKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Knocked-down lockers.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of metal locker.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of metal locker and bench.
- B. Shop Drawings: For metal lockers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Show locker trim and accessories.
 - 3. Include locker identification system and numbering sequence.
 - 4. Show accessible locker locations.
- C. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available.
- D. Samples for Verification: For the following products, in manufacturer's standard size:
 - 1. Lockers and equipment.
- E. Product Schedule: For lockers. Use same designations indicated on Drawings.

10 5113 - 1

TECHNICAL SPECIFICATIONS

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For adjusting, repairing, and replacing locker doors and latching mechanisms to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Full-size units of the following metal locker hardware items equal to 10 percent of amount installed for each type and finish installed, but no fewer than five units:
 - a. Locks.
 - b. Blank identification plates.
 - c. Hooks.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver metal lockers until spaces to receive them are clean, dry, and ready for their installation.

1.9 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of recessed openings by field measurements before fabrication.

1.10 COORDINATION

- A. Coordinate sizes and locations of wood bases and benches for metal lockers, where indicated.
- B. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of work specified in other Sections to ensure that metal lockers can be supported and installed as indicated.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of metal lockers that fail in materials or workmanship, excluding finish, within specified warranty period.

10 5113 - 2

- 1. Failures include, but are not limited to, the following:
 - a. Structural failures.
 - b. Faulty operation of latches and other door hardware.
- 2. Damage from deliberate destruction and vandalism is excluded.
- 3. Warranty Period for Knocked-Down Metal Lockers: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain metal lockers and accessories from single source from single locker manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Accessibility Requirements: Provide accessible lockers at 5 percent of any knock-down locker bank or area. For accessible lockers, comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines and ICC A117.1.
 - 1. Provide specified digital keypads at each accessible knock-down locker.

2.3 KNOCKED-DOWN LOCKERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. General Storage Systems Ltd.
 - 2. Hadrian Manufacturing Inc.
 - 3. Lyon Workspace Products, LLC.
 - 4. Penco Products, Inc.
 - 5. Republic Storage Systems, LLC.
 - 6. ASI Storage Solutions Inc.
- B. Doors: One piece; fabricated from 0.060-inch nominal-thickness steel sheet; formed into channel shape with double bend at vertical edges and with right-angle single bend at horizontal edges.
 - 1. Doors less than 12 inches wide may be fabricated from 0.048-inch nominal-thickness steel sheet.
 - 2. Reinforcement: Manufacturer's standard reinforcing angles, channels, or stiffeners for doors more than 15 inches wide; welded to inner face of doors.
 - 3. Stiffeners: Manufacturer's standard full-height stiffener fabricated from 0.048-inch nominal-thickness steel sheet; welded to inner face of doors.

- 4. Sound-Dampening Panels: Manufacturer's standard, designed to stiffen doors and reduce sound levels when doors are closed, of die-formed metal with full perimeter flange and sound-dampening material; welded to inner face of doors.
- 5. Door Style: Unperforated panel.
- C. Body: Assembled by riveting or bolting body components together. Fabricate from unperforated steel sheet with thicknesses as follows:
 - 1. Tops, Bottoms, and Intermediate Dividers: 0.024-inch nominal thickness, with single bend at sides.
 - 2. Backs and Sides: 0.024-inch nominal thickness, with full-height, double-flanged connections.
 - 3. Shelves: 0.024-inchnominal thickness, with double bend at front and single bend at sides and back.
- D. Frames: Channel formed; fabricated from 0.060-inch nominal-thickness steel sheet; lapped and factory welded at corners; with top and bottom main frames factory welded into vertical main frames. Form continuous, integral, full-height door strikes on vertical main frames.
 - 1. Cross Frames between Tiers: Channel formed and fabricated from same material as main frames; welded to vertical main frames.
- E. Hinges: Welded to door and attached to door frame with no fewer than two factory-installed rivets per hinge that are completely concealed and tamper resistant when door is closed; fabricated to swing 180 degrees.
 - 1. Continuous Hinges: Manufacturer's standard, steel, full height.
- F. Projecting Door Handle and Latch: Finger-lift latch control designed for use with padlocks; positive automatic latching, chromium plated; pry and vandal resistant.
 - 1. Latch Hooks: Equip doors 48 inches and higher with three latch hooks and doors less than 48 inches high with two latch hooks; fabricated from 0.105-inch nominal-thickness steel sheet; welded or riveted to full-height door strikes; with resilient silencer on each latch hook.
 - 2. Latching Mechanism: Manufacturer's standard, rattle-free latching mechanism and moving components isolated to prevent metal-to-metal contact, and incorporating a prelocking device that allows locker door to be locked while door is open and then closed without unlocking or damaging lock or latching mechanism.
- G. Locks:
 - 1. Hasp for user-provided combination padlocks.
 - 2. Digital keypad locks on accessible lockers.
- H. Identification Plates: Manufacturer's standard, etched, embossed, or stamped aluminum plates, with numbers and letters at least 3/8 inch high.
- I. Hooks: Manufacturer's standard ball-pointed type hooks, aluminum or steel; zinc plated.
- J. Coat Rods: Manufacturer's standard.

- K. Continuous Zee Base: Fabricated from 0.075-inch nominal-thickness steel sheet. Provide for locker that do not have millwork base and bench built-in.
 - 1. Height: 6 inches.
- L. Filler Panels: Fabricated from 0.036-inch nominal-thickness steel sheet.
- M. Finished End Panels: Fabricated from 0.024-inch nominal-thickness steel sheet.
- N. Materials:
 - 1. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B, suitable for exposed applications.
- O. Finish: Baked enamel or powder coat.
 - 1. Color: As selected by Architect from manufacturer's full range.

2.4 LOCKS

- A. Combination Padlock: Provide hasp for user-provided locks.
- B. Digital Keypad Lock: Where indicated in the drawings and at all accessible lockers, provide battery-powered electronic keypad with reprogrammable manager and owner codes that override access. Three consecutive incorrect code entries shall disable lock for three minutes.
 - 1. Designed for shared or temporary access by multiple users, with user-defined code to lock and unlock. Provide LED indicator to show when lock is in use.
 - 2. Basis of Design Product: DK Series by Digilock. Provide basis of design product or equivalent product with at least the following characteristics:
 - a. Battery operated with low battery indicator light.
 - b. Four digit code.
 - c. Master key override, for supervisory control.
 - d. Shared Use: User set code is reprogrammable when door is unlocked.
 - e. Assigned Use: Administrator set code is reprogrammable by use of key.
 - f. Dead locking bolt.
 - g. Spring bolt latch.
 - h. Finish: Brushed Nickel.

2.5 FABRICATION

- A. Fabricate metal lockers square, rigid, without warp, and with metal faces flat and free of dents or distortion. Make exposed metal edges safe to touch and free of sharp edges and burrs.
 - 1. Form body panels, doors, shelves, and accessories from one-piece steel sheet unless otherwise indicated.
 - 2. Provide fasteners, filler plates, supports, clips, and closures as required for complete installation.

- B. Fabricate each metal locker with an individual door and frame; individual top, bottom, and back; and common intermediate uprights separating compartments.
- C. Equipment: Provide each locker with an identification plate and the following equipment:
 - 1. Single-Tier Units: Shelf, one double-prong ceiling hook, and two single-prong wall hooks.
 - 2. Double-Tier Units: One double-prong ceiling hook and two single-prong wall hooks.
 - 3. Double-Tier Z-shaped Units: One double-prong ceiling hook and two single-prong wall hooks.
 - 4. Triple-Tier Units: One double-prong ceiling hook.
 - 5. Receiving Area Box Lockers: Coat rods for each compartment.
 - 6. Coat Rods: For each compartment of each locker.
- D. Knocked-Down Construction: Fabricate metal lockers using nuts, bolts, screws, or rivets for nominal assembly at Project site.
- E. Accessible Lockers: Fabricate as follows:
 - 1. Locate bottom shelf no lower than 15 inches above the floor.
 - 2. Where hooks, coat rods, or additional shelves are provided, locate no higher than 48 inches above the floor.
- F. Continuous Zee Base: Fabricated in lengths as long as practical to enclose base and base ends; finished to match lockers.
- G. Filler Panels: Fabricated in an unequal leg angle shape; finished to match lockers. Provide slipjoint filler angle formed to receive filler panel.
- H. Finished End Panels: Designed for concealing unused penetrations and fasteners, except for perimeter fasteners, at exposed ends of nonrecessed metal lockers; finished to match lockers.
 - 1. Provide one-piece panels for double-row (back-to-back) locker ends.

2.6 ACCESSORIES

- A. Fasteners: Zinc- or nickel-plated steel, slotless-type, exposed bolt heads; with self-locking nuts or lock washers for nuts on moving parts.
- B. Anchors: Material, type, and size required for secure anchorage to each substrate.
 - 1. Provide nonferrous-metal or hot-dip galvanized anchors and inserts on inside face of exterior walls for corrosion resistance.
 - 2. Provide toothed-steel or lead expansion sleeves for drilled-in-place anchors.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine walls, floors, and support bases, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install lockers level, plumb, and true; shim as required, using concealed shims.
 - 1. Anchor locker runs at ends and at intervals recommended by manufacturer, but not more than 36 inches o.c. Using concealed fasteners, install anchors through backup reinforcing plates, channels, or blocking as required to prevent metal distortion.
 - 2. Anchor single rows of metal lockers to walls near top and bottom of lockers.
- B. Knocked-Down Lockers: Assemble with manufacturer's standard fasteners, with no exposed fasteners on door faces or face frames.
- C. Equipment:
 - 1. Attach hooks with at least two fasteners.
 - 2. Attach door locks on doors using security-type fasteners.
 - 3. Identification Plates: Identify metal lockers with identification indicated on Drawings.
 - a. Attach plates to each locker door, near top, centered, with at least two aluminum rivets.
 - b. Attach plates to upper shelf of each open-front metal locker, centered, with a least two aluminum rivets.
- D. Trim: Fit exposed connections of trim, fillers, and closures accurately together to form tight, hairline joints, with concealed fasteners and splice plates.
 - 1. Attach filler panels with concealed fasteners. Locate filler panels where indicated on Drawings.
 - 2. Attach sloping-top units to metal lockers, with closures at exposed ends.
 - 3. Attach finished end panels using fasteners only at perimeter to conceal exposed ends of nonrecessed metal lockers.

3.3 ADJUSTING

A. Clean, lubricate, and adjust hardware. Adjust doors and latches to operate easily without binding. Verify that integral locking devices operate properly.

10 5113 - 7

3.4 **PROTECTION**

- A. Protect metal lockers from damage, abuse, dust, dirt, stain, or paint. Do not permit use during construction.
- B. Touch up marred finishes, or replace metal lockers that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by locker manufacturer.

END OF SECTION 10 5113

SECTION 11 3013 - RESIDENTIAL APPLIANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cooking appliances.
 - 2. Refrigeration appliances.
 - 3. Trash compactors.
- B. Related Requirements:
 - 1. Section 22 4100 "Residential Plumbing Fixtures" for kitchen sinks, dishwasher air-gap fittings, waste (garbage) disposers, and instant hot-water dispensers.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include installation details, material descriptions, dimensions of individual components, and finishes for each appliance.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished accessories.
- B. Sustainable Design Submittals:
 - 1. <u>ENERGY STAR</u>: Product Data for indicated products, showing compliance with requirements for ENERGY STAR product labeling.
 - 2. <u>Product Data</u>: For water-efficient clothes washer, indicating compliance with requirements.
- C. Samples: For each exposed product and for each color and texture specified, in manufacturer's standard size.
- D. Product Schedule: For appliances.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Product Certificates: For each type of appliance.
- C. Field quality-control reports.
- D. Sample Warranties: For manufacturers' special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each residential appliance to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintains, within <Insert number> miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

1.8 WARRANTY

- A. Special Warranties: Manufacturer agrees to repair or replace residential appliances or components that fail in materials or workmanship within specified warranty period except as qualified below:
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Microwave Oven: Limited warranty, including parts and labor for first year and parts thereafter, for on-site service on the magnetron tube.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- C. Refrigerator/Freezer, Sealed System: Limited warranty, including parts and labor for first year and parts thereafter, for on-site service on the product.
 - 1. Warranty Period for Sealed Refrigeration System: Five years from date of Substantial Completion.
 - 2. Warranty Period for Other Components: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain residential appliances from single source.

TECHNICAL SPECIFICATIONS

2.2 PERFORMANCE REQUIREMENTS

- A. Electrical Appliances: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Accessibility: Where residential appliances are indicated to comply with accessibility requirements, comply with applicable provisions in the DOJ's 2010 ADA Standards for Accessible Design and ICC A117.1.
- 2.3 COOKTOPS

2.4 MICROWAVE OVENS

- A. Microwave Oven:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amana; a division of Whirlpool Corporation</u>.
 - b. BSH Home Appliances Corporation (Bosch).
 - c. <u>BSH Home Appliances Corporation (Gaggenau)</u>.
 - d. BSH Home Appliances Corporation (Thermador).
 - e. <u>Dacor, Inc</u>.
 - f. DCS Appliances, Inc.; a subsidiary of Fisher and Paykel Appliances Limited.
 - g. <u>Electrolux Home Products (Frigidaire)</u>.
 - h. Fisher & Paykel Appliances Limited.
 - i. <u>Haier Group (GE Appliances)</u>.
 - j. Jenn-Air; a division of Whirlpool Corporation.
 - k. <u>KitchenAid; a division of Whirlpool Corporation</u>.
 - 1. <u>LG Electronics</u>.
 - m. <u>Maytag; a division of Whirlpool Corporation</u>.
 - n. <u>Miele, Inc</u>.
 - o. <u>Samsung</u>.
 - p. <u>Sears Brands LLC (Kenmore)</u>.
 - q. <u>Sharp Electronics Corp</u>.
 - r. <u>Sub-Zero, Inc. (Sub-Zero and Wolf)</u>.
 - s. <u>Viking Range, LLC; a company of the Middleby Corporation</u>.
 - t. Whirlpool Corporation.
 - 2. Mounting: Countertop .
 - 3. Type: Conventional.
 - 4. Dimensions:
 - a. Width: 24 inches.
 - b. Depth: 19-1/2 inches.
 - c. Height: 18 inches.
 - 5. Capacity: 1.5 cu. ft..
 - 6. Oven Door: Door with observation window and pushbutton latch release.

- 7. Exhaust Fan: Variable-speed fan, nonvented, recirculating type with charcoal filter and with manufacturer's standard 300-cfm capacity.
- 8. Microwave Power Rating: Manufacturer's standard.
- 9. Electric Power Supply: As indicated on Drawings.
- 10. Controls: Digital panel controls and timer display.
- 11. Other Features: Turntable and lock-out feature.
- 12. Material: Porcelain-enameled steel.
 - a. Color/Finish: White.

2.5 REFRIGERATOR/FREEZERS

- A. Refrigerator/Freezer: One-door refrigerator with freezer compartment inside and complying with AHAM HRF-1.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amana; a division of Whirlpool Corporation</u>.
 - b. <u>BSH Home Appliances Corporation (Bosch)</u>.
 - c. <u>BSH Home Appliances Corporation (Gaggenau)</u>.
 - d. <u>BSH Home Appliances Corporation (Thermador)</u>.
 - e. <u>Dacor, Inc</u>.
 - f. DCS Appliances, Inc.; a subsidiary of Fisher and Paykel Appliances Limited.
 - g. <u>Electrolux Home Products (Frigidaire)</u>.
 - h. Fisher & Paykel Appliances Limited.
 - i. <u>Haier Group (GE Appliances)</u>.
 - j. Jenn-Air; a division of Whirlpool Corporation.
 - k. <u>KitchenAid; a division of Whirlpool Corporation</u>.
 - l. <u>LG Electronics</u>.
 - m. <u>Maytag; a division of Whirlpool Corporation</u>.
 - n. <u>Miele, Inc</u>.
 - o. <u>Samsung</u>.
 - p. <u>Sears Brands LLC (Kenmore)</u>.
 - q. <u>Sub-Zero, Inc. (Sub-Zero and Wolf)</u>.
 - r. <u>Viking Range, LLC; a company of the Middleby Corporation</u>.
 - s. Whirlpool Corporation.
 - 2. Type: Undercounter.
 - 3. Dimensions:
 - a. Provide a unit to fit below the countertop shown on the drawings.

11 3013 - 4

- 4. ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.
- 5. Front Panel(s): Manufacturer's standard.
 - a. Panel Color: White.
- 6. Appliance Color/Finish: White.

TECHNICAL SPECIFICATIONS

2.6 GENERAL FINISH REQUIREMENTS

- A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, power connections, and other conditions affecting installation and performance of residential appliances.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before appliance installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install appliances according to manufacturer's written instructions.
- B. Built-in Equipment: Securely anchor units to supporting cabinets or countertops with concealed fasteners. Verify that clearances are adequate for proper functioning and that rough openings are completely concealed.
- C. Freestanding Equipment: Place units in final locations after finishes have been completed in each area. Verify that clearances are adequate to properly operate equipment.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Perform visual, mechanical, and electrical inspection and testing for each appliance according to manufacturers' written recommendations. Certify compliance with each manufacturer's appliance-performance parameters.
 - 2. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After installation, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and components.

- B. An appliance will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain residential appliances.

END OF SECTION 11 3013

SECTION 12 3623.13 - PLASTIC-LAMINATE-CLAD COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes
 - 1. Plastic-laminate-clad countertops.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
- B. Shop Drawings: For plastic-laminate-clad countertops.
 - 1. Include plans, sections, details, and attachments to other work. Detail fabrication and installation, including field joints.
 - 2. Show locations and sizes of cutouts and holes for items installed in plastic-laminate-clad countertops.
 - 3. Apply AWI Quality Certification Program label to Shop Drawings.
- C. Samples: Plastic laminates in each type, color, pattern, and surface finish required in manufacturer's standard size.
- D. Samples for Initial Selection: For plastic laminates.
- E. Samples for Verification: As follows:
 - 1. Plastic Laminates: For each type, color, pattern, and surface finish required, 8 by 10 inches in size.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Certificates: For the following:

- 1. Composite wood and agrifiber products.
- 2. High-pressure decorative laminate.
- 3. Adhesives.
- C. Quality Standard Compliance Certificates: AWI Quality Certification Program.
- D. Evaluation Reports: For fire-retardant-treated materials, from ICC-ES.

1.5 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful inservice performance.
 - 1. Shop Certification: AWI's Quality Certification Program accredited participant.
- B. Installer Qualifications: AWI's Quality Certification Program accredited participant.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver countertops only after casework and supports on which they will be installed have been completed in installation areas.
- B. Store countertops in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.
- C. Keep surfaces of countertops covered with protective covering during handling and installation.

1.7 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wetwork is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.
- B. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wetwork is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 percent during the remainder of the construction period.
- C. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- D. Established Dimensions: Where countertops are indicated to fit to other construction, establish dimensions for areas where countertops are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

TECHNICAL SPECIFICATIONS

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD COUNTERTOPS

- A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of plastic-laminate-clad countertops indicated for construction, finishes, installation, and other requirements.
 - 1. Provide inspections of fabrication and installation together with labels and certificates from AWI certification program indicating that countertops comply with requirements of grades specified.
 - 2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with requirements of Contract Documents in addition to those of the referenced quality standard.
- B. Grade: Custom.
- C. High-Pressure Decorative Laminate: NEMA LD 3, grade as required by woodwork standard.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>Formica Corporation</u>.
 - b. <u>Nevamar; a Panolam Industries International, Inc. brand</u>.
 - c. <u>Pionite; a Panolam Industries International, Inc. brand</u>.
- D. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As selected by Architect from manufacturer's full range in the following categories:
 - a. Solid colors with core same color as surface, matte finish.
 - b. Patterns, matte finish.
- E. Edge Treatment: Same as laminate cladding on horizontal surfaces.
- F. Core Material: Particleboard or MDF.
- G. Core Material at Sinks: Particleboard made with exterior glue or exterior-grade plywood.
- H. Core Thickness: 3/4 inch.
 - 1. Build up countertop thickness to 1-1/2 inches at front, back, and ends with additional layers of core material laminated to top.
- I. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.2 WOOD MATERIALS

- A. Wood Products: Provide materials that comply with requirements of referenced quality standard unless otherwise indicated.
 - 1. Wood Moisture Content: 8 to 13 percent.

2.3 ACCESSORIES

- A. Wire-Management Grommets: Circular, molded-plastic grommets and matching plastic caps with slot for wire passage.
 - 1. Outside Diameter: 1-1/4 inch.
 - 2. Color: Black,

2.4 MISCELLANEOUS MATERIALS

- A. Adhesive for Bonding Plastic Laminate: As selected by fabricator to comply with requirements.
 - 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

2.5 FABRICATION

- A. Fabricate countertops to dimensions, profiles, and details indicated. Provide front and end overhang of 1 inch over base cabinets. Ease edges to radius indicated for the following:
 - 1. Solid-Wood (Lumber) Members: 1/16 inch unless otherwise indicated.
- B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
 - 1. Notify Architect seven days in advance of the dates and times countertop fabrication will be complete.
 - 2. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that various parts fit as intended, and check measurements of assemblies against field measurements before disassembling for shipment.
- C. Shop cut openings to maximum extent possible to receive appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
 - 1. Seal edges of cutouts by saturating with varnish.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.
- B. Before installing countertops, examine shop-fabricated work for completion and complete work as required, including removal of packing.

3.2 INSTALLATION

- A. Grade: Install countertops to comply with same grade as item to be installed.
- B. Assemble countertops and complete fabrication at Project site to the extent that it was not completed in the shop.
 - 1. Provide cutouts for appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
 - 2. Seal edges of cutouts by saturating with varnish.
- C. Field Jointing: Where possible, make in the same manner as shop jointing, using dowels, splines, adhesives, and fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.
 - 1. Secure field joints in countertops with concealed clamping devices located within 6 inches of front and back edges and at intervals not exceeding 24 inches. Tighten according to manufacturer's written instructions to exert a constant, heavy-clamping pressure at joints.
- D. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- E. Countertop Installation: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.
 - 1. Install countertops level and true in line. Use concealed shims as required to maintain not more than a 1/8-inch-in-96-inches variation from a straight, level plane.
 - 2. Secure backsplashes to tops with concealed metal brackets at 16 inches o.c. and to walls with adhesive.
 - 3. Seal joints between countertop and backsplash, if any, and joints where countertop and backsplash abut walls with mildew-resistant silicone sealant or another permanently elastic sealing compound recommended by countertop material manufacturer.

TECHNICAL SPECIFICATIONS

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects. Where not possible to repair, replace countertops. Adjust joinery for uniform appearance.
- B. Clean countertops on exposed and semiexposed surfaces.
- C. Protection: Provide Kraft paper or other suitable covering over countertop surfaces, taped to underside of countertop at a minimum of 48 inches o.c. Remove protection at Substantial Completion.

END OF SECTION 12 3623.13

SECTION 22 0500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Sleeves.
 - 5. Escutcheons.
 - 6. Grout.
 - 7. Equipment installation requirements common to equipment sections.
 - 8. Painting and finishing.
 - 9. Supports and anchorages.

1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
 - 1. The component is required to function for life-safety purposes after an earthquake.
 - 2. The component contains hazardous materials.
 - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Equipment, pipe hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 22 0548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
 - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

1.4 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Escutcheons.
- B. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
- B.
- 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

2.4 TRANSITION FITTINGS

- A. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- E. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.6 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.7 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- D. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.8 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PLUMBING DEMOLITION

- A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 SEISMIC REQUIREMENTS

A. Comply with SEI/ASCE 7 and with requirements for seismic seismic-restraint devices in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

3.3 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - New Piping:

1

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with spring clips.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
- f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- 2. Existing Piping: Use the following:
 - a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.

- b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, castbrass type with chrome-plated finish.
- c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and spring clips.
- d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
- e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and set screw.
- f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
- g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with set screw or spring clips.
- h. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.
- M. Sleeves are not required for core-drilled holes.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

TECHNICAL SPECIFICATIONS

3.4 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.6 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.7 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.9 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.10 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 220500

BLANK PAGE

SECTION 22 0517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: 1. Sleeves.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

- B. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- C. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 22 0517

SECTION 22 0518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to 2 inch (50mm), tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type with polished, chrome-plated finish.

- b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with chrome-plated finish.
- d. Bare Piping 2 inch (50mm)and Smaller at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- e. Bare Piping Larger than 2 inch (50mm)at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type with polished, chrome-plated finish.
- f. Bare Piping 2 inch (50mm)and Smaller at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- g. Bare Piping Larger than 2 inch (50mm) at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type with polished, chrome-plated finish.
- h. Bare Piping 2 inch (50mm) and Smaller in Unfinished Service Spaces: One-piece, cast- type with polished, chrome-plated or rough-brass finish.
- i. Bare Piping Larger than 2 inch (50mm)in Unfinished Service Spaces: One-piece, stamped-steel type with polished, chrome-plated finish.
- j. Bare Piping 2 inch (50mm) and Smaller in Equipment Rooms: One-piece, castbrass type with polished, chrome-plated or rough-brass finish.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 22 0518

SECTION 22 0519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermometers.
 - 2. Gages.
 - 3. Test plugs.
- B. Related Sections:
 - 1. Division 22 Section "Facility Water Distribution Piping" for domestic and fire-protection water service meters outside the building.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated; include performance curves.

PART 2 - PRODUCTS

2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Palmer Wahl Instruments Inc.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.

- B. Case: Die-cast aluminum or brass, 7 inches long.
- C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 THERMOWELLS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AMETEK, Inc.; U.S. Gauge Div.
 - 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 3. Ernst Gage Co.
 - 4. Marsh Bellofram.
 - 5. Miljoco Corp.
 - 6. NANMAC Corporation.
 - 7. Noshok, Inc.
 - 8. Palmer Wahl Instruments Inc.
 - 9. **REO TEMP Instrument Corporation**.
 - 10. Tel-Tru Manufacturing Company.
 - 11. Trerice, H. O. Co.
 - 12. Weiss Instruments, Inc.
 - 13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 14. WIKA Instrument Corporation.
 - 15. Winters Instruments.
- B. Manufacturers: Same as manufacturer of thermometer being used.
- C. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.3 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. AMETEK, Inc.; U.S. Gauge Div.
- 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
- 3. Ernst Gage Co.
- 4. Eugene Ernst Products Co.
- 5. KOBOLD Instruments, Inc.
- 6. Marsh Bellofram.
- 7. Miljoco Corp.
- 8. Noshok, Inc.
- 9. Palmer Wahl Instruments Inc.
- 10. REO TEMP Instrument Corporation.
- 11. Trerice, H. O. Co.
- 12. Weiss Instruments, Inc.
- 13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- 14. WIKA Instrument Corporation.
- 15. Winters Instruments.
- B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Liquid-filled type, drawn steel or cast aluminum, 6-inch diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red or other dark-color metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.
 - 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
 - 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
 - 11. Range for Fluids under Pressure: Two times operating pressure.
- C. Pressure-Gage Fittings:
 - 1. Valves: NPS 1/4 brass or stainless-steel needle type.
 - 2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.4 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. MG Piping Products Co.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Co.
 - 6. Trerice, H. O. Co.
 - 7. Watts Industries, Inc.; Water Products Div.

- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- D. Core Inserts: One or two self-sealing rubber valves.
 - 1. Insert material for water service at 20 to 200 deg F shall be CR.
 - 2. Insert material for water service at minus 30 to plus 275 deg F shall be EPDM.

Retain paragraph below if required.

- E. Test Kit: Furnish one test kit(s) containing one pressure gage and adaptor, one thermometer, and carrying case. Pressure gage, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping.
 - 1. Pressure Gage: Small bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be 0 to 200 psig.

Retain one of first two subparagraphs below. If both are required, indicate location of each on Drawings.

- 2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F.
- 3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F.
- 4. Carrying case shall have formed instrument padding.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

- A. Install liquid-in-glass thermometers in the outlet of each domestic, hot-water storage tank.
- B. Install liquid-filled-case-type, vapor-actuated dial thermometers at suction and discharge of each pump.
- C. Provide the following temperature ranges for thermometers:
 - 1. Domestic Hot Water: 30 to 240 deg F, with 2-degree scale divisions.
 - 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

- A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.
- B. Install liquid-filled-case-type pressure gages at suction and discharge of each pump.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.
- C. Install thermowells with socket extending to center of pipe and in vertical position in piping tees where thermometers are indicated.
- D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- E. Install remote-mounting pressure gages on panel.
- F. Install needle-valve and snubber fitting in piping for each pressure gage.
- G. Install test plugs in tees in piping.
- H. Install permanent indicators on walls or brackets in accessible and readable positions.
- I. Install connection fittings for attachment to portable indicators in accessible locations.
- J. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
- K. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION 22 0519

BLANK PAGE

SECTION 22 0523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Bronze lift check valves.
 - 3. Bronze swing check valves.
 - 4. Bronze globe valves.
 - 5. Lubricated plug valves.
- B. Related Sections:
 - 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 - 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:

- 1. Handwheel: For valves other than quarter-turn types.
- 2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
- 3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug-valve head.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
- F. Valve-End Connections:
 - 1. Solder Joint: With sockets according to ASME B16.18.
 - 2. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. Crane Co.; Crane Valve Group; Crane Valves.
 - d. Hammond Valve.
 - e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 - f. Legend Valve.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Red-White Valve Corporation.
 - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.

2.3 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.4 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Hammond Valve.
 - f. Kitz Corporation.
 - g. Milwaukee Valve Company.
 - h. NIBCO INC.
 - i. Powell Valves.
 - j. Red-White Valve Corporation.
 - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - l. Zy-Tech Global Industries, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.5 BRONZE GLOBE VALVES

- A. Class 125, Bronze Globe Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Powell Valves.
 - g. Red-White Valve Corporation.
 - h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem and Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball valves.
 - 2. Throttling Service: Globe or ball valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two piece, full port, bronze with bronze trim.
 - 3. Bronze Swing Check Valves: Class 125, bronze disc.
 - 4. Bronze Globe Valves: Class 125, bronze disc.

END OF SECTION 22 0523

SECTION 22 0529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe positioning systems.
 - 8. Equipment supports.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for firesuppression piping.
 - 3. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment.

1.5 SUBMITTALS

A. Product Data: For the following:

- 1. Steel pipe hangers and supports.
- 2. Thermal-hanger shield inserts.
- 3. Powder-actuated fastener systems.
- 4. Pipe positioning systems.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Pipe stands. Include Product Data for components.
 - 4. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel.", AWS D1.4, "Structural Welding Code--Reinforcing Steel." and ASME Boiler and Pressure Vessel Code: Section IX.
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 - 4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. Bergen-Power Pipe Supports.
 - 3. B-Line Systems, Inc.; a division of Cooper Industries.

- 4. Carpenter & Paterson, Inc.
- 5. Empire Industries, Inc.
- 6. ERICO/Michigan Hanger Co.
- 7. Globe Pipe Hanger Products, Inc.
- 8. Grinnell Corp.
- 9. GS Metals Corp.
- 10. National Pipe Hanger Corporation.
- 11. PHD Manufacturing, Inc.
- 12. PHS Industries, Inc.
- 13. Piping Technology & Products, Inc.
- 14. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. GS Metals Corp.
 - 4. Power-Strut Div.; Tyco International, Ltd.
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc.
 - 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.

- 2. ERICO/Michigan Hanger Co.
- 3. PHS Industries, Inc.
- 4. Pipe Shields, Inc.
- 5. Rilco Manufacturing Company, Inc.
- 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

- 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. MIRO Industries.
- D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
 - c. Portable Pipe Hangers.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Portable Pipe Hangers.
 - 2. Bases: One or more plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structuralsteel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

- A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.
- B. Manufacturers:
 - 1. C & S Mfg. Corp.
 - 2. HOLDRITE Corp.; Hubbard Enterprises.
 - 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
 - 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.

- 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
- 16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include

auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

- a. Horizontal (MSS Type 54): Mounted horizontally.
- b. Vertical (MSS Type 55): Mounted vertically.
- c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

- 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.
- G. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.
- H. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- I. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- K. Install lateral bracing with pipe hangers and supports to prevent swaying.
- L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- M. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- O. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.

- e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches .

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 22 0529

SECTION 22 0548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following seismic restraints and vibration isolation as defined in Section 23 0548 for the following:
 - 1. Plumbing Piping.

PART 2 - PRODUCTS

1.3 (NOT USED)

PART 3 - EXECUTION

1.4 (NOT USED)

END OF SECTION 22 0548

BLANK PAGE

SECTION 22 0553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Warning signs and labels.
 - 2. Pipe labels.
 - 3. Stencils.
 - 4. Valve tags.
 - 5. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.3 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Fiberboard or metal.
 - 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09.

- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feetalong each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule:

1.

- Domestic Water Piping:
 - a. Background Color: Comply with ASME A13.1.
 - b. Letter Color: Comply with ASME A13.1.
- 2. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Comply with ASME A13.1.
 - b. Letter Color: Comply with ASME A13.1.

3.3 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round.
 - b. Hot Water: 1-1/2 inches, round.
 - 2. Valve-Tag Color:
 - a. Cold Water: Comply with ASME A13.1.
 - b. Hot Water: Comply with ASME A13.1.
 - 3. Letter Color:
 - a. Cold Water: Comply with ASME A13.1.
 - b. Hot Water: Comply with ASME A13.1.
3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 22 0553

BLANK PAGE

SECTION 22 0700 - PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Insulation Materials:
 - a.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
- 2.
- 3. Adhesives.
- 4. Lagging adhesives.
- 5. Sealants.
- 6. Factory-applied jackets.
- 7. Field-applied fabric-reinforcing mesh.
- 8. Field-applied jackets.
- 9. Tapes.
- 10. Securements.
- 11. Corner angles.
- B. Related Sections include the following:
 - 1.
 - 2. Division 23 Section "HVAC Insulation."

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at pipe expansion joints for each type of insulation.
 - 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 4. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 5. Detail application of field-applied jackets.

- C. Qualification Data: For qualified Installer.
- D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- E. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.

1.

- b. Johns Manville; Micro-Lok.
- c. Knauf Insulation; 1000(Pipe Insulation.
- d. Manson Insulation Inc.; Alley-K.
- e. Owens Corning; Fiberglas Pipe Insulation.
- 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- J. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.

- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Encacel.
 - b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
 - c. Marathon Industries, Inc.; 570.
 - d. Mon-Eco Industries, Inc.; 55-70.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.
 - d. Mon-Eco Industries, Inc.; 11-30.
 - e. Vimasco Corporation; 136.

- 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over equipment and pipe insulation.
- 3. Service Temperature Range: Minus 50 to plus 180 deg F.
- 4. Color: White.

2.5 SEALANTS

1.

- A. FSK and Metal Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following: a. Childers Products, Division of ITW; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
 - 5. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - a. Products: Subject to compliance with requirements, provide the following:

1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
 - 5. Factory-fabricated tank heads and tank side panels.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.

1.

- 3. Thickness: 3.7 mils.
- 4. Adhesion: 100 ounces force/inch in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.
 - 2. Width: 3 inches.
 - 3. Film Thickness: 4 mils.
 - 4. Adhesive Thickness: 1.5 mils.
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch in width.

2.9 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
 - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

- Products: Subject to compliance with requirements, provide one of the following: a.
 - AGM Industries, Inc.; Tactoo Insul-Hangers, Series T. 1)
 - **GEMCO:** Perforated Base. 2)
 - 3) Midwest Fasteners, Inc.; Spindle.
- Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches b. square.
- Spindle: Aluminum or Stainless steel, fully annealed, 0.106-inch- diameter shank, c. length to suit depth of insulation indicated.
- Adhesive: Recommended by hanger manufacturer. Product with demonstrated d. capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - Products: Subject to compliance with requirements, provide one of the following: a.
 - AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA. 1)
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners. Inc.: Self Stick.
 - Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square. b.
 - Spindle: Aluminum or Stainless steel], fully annealed, 0.106-inch- diameter с. shank, length to suit depth of insulation indicated.
 - Adhesive-backed base with a peel-off protective cover. d.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum or stainless-steel] sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter. a.
 - Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO: R-150.
 - Midwest Fasteners, Inc.; WA-150. 3)
 - Nelson Stud Welding; Speed Clips. 4)
 - Protect ends with capped self-locking washers incorporating a spring steel insert to b. ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- Wire: 0.080-inch nickel-copper alloy or 0.062-inch soft-annealed, stainless steel. D.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - C & F Wire. a.
 - b. Childers Products.
 - PABCO Metals Corporation. с.
 - d. **RPR** Products. Inc.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.

- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" Firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.

- 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
- 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch- diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from aluminum or stainless steel, at least 0.040 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

- 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
- 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
- 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

- 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
- 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

- 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- D. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.10 FINISHES

- A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

- B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- C. Domestic hot-water pump insulation shall be the following:
 1. Mineral-Fiber Board: 1 inch thick and 2-lb/cu. ft. nominal density.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 1-1/2 and Smaller: Insulation shall be the following: a.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch
 - 2. NPS 2 and Larger: Insulation shall be the following:

a.

- b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
- B. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
 - 2. NPS 2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
- C. Stormwater and Overflow:
 - 1. All Pipe Sizes: Insulation shall be he following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
- D. Roof Drain and Overflow Drain Bodies:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
- E. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed: 1. None.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches.
 1.
 - 2. Aluminum, Stucco Embossed: 0.016 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1.
 - 2. Aluminum, Stucco Embossed with 1-1/4-Inch- Deep Corrugations: 0.032 inch thick.
- F. Piping, Concealed: 1. None.
- G. Piping, Exposed:1. PVC: 20 mils thick.

END OF SECTION 22 0700

SECTION 22 1116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 - 2. Specialty valves.
 - 3. Flexible connectors.
 - 4. Escutcheons.
 - 5. Sleeves and sleeve seals.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Domestic water piping and support and installation shall withstand effects of earthquake motions determined according to 2009 International Building Code.

1.4 SUBMITTALS

- A. Product Data: For the following products:
 - 1. Specialty valves.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Flexible connectors.
 - 5. Backflow preventers and vacuum breakers.
 - 6. Escutcheons.
 - 7. Sleeves and sleeve seals.
 - 8. Water penetration systems.
- B. Water Samples: Specified in "Cleaning" Article.
- C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Fire-suppression-water piping.
 - 2. Domestic water piping.

- 3. HVAC hydronic piping.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic, potable domestic water piping and components. Include marking "NSF-pw" on piping.
- C. Comply with NSF 61 for potable domestic water piping and components.

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
 - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-andsocket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
 - 1. Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.

2.3 PIPING JOINING MATERIALS

- A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.4 SPECIALTY VALVES

- A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
- B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.5 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cascade Waterworks Manufacturing.
 - b. Dresser, Inc.; Dresser Piping Specialties.
 - c. Ford Meter Box Company, Inc. (The).
 - d. JCM Industries.
 - e. Romac Industries, Inc.
 - f. Smith-Blair, Inc; a Sensus company.
 - g. Viking Johnson; c/o Mueller Co.

2.6 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric-Flange Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Description:

- a. Nonconducting materials for field assembly of companion flanges.
- b. Pressure Rating: 150 psig.
- c. Gasket: Neoprene or phenolic.
- d. Bolt Sleeves: Phenolic or polyethylene.
- e. Washers: Phenolic with steel backing washers.
- C. Dielectric Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Victaulic Company.
 - 2. Description:
 - a. Electroplated steel nipple complying with ASTM F 1545.
 - b. Pressure Rating: 300 psig at 225 deg F.
 - c. End Connections: Male threaded or grooved.
 - d. Lining: Inert and noncorrosive, propylene.

2.7 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Flexicraft Industries.
 - 3. Flex Pression, Ltd.
 - 4. Flex-Weld, Inc.
 - 5. Hyspan Precision Products, Inc.
 - 6. Mercer Rubber Co.
 - 7. Metraflex, Inc.
 - 8. Proco Products, Inc.
 - 9. Tozen Corporation.
 - 10. Unaflex, Inc.
 - 11. Universal Metal Hose; a Hyspan company
- B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum [200 psig] [250 psig].
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.
- C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum [200 psig] [250 psig].

- 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
- 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.8 ESCUTCHEONS

- A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.
- B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.
- C. One Piece, Deep Pattern: Deep-drawn, box-shaped brass with chrome-plated finish.
- D. One Piece, Stamped Steel: Chrome-plated finish with setscrew or spring clips.
- E. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.
- F. Split Plate, Stamped Steel: Chrome-plated finish with concealed hinge, setscrew or spring clips.
- G. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- H. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.9 SLEEVES

- A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- D. Molded-PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.
- E. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- F. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.
- G. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.10 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Advance Products & Systems, Inc.
- 2. Calpico, Inc.
- 3. Metraflex, Inc.
- 4. Pipeline Seal and Insulator, Inc.
- B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM-rubber OR NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.11 GROUT

- A. Standard: ASTM C 1107, Grade B, post-hardening and volume-adjusting, dry, hydrauliccement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- D. Install shutoff valve immediately upstream of each dielectric fitting.

- E. Install domestic water piping with 0.25 percent slope downward toward drain and plumb.
- F. Install seismic restraints on piping. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping adjacent to equipment and specialties to allow service and maintenance.
- K. Install piping to permit valve servicing.
- L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and branch connections.
- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.
- Q. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
- R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball valves for piping NPS 3 and smaller.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
 - 2. Stop-and-Waste Drain Valves: Instead of hose-end drain valves where indicated.
- D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-tometal transition fittings or unions.

TECHNICAL SPECIFICATIONS

3.6 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.7 FLEXIBLE CONNECTOR INSTALLATION

- A. Install bronze-hose flexible connectors in copper domestic water tubing.
- B. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- F. Install supports for vertical copper tubing every 10 feet.

G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.9 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 - 2. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.10 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors.
- B. Escutcheons for New Piping:
 - 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece or split casting, cast brass with polished chrome-plated finish.
 - 4. Bare Piping in Unfinished Service Spaces: One piece, stamped steel with set screw or spring clips.
 - 5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw or spring clips.
 - 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.
- C. Escutcheons for Existing Piping:
 - 1. Chrome-Plated Piping: Split casting, cast brass with chrome-plated finish.
 - 2. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
 - 3. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split plate, stamped steel with concealed hinge and spring clips.
 - 4. Bare Piping at Ceiling Penetrations in Finished Spaces: Split plate, stamped steel with concealed hinge and set screw.
 - 5. Bare Piping in Unfinished Service Spaces: Split plate, stamped steel with exposed-rivet hinge and set screw or spring clips.

- 6. Bare Piping in Equipment Rooms: Split plate, stamped steel with set screw or spring clips.
- 7. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.11 SLEEVE INSTALLATION

- A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.
- B. Sleeves are not required for core-drilled holes.
- C. Permanent sleeves are not required for holes formed by removable PE sleeves.
- D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.
- E. Install sleeves in new partitions, slabs, and walls as they are built.
- F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- H. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.
- I. Seal space outside of sleeves in concrete slabs and walls with grout.
- J. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.
- K. Install sleeve materials according to the following applications:
 - 1. Sleeves for Piping Passing through Concrete Floor Slabs: Molded PE, Molded PVC or Steel pipe.
 - 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 - a. Extend sleeves 2 inches above finished floor level.
 - For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 - a. Steel pipe sleeves for pipes smaller than NPS 6.
 - b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.

- c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.
- 4. Sleeves for Piping Passing through Concrete Roof Slabs: Molded PE, Molded PVC or Steel pipe.
- 5. Sleeves for Piping Passing through Exterior Concrete Walls:
 - a. Steel pipe sleeves for pipes smaller than NPS 6.
 - b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 - c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 - d. Do not use sleeves when wall penetration systems are used.
- 6. Sleeves for Piping Passing through Interior Concrete Walls:
 - a. Steel pipe sleeves for pipes smaller than NPS 6.
 - b. Galvanized-steel sheet sleeves for pipes NPS 6 and larger.
- L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.12 SLEEVE SEAL INSTALLATION

- A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
- B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.13 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.14 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Piping Inspections:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.

- 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- C. Piping Tests:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.15 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.

- 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
- 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
- 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
- 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.16 CLEANING

- A. Clean and disinfect potable and non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
3.17 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.
- E. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.
- F. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.
- G. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.

3.18 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball valves for piping NPS 3 and smaller.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 3 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 22 1116

BLANK PAGE

SECTION 22 1119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Balancing valves.
 - 3. Water pressure-reducing valves.
 - 4. Temperature-actuated water mixing valves.
 - 5. Strainers.
 - 6. Hose bibbs.
 - 7. Drain valves.
 - 8. Water hammer arresters.
- B. Related Sections include the following:
 - 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. FEBCO; SPX Valves & Controls.
 - e. Rain Bird Corporation.
 - f. Toro Company (The); Irrigation Div.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Zurn Plumbing Products Group; Wilkins Div.
 - 3. Standard: ASSE 1001.
 - 4. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 5. Body: Bronze.
 - 6. Inlet and Outlet Connections: Threaded.
 - 7. Finish: Chrome plated.
- B. Hose-Connection Vacuum Breakers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Arrowhead Brass Products, Inc.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. Legend Valve.
 - e. MIFAB, Inc.
 - f. Prier Products, Inc.
 - g. Watts Industries, Inc.; Water Products Div.
 - h. Woodford Manufacturing Company.
 - i. Zurn Plumbing Products Group; Light Commercial Operation.
 - j. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1011.
 - 3. Body: Bronze, nonremovable, with manual drain.

- 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 5. Finish: Chrome or nickel plated.

2.2 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Flo Fab Inc.
 - c. ITT Industries; Bell & Gossett Div.
 - d. NIBCO INC.
 - e. TAC Americas.
 - f. Taco, Inc.
 - g. Watts Industries, Inc.; Water Products Div.
 - 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
 - 3. Body: bronze,
 - 4. Size: Same as connected piping, but not larger than NPS 2.
 - 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.3 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators: (Direct Type) for 1/3 building flow rate
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cash Acme.
 - b. Conbraco Industries, Inc.
 - c. Honeywell Water Controls.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1003.
 - 3. Pressure Rating: Initial working pressure of 150 psig.
 - 4. Body: Bronze, provide chrome-plated finish if connected to chrome plated or stainless steel piping for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
 - 5. Valves for Booster Heater Water Supply: Include integral bypass.
 - 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.
- B. Water Control Valves: (Pilot type) for 2/3 building flow rate
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CLA-VAL Automatic Control Valves.
 - b. Mifab Corp; Beeco.

- c. Watts Industries, Inc.; Ames Fluid Control Systems.
- d. Watts Industries, Inc.; Watts ACV.
- e. Zurn Plumbing Products Group; Wilkins Div.
- 2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
- 3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDAapproved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
- 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
- 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.4 TEMPERATURE-ACTUATED WATER MIXING VALVES

- A. Individual-Fixture, Water Tempering Valves:
 - 1.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leonard Valve Company.
 - b. Powers; a Watts Industries Co.
 - c. Watts Industries, Inc.; Water Products Div.
 - 3. Standard: ASSE 1070, thermostatically controlled water tempering valve.
 - 4. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 5. Body: Bronze body with corrosion-resistant interior components.
 - 6. Temperature Control: Adjustable.
 - 7. Inlets and Outlet: Threaded.
 - 8. Finish: Rough or chrome-plated bronze.

2.5 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 - 5. Perforation Size:
 - a. StrainersNPS 2 and Smaller: 0.020 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 - c. Strainers NPS 5 and Larger: 0.10 inch.
 - 6. Drain: Factory-installed, hose-end drain valve.
 - 7. Tubing.

2.6 HOSE BIBBS

- A. Hose Bibbs HB-1:
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.

- 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
- 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
- 6. Pressure Rating: 125 psig.
- 7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hoseconnection vacuum breaker complying with ASSE 1011.
- 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
- 9. Finish for Service Areas: Chrome or nickel plated.
- 10. Finish for Finished Rooms: Chrome or nickel plated.
- 11. Operation for Equipment Rooms: Wheel handle or operating key.
- 12. Operation for Service Areas: Wheel handle.
- 13. Operation for Finished Rooms: Operating key.
- 14. Include operating key with each operating-key hose bibb.
- 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.
- 16. Woodford model W24P12PC 1/2", W24P34PC 3/4" or equal approved prior to bid.

2.7 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.
 - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.8 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters:
 - 1.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. PPP Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - g. Tyler Pipe; Wade Div.
 - h. Watts Drainage Products Inc.
 - i. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 3. Standard: ASSE 1010 or PDI-WH 201.
 - 4. Type: Metal bellows or Copper tube with piston.
 - 5. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- D. Install Y-pattern strainers for water on supply side of each control valve, water pressurereducing valve, solenoid valve, and pump.
- E. Install water hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

Retain both paragraphs below if retaining Part 2 "Trap-Seal Primer Systems" Article.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.
 - 2. Reduced-pressure-principle backflow preventers.
 - 3. Double-check backflow-prevention assemblies.
 - 4. Dual-check-valve backflow preventers.
 - 5. Calibrated balancing valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

- A. Set field-adjustable flow set points of balancing valves.
- B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 22 1119

BLANK PAGE

SECTION 22 1316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following for soil, waste, and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. LLDPE: Linear, low-density polyethylene plastic.
- C. NBR: Acrylonitrile-butadiene rubber.
- D. PVC: Polyvinyl chloride plastic.
- E. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 1. Soil, Waste, and Vent Piping: 10-foot head of water.
 - r S
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall be capable of withstanding the effects of seismic events determined according to 2006 International Building Code.

1.5 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Shop Drawings:
 - 1. Design Calculations: Signed and sealed by a qualified professional engineer for selecting seismic restraints.

C. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE

- Piping materials shall bear label, stamp, or other markings of specified testing agency. A.
- Β. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 **MANUFACTURERS**

- In other Part 2 articles where titles below introduce lists, the following requirements apply to A. product selection:
 - 1.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

- Pipe and Fittings: ASTM A 888 or CISPI 301. Α.
- B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - 1. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve. a
 - Manufacturers:
 - 1) ANACO.
 - 2) Fernco. Inc.
 - Ideal Div.; Stant Corp. 3)
 - 4) Mission Rubber Co.
 - Tyler Pipe: Soil Pipe Div. 5)
 - 2. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainlesssteel bands and tightening devices, and ASTM C 564, rubber sleeve.
 - Manufacturers:
 - 1) ANACO.
 - 2) Clamp-All Corp.
 - Ideal Div.; Stant Corp. 3)

a.

- 4) Mission Rubber Co.
- 5) Tyler Pipe; Soil Pipe Div.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
 - 1. PVC Socket Fittings: ASTM D 2665, socket type, made to ASTM D 3311, drain, waste, and vent patterns.

2.5 SPECIAL PIPE FITTINGS

- A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - 1. Manufacturers:
 - a. Dallas Specialty & Mfg. Co.
 - b. Fernco, Inc.
 - c. Logan Clay Products Company (The).
 - d. Mission Rubber Co.
 - e. NDS, Inc.
 - f. Plastic Oddities, Inc.
 - 2. Sleeve Materials:
 - a. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with fulllength, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Mission Rubber Co.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

- A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following: 1.

- 2. **In return air plenum:** Hubless cast-iron soil pipe and fittings standard, shielded, stainless-steel couplings; and hubless-coupling joints.
- 3. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints
- C. Aboveground, vent piping NPS 4 and smaller shall be the following:
 - 1. **In return air plenum:** Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints.
 - 2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints
- D. Underground, soil, waste, and vent piping shall be the following:
 1. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

3.3 PIPING INSTALLATION

- A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- C. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
- D. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
- E. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."
- F. Install wall-penetration fitting at each service pipe penetration through foundation wall. Make installation watertight.
- G. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.
- H. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of

lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

- J. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- K. Install engineered soil and waste drainage and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
- L. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.
- M. Install PVC soil and waste drainage and vent piping according to ASTM D 2665.
- N. Install underground PVC soil and waste drainage piping according to ASTM D 2321.
- O. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.4 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
- C. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-freealloy solder; and ASTM B 828 procedure, unless otherwise indicated.
- D. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Install individual, straight, horizontal piping runs according to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

- 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.8 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 22 1316

BLANK PAGE

SECTION 22 4000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following conventional plumbing fixtures and related components:
 - 1. Faucets for lavatories, and sinks.
 - 2. Flushometers.
 - 3. Toilet seats.
 - 4. Protective shielding guards.
 - 5. Water closets.
 - 6. Lavatories.
- B. Related Sections include the following:
 - 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 - 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.
- D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
- E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.
- F. FRP: Fiberglass-reinforced plastic.

1.4 SUBMITTALS

- A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
- D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for plumbing fixtures for people with disabilities.
- D. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 - 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 - 2. Stainless-Steel Residential Sinks: ASME A112.19.3.
 - 3. Vitreous-China Fixtures: ASME A112.19.2M.
 - 4. Water-Closet, Flushometer Tank Trim: ASSE 1037.
- H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 - 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 - 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.

- 3. Diverter Valves for Faucets with Hose Spray: ASSE 1025.
- 4. Faucets: ASME A112.18.1.
- 5. Hose-Connection Vacuum Breakers: ASSE 1011.
- 6. Hose-Coupling Threads: ASME B1.20.7.
- 7. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
- 8. NSF Potable-Water Materials: NSF 61.
- 9. Pipe Threads: ASME B1.20.1.
- 10. Supply Fittings: ASME A112.18.1.
- 11. Brass Waste Fittings: ASME A112.18.2.
- I. Comply with the following applicable standards and other requirements specified for shower faucets:
 - 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 - 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
 - 3. Faucets: ASME A112.18.1.
 - 4. Hand-Held Showers: ASSE 1014.
 - 5. High-Temperature-Limit Controls for Thermal-Shock-Preventing Devices: ASTM F 445.
 - 6. Hose-Coupling Threads: ASME B1.20.7.
 - 7. Pipe Threads: ASME B1.20.1.
 - 8. Pressure-Equalizing-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
 - 9. Thermostatic-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
- J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
 - 1. Atmospheric Vacuum Breakers: ASSE 1001.
 - 2. Brass and Copper Supplies: ASME A112.18.1.
 - 3. Manual-Operation Flushometers: ASSE 1037.
 - 4. Plastic Tubular Fittings: ASTM F 409.
 - 5. Brass Waste Fittings: ASME A112.18.2.
 - 6. Sensor-Operation Flushometers: ASSE 1037 and UL 1951.
- K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Flexible Water Connectors: ASME A112.18.6.
 - 2. Floor Drains: ASME A112.6.3.
 - 3. Hose-Coupling Threads: ASME B1.20.7.
 - 4. Off-Floor Fixture Supports: ASME A112.6.1M.
 - 5. Pipe Threads: ASME B1.20.1.
 - 6. Plastic Toilet Seats: ANSI Z124.5.
 - 7. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 WARRANTY

- A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures of unit shell.

- b. Faulty operation of controls, blowers, pumps, heaters, and timers.
- c. Deterioration of metals, metal finishes, and other materials beyond normal use.
- 2. Warranty Period for Commercial Applications: Three years from date of Substantial Completion.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
 - 3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 12 of each type.
 - 4. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
 - 5. Toilet Seats: Equal to 5 percent of amount of each type installed.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS

- A. Lavatory Faucets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Moen or Approved equal prior to bid.
 - 2. Description: See Fixture Schedule on drawings.

2.2 FLUSHOMETERS

- A. Flushometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Select from list below for diaphragm flushometers.
 - a. Zurn or Approved equal prior to bid.
 - 2. Description: See Fixture Schedule on drawings.

2.3 TOILET SEATS

A. Toilet Seats:

2.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Select from list below for residential and light-commercial toilet seats.
 - a. Centoco Manufacturing Corp.
 - b. Kohler Co.
 - Description: Toilet seat for water-closet-type fixture.
 - a. Material: Molded, solid plastic with antimicrobial agent.

- b. Configuration: Open front without cover.
- c. Size: Elongated.
- d. Hinge Type: CK, check.
- e. Class: Heavy-duty commercial
- f. Color: White.

2.4 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Co.
 - b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 - c. McGuire Manufacturing Co., Inc.
 - d. TCI Products.
 - e. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.5 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Company.
 - 2. MIFAB Manufacturing Inc.
 - 3. Tyler Pipe; Wade Div.
 - 4. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 5. Zurn Plumbing Products Group; Specification Drainage Operation.
- B. Water-Closet Supports:
 - 1. Description: Combination carrier designed for accessible and standard mounting height of wall-mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

2.6 WATER CLOSETS

- A. Water Closets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Select from list below for flush valve-type, 1.6-gal./flush (6-L/flush) water closets
 - a. American Standard.
 - b. Approved equal prior to bid.
 - 2. Description: See Fixture Schedule on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install counter-mounting fixtures in and attached to casework.
- G. Install fixtures level and plumb according to roughing-in drawings.
- H. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 - 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- I. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- J. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- K. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

- L. Install Protective Pipe Covers for all exposed waste and supply piping.
- M. Install toilet seats on water closets.
- N. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- O. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- P. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- Q. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- R. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- S. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- T. Set service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."
- U. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- E. Install fresh batteries in sensor-operated mechanisms.

3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- C. Replace washers and seals of leaking and dripping faucets and stops.
- D. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
- B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 **PROTECTION**

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

3.8 PLUMBING FIXTURE SCHEDULE SEE DRAWINGS

END OF SECTION 22 4000

SECTION 23 0100 - MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 GENERAL CONDITIONS

- A. The General Conditions of the Contract, with the amendments, supplements, forms and requirements in Division 1, and herewith made a part of this Division.
- B. All sections of Division 21, 22, & 23 shall comply with the Mechanical General Requirements. The standards established in this section as to quality of materials and equipment, the type and quality of workmanship, mode of operations, safety rules, code requirements, etc., shall apply to all sections of this Division as though they were repeated in each Division.
- C. Mechanical equipment that is pre-purchased if any will be assigned to the Mechanical Contractor. By assignment to the Mechanical Contractor, the Mechanical Contractor shall accept and installed the equipment and provide all warrantees and guarantees as if the Mechanical Contractor had purchased the equipment.
- D. Construction Indoor-Air Quality Management
 - 1. Comply with SMACNA's "SMACNA IAQ Guideline for Occupied Buildings under Construction."
 - a. If Owner authorizes use of permanent heating, cooling, and ventilating systems during construction period as specified in Division 01 Section "Temporary Facilities and Controls," install filter media having a MERV 8 according to ASHRAE 52.2 at each return-air inlet for the air-handling system used during construction.
 - b. Replace all air filters immediately prior to occupancy.
- E. No HVAC equipment is to be installed without seismic bracing submittal stamped by a structural engineer licensed in the State of Utah and approved by the design team and the City. The deferred seismic submittal is required to be kept on the construction site as part of the Permit Set for building inspector's use.

1.2 SCOPE OF WORK

A. The project described herein is the SLCIA Relocated Vehicle Gates 10 & 11. This work shall include all labor, materials, equipment, fixtures, and devices for the entire mechanical work and a complete operating and tested installation as required for this project.

1.3 CODES & ORDINANCES

A. All work shall be executed in accordance with all underwriters, public utilities, local and state rules and regulations applicable to the trade affected. Should any change in the plans and Specifications be required to comply with these regulations, the Contractor shall notify the

Architect before the time of submitting his bid. After entering into contract, the Contractor will be held to complete all work necessary to meet these requirements without extra expense to the Owner. Where work required by drawings or specifications is above the standard required, it shall be done as shown or specified.

- B. Applicable current codes:
 - 1. International Building Code
 - 2. International Mechanical Code
 - 3. International Plumbing Code
 - 4. International Fire Code
 - 5. International Energy Code
 - 6. International Fuel Gas Code

1.4 INDUSTRY STANDARDS

- A. All work shall comply with the following standards.
 - 1. Associated Air Balance council (AABC)
 - 2. Air Conditioning and Refrigeration Institute (ARI)
 - 3. Air Diffusion council (ADC)
 - 4. Air Movement and Control Association (AMCA)
 - 5. American Gas Association (AGA)
 - 6. American National Standards Institute (ANSI)
 - 7. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE)
 - 8. American Society of Mechanical Engineers (ASME)
 - 9. American Society of Testing Materials (ASTM)
 - 10. American Water Works Association (AWWA)
 - 11. ETL Testing Laboratories (ETL)
 - 12. Institute of Electrical and Electronic Engineers (IEEE)
 - 13. Manufacturers Standardization Society of the Valve and Fitting Industry (MSS)
 - 14. National Fire Protection Association (NFPA)
 - 15. National Electrical Code (NEC)
 - 16. National Electrical Manufacturers Association (NEMA)
 - 17. National Electrical Safety code (NESC)
 - 18. Utah safety Standard (OSHA), Utah State Industrial Council.
 - 19. Sheet Metal and Air Conditioning Contractor=s National Association (SMACNA)
 - 20. Underwriters Laboratories (UL)
 - 21. Thermal Insulation Manufacturer=s Association (TIMA)
 - 22. Scientific Apparatus Makers Association (SAMA)
- B. Compliance Verification:
 - 1. All items required by code or specified to conform to the ASME code shall be stamped with the ASME seal.
 - 2. Form U-1, the manufacturer=s data report for pressure vessels, is to be included in the Operation and Maintenance Manuals. National Board Register (NBR) numbers shall be provided where required by code.

3. Manufactured equipment which is represented by a UL classification and/or listing, shall bear the UL or equivalent ETL label.

1.5 UTILITIES & FEES

A. All fees for permits required by this work will be paid by this division. The contractor shall obtain the necessary permits to perform this work. Unless noted otherwise, all systems furnished and or installed by this Contractor, shall be complete with all utilities, components, commodities and accessories required for a fully functioning system. This Contractor shall furnish smoke generators when required for testing, furnish glycol for glycol piping systems, full load of salt to fill brine tank for water softening system, furnish cleaners and water treatment additives.

1.6 SUBMITTALS AND SHOP DRAWINGS

- A. Submittals: As soon as possible after the contract is awarded, but in no case more than 45 calendar days thereafter, the Contractor shall submit to the Architect six (6) copies of the descriptive literature covering products and materials to be used in the installation of mechanical systems for this project. The review of the submitted data will require a minimum of 14 days. The first day starts after the day they are received in the engineers office to which the project is being constructed from. If the Contractors schedule requires return of submitted literature in less than the allotted time, the Contractor shall accelerate his submittal delivery date. The Contractor shall resubmit all items requiring re-review within 14 days of returned submittals. Refer to each specification section for items requiring submittal review. Written approval of the Owner's Representative shall be obtained before installing any such equipment or materials for the project. The submittals shall be prepared in an orderly manner, contained in a 3-ring loose-leaf binder with index and identification tabs each item or group of items and for each specification section. All items shall be submitted at one time except automatic temperature control drawings and seismic restraint drawings which may be submitted separately within 120 days of the contract award date. Partial submittals will not be reviewed until the complete submittal is received.
- B. Submitted literature shall bear the Contractor's stamp, indicating that he has checked all equipment being submitted; that each item will fit into the available space with the accesses shown on the drawings; and, further, that each item conforms to the capacity and quality standards given in the contract documents.
- C. Submitted literature shall clearly indicate performance, quality, and utility requirements; shall show dimension and size of connection points; and shall include derating factors that were applied for each item of equipment to provide capacity at job site elevation. Temperature control submittals shall include piping and wiring diagrams, sequence of operation and equipment. Equipment must fit into the available space with allowance for operation, maintenance, etc. Factory piped and wired equipment shall include shop drawings for all internal wiring and piping furnished with the unit.
- D. Submitted literature shall clearly show all required field install wiring, piping, and accessory installations required by the Contractor to provide a complete operating system.

- E. Review by the Owner's Representative is for general conformance of the submitted equipment to the project specification. In no way does such review relieve this Contractor of his obligation to furnish equipment and materials that comply in detail to the specification nor does it relieve the Contractor of his obligation to determine actual field dimensions and conditions that may affect his work. Regardless of any items overlooked by the submittal review, the requirements of the contract drawings and specifications must be followed and are not waived or superseded in any way by the review.
- F. By description, catalog number, and manufacturer's names, standards of quality have been established by the Architect and the Engineer for certain manufactured equipment items and specialties that are to be furnished by this Division. Alternate products and equipment may be proposed for use only if specifically named in the specifications or if given written prior approval in published addenda. Design equipment is the equipment listed on the drawings or if not listed on the drawings is the equipment first named in the specifications.
- G. If the Engineer is required to do additional design work to incorporate changes caused by submitting equipment or products, different than the design equipment specified, as defined above, the contractor shall reimburse the engineer for additional time and expenses at the engineer's current, recognized, hourly rates.

1.7 DRAWINGS AND MEASUREMENTS

- A. Construction Drawings: The contract document drawings show the general design, arrangements, and extent of the system. In certain cases, the drawings may include details that show more nearly exact locations and arrangements; however, the locations, as shown diagrammatically, are to be regarded as general.
- B. It shall be the work of this Section to make such slight alterations as may be necessary to make adjustable parts fit to fixed parts, leaving all complete and in proper shape when done. All dimensions given on the drawings shall be verified as related to this work and with the Architect's office before work is started.
- C. This Section shall carefully study building sections, space, clearances, etc., and then provide offsets in piping or ductwork as required to accommodate the building structure without additional cost to the Owner. In any case and at any time during the construction process, a change in location required by obstacles or the installation of other trades not shown on the mechanical plans shall be made without charge.
- D. The drawings shall not be scaled for roughing in measurements nor shall they be used as shop drawings. Where drawings are required for these purposes or where drawings must be made from field measurements, the Contractor shall take the necessary measurements and prepare the drawings. Shop drawings of the various subcontractors shall be coordinated to eliminate all interferences and to provide sufficient space for the installation of all equipment, piping, ductwork, etc.
- E. The drawings and specifications have been prepared to supplement each other and they shall be interpreted as an integral unit with items shown on one and not the other being furnished and installed as though shown and called out on both.

- F. Coordination Drawings: The contractor shall provide coordination drawings for mechanical rooms, fan rooms, equipment rooms, and congested areas to eliminate conflicts with equipment, piping, or work of other trades. The drawings shall be a minimum scale of 1/4 inch= 1 foot and of such detail as may be required by the Engineer to fully illustrate the work. These drawings shall include all piping, conduit, valves, equipment, and ductwork.
- G. Sheet-metal shop drawings will be required for all ductwork in the entire building. These drawings will show all ductwork in the entire building and shall be coordinated with architectural, structural and electrical portions of the project. The contractor shall specifically obtain copies of the structural shop drawings and shall coordinate the ductwork shop drawings with approved structural members. These drawings shall be submitted to the engineer for review prior to any fabrication. The contractor is responsible for all modifications necessary to accommodate duct installation within the structural, architectural and electrical restrictions. These drawings, once reviewed by the engineer, will be made available to all mechanical, electrical, and fire sprinkler subcontractors to coordinate installation of their work.

1.8 CONTRACTOR'S USE OF BUILDING EQUIPMENT

A. The Contractor may use equipment such as electric motors, fans, heat exchangers, filters, etc., with the written permission of the Owner. As each piece of equipment is used (such as electric motors and fans), maintenance procedures approved by the manufacturer are to be followed. A careful record is to be kept of the length of the time the equipment is used, maintenance procedures followed, and any difficulty encountered. The record is to be submitted to the Owner upon acceptance. All fan belts and filter media (such as bearings) shall be carefully inspected just prior to acceptance. Any excessive wear noted shall require replacement. New filter media shall be installed in air handlers at the time systems are turned over to the owner.

1.9 EXISTING CONDITIONS

- A. The Contractor shall carefully examine all existing conditions that might affect the mechanical system and shall compare these conditions with all drawings and specifications for work included under this contract. He shall, at such time, ascertain and check all conditions that may affect his work. No allowance shall subsequently be made in his behalf for an extra expense incurred as a result of his failure or neglect to make such examination. This Contractor shall include in his bid proposal all necessary allowances to repair or replace any item that will remain or will be removed, and any item that will be damaged or destroyed by new construction.
- B. The Contractor shall remove all abandoned piping, etc., required by new construction and cap or plug openings. No capping, etc., shall be exposed in occupied areas. All openings of items removed shall be sealed to match adjacent surfaces.
- C. The Contractor shall verify the exact location of all existing services, utilities, piping, etc., and make connections to existing systems as required or as shown on the drawings. The exact location of each utility line, together with size and elevation, shall be established before any on-site lines are installed. Should elevation or size of existing main utility lines make connections to them impossible as shown on drawings, then notification of such shall immediately be given to the Owners Representative for a decision.

1.10 EQUIPMENT CAPACITIES

- A. Capacities shown for equipment in the specifications and on the drawings are the minimum acceptable. No equipment shall be considered as an alternate that has capacities or performance less than that of design equipment.
- B. All equipment shall give the specified capacity and performance at the job-site elevation. Manufacturers' standard ratings shall be adjusted accordingly. All capacities and performances listed on drawings or in specifications are for job-site conditions.

1.11 SEISMIC REQUIREMENTS FOR EQUIPMENT

A. All equipment shall be furnished structurally adequate to withstand seismic forces as outlined in the International Building Code. Refer to section Mechanical Vibration Controls and Seismic Restraints. Equipment bases shall be designed for direct attachment of seismic snubbers and/or seismic anchors.

1.12 COOPERATION WITH OTHER TRADES

- A. The Contractor shall refer to other drawings and parts of this specification that cover work of other trades that is carried on in conjunction with the mechanical work such that all work can proceed without interference resulting from lack of coordination.
- B. The Contractor shall properly size and locate all openings, chases, sleeves, equipment bases, and accesses. He shall provide accurate wiring diagrams to the Electrical Contractor for all equipment furnished under this Division.
- C. The ceiling cavity must be carefully reviewed and coordinated with all trades. In the event of conflict, the installation of the mechanical equipment and piping shall be in the following order: plumbing, waste, and soil lines; supply, return, and exhaust ductwork; water piping; medical gases; fire protection piping; and pneumatic control piping.
- D. The mechanical Contractor shall insure that the installation of all piping, ducts and equipment is in compliance with Articles 110-16 and 384-4 of the National Electrical Code relative to proper clearances in front of and over all electrical panels and equipment. No piping or ductwork will be allowed to run over electrical panel.

1.13 RESPONSIBILITY OF CONTRACTOR

A. The Contractor is responsible for the installation of a satisfactory piece of work in accordance with the true intent of the drawings and specifications. He shall provide, as a part of his work and without expense, all incidental items required even though these items are not particularly specified or indicated. The installation shall be made so that its several component parts will function together as a workable system and shall be left with all equipment properly adjusted and in working order. The Contractor shall familiarize the Owner's Representative with maintenance and lubrication instructions as prepared by the Contractor and shall explain and fully instruct him relative to operating, servicing, and maintenance of them. B. If a conflict arises between the drawings and the specifications the most stringent procedure/action shall be followed. A clarification to the engineer will help to determine the course of action to be taken. If a conflict arises between specification sections the engineer will determine which course of action is to be followed.

1.14 PIPE AND DUCT OPENINGS AND EQUIPMENT RECESSES

- A. Pipe and duct chases, openings, and equipment recesses shall be provided by others only if shown on architectural or structural drawings. All openings for the mechanical work, except where plans and specifications indicate otherwise, shall be provided as work of this Division. Include openings information with coordination drawings.
- B. Whether chases, recesses, and openings are provided as work of this Division or by others, this Contractor shall supervise their construction and be responsible for the correct size and location even though detailed and dimensioned on the drawings. This Contractor shall pay for all necessary cutting, repairing, and finishing if any are left out or incorrectly made. All necessary openings thru existing walls, ceilings, floors, roofs, etc. shall be provided by this Contractor unless indicated otherwise by the drawing and/or specifications.

1.15 UNFIT OR DAMAGED WORK

A. Any part of this installation that fails, is unfit, or becomes damaged during construction, shall be replaced or otherwise made good. The cost of such remedy shall be the responsibility of this Division.

1.16 WORKMANSHIP

A. Workmanship shall be the best quality of its kind for the respective industries, trades, crafts, and practices, and shall be acceptable in every respect to the Owner's representative. Nothing contained herein shall relieve the Contractor from making good and perfect work in all details in construction.

1.17 SAFETY REGULATION

A. The Contractor shall comply with all local, Federal, and OSHA safety requirements in performance with this work. (See General Conditions). This Contractor shall be required to provide equipment, supervision, construction, procedures, and all other necessary items to assure safety to life and property.

1.18 ELECTRICAL SERVICES

A. All equipment control wiring and all automatic temperature control wiring including all necessary contacts, relays, and interlocks, whether low or line voltage, except power wiring, shall be furnished and installed as work of this Division unless shown to be furnished by Division 26. All such wiring shall be in conduit as required by electrical codes. Wiring in the

mechanical rooms, fans rooms and inaccessible ceilings and walls shall be installed in conduit as well. Installation of any and all wiring done under Division 21, 22 and 23 shall be in accordance with the requirements of Division 26, Electrical.

- B. All equipment that requires an electrical connection shall be furnished so that it will operate properly and deliver full capacity on the electrical service available.
- C. Refer to the electrical control equipment and wiring shown on the diagrams. Any changes or additions required by specific equipment furnished shall be the complete responsibility of the Contractor furnishing the equipment.
- D. The Mechanical Contractor must coordinate with the Electrical Contractor to insure that all required components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

1.19 WORK, MATERIALS, AND QUALITY OF EQUIPMENT

- A. Unless otherwise specified, all materials shall be new and of the best quality of their respective kinds and all labor shall be done in a most thorough and workmanlike manner.
- B. Products or equipment of any of the manufacturers cited herein or any of the products approved by the Addenda may be used. However, where lists of products are cited herein, the one first listed in the design equipment used in drawings and schedules to establish size, quality, function, and capacity standards. If other than design equipment is used, it shall be carefully checked for access to equipment, electrical and control requirements, valving, and piping. Should changes or additions occur in piping, valving, electrical work, etc., or if the work of other Contractors would be revised by the alternate equipment, the cost of all changes shall be borne as work of this Division.
- C. The Execution portions of the specifications specify what products and materials may be used. Any products listed in the Product section of the specification that are not listed in the Execution portion of the specification may not be used without written approval by the Engineer.
- D. The access to equipment shown on the drawings is the minimum acceptable space requirements. No equipment that reduces or restricts accessibility to this or any other equipment will be considered.
- E. All major items of equipment are specified in the equipment schedules on the drawings or in these specifications and shall be furnished complete with all accessories normally supplied with the catalog item listed and all other accessories necessary for a complete and satisfactory installation.
- F. All welders shall be certified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code, latest Edition.

TECHNICAL SPECIFICATIONS

1.20 PROTECTION AGAINST WEATHER AND STORING OF MATERIALS

- A. All equipment and materials shall be properly stored and protected against moisture, dust, and wind. Coverings or other protection shall be used on all items that may be damaged or rusted or may have performance impaired by adverse weather or moisture conditions. Damage or defect developing before acceptance of the work shall be made good at the Contractor's expense.
- B. All open duct and pipe openings shall be adequately covered at all times.

1.21 INSTALLATION CHECK

- A. An experienced, competent, and authorized representative of the manufacturer or supplier of each item of equipment indicated in the equipment schedule and the seismic supplier shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier's representative shall be present when the equipment is placed in operation. The equipment supplier's representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is satisfactory to the Engineer.
- B. Each equipment supplier's representative shall furnish to the Owner, through the Engineer, a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it operated satisfactorily.
- C. All costs for this work shall be included in the prices quoted by equipment suppliers.

1.22 EQUIPMENT LUBRICATION

- A. The Contractor shall properly lubricate all pieces of equipment before turning the building over to the Owner. A linen tag shall be attached to each piece of equipment, showing the date of lubrication and the lubricant used. No equipment shall be started until it is properly lubricated.
- B. Necessary time shall be spent with the Owner's Representative to thoroughly familiarize him with all necessary lubrications and maintenance that will be required of him.
- C. Detergent oil as used for automotive purposes shall not be used for this work.

1.23 CUTTING AND PATCHING

A. No cutting or drilling in structural members shall be done without written approval of the Architect. The work shall be carefully laid out in advance, and cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces necessary for the mechanical work shall be carefully done. Any damage to building, piping, or equipment shall be repaired by professional plasterers, masons, concrete workers, etc., and all such work shall be paid for as work of this Division.

B. When concrete, grading, etc., is disturbed, it shall be restored to original condition as described in the applicable Division of this Specification.

1.24 EXCAVATION AND BACKFILLING

- A. All necessary excavations and backfilling for the Mechanical phase of this project shall be provided as work of this Division. Trenches for all underground pipelines shall be excavated to the required depths. The bottom of trenches shall be compacted hard and graded to obtain required fall. Backfill shall be placed in horizontal layers, not exceeding 12 inches in thickness, and properly moistened. Each layer shall be compacted, by suitable equipment, to a density of not less than 95 percent as determined by ASTM D-1557. After pipelines have been tested, inspected, and approved, the trench shall be backfilled with selected material. Excess earth shall be hauled from the job site. Fill materials approved by the Architect shall be provided as work of this Division.
- B. No trenches shall be cut near or under any footings without consultation first with the Architect's office. Any trenches or excavations more than 30 inches deep shall be tapered, shored, covered, or otherwise made absolutely safe so that no vehicle or persons can be injured by falling into such excavations, or in any way be harmed by cave-ins, shifting earth, rolling rocks, or by drowning. This protection shall be extended to all persons approaching excavation related to this work whether or not such persons are authorized to be in the vicinity of the construction.

1.25 ACCESS

- A. Provide access doors in walls, ceilings and floors by this division unless otherwise noted. For access to mechanical equipment such as valves, dampers, VAV boxes, fans, controls, etc. Refer to Division 8 for door specifications. All access doors shall be 24" x 24" unless otherwise indicated or required. Coordinate location of doors with the Architect prior to installation. If doors are not specified in Division 8, provide the following: Doors in ceilings and wall shall be equal to JR Smith No. 4760 bonderized and painted. Doors in tile walls shall be equal to JR Smith No. 4730 chrome plated. Doors in floors shall be equal to JR Smith No. 4910
- B. Valves: Valve must be installed in locations where access is readily available. If access is compromised, as judged by the Mechanical Engineer, these valves shall be relocated where directed at the Contractors expense.
- C. Equipment: Equipment must be installed in locations and orientations so that access to all components requiring service or maintenance will not be compromised. If access is compromised, as judged by the Mechanical Engineer, the contractor shall modify the installation as directed by the Engineer at the Contractors expense.
- D. It is the responsibility of this division to install terminal boxes, valves and all other equipment and devices so they can be accessed. If any equipment or devices are installed so they cannot be accessed on a ladder a catwalk and ladder system shall be installed above the ceiling to access and service this equipment.
TECHNICAL SPECIFICATIONS

1.26 CONCRETE BASES AND INSERTS

- A. Bases: The concrete bases shall be provided and installed as work by this division. This Division shall be responsible for the proper size and location of bases and shall furnish all required anchor bolts and sleeves with templates to be installed as work of Division 3, Concrete.
- B. All floor-mounted mechanical equipment shall be set on 6-inch high concrete bases, unless otherwise noted or shown on drawings. Such bases shall extend 6 inches beyond equipment or mounting rails on all sides or as shown on the drawings and shall have a 1-inch beveled edge all around.
- C. Inserts: Where slotted or other types of inserts required for this work are to be cast into concrete, they shall be furnished as work of this Division
- D. Concrete inserts and pipe support systems shall be equal to Unistrut P3200 series for all piping where more than one pipe is suspended at a common location. Spacing of the inserts shall match the size and type of pipe and of ductwork being supported. The Unistrut insert and pipe support system shall include all inserts, vertical supports, horizontal support members, clamps, hangers, rollers, bolts, nuts, and any other accessory items for a complete pipe-supporting system.

1.27 CLEANING AND PAINTING

- A. Cleaning: After all tests and adjustments have been made and all systems pronounced satisfactory for permanent operation, this Contractor shall clean all exposed piping, ductwork, insulated members, fixture, and equipment installed under this Section and leave them ready for painting. He shall refinish any damaged finish and leave everything in proper working order. The Contractor shall remove all stains or grease marks on walls, floors, glass, hardware, fixtures, or elsewhere, caused by his workman or for which he is responsible. He shall remove all stickers on plumbing fixtures, do all required patching up and repair all work of others damaged by this division of the work, and leave the premises in a clean and orderly condition.
- B. Painting: Painting of exposed pipe, insulated pipe, ducts, or equipment is work of Division 9, Painting.
- C. Mechanical Contractor: All equipment which is to be furnished in factory prefinished conditions by the mechanical Contractor shall be left without mark, scratch, or impairment to finish upon completion of job. Any necessary refinishing to match original shall be done. Do not paint over nameplates, serial numbers, or other identifying marks.
- D. Removal of Debris, Etc: Upon completion of this division of the work, remove all surplus material and rubbish resulting from this work, and leave the premises in a clean and orderly condition.

TECHNICAL SPECIFICATIONS

1.28 CONTRACT COMPLETION

- A. Incomplete and Unacceptable Work: If additional site visits or design work is required by the Engineer or Architect because of the use of incomplete or unacceptable work by the Contractor, then the Contractor shall reimburse the Engineer and Architect for all additional time and expenses involved.
- B. Maintenance Instructions: The Contractor shall furnish the Owner complete printed and illustrated operating and maintenance instructions covering all units of mechanical equipment, together with parts lists.
- C. Instructions To Owner's Representatives: In addition to any detailed instructions called for, the mechanical Contractor must provide, without expense to the Owner, competent instructors to train the Owner's representatives who will be in charge of the apparatus and equipment, in the care, adjustment, and operation of all parts on the heating, air conditioning, ventilating, plumbing, fire protection, and automatic temperature control equipment. Instruction dates shall be scheduled at time of final inspection. A written report specifying times, dates, and name of personnel instructed shall be forwarded to the Architect. A minimum of four 8-hour instruction periods shall be provided. The instruction periods will be broken down to shorter periods when requested by the Owner. The total instruction hours shall not reduced. The ATC Contractor shall provide 4 hours of instructions. The remaining hours shall be divided between the mechanical and sheet metal Contractor.
- D. Guarantee: By the acceptance of any contract award for the work herein described or shown on the drawings, the Contractor assumes the full responsibility imposed by the guarantee as set forth herein and in the General Conditions, and should protect himself through proper guarantees from equipment and special equipment Contractors and from subcontractors as their interests may appear.
- E. The guarantee so assumed by the Contractor and as work of this Section is as follows:
 - 1. That the entire mechanical system, including plumbing, heating, and air-conditioning system shall be quiet in operation.
 - 2. That the circulation of water shall be complete and even.
 - 3. That all pipes, conduit, and connections shall be perfectly free from foreign matter and pockets and that all other obstructions to the free passage of air, water, liquid, sewage, and vent shall be removed.
 - 4. That he shall make promptly and free of charge, upon notice from the Owner, any necessary repairs due to defective workmanship or materials that may occur during a period of one year from date of Substantial Completion.
 - 5. That all specialties, mechanical, and patent devices incorporated in these systems shall be adjusted in a manner that each shall develop its maximum efficiency in the operation of the system; i.e., diffusers shall deliver the designed amount of air shown on drawings, thermostats shall operate to the specified limits, etc.
 - 6. All equipment and the complete mechanical, ductwork, piping and plumbing systems shall be guaranteed for a period of one year from the date of the Architect's Certificate of Substantial Completion, this includes all mechanical, ductwork, piping and plumbing equipment and products and is not limited to boiler, chillers, coils, fans, filters etc. Any equipment supplier not willing to comply with this guarantee period shall not submit a bid price for this project. The Contractor shall be responsible for a 100-percent guarantee for the system and all items of equipment for this period. If the contractor needs to

provide temporary heating or cooling to the building and or needs to insure systems are installed properly and or to meet the project schedule the guaranteed of all systems and equipment shall be as indicated above, on year from the date of the Architect's Certificate of Substantial Completion.

- 7. All filters used during construction shall be replaced just before equipment is turned over to the Owner, and all required equipment and parts shall be oiled. Any worn parts shall also be replaced.
- 8. If any systems or equipment is used for temporary heating or cooling the systems shall be protected so they remain clean. I.e. if the ductwork systems are used temporary filters and a filter holder (not duct-taped to ducts or grilles) shall be installed to insure the systems and the equipment remain clean.

1.29 CURBS

A. Unless otherwise noted in these specifications or on the documents all roof curbs for all equipment are to be provided by Division 22 and 23.

1.30 TEST RUN

A. The Mechanical Contractor shall operate the mechanical system for a minimum of 30 days to prove the operation of the system.

1.31 EQUIPMENT STARTUP AND CHECKOUT:

- A. Each major piece of equipment shall be started and checked out by an authorized representative of the equipment manufacturer. A certificate indicating the equipment is operating to the satisfaction of the manufacturer shall be provided and shall be included in the commissioning report.
- B. This contractor shall coordinate commissioning procedures and activities with the commissioning agent.

END OF SECTION 23 0100

BLANK PAGE

SECTION 23 0500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Concrete bases.
 - 11. Supports and anchorages.
 - 12. Link-Seal

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:

TECHNICAL SPECIFICATIONS

- 1. CPVC: Chlorinated polyvinyl chloride plastic.
- 2. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.

2.5 DIELECTRIC FITTINGS

- A. General: Assembly or fitting with insulating material isolating joined dissimilar metals, to prevent galvanic action and stop corrosion.
- B. Description: Combination of copper alloy and ferrous; threaded, solder, plain, and weld-neck end types and matching piping system materials.
- C. Insulating Material: Suitable for system fluid, pressure, and temperature.
- D. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
- E. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- F. Dielectric-Flange Insulation Kits: Field-assembled, companion-flange assembly, full-face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Provide separate companion flanges and steel bolts and nuts for 150- or 300-psig minimum working pressure as required to suit system pressures.

- G. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- H. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.

Watts Industries, Inc.; Water Products Div

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated and rough brass.
- D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
- E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chromeplated finish.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.10 LINK-SEAL MODULAR SEAL PRESSURE PLATES

- A. Link-Seal® modular seal pressure plates shall be molded of glass reinforced Nylon Polymer with the following properties:
 - 1. Izod Impact Notched = 2.05ft-lb/in. per ASTM D-256
 - 2. Flexural Strength @ Yield = 30,750 psi per ASTM D-790
 - 3. Flexural Modulus = 1,124,000 psi per ASTM D-790
 - 4. Elongation Break = 11.07% per ASTM D-638
 - 5. Specific Gravity = 1.38 per ASTM D-792
- B. Models LS200-275-300-315 shall incorporate the most current Link-Seal® Modular Seal design modifications and shall include an integrally molded compression assist boss on the top (bolt entry side) of the pressure plate, which permits increased compressive loading of the rubber sealing element. Models 315-325-340-360-400-410-425-475-500-525-575-600 shall incorporate an integral recess known as a "Hex Nut Interlock" designed to accommodate commercially available fasteners to insure proper thread engagement for the class and service of metal hardware. All pressure plates shall have a permanent identification of the manufacturer's name molded into it.
- C. For fire service, pressure plates shall be steel with 2-part Zinc Dichromate Coating.
- D. Link-Seal® Modular Seal Hardware: All fasteners shall be sized according to latest Link-Seal® modular seal technical data. Bolts, flange hex nuts shall be:

1. 316 Stainless Steel per ASTM F593-95, with a 85,000 psi average tensile strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.

- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
- M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. PVC Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

- 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

- 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
- 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
- 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
- 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section " Miscellaneous Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.9 LINK SEAL

A. Provide Link Seal at all piping penetrations from the outside.

END OF SECTION 23 0500

BLANK PAGE

SECTION 23 0513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when the requirements in equipment schedules, other specification sections, drawing notes or in other contract documents are more stringent.
- B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

- C. Motors 3/4 HP and larger: Polyphase.
- D. Motors smaller than 3/4 HP: Single phase.
- E. All motors shall have ASTM Grade 5 hardware that is Yellow Zinc-dichromate plated.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Rotor: Random-wound, squirrel cage.
- E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- F. Temperature Rise: Match insulation rating.
- G. Insulation: Class F.
- H. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors smaller than 15 HP: Manufacturer's standard starting characteristic.
- I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

- C. Motors 1/20 HP and Smaller: Shaded-pole type.
- D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range, unless otherwise indicated.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513

BLANK PAGE

SECTION 23 0529 - HANGERS AND SUPPORTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for HVAC system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 3. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Mechanical Anchors: ICC-ES Evaluation Reports validating 'Cracked Concrete' testing per A.C. 193 must be provided for anchors resisting seismic loads and/or supporting life-safety systems including fire sprinkler systems.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code--Reinforcing Steel." ASME Boiler and Pressure Vessel Code: Section IX.
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.3, "Structural Welding Code--Sheet Steel."
 - 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 - 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. Bergen-Power Pipe Supports.
 - 3. B-Line Systems, Inc.; a division of Cooper Industries.
 - 4. Carpenter & Paterson, Inc.
 - 5. Empire Industries, Inc.
 - 6. ERICO/Michigan Hanger Co.
 - 7. Globe Pipe Hanger Products, Inc.

- 8. Grinnell Corp.
- 9. GS Metals Corp.
- 10. National Pipe Hanger Corporation.
- 11. PHD Manufacturing, Inc.
- 12. PHS Industries, Inc.
- 13. Piping Technology & Products, Inc.
- 14. Tolco Inc.
- 15. Simpson Strong-Tie Co.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. Hilti, Inc.
 - 4. GS Metals Corp.
 - 5. Power-Strut Div.; Tyco International, Ltd.
 - 6. Thomas & Betts Corporation.
 - 7. Tolco Inc.
 - 8. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
 - 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 - 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.

- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
- Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18 or Simpson Blue Banger Concrete insert with UL & FM approvals): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.

- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- K. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- L. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

M. Use mechanical-expansion anchors or screw instead of building attachments where required in concrete construction. For anchors resisting seismic loads and/or supporting life-safety systems including fire sprinkler systems, anchors shall have been tested for 'Cracked Concrete' per A.C. 193 and shall have a valid ICC-ES Evaluation Report

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- E. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- F. Install lateral bracing with pipe hangers and supports to prevent swaying. For applications where seismic bracing is required, 'Cracked Concrete' expansion anchors or concrete screws tested per A.C. 193 must be provided for seismic bracing anchorage where post-installed anchors are required.
- G. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- H. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- I. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- J. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.

- a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
- b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 23 0529

BLANK PAGE

SECTION 23 0548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SCOPE

- A. Provide engineered vibration isolation and restraint systems in accordance with the requirements of this section including design, engineering, materials, testing, inspections and reports.
- B. Mechanical equipment with moving parts shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure.
- C. Piping and ductwork in mechanical rooms shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure.
- D. All mechanical equipment, piping and ductwork shall be restrained as required by Federal, State and Local building codes to preserve the integrity of nonstructural building components during seismic events to minimize hazards to occupants and reduce property damage.

1.3 SUMMARY

- A. This Section includes the following:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Open-spring isolators.
 - 5. Housed-spring isolators.
 - 6. Restrained-spring isolators.
 - 7. Housed-restrained-spring isolators.
 - 8. Pipe-riser resilient supports.
 - 9. Resilient pipe guides.
 - 10. Air-spring isolators.
 - 11. Restrained-air-spring isolators.
 - 12. Elastomeric hangers.
 - 13. Spring hangers.
 - 14. Snubbers.
 - 15. Restraint channel bracings.
 - 16. Restraint cables.

- 17. Seismic-restraint accessories.
- 18. Mechanical anchor bolts.
- 19. Adhesive anchor bolts.
- 20. Vibration isolation equipment bases.
- 21. Restrained isolation roof-curb rails.
- 22. Certification of seismic restraint designs.
- 23. Installation supervision.
- 24. Design of attachment of housekeeping pads.
- 25. All components requiring IBC compliance and certification.
- 26. All inspection and test procedures for components requiring IBC compliance.
- 27. Restraint of all mechanical equipment, pipe and ductwork, within, on, or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.
- 28. Seismic certification of equipment
- B. Related Requirements:
 - 1. Section 21 0548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment" for devices for fire-suppression equipment and systems.
 - 2. Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.

1.4 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. ASCE: American Society of Civil Engineers
- D. OSHPD: Office of Statewide Health Planning and Development for the State of California.
- E. Ip: Importance Factor.
- F. ESSENTIAL FACILITIES, (Occupancy Category IV, IBC-2006)
 - 1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.
- G. LIFE SAFETY
 - 1. All systems involved with fire protection, including sprinkler piping, jockey pumps, fire pumps, control panels, service water supply piping, water tanks, fire dampers, smoke exhaust systems and fire alarm panels.
 - 2. All mechanical, electrical, plumbing or fire protection systems that support the operation of, or are connected to, emergency power equipment, including all lighting, generators, transfer switches and transformers.
 - 3. All medical and life support systems.
 - 4. Hospital heating systems and air conditioning systems for maintaining normal ambient temperature.
 - 5. Automated supply, exhaust, fresh air and relief air systems on emergency control sequence, including air handlers, duct, dampers, etc., or manually-operated systems used for smoke evacuation, purge or fresh air relief by the fire department.

6. Heating systems in any facility with Occupancy Category IV, IBC-2009 where the ambient temperature can fall below 32 degrees Fahrenheit.

H. HIGH HAZARD

1. All gases or fluids that must be contained in a closed system which are flammable or combustible. Any gas that poses a health hazard if released into the environment and vented Fuel Cells.

1.5 REFERENCE CODES AND STANDARDS

- A. Codes and Standards: The following shall apply and conform to good engineering practices unless otherwise directed by the Federal, State or Local authorities having jurisdiction.
 - 1.
 - 2. IBC
 - 3. ASCE 7
 - 4. NFPA 13 (National Fire Protection Association)
- B. The following guides may be used for supplemental information on typical seismic installation practices. Where a conflict exists between the guides and these construction documents, the construction documents will preside.
 - 1.
 - 2. FEMA (Federal Emergency Management Agency) manuals 412, Installing Seismic Restraints for Mechanical Equipment and 414, Installing Seismic Restraints for Ductwork and Pipe.
 - 3. SMACNA (Sheet Metal and Air-conditioning Contractors' National Association) Seismic Restraint Manual Guidelines for Mechanical Systems, 3rd ed.
 - 4. ASHRAE (American Society for Heating, Refrigerating and Air-conditioning Engineers) A Practical Guide to Seismic Restraint
 - 5. MSS (Manufacturers Standardization Society of the Valve and Fittings Industry) MSS SP-127, Bracing for Piping Systems, Seismic Wind Dynamic, Design, Selection, Application.

1.6 ISOLATOR AND RESTRAINT MANUFACTURER'S RESPONSIBILITIES:

- A. Provide project specific vibration isolation and seismic restraint design prepared by a registered design professional in the state were the project is being constructed, and manufacturer certifications that the components are seismically qualified.
 - 1. Provide calculations to determine restraint loads resulting from seismic forces as required by IBC, Chapter 16 and ASCE 7, latest editions. Seismic calculations shall be certified by an engineer licensed in the state where the project is being constructed.
- B. Provide installation instructions and shop drawings for all materials supplied under this section of the specifications.
 - 1. Provide seismic restraint details with specific information relating to the materials, type, size, and locations of anchorages; materials used for bracing; attachment requirements of bracing to structure and component; and locations of transverse and longitudinal sway bracing and rod stiffeners.
 - 2. Provide seismic bracing layout drawings indicating the location of all seismic restraints.

- a. Each piece of rotating isolated equipment shall be tagged to clearly identify quantity and size of vibration isolators and seismic restraints.
- C. Provide, in writing, the special inspection requirements for all Designated Seismic Systems as indicated in Chapter 17 of the IBC.
- D. Provide training for installation, operation and maintenance of isolation and restraint systems.

1.7 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: Per the structural drawings and specifications.
 - 2. Assigned Occupancy Category as Defined in the IBC: Per the structural drawings and specifications.
 - a. Component Importance Factor: 1.5.
 - 1) Life safety components required to function after an earthquake.
 - 2) Components containing hazardous or flammable materials in quantities that exceed the exempted amounts for an open system listed in Chapter 4.
 - 3) For structures in Seismic Use Group IV, components needed for continued operation of the facility or whose failure could impair the continued operation of the facility.
 - 4) Storage racks in occupancies open to the general public (e.g., warehouse retail stores).
 - b. Component Importance Factor: 1.0.
 - 1) All other components
 - c. Component Response Modification Factor: Per the structural drawings and specifications.
 - d. Component Amplification Factor: Per the structural drawings and specifications.
 - 3. Design Spectral Response Acceleration at Short Periods: Per the structural drawings and specifications.
 - 4. Design Spectral Response Acceleration at 1-Second Period: Per the structural drawings and specifications.

1.8 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Submittals shall include catalog cut sheets and installation instructions for each type of anchor and seismic restraint used on equipment or components being isolated and/or restrained.
 - 2. Submittals for mountings and hangers incorporating springs shall include spring diameter and free height, rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES
 - b. Annotate to indicate application of each product submitted and compliance with requirements.

- 4. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. "Basis for Design" report: Statement from the registered design professional that the design complies with the requirements of the ASCE 7-05 Chapter 13, IBC 2009 chapter 1912 and ACI 318. In addition, the basis for compliance must also be noted, as listed below:
 - a. Project specific design documentation prepared and submitted by a registered design professional (ASCE 7, 13.2.1.1)
 - b. Submittal of the manufacturer's certification that the isolation equipment is seismically qualified by:
 - c. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - d. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - e. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - 2. Seismic restraint load ratings must be certified and substantiated by testing or calculations under direct control of a registered professional engineer. Copies of testing and calculations must be submitted as part of submittal documents. OSHPD pre-approved restraint systems are exempt from this requirement if their pre-approval is current and based upon the IBC 2009 (i.e. OPA-07 pre-approval numbers).
 - 3. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 4. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.
 - 5. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 - 6. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and

rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

- 7. Seismic Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.9 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
 - 1. Submittal drawings and calculations must be stamped by a registered professional engineer in the State where the project is being constructed who is responsible for the seismic restraint design.
 - 2. Calculations and restraint device submittal drawings shall specify anchor bolt type, embedment, concrete compressive strength, minimum spacing between anchors, and minimum distances of anchors from concrete edges. Concrete anchor locations shall not be near edges, stress joints, or an existing fracture. All bolts shall be ASTM A307 or better.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Air-Mounting System Performance Certification: Include natural frequency, load, and damping test data. [performed by an independent agency.]
- E. Field quality-control test reports.

1.10 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- E. Project Architect or Engineer of Record is to provide a "Statement of Special Inspections" in conformance with 2009 IBC, Chapter 17.
- F. Each contractor responsible for the installation of Designated Seismic Systems (systems with component Ip>1.0) must submit a written "Statement of Responsibility" as required by Section 17 06.1 of the IBC 2009, prior to prior to the commencement of work on any system or component. The contractor shall:

1.11 SEISMIC CERTIFICATION OF EQUIPMENT

- A. Component Importance Factor. All plumbing and mechanical components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
 - 1. The component is required to function for life-safety purposes after an earthquake.
 - 2. The component contains hazardous materials.
 - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. For equipment or components where Ip = 1.0.
 - 1. Submit manufacturer's certification that the equipment is seismically qualified by:
 - a. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
 - b. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - c. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
 - 2. The equipment and components listed below are considered rugged and shall not require Special Seismic Certification:
 - a. Valves (not in cast-iron housings, except for ductile cast iron).
 - b. Pneumatic operators.
 - c. Hydraulic operators.
 - d. Motors and motor operators.
 - e. Horizontal and vertical pumps (including vacuum pumps).
 - f. Air compressors
 - g. Refrigerators and freezers.
 - h. Elevator cabs.
 - i. Underground tanks.

- j. Equipment and components weighing not more than 20 lbs. supported directly on structures (and not mounted on other equipment or components) with supports and attachments in accordance with Chapter 13, ASCE 7.
- 3. Rugged equipment and components in this section are for factory assembled discrete equipment and components only and do not apply to site assembled or field assembled equipment or equipment anchorage. The list is based in part on OSHPD Code Application Notice 2-1708A.5.
- D. Special Certification requirements for Designated Seismic Systems (i.e. Ip = 1.5): Seismic Certificates of Compliance supplied by manufacturers shall be submitted for all components that are part of Designated Seismic Systems. In accordance with the ASCE 7, certification shall be via one of the following methods:
 - 1. For active mechanical and electrical equipment that must remain operable following the design earthquake:
 - a. Testing as detailed by part C.1.b above.
 - b. Experience data as detailed by part C.1.c above.
 - c. Equipment that is considered "rugged" per part C.2 above.
 - 2. Components with hazardous contents shall be certified by the manufacturer as maintaining containment following the design earthquake by:
 - a. Testing as detailed by part C.1.b above.
 - b. Experience data as detailed by part C.1.c above.
 - c. Engineering analysis utilizing dynamic characteristics and forces. Tanks (without vibration isolators) designed by a registered design professional in accordance with ASME Boiler and Pressure Vessel Code, and satisfying the force and displacement requirements of Sections 13.3.1 and 13.3.2 of ASCE 7 having an importance factor, Ip = 1.0 shall be considered to satisfy the Special Seismic Certification requirements on the basis of ASCE 7 Section 13 .6.9.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. CalDyn (California Dynamics Corporation).
 - 3. ISAT (International Seismic Application Technology).
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibro-Acoustics
 - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. Elastomeric Isolation Pads P1:
 - 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 2. Size: Factory or field cut to match requirements of supported equipment.
 - 3. Pad Material: Oil and water resistant with elastomeric properties.

- 4. Surface Pattern: Ribbed pattern. [Retain first subparagraph below if galvanized-steel baseplates are adhered to the isolation pad to facilitate load distribution.
- 5. Load-bearing metal plates adhered to pads.
- C. Elastomeric Hangers H1:
 - 1. Description: Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods
 - a. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.
- D. Spring Hangers H2: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and Insert in Compression.
 - a. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
 - g. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- E. Spring Hangers with Vertical-Limit Stop H3: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and insert in Compression and vertical limit stop.
 - a. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
 - g. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.

h. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 RESTRAINED VIBRATION ISOLATION ROOF-CURB RAILS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. CalDyn (California Dynamics Corporation).
 - 3. ISAT (International Seismic Application Technology).
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibro-Acoustics
 - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. Restrained Vibration Isolation Roof-Curb Rails: RC1:
- C. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.
- D. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist seismic forces.
- E. Lower Support Assembly: The lower support assembly shall be a formed sheet-metal section containing adjustable and removable steel springs that support upper frame. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.
- F. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on 1/4-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.
 - 1. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic and wind restraint.
 - a. Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch-thick.
- H. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

TECHNICAL SPECIFICATIONS

2.3 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. CalDyn (California Dynamics Corporation).
 - 3. ISAT (International Seismic Application Technology).
 - 4. Kinetics Noise Control.
 - 5. Mason Industries.
 - 6. Vibro-Acoustics
 - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.
- D. Channel Support System: MFMA-4, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- E. Restraint Cables: ASTM A 603 galvanized or ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. Cables located in exterior or other wet locations such as wash-down areas shall be stainless steel.
- F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- G. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- H. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- I. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- J. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

- K. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- L. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
- M. All post installed anchors utilized in the seismic design must be qualified for use in cracked concrete and approved for use with seismic loads.
- N. Expansion anchors shall not be used for anchorage of equipment with motors rated over 10 HP with the exception of undercut expansion anchors. Spring or internally isolated equipment are exempt from this requirement.
- O. All beam clamps utilized for vertical support must also incorporate retention straps.
- P. All seismic brace arm anchorages to include concrete anchors, beam clamps, truss connections, etc., must be approved for use with seismic loads.

2.4 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 COORDINATION

A. Coordinate with vibration/seismic restraint manufacturer and the structural engineer of record to locate and size structural supports underneath vibration/seismically restrained equipment (e.g. roof curbs, cooling towers and other similar equipment). Installation of all seismic restraint materials specified in this section shall be accomplished as per the manufacturer's written instructions. Adjust isolators and restraints after piping systems have been filled and equipment is at its operating weight, following the manufacturer's written instructions.

3.3 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES and per the seismic restraint manufacturer's design.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.4 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Isolate all mechanical equipment 0.75 hp and over per the isolator and seismic restraint schedule and these specifications. Vibration isolators shall be selected in accordance with the equipment, pipe or duct weight distribution so as to produce reasonably uniform deflections
- C. All isolation materials and seismic restraints shall be of the same vendor and shall be selected and certified using published or factory certified data
- D. Installation of all vibration isolation materials, flexible connectors and supplemental equipment bases specified in this section shall be accomplished as per the manufacturer's written instructions with mountings adjusted to level equipment. Any variance or non-compliance with the manufacturer's instructions shall be reviewed and approved in writing by the manufacturer or corrected by the contractor in an approved manner.
- E. Installation of vibration isolators must not cause any change of position of equipment, piping or duct work resulting in stresses or misalignment.
- F. Locate isolation hangers as near to the overhead support structure as possible.
- G. No rigid connections between isolated components and the building structure shall be made that degrades the noise and vibration control system herein specified. "Building" includes, but is not limited to, slabs, beams, columns, studs and walls. "Components" includes, but is not limited to, mechanical equipment, piping and ducts.

- H. Coordinate work with other trades to avoid rigid contact with the building.
- I. Any conflicts with other trades which will result in rigid contact with equipment or piping due to inadequate space or other unforeseen conditions should be brought to the architects/engineers attention prior to installation. Corrective work necessitated by conflicts after installation shall be at the responsible contractor's expense.
- J. Bring to the architects/engineers attention any discrepancies between the specifications and the field conditions or changes required due to specific equipment selection, prior to installation. Corrective work necessitated by discrepancies after installation shall be at the responsible contractor's expense.
- K. Correct, at no additional cost, all installations which are deemed defective in workmanship and materials at the contractor's expense.
- L. Isolated equipment, duct and piping located on roofs must be attached to the structure. Supports (e.g., sleepers) that are not attached to the structure will not be acceptable.
- M. On completion of installation of all isolation materials and before startup of isolated equipment all debris shall be cleared from areas surrounding and from beneath all isolated equipment, leaving equipment free to move on the isolation supports.
- N. Horizontal Pipe Isolation: All HVAC pumped water, pumped condensate, glycol, and refrigerant piping size 1-1/4" and larger within mechanical rooms shall be isolated. Outside equipment rooms this piping shall be isolated for the greater of 50' or 100 pipe diameters from rotating equipment. For the first three (3) support locations from externally isolated equipment provide specification H2 or H3 hangers or specification S1, S2 or S3 mounts with the same deflection as equipment isolators (max 2"). All other piping within the equipment rooms shall be isolated with the same specification isolators with a 3/4" minimum deflection. Steam piping size 1-1/4" and larger which is within an equipment room and connected to rotating equipment shall be isolated for three (3) support locations from the equipment. Provide specification H2 or H3 hangers, or specification S1 or S2 mounts with the same deflection as equipment isolators used for the equipment isolators with a minimum of 3/4".
- O. Install full line size flexible pipe connectors at the inlet and outlet of each pump, cooling tower, condenser, chiller, coiling connections and where shown on the drawings. All connectors shall be suitable for use at the temperature, pressure, and service encountered at the point of installation and operation. End fitting connectors shall conform to the pipefitting schedule. Control rods or protective braid must be used to limit elongation to 3/8". Flexible connectors shall not be required for suspended in-line pumps.
- P. All plumbing pumped water, piping size 1-1/4" and larger within mechanical rooms shall be isolated the same as HVAC piping above. Isolators are not required for any plumbing pumped water, pumped condensate, and steam piping outside of mechanical rooms unless listed in the isolation schedule.
- Q. Pipe Riser Isolation: The operating weight of all variable temperature vertical pipe risers 1-1/4" and larger, requiring isolation where specifically shown and detailed on riser drawings shall be fully supported by specification M1, M2 or R1 supports. S1, S2, S3, H2 or H3 steel spring deflection isolators with minimum 3/4-inch minimum shall be in those locations where added deflection is required due to pipe expansion and contraction. Spring deflection shall be a

minimum of 4 times the anticipated deflection change. Springs shall be selected to keep the riser in tension. Height saving brackets used with isolators having 2.5" deflection or greater shall be of the precompression type to limit exposed bolt length. Specification R1 riser supports shall be installed near the center point of the riser to anchor the riser when spring isolation is used. Specification R2 riser guides may be used in conjunction with spring isolators per design calculations. Pipe risers up through 16" shall be supported at intervals of every third floor of the building. Pipe risers 18" and over, every second floor. Wall sleeves for take-offs from riser shall be sized for insulation O.D. plus two times the anticipated movement to prevent binding. Horizontal take-offs and at upper and lower elbows shall be supported with spring isolators as required to accommodate anticipated movement. In addition to submittal data requirements previously outlined, riser diagrams and calculations shall be subport point, initial and final loads on the building structure, and spring deflection changes. Submittal data shall include certification that the riser system has been examined for excessive stresses and that none will exist if installed per design proposed.

- R. Where riser pipes pass through cored holes, core diameters shall be a maximum of 2" larger than pipe O.D. including insulation. Cored holes must be packed with resilient material or firestop as provided by other sections of this specification or local codes. Where seismic restraint is required specification isolator S3 shall support risers and provide longitudinal restraint at floors where thermal expansion is minimal and will not bind isolator restraints.
- S. Duct Isolation: Isolate all duct work with a static pressure 2" W.C. and over in equipment rooms and to minimum of 50 feet from the fan or air handler. Use specification type H2 or H3 hangers or type S1 or S2 floor mounts.

3.5 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment Restraints:
 - 1. On projects with Seismic Site Class A or B, seismic design or restraint is not required.
 - 2. On projects with Seismic Design Category C: Components with an importance factor of 1.0 do not require seismic design or restraint.
 - 3. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 4. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 5. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES. providing required submittals for component.
 - 6. Suspended Equipment: All suspended equipment that meets any of the following conditions requires seismic restraints as specified by the supplier:
 - a. Rigidly attached to pipe or duct that is 75 lbs. and greater,
 - b. Items greater than 20 lbs and distribution systems weighing more than 5 lbs/lineal foot, with an importance factor of 1.0 hung independently or with flexible connections.
 - c. Possibility of consequential damage.
 - d. For importance factors greater than 1.0 all suspended equipment requires seismic restraint regardless of the above notes.
 - e. Wall mounted equipment weighing more than 20 lbs.

- f. Exemptions:
 - 1) Equipment weighing less than 20 lbs and distribution systems weighing less than 5 lbs/lineal foot, with an Ip = 1.0 and where flexible connections exist between the component and associated ductwork, piping or conduit.
- 7. Base Mounted Equipment: All base mounted equipment that meets any of the following conditions requires attachments and seismic restraints as specified by the supplier:
 - a. Connections to or containing hazardous material,
 - b. With an overturning moment.
 - c. Weight greater than 400 lbs.
 - d. Mounted on a stand 4 ft. or more from the floor
 - e. Possibility of consequential damage.
 - f. For importance factors greater than 1.0 all base mounted items require seismic restraints regardless of the above notes.
 - g. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
 - h. Exemptions:
 - 1) Floor or curb-mounted equipment weighing less than 400 lbs and not resiliently mounted, where the Importance Factor, Ip = 1.0, the components are mounted at 4 feet or less above a floor level, flexible connections between the components and associated duct work, piping and conduit are provided and there is no possibility of consequential damage.
- 8. Roof Mounted Equipment:
 - a. To be installed on a structural frame, seismically rated roof curb, or structural curb frame mechanically connected to the structure. Items shall not be mounted onto sleepers or pads that are not mechanically and rigidly attached to the structure. Restraint must be adequate to resist both seismic and wind forces.
 - b. Roof curbs shall be installed directly to building structural steel or concrete roof deck and not to top of steel deck or roofing material.
 - c. Exemptions:
 - 1) Curb-mounted mushroom, exhaust and vent fans with curb area less than nine square feet are excluded.
- 9. Rigid Mounted Equipment:
 - a. Anchor floor and wall mounted equipment to the structure as per the stamped seismic certifications / drawings.
 - b. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
 - c. Suspended equipment shall be restrained using seismic cable restraints, or struts, and hanger rods as per the stamped seismic certifications / drawings.
- 10. Vibration Isolated Equipment:
 - a. Seismic control shall not compromise the performance of noise control, vibration isolation or fire stopping systems.
 - b. Equipment supported by vibration-isolation hangers shall be detailed and installed with approximately a 1/8" gap between the isolation hangers and the structure. Isolators at restraint locations must be fitted with uplift limit stops.
- B. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.

- C. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- D. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.
- E. Installation and adjustment of all seismic restraints specified in this section shall be accomplished as per the manufacturer's written instructions. Any deviation from the manufacturer's instructions shall be reviewed and approved by the manufacturer.
- F. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Seismically restrain piping, with an Ip = 1.0, located in boiler rooms, mechanical equipment rooms and refrigeration equipment rooms that is $1\frac{1}{4}$ " I.D. and larger.
 - 3. Seismically restrain all other Ip = 1.0 piping $2\frac{1}{2}$ " diameter and larger.
 - 4. Seismically restrain all Ip = 1.5 piping larger than 1" diameter.
 - 5. Branch lines may not be used to brace main lines.
 - 6. Exemptions:
 - a. All high deformability pipe 3" or less in diameter suspended by individual hanger rods where Ip = 1.0.
 - b. High deformability pipe or conduit in Seismic Design Category C, 2" or less in diameter suspended by individual hanger rods where Ip = 1.5.
 - c. High deformability pipe in Seismic Design Category D, E or F, 1" or less in diameter suspended by individual hanger rods where Ip = 1.5.
 - d. All clevis supported pipe runs installed less than 12" from the top of the pipe to the underside of the support point and trapeze supported pipe suspended by hanger rods having a distance less than 12" in length from the underside of the pipe support to the support point of the structure.
 - e. Piping systems, including their supports, designed and constructed in accordance with ASME B31.
 - f. Piping systems, including their supports, designed and constructed in accordance with NFPA, provided they meet the force and displacement requirements of Section 13 .3.1 and 13.3.2 (ASCE 7).
- G. Install flexible metal hose loops in piping which crosses building seismic joints, sized for the anticipated amount of movement.
- H. Install flexible piping connectors where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.
- I. Where pipe sizes reduce below dimensions required for seismic, the final restraint shall be installed at the transition location.
- J. Restraint Spacing For Piping: Sizes shown are maximum. Actual spacing determined by calculation.
 - 1. For non-ductile piping (e.g., cast iron, PVC) space transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.

- 2. For piping with hazardous material inside (e.g., natural gas, medical gas) space Transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
- 3. For pipe risers, restrain the piping at floor penetrations using the same spacing requirements as above.
- 4. For all other ductile piping see Table "A" below
- K. Seismic Restraint of Ductwork: Seismically restrain per specific code requirements, all ductwork listed below (unless otherwise indicated on the drawings), using seismic cable restraints: (Ductwork not meeting criteria listed below is to be "Exempt")
 - 1. Restrain rectangular ductwork with cross sectional area of 6 square feet or larger. Duct with and an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 2. Restrain round ducts with diameters of 28" or larger. Duct with an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
 - 3. Restrain flat oval ducts the same as rectangular ducts of the same nominal size.
 - 4. Duct must be reinforced at the restraint locations. Reinforcement shall consist of an additional angle on top of the ductwork that is attached to the support hanger rods. Ductwork is to be attached to both upper angle and lower trapeze. Additional reinforcing is not required if duct sections are mechanically fastened together with frame bolts and positively fastened to the duct support suspension system.
 - 5. A group of ducts may be combined in a larger frame so that the combined weights and dimensions of the ducts are less than or equal to the maximum weight and dimensions of the duct for which bracing details are selected.
 - 6. Walls, including gypsum board non-bearing partitions, which have ducts running through them, may replace a typical transverse brace. Provide channel framing around ducts and solid blocking between the duct and frame.
 - 7. If ducts are supported by angles, channels or struts, ducts shall be fastened to it at seismic brace locations in lieu of duct reinforcement.
 - 8. All ductwork weighing more than 17 lb/ft.
 - 9. Exemptions:
 - a. Duct runs supported at locations by two rods less than 12 inches in length from the structural support to the structural connection to the ductwork. This exemption does not apply to ducts with an importance factor of 1.5.
 - 10. See Table "A" below for restraint spacing.
- L. Exemptions do not apply for:
 - 1. Life Safety or High Hazard Components
 - a. Including gas, fire protection, medical gas, fuel oil and compressed air needed for the continued operation of the facility or whose failure could impair the facility's continued operation, Occupancy Category IV, IBC-2009 as listed in Section 1.3 B regardless of governing code for HVAC, Plumbing, Electrical piping or equipment. (A partial list is illustrated.) High Hazard is additionally classified as any system handling flammable, combustible or toxic material. Typical systems not excluded are additionally listed below.
 - 2. Piping
 - a. Fuel oil, gasoline, natural gas, medical gas, steam, compressed air or any piping containing hazardous, flammable, combustible, toxic or corrosive materials. Fire protection standpipe, risers and mains. Fire Sprinkler Branch Lines must be end tied.

- 3. Duct
 - a. Smoke evacuation duct or fresh air make up connected to emergency system, emergency generator exhaust, boiler breeching or as used by the fire department on manual override.
- M. Spacing Chart For Suspended Components:

Table "A" Seismic Bracing								
(Maximum Allowable Spacing Shown- Actual Spacing to Be Determined by Calculation)								
Equipment	On Center Transverse	On Center Longitudinal	Change Of Direction					
Duct								
All Sizes	30 Feet	60 Feet 4 Feet						
Pipe Threaded, Welded, Soldered Or Grooved								
To 16"	40 Feet	80 Feet	4 Feet					
18" – 28"	30 Feet	60 Feet	4 Feet					
30" – 40"	20 Feet	60 Feet	4 Feet					
42" & Larger	10 Feet	30 Feet	4 Feet					

- N. Roof mounted duct is to be installed on sleepers or frames mechanically connected to the building structure. Roof anchors and seismic cables or frames shall be used to resist seismic and wind loading. Wind loading factors shall be determined by the registered design professional.
- O. Where duct sizes reduce below dimensions required for seismic restraint the final restraint shall be installed at the transition location.
- P. Install cables so they do not bend across edges of adjacent equipment or building structure.
- Q. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- R. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- S. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- T. Seismically Rated Beam Clamps are required where welding to or penetrations to steel beams are not approved.
- U. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.6 FIELD QUFALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- C. Perform tests and inspections.
 - 1. A representative of the vibration isolation system manufacturer shall review the project installation and provide documentation indicating conformance to vibration isolation design intent
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.
 - 1. The installing contractor shall submit a report upon request to the building architect and/or engineer, including the manufacturer's representative's final report, indicating that all seismic restraint material has been properly installed, or steps that are to be taken by the contractor to properly complete the seismic restraint work as per the specifications.

3.7 SPECIAL INSPECTIONS

- A. Special Inspection Requirements: All Designated Seismic Systems are subject to Special Inspection per IBC Chapter 17. The seismic restraint manufacturer will provide a special inspection plan to the contractor for submittal to the owner and design team for use by the projects special inspectors. The plan will include the following:
 - 1. A list of all components of the seismic system that require inspection of testing.
 - 2. The required frequency of testing and inspection.
 - 3. Type and nature of testing required.
- B. Special inspection for mechanical components shall be provided as follows:
 - 1. Periodic special inspection during the installation for flammable, combustible or highly toxic piping systems and their associated mechanical units in Seismic Design Categories C, D, E or F.
 - 2. Periodic special inspection during the installation of HVAC ductwork that will contain hazardous materials in Seismic Design Categories C, D, E or F.
 - 3. Periodic special inspection during the installation of vibration isolation systems where the construction documents indicate a maximum clearance (air gap) between the equipment support frame and restraint less than or equal to 1/4 inch.

- 4. Pipe, 3" and larger.
- 5. Isolator units for seismic isolation system.
- 6. Manufacturer's written Quality Control Program for projects in Seismic Design Categories E or F.

3.8 IDENTIFICATION

- A. Install identification tags at all seismic brace locations. Tags to include the following information:
 - 1. Specific seismic forces (g-force) the location was designed to resist.
 - 2. Maximum brace reaction at connection to structure.
 - 3. For single hung items, the maximum pipe/conduit size the brace location was designed to accommodate.
 - 4. For trapeze supported items, the maximum weight (lbs/lf) the brace location was designed to accommodate.
 - 5. For suspended equipment, the maximum unit operating weight (lbs) the brace location was designed to accommodate.
 - 6. Location identifier cross matched to that on plan set layout.
 - 7. Company name of installing contractor.

3.9 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust leveling devices as required to distribute loading uniformly on isolators. Shim units as required where leveling devices cannot be used to distribute loading properly.
 1. Adjust active height of spring isolators.
- C. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 01 Section "Demonstration and Training."

EQUIPMENT ISOLATION SCHEDULE									
		A'			B'			C'	
		CRITIC			UPPER		GRADE		
LOCATION		AL			STORY				
	(35'-50'	SPAN)			(20'-35' \$	SPAN)			
	ISOLA	MINIM	DACE	ISOLA	MINIM	DAGE	ISOLA	MINIM	DACE
	TOR	UM	DASE	TOR	UM	DASE	TOR	UM	DASE
	TVDE	DEFLE	TVDE	TYPE	DEFLE	TYPE	TYPE C	DEFLE	TVDE
	IIPE	CTION	LIFE		CTION			CTION	TIPE

TECHNICAL SPECIFICATIONS

EQUIPMENT (1)		(IN)			(IN)			(IN)	
CENTRIFUGAL FANS									
CL. I & II UP TO 54-112" W.D.									
UPT015HP	S3	1.5	SB1	S3	0.75	SB1	S3	0.75	SB1

B. NOTES:

C. 1) Thrust restraints required on all high-pressure fan section, suspended axial-flow fans and on floor-mounted axial fans operating at 3.0" S.P. or greater.

END OF SECTION 23 0548

SECTION 23 0550 - OPERATIONS & MAINTENANCE MANUALS

PART 1- GENERAL

1.1 RELATED DOCUMENTS

- A. All pertinent sections of Division 21, 22, & 23 Mechanical General Requirements, are part of the work of this Section. Division 1 is part of this and all other sections of these specifications.
 - 1. Testing and Balancing is specified in section 23 0594.
 - 2. Training and Instructions to Owner's Representative is specified in section 23 0100.

1.2 SCOPE OF WORK

- A. Submission of Operating and Maintenance Manuals complete with Balancing reports. (Coordinate with Division 1).
- B. Coordination of work required for system commissioning.
- C. Provide a hard copy and an electronic copy of the O and M manual fully searchable in PDF format.

1.3 SUBMITTALS

- A. Submit product data in accordance with Division 1 and Section 23 0100. Submit the following:
- B. Sample of O and M manual outline.

PART 2 - PRODUCTS

2.1 O & M MANUALS

- A. The operating and maintenance manuals shall be as follows:
 - 1. Binders shall be red buckram with easy-view metal for size 8-1/2 x 11-inch sheets, with capacity expandable from 2 inches to 3-1/2 inches as required for the project. Construction shall be rivet-through with library corners. No. 12 backbone and lining shall be the same material as the cover. The front cover and backbone shall be foil-stamped in white as follows: (coordinate with Section 1730)

OPERATING AND MAINTENANCE MANUAL FOR THE

(INSERT PROJECT NAME)

(INSERT PROJECT COMPLETION YEAR)

VOLUME No. ()

VAN BOERUM & FRANK ASSOCIATES, INC. MECHANICAL ENGINEER

(INSERT ARCHITECT)

Binders shall be a manufactured by:

We R Memory Makers Attn: Melvin Hiller 631 North 400 West Salt Lake City, Utah 84103 801-539-5000

PART 3- EXECUTION

3.1 OPERATING AND MAINTENANCE MANUALS:

- A. Work under this section shall be performed in concert with the contractor performing the system testing and balancing. Six (6) copies of the manuals shall be furnished to the Architect for distribution to the owner.
- B. The "Start-Up and Operation" section is one of the most important in the manual. Information in this section shall be complete and accurately written and shall be verified with the actual equipment on the job, such as switches, starters, relays, automatic controls, etc. A step-by-step start-up procedure shall be described.
- C. The manuals shall include water-balancing reports, system commissioning procedures, startup tests and reports, equipment and system performance test reports, warranties, and certificates of training given to the owner's representatives.
- D. An index sheet typed on AICO Gold-Line indexes shall be provided in the front of the binder. The manual shall be include the following:

SYSTEM DESCRIPTIONS

START-UP PROCEDURE AND OPERATION OF SYSTEM

MAINTENANCE AND LUBRICATION TABLE

OPERATION AND MAINTENANCE BULLETINS

230550 - 2

AUTOMATIC TEMPERATURE CONTROL DESCRIPTION OF OPERATION, INTERLOCK AND CONTROL DIAGRAMS, AND CONTROL PANELS.

AIR AND WATER SYSTEM BALANCING REPORTS

EQUIPMENT WARRANTIES AND TRAINING CERTIFICATES

SYSTEM COMMISSIONING REPORTS

EQUIPMENT START-UP CERTIFICATES

END OF SECTION 23 0550

BLANK PAGE

SECTION 23 0553 – IDENTIFICATION FOR PIPING & EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes mechanical identification materials and devices.
- B. Provide red lettering on the ceiling tiles of the locations of all fire dampers, smoke dampers and fire /smoke dampers. Size of lettering and verbiage is to conform to IBC and NFPA standards.
- C. All specialty gas piping shall be identified.

1.3 SUBMITTALS

- A. Product Data: For identification materials and devices.
- B. Samples: Of color, lettering style and graphic representation required for each identification material and device.

1.4 QUALITY ASSURANCE

A. Comply with ASME A13.1, "Scheme for the Identification of Piping Systems" for lettering size, length of color field, colors, and viewing angles of identification devices.

1.5 SEQUENCING AND SCHEDULING

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.

TECHNICAL SPECIFICATIONS

PART 2 - PRODUCTS

2.1 IDENTIFYING DEVICES AND LABELS

- A. General: Products specified are for applications referenced in other Division 22 & 23 Sections. If more than single type is specified for listed applications, selection is Installer's option.
- B. Equipment Nameplates: Metal permanently fastened to equipment with data engraved or stamped.
 - 1. Data: Manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and essential data.
 - 2. Location: Accessible and visible.
- C. Stencils: Standard stencils, prepared with letter sizes conforming to recommendations of ASME A13.1. Minimum letter height is 1-1/4 inches for ducts, and 3/4 inch for access door signs and similar operational instructions.
 - 1. Stencil Paint: Exterior, oil-based, alkyd gloss black enamel, unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 2. Identification Paint: Exterior, oil-based, alkyd enamel in colors according to ASME A13.1, unless otherwise indicated.
- D. Snap-On Plastic Pipe Markers: Manufacturer's standard preprinted, semirigid, snap-on type. Include color-coding according to ASME A13.1, unless otherwise indicated.
- E. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers, extending 360 degrees around pipe at each location.
- F. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers, at least 3 times letter height and of length required for label.
- G. Lettering: Manufacturer's standard preprinted captions as selected by Engineer.
- H. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 - 1. Arrows: Either integrally with piping system service lettering, to accommodate both directions, or as separate unit, on each pipe marker to indicate direction of flow.
- I. Plastic Duct Markers: Manufacturer's standard laminated plastic, in the following color codes:
 - 1. Green: Cold-air supply.
 - 2. Yellow: Hot-air supply.
 - 3. Blue: Exhaust, outside, return, and mixed air.
 - 4. Hazardous Material Exhausts: Use colors and designs recommended by ASME A13.1.

- 5. Terminology: Include direction of airflow; duct service such as supply, return, and exhaust; duct origin, duct destination, and design flow.
- J. Plastic Tape: Manufacturer's standard color-coded, pressure-sensitive, self-adhesive, vinyl tape, at least 3 mils thick.
 - 1. Width: 1-1/2 inches on pipes with OD, including insulation, less than 6 inches; 2-1/2 inches for larger pipes.
 - 2. Color: Comply with ASME A13.1, unless otherwise indicated.
- K. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch sequenced numbers. Include 5/32-inch hole for fastener.
 - 1. Material: 0.032-inch- thick, polished brass..
 - 2. Size: 1-1/2-inches diameter, unless otherwise required.
 - 3. Indicate valve service and normal position on valve. Example Cold water, N.O.
- L. Valve Tag Fasteners: Brass, wire-link or beaded chain; or brass S-hooks.
- M. Valve Tag Fasteners: Brass, wire-link chain; beaded chain; or S-hooks.
- N. Access Panel Markers: 1/16-inch- thick, engraved plastic-laminate markers, with abbreviated terms and numbers corresponding to concealed valve. Provide 1/8-inch center hole for attachment.
- O. Plastic Equipment Markers: Manufacturer's standard laminated plastic, in the following color codes:
 - 1. Green: Cooling equipment and components.
 - 2. Yellow: Heating equipment and components.
 - 3. Brown: Energy reclamation equipment and components.
 - 4. Blue: Equipment and components that do not meet criteria above.
 - 5. Hazardous Equipment: Use colors and designs recommended by ASME A13.1.
 - 6. Terminology: Match schedules as closely as possible. Include the following:
 - a. Name and plan number.
 - b. Equipment service.
 - c. Design capacity.
 - d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 - 7. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.
- P. Lettering and Graphics: Coordinate names, abbreviations, and other designations used in mechanical identification with corresponding designations indicated. Use numbers, letters, and terms indicated for proper identification, operation, and maintenance of mechanical systems and equipment.

1. Multiple Systems: Identify individual system number and service if multiple systems of same name are indicated.

PART 3– EXECUTION

3.1 LABELING DUCTS AND PIPES

A. Duct and Piping systems shall be identified by:

- 1. Background color
- 2. Lettering color, and
- 3. Flow Direction Arrow
- B. Duct and Piping Background Color shall be applied to all exposed piping (either over bare pipe of the insulation) in mechanical rooms. Identifying lettering and arrows shall then be added as indicated above, and as necessary to be visible from anywhere in the room.
 - 1. For duct in mechanical rooms, chases and other exposed areas, as well as piping routed in other exposed airs such as chases, background color shall be applied in a two foot (2'0") wide band with identifying lettering and a flow direction arrow.
 - 2. Background and lettering shall be semi-gloss enamel paint by DeVoe (Mirrolac), Pratt and Lambert, Glidden, Rust-Oleum, Sherwin Williams or approved equal. The colors specified herein shall not be varied.

Color	Sherwin Williams	Pratt & Lambert	Rust-Oleum
Red	SW4081 Safety Red	1007 Vibrant Red	964 Federal Safety Red
Orange	SW4083 Safety Orange	S4507 Safety Orange	956 Federal Safety Orange
Yellow	SW4084 Safety Yellow	1732 Spectrum Yellow	944 Federal Safety Yellow
Green	SW4085 Safety Green	Safety Green	933 Federal Safety Green
Blue	SW4086 Safety Blue	1228 Anchors Aweigh	925 Federal Safety Blue
Purple	SW4080 Plum	Bright Medium	Bright Medium
Silver (Aluminum)	B59S11 Silver Brite		
Black	Black	Effecto Black	634 Black

White	White	Effecto White	2766 White
Brown	SW4001 Bolt Brown	2278 Char Brown	

- a. Identifying lettering shall be painted or stenciled on duct or pipe over the background color. Self-adhesive or glue-one type labels are acceptable. Letters shall be 2" high for duct and larger piping 3" or more, 1" high for 1-14" to 2-1/2" pipe, and ½" high for 1" pipe and smaller.
- b. Arrows to indicate direction of flow shall be painted over the background color in the same color as the lettering. The arrow shall point away from the lettering. On large piping 3" or more in diameter, the "shaft" of the arrow shall be 2" long and 1" wide. Smaller piping, 2-1/2" or less, shall have arrows with a shaft ¹/₂" wide and 2" long. Use a double-headed arrow if the flow can be in either direction.
- c. Piping shall be identified as follows:

3.2 LABELING AND IDENTIFYING PIPING SYSTEMS

- A. Install pipe markers on each system. Include arrows showing normal direction of flow.
- B. Marker Type: Stenciled markers with painted, color-coded bands complying with ASME A13.1.
- C. Marker Type: Plastic markers, with application systems. Install on pipe insulation segment where required for hot, noninsulated pipes.
- D. Fasten markers on pipes and insulated pipes by one of following methods:
 - 1. Snap-on application of pretensioned, semirigid plastic pipe marker.
 - 2. Adhesive lap joint in pipe marker overlap.
 - 3. Laminated or bonded application of pipe marker to pipe or insulation.
 - 4. Taped to pipe or insulation with color-coded plastic adhesive tape, not less than 3/4 inch wide, lapped a minimum of 1-1/2 inches at both ends of pipe marker, and covering full circumference of pipe.
 - 5. Taped to pipe or insulation with color-coded plastic adhesive tape, not less than 1-1/2 inches wide, lapped a minimum of 3 inches at both ends of pipe marker, and covering full circumference of pipe.
- E. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations according to the following:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, where flow pattern is not obvious.
 - 3. Near penetrations through walls, floors, ceilings, or nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed

230553 - 5

piping.

- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at a maximum of 50-foot intervals along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

3.3 VALVE TAGS

- A. Install on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, plumbing fixture supply stops, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. Indicate service and normal position of all tagged valve and control devices. List tagged valves in valve schedule.
- B. Tag Material: Brass.

3.4 EQUIPMENT SIGNS AND MARKERS

- A. Install engraved plastic-laminate signs or equipment markers on or near each major item of mechanical equipment. Include signs for the following general categories of equipment:
 - 1. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - 2. Fire department hose valves and hose stations.
 - 3. Meters, gages, thermometers, and similar units.
 - 4. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - 5. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - 6. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - 7. Fans, blowers, primary balancing dampers, and mixing boxes.
 - 8. Packaged HVAC central-station and zone-type units.
 - 9. Tanks and pressure vessels.
 - 10. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- B. Optional Sign Types: Stenciled signs may be provided instead of engraved plastic, at Installer's option, where lettering larger than 1-inch high is needed for proper identification because of distance from normal location of required identification.
 - 1. Lettering Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 2. Terms on Signs: Distinguish between multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.

- C. Duct Systems: Identify air supply, return, exhaust, intake, and relief ducts with duct markers; or provide stenciled signs and arrows showing service and direction of flow.
 - 1. Location: Locate signs near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 ADJUSTING AND CLEANING

- A. Relocate mechanical identification materials and devices that have become visually blocked by work of this or other Divisions.
- B. Clean faces of identification devices and glass frames of valve charts.

END OF SECTION 23 0553

SECTION 23 0594 - GENERAL TESTING, ADJUSTING, BALANCING AND COMMISSIONING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes testing, adjusting, and balancing HVAC systems to produce design objectives, including the following:
 - 1. Balancing airflow and water flow within distribution systems, including submains, branches, and terminals, to indicated quantities according to specified tolerances.
 - 2. Adjusting total HVAC systems to provide indicated quantities.
 - 3. Measuring electrical performance of HVAC equipment.
 - 4. Setting quantitative performance of HVAC equipment.
 - 5. Verifying that automatic control devices are functioning properly.
 - 6. Measuring sound and vibration.
 - 7. Reporting results of the activities and procedures specified in this Section.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to design quantities.
- C. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- D. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- E. Report Forms: Test data sheets for recording test data in logical order.
- F. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.
- G. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.

- H. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- I. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- J. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- K. Test: A procedure to determine quantitative performance of a system or equipment.
- L. Testing, Adjusting, and Balancing Agent: The entity responsible for performing and reporting the testing, adjusting, and balancing procedures.
- M. AABC: Associated Air Balance Council.
- N. AMCA: Air Movement and Control Association.
- O. NEBB: National Environmental Balancing Bureau.
- P. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association.

1.4 SUBMITTALS

- A. Contract Documents Examination Report: Within 90 days from the Contractor's Notice to Proceed, submit 2 copies of the Contract Documents review report as specified in Part 3 of this Section.
- B. Strategies and Procedures Plan: Within 120 days from the Contractor's Notice to Proceed, submit 2 copies of the testing, adjusting, and balancing strategies and step-by-step procedures as specified in Part 3 "Preparation" Article below. Include a complete set of report forms intended for use on this Project.
- C. Certified Testing, Adjusting, and Balancing Reports: Submit 2 copies of reports prepared, as specified in this Section, on approved forms certified by the testing, adjusting, and balancing Agent.
- D. Sample Report Forms: Submit 2 sets of sample testing, adjusting, and balancing report forms.
- E. Warranty: Submit 2 copies of special warranty specified in the "Warranty" Article below.

1.5 QUALITY ASSURANCE

- A. Agent Qualifications: Engage a testing, adjusting, and balancing agent certified by either AABC or NEBB. Balancing may only be performed by the following:
 - 1. Bonneville Test & Balance.
 - 2. BTC Service.
 - 3. Certified Test & Balance.
 - 4. Intermountain Test & Balance
 - 5. RS Analysis.
 - 6. Test & Balance Inc.
 - 7. Payson Sheetmetal.
 - 8. Independent Test & Balance.
- B. Testing, Adjusting, and Balancing Conference: Meet with the Owner's and the Architect's representatives on approval of the testing, adjusting, and balancing strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of testing, adjusting, and balancing team members, equipment manufacturers' authorized service representatives, HVAC controls Installer, and other support personnel. Provide 14ays' advance notice of scheduled meeting time and location.
 - 1. Agenda Items: Include at least the following:
 - a. Submittal distribution requirements.
 - b. Contract Documents examination report.
 - c. Testing, adjusting, and balancing plan.
 - d. Work schedule and Project site access requirements.
 - e. Coordination and cooperation of trades and subcontractors.
 - f. Coordination of documentation and communication flow.
- C. Certification of Testing, Adjusting, and Balancing Reports: Certify the testing, adjusting, and balancing field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified testing, adjusting, and balancing reports.
 - 2. Certify that the testing, adjusting, and balancing team complied with the approved testing, adjusting, and balancing plan and the procedures specified and referenced in this Specification.
- D. Testing, Adjusting, and Balancing Reports: Use standard forms from AABC's "National Standards for Testing, Adjusting, and Balancing" or frame NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."
- E. Instrumentation Type, Quantity, and Accuracy: As described in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."
- F. Instrumentation Calibration: Calibrate instruments at least every 6 months or more frequently if required by the instrument manufacturer.

1.6 PROJECT CONDITIONS

A. Partial Owner Occupancy: The Owner may occupy completed areas of the building before Substantial Completion. Cooperate with the Owner during testing, adjusting, and balancing operations to minimize conflicts with the Owner's operations.

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist testing, adjusting, and balancing activities.
- B. Notice: Provide 7 days' advance notice for each test. Include scheduled test dates and times.
- C. Perform testing, adjusting, and balancing after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.8 WARRANTY

- A. General Warranty: The national project performance guarantee specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.
- B. National Project Performance Guarantee: Provide a guarantee on AABC or NEBB forms stating that AABC or NEBB will assist in completing the requirements of the Contract Documents if the testing, adjusting, and balancing Agent fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - 1. The certified Agent has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Contract Documents to become familiar with project requirements and to discover conditions in systems' designs that may preclude proper testing, adjusting, and balancing of systems and equipment.
 - 1. Contract Documents are defined in the General and Supplementary Conditions of the Contract.
 - 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.

- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine project record documents described in Division 1 Section "Project Record Documents."
- D. Examine equipment performance data, including fan and pump curves. Relate performance data to project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce the performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- E. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Specification Sections have been performed.
- F. Examine system and equipment test reports.
- G. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- H. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- I. Examine air-handling equipment to ensure clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes and mixing boxes, to verify that they are accessible and their controls are connected and functioning.
- K. Examine plenum ceilings, utilized for supply air, to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- L. Examine strainers for clean screens and proper perforations.
- M. Examine 3-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- N. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- O. Examine open-piping-system pumps to ensure absence of entrained air in the suction piping.

- P. Examine equipment for installation and for properly operating safety interlocks and controls.
- Q. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices operate by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including 2-way valves and 3-way mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at design values. Observe and record system reactions to changes in conditions. Record default set points if different from design values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to design values.
- R. Report deficiencies discovered before and during performance of testing, adjusting, and balancing procedures.

3.2 PREPARATION

- A. Prepare a testing, adjusting, and balancing plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so design conditions for system operations can be met.

3.3 GENERAL TESTING AND BALANCING PROCEDURES

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC or NEBB national standards and this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to the insulation Specifications for this Project.
- C. Mark equipment settings with paint or other suitable, permanent identification material, including damper-control positions, valve indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

3.4 FUNDAMENTAL AIR SYSTEMS' BALANCING PROCEDURES

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check the airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.

3.5 CONSTANT-VOLUME AIR SYSTEMS' BALANCING PROCEDURES

A. The procedures in this Article apply to constant-volume supply-, return-, and exhaust-air systems. Additional procedures are required for variable-air-volume, multizone, dual-duct, induction-unit supply-air systems and process exhaust-air systems. These additional procedures are specified in other articles in this Section.
- B. Adjust fans to deliver total design airflows within the maximum allowable rpm listed by the fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each air-handling unit component.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers under final balanced conditions.
 - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
 - 5. Adjust fan speed higher or lower than design to achieve design conditions. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
 - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure no overload will occur. Measure amperage in full cooling, full heating, and economizer modes to determine the maximum required brake horsepower.
- C. Adjust volume dampers for main duct, submain ducts, and major branch ducts to design airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submains and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submains and branch ducts to design airflows within specified tolerances.
- D. Measure terminal outlets and inlets without making adjustments.

- 1. Measure terminal outlets using a direct-reading hood or the outlet manufacturer's written instructions and calculating factors.
- E. Adjust terminal outlets and inlets for each space to design airflows within specified tolerances of design values. Make adjustments using volume dampers rather than extractors and the dampers at the air terminals.
 - 1. Adjust each outlet in the same room or space to within specified tolerances of design quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating if high-efficiency motor.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.7 TEMPERATURE TESTING

- A. During testing, adjusting, and balancing, report need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of 2 successive 8-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.8 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

- C. Record controller settings and note variances between set points and actual measurements.
- D. Verify operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Verify free travel and proper operation of control devices such as damper and valve operators.
- F. Verify sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water-flow measurements. Note the speed of response to input changes.
- G. Confirm interaction of electrically operated switch transducers.
- H. Confirm interaction of interlock and lockout systems.
- I. Verify main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine if the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations. TOLERANCES
 - A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans: Plus 5 to minus 10 percent.
 - 2. Air Outlets and Inlets: 0 to minus 10 percent.

3.10 REPORTING

3.9

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article above, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.11 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in 3-ring binder, tabulated and divided into sections by tested and balanced systems.

- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of the instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to the certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include approved Shop Drawings and Product Data.
- D. General Report Data: In addition to the form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of testing, adjusting, and balancing Agent.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of testing, adjusting, and balancing Agent who certifies the report.
 - 10. Summary of contents, including the following:
 - a. Design versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 11. Nomenclature sheets for each item of equipment.
 - 12. Data for terminal units, including manufacturer, type size, and fittings.
 - 13. Notes to explain why certain final data in the body of reports vary from design values.
 - 14. Test conditions for fans and pump performance forms, including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings, including settings and percentage of maximum pitch diameter.
 - e. Settings for supply-air, static-pressure controller.
 - f. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present with single-line diagrams and include the following:

- 1. Quantities of outside, supply, return, and exhaust airflows.
- 2. Water and steam flow rates.
- 3. Duct, outlet, and inlet sizes.
- 4. Pipe and valve sizes and locations.
- 5. Terminal units.
- 6. Balancing stations.
- F. Equipment Test Reports: For all equipment tested:
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - 2. Motor Data: Include the following:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - 3. Test Data: Include design and actual values for the following: (all elements of the system that were tested, including air and water flows, static pressures, pump hoods, inlet and outlet static pressures, inlet, outlet pressure type of coils, raws, circuits face areas, inlet, outer wet bulb, dry bulb temperatures, duct sizes tested, inlet and outlet flows temperatures and pressures and all other pertinent data. The report to be organized per each item tested.)
 - a. Total rate in cfm, gpm and lbs/hr.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Outside airflow in cfm.
 - g. Return airflow in cfm.
 - h. Outside-air damper position.
 - i. Return-air damper position.
- G. Instrument Calibration Reports: For instrument calibration, include the following:
 - 1. Report Data: Include the following:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.

e. Dates of calibration.

3.12 WARRANTY

During the first year and as part of the warrantee period this division shall make the necessary adjustment to change air pressurization, volumes on the air and water systems at no cost to the owner.

3.13 ADDITIONAL TESTS

- A. Within 120 days of completing testing, adjusting, and balancing, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial testing, adjusting, and balancing procedures were not performed during near-peak summer and winter conditions, perform additional inspections, testing, and adjusting during near-peak summer and winter conditions.

END OF SECTION 23 0594

SECTION 23 3423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line centrifugal fans.
 - 2. Centrifugal wall ventilators.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on:1. Actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.
- C. Fan Schedule: Fan characteristics and performance data are described in an equipment schedule on the drawings including:
 - 1. Fan arrangement with wheel configuration, inlet and discharge configurations, and required accessories.
 - 2. Capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, shipping weights, operating weights, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Wiring Diagrams: For power, signal, and control wiring.
 - a. Detail all wiring systems and differentiate clearly between manufacturer-installed and field-installed wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension assembly members.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Field quality-control Reports

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set for each belt-driven unit.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Power ventilator electrical components shall comply with applicable NEMA standards.
- D. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.
- E. TUV Certified: High Volume low speed fan shall comply with UL 507

1.9 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 PRODUCTS FURNISHED BUT NOT INSTALLED

A. Products furnished, but not installed, under this Section include roof curbs for roof-mounted exhaust fans. Roof curbs to be installed by Division 07, section "Roof Accessories".

2.2 IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Loren Cook Company.
 - 3. PennBarry.
 - 4. Twin City.
- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing with:
 - 1. Wheel, inlet cone.
- D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
 - 1. Fan Guard: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet on units not connected to ductwork, where contact with fan wheel is within personal reach through access opening, or where falling objects and/or debris may enter fan.
- F. Accessories:
 - 1. Dampers:
 - **a.** Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - **b.** Motorized parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops. These dampers to be black in all cases.

- 2. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
- 3. Disconnect Switch: Nonfusible type:
 - a. Thermal-overload protection; factory wired through an internal aluminum conduit.
 - 1) Mounted inside fan housing.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
- B. Enclosure Type: Totally enclosed;**1.** Fan cooled

2.4 FACTORY FINISH

- A. Metal Parts: All assembly parts shall be protected from rust and corrosion.
 - 1. Stainless steel, aluminum, and other non-corroding materials require no protective finish.
 - 2. Non-galvanized sheet metal parts shall be prime coated or powder coated before final assembly.
 - 3. Prime coated parts shall receive baked enamel finish coat after assembly.

2.5 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

2.6 CENTRIFUGAL WALL VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 2. Ammerman; Millennium Equipment.
 - 3. Greenheck Fan Corporation.

- 4. Hartzell Fan Incorporated.
- 5. Loren Cook Company.
- 6. Twin City.
- B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
- C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.
 - 1. Fan Guard: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet on units not connected to ductwork, where contact with fan wheel is within personal reach through access opening, or where falling objects and/or debris may enter fan.
- D. Direct-Drive Units: Motor mounted in airstream.
- E. Accessories:

a

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type:
 - Thermal-overload protection; factory wired through an internal aluminum conduit.

1) Mounted inside fan housing.

3. Wall Grille: Ring type for flush mounting.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements of installation tolerances and other conditions affecting performance of the power ventilators. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PROJECT CONDITIONS

- A. Field Measurements: Verify dimensions by field measurements. Verify clearances.
- B. Do not operate fans until ductwork is clean, filters are in place, bearings are lubricated, and fans have been commissioned.

3.3 INSTALLATION

- A. Install power ventilators level and plumb according to manufacturer's written instructions.
- B. Base Mounted Equipment:
 - 1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in:
 - a. Division 33 "Cast-in-Place Concrete."

- C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. **Support Steel:** Support suspended units from structure using threaded steel as specified in Division 23 "Vibration and Seismic Controls for HVAC."
- F. Label units according to requirements specified in Division 23 "Identification for HVAC Piping and Equipment."
- G. Install power ventilators with factory recommended and code required clearances for service and maintenance.

3.4 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 "Grounding and Bonding for Electrical Systems."
 - 1. Tighten electrical connectors and terminals, including grounding connections, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- D. Connect wiring according to Division 26 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Tighten electrical connectors and terminals, including grounding connections, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.

- C. Comply with requirements in Division 23 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.
- 3.7 CLEANING
 - A. After completing installation, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.
 - B. Clean fan interiors to remove foreign material and construction debris. Vacuum clean fan wheel and cabinet.

3.8 DEMONSTRATION

- A. Train Owner's maintenance personnel on procedures and schedules related to startup and shutdown, troubleshooting, servicing, and preventive maintenance.
- B. Review data in the operation and maintenance manuals. Refer to Division 1 Section "Contract Closeout."
- C. Schedule training with Owner, through Architect, with at least 7 days' advance notice.
- D. Demonstrate operation of power ventilators. Conduct walking tour of the Project. Briefly identify location and describe function, operation, and maintenance of each power ventilator.

END OF SECTION 233423

BLANK PAGE

SECTION 23 8126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
 - 3. Detailed description of equipment anchorage devices their installation requirements.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For evaporator-fans, compressor-condensers, accessories, and components, provide from manufacturer:
 - 1. Basis for Certification: Indicate whether "withstand" certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

- B. Field quality-control reports.
- C. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: Two sets for each unit. One filter to be installed for use during startup and Testing & Balancing. The contractor shall install the second filter at the time of Substantial Completion.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 - 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - " Procedures," and Section 7 - "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:

a. For Compressor, parts and labor: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Provide one of the following:
 - 1. Carrier Corporation; a unit of United Technologies Corp.;
 - 2. Lennox Industries, Inc.; Lennox International;
 - 3. Mitsubishi Electric & Electronics USA, Inc.;
 - 4. Sanyo North America Corporation
 - 5. Trane Company a division of Ingersoll-Rand;

2.2 INDOOR UNITS

- A. Wall-Mounted, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in, manufacturers standard color and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 206/110.
 - 3. Fan: Direct drive, centrifugal.
 - 4. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - d. Mount unit-mounted disconnect switches on interior of unit.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 6. Condensate Drain Pans: Comply in all respects with ASHRAE 62.1. Provide condensate pump with minimum 9 inch [24 inch] lift and safety shutoff switch.
 - 7. Air Filtration Section: Permanent, cleanable.

2.3 OUTDOOR UNITS

- A. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, manufacturers standard finish and color with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.

- 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - c. Refrigerant Charge: R-410A
 - d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid sub-cooler. Comply with ARI 206/110.
- 3. Fan: Aluminum-propeller type directly connected to motor.
- 4. Motor: Permanently lubricated, with integral thermal-overload protection.

2.4 ACCESSORIES

- A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- B. Automatic-reset timer to prevent rapid cycling of compressor.
- C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

2.5 CAPACITIES AND CHARACTERISTICS

A. Capacities and characteristics shall be as scheduled on Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Evaporator-fan Components Mounting: Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Compressor-condenser Components Mounting:
 - 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 2. Install roof-mounted, compressor-condenser components on roof curb provided by manufacturer in compliance with NRCA requirements. Secure equipment to upper curb

rail, and secure curb base to roof framing or concrete base with anchor bolts required in Section 230548 "Vibration and Seismic Controls" Submittal.

- 3. Coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories."
- D. Install and connect pre-charged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Equipment".
- D. Electrical Connections: Comply with requirements in Division 26 Section for power wiring, switches, and motor controls

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test & inspection reports and corrective actions. Submit written reports to the Architect.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel on procedures and schedules related to adjusting, operating, startup and shutdown; troubleshooting; servicing and preventative maintenance of Units.
 - 1. Review data in the Operation and Maintenance Manual. Refer to Division 1 Section "Contact Closeout".
 - 2. Schedule training with Owner through the Architect with at least 14 days advance notice.

END OF SECTION

SECTION 23 8240 - ELECTRIC UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cabinet unit heaters with coils.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Plans, elevations, sections, and details.
 - 2. Location and size of each field connection.
 - 3. Details of anchorages and attachments to structure and to supported equipment.
 - 4. Equipment schedules to include rated capacities, operating characteristics, furnished specialties, and accessories.
 - 5. Location and arrangement of integral controls.
 - 6. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which unit heaters will be attached.
 - 3. Method of attaching hangers to building structure.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.

- b. Air outlets and inlets.
- c. Speakers.
- d. Sprinklers.
- e. Access panels.
- f. Projectors
- 6. Perimeter moldings for exposed or partially exposed cabinets.
- D. Samples for Initial Selection: Finish colors for units with factory-applied color finishes.
- E. Samples for Verification: Finish colors for each type of cabinet unit heater and wall and ceiling heaters indicated with factory-applied color finishes.
- F. Manufacturer Seismic Qualification Certification: Submit certification that cabinet unit heaters, accessories, and components will withstand seismic forces defined in Division 15 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- G. Field quality-control test reports.
- H. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1-2007 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cabinet Unit Heater Filters: Furnish spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. Manufacturers
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Airtherm; a Mestek Company.
 - b. McQuay International.
 - c. Trane.
 - d. Qmark
- B. Description
 - 1. Factory-assembled and -tested unit complying with AHRI 440.
 - 2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Comply with UL 2021.
- C. Coil section insulation
 - 1. Insulation Materials: ASTM C 1071; surfaces exposed to airstream shall have aluminumfoil facing to prevent erosion of glass fibers.
- D. Cabinets
 - 1. Material: Steel with factory prime coating, ready for field painting.
 - 2. Horizontal Unit, Exposed Bottom Panels: Removable panels secured with tamperproof cam fasteners and safety chain.
 - a. Minimum thickness: 17GA-0.0538-inch- sheet steel.
 - 3. Recessed Flanges: Steel, finished to match cabinet.
 - 4. Control Access Door: Key operated.
- E. Filters
 - 1. Minimum Arrestance: According to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - a. Washable Foam: 70 percent arrestance and MERV 3.
- F. Coils
 - 1. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature

protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.

- G. Controls
 - 1. Basic Unit Controls:
 - 2. Thermostat with the following features:
 - a. Wall-mounted.
 - b. Heat-off switch.
 - c. Fan on-auto switch.
 - d. Adjustable deadband.
 - e. Set point:
 - 1) Concealed.
 - f. Indication:
 - 1) Concealed.
 - 2) Deg F.
- H. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
- I. Electrical Connection: Factory-wired motors and controls for a single field connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for electrical connections to verify actual locations before unit heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install cabinet unit heaters to comply with NFPA 90A.
- B. Install propeller unit heaters level and plumb.
- C. Suspend cabinet unit heaters from structure with elastomeric hangers. Vibration isolators are specified in Division 73 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- D. Suspend propeller unit heaters from structure with all-thread hanger rods. Hanger rods and attachments to structure are specified in Division 23 Section "Hangers and Supports for HVAC

Piping and Equipment." Vibration hangers are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

- E. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- F. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors specified in Division 23 Section "Duct Accessories."
- B. Ground equipment according to Division 29 Section "Grounding and Bonding."
- C. Connect wiring according to Division 26 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to [two] visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Division 1 Section "Demonstration and Training."

END OF SECTION

SECTION 25 0125 – BUILDING AUTOMATION SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Provide an expansion of the Airport's existing Building Automation System for control, monitoring, and energy management as specified and indicated on the Drawings.
- B. BAS manufacturer is responsible for all BAS design, installation, startup and testing. BAS design shall comply with the guidelines established in this Section.
- C. Furnish and install all control equipment necessary for a complete and operable system.
- D. Provide all BAS controls cabling for a complete and operable system. Any cabling to support an Internet Protocol (IP) connection to BAS equipment shall be coordinated with and installed by the Division 27 low voltage contractor. Cabling to support IP connections shall conform to all Division 27 requirements.
- E. Work of this section includes all electrical distribution except as noted below.
- F. Coordinate with other Divisions as required for interface with the BAS.
- G. Furnish all Terminal Unit Controllers.
- H. Interface this BAS expansion with the existing BAS system, including any new head-end equipment which the Airport may install during the project construction.
- I. Provide system testing, including demonstration and systems integration testing.
- J. Related Sections:
 - 1. Section 250130 "BAS Interface Requirements".
 - 2. Section 250205 "Field Devices for Building Automation System."
 - 3. Section 271510 "Communications Horizontal Cabling".
 - 4. Section 271310 "Communications Backbone Cabling".

1.3 WORK BY OTHERS

- A. Division 26 shall provide power connections to BAS controlpanels.
- B. Division 23 shall install control valves, control dampers, sensor wells, differential pressure transmitter, air flow measuring stations, and other field devices in duct or piping systems.

- C. Division 23 TAB contractor to be present and assist with calibration of air flow measuring stations and flow meters.
- D. Division 27 shall provide Technet Data Communications Network connections to the BAS control panels.

1.4 TRADE CONTRACTOR QUALITY ASSURANCE

- A. The BAS system shall be designed and installed, commissioned and serviced by manufacturer employed, factory trained personnel.
- B. Materials and equipment shall be the catalogued products and shall be manufacturer's latest standard design that complies with the specification requirements. Material and equipment installed shall be new and unused.
- C. All equipment shall be compatible with the Owner's version of Siemens Enterprise Software.
- D. Installation shall be in conformance with the manufacturer's printed installation instructions.
- E. All BAS controllers and local user displays shall be UL Listed under Standard UL 916, category PAZX.
- F. BAS components which are part of engineered smoke control systems, as noted on the Drawings, shall be rated for such use and be listed under UL 864, UUKL, PAZX.
- G. The manufacturer shall provide documentation supporting compliance with ISO-9002 (Model for Quality Assurance in Production, Installation, and Servicing) and ISO-140001 (The application of well-accepted business management principles to the environment). The intent of this specification requirement is to ensure that the products from the manufacturer are delivered through a Quality System and Framework that will assure consistency in the products delivered for this project.
- H. All electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Section 15, governing radio Frequency Electromagnetic Interference and be so labeled.

1.5 SUBMITTALS

- A. Action Submittals
 - 1. Product Data for all components provided in the project.
 - 2. When manufacturer's cutsheets apply to a product series rather than a specific product, clearly indicate applicable data by highlighting or by other means. Clearly reference covered specification and drawing on each submittal. General catalogs shall not be accepted as cut sheets to fulfill submittal requirements.
 - 3. Project specific schematics, including:
 - a. Overall system architecture
 - b. Sequence of operations.
 - c. Instrumentation diagrams
 - d. Points lists

- e. Point names.
- f. Point addresses.
- g. Interface wiring diagrams.
- h. Control Panellayouts.
- i. System riser diagrams.
- 4. Floor plans showing:
 - a. Control panel locations
 - b. Terminal unit locations
 - c. Floor Level Network routing and identification.
- 5. Interface Diagrams
 - a. For all equipment with BAS interface, provide diagrams showing:
 - 1) Equipment supplier's scope
 - 2) BAS scope
 - 3) Points to be integrated.
 - 4) Interface protocol.
- 6. Screen Displays
 - a. Before creating screen displays submit color samples. Submit typical equipment, such as a single example of:
 - 1) VAV Terminal
 - 2) Exhaust Fans.
- B. Informational submittals
 - 1. Provide copies of BAS QA/QC procedures to be used for system installation, startup and checkout. Procedures shall, as a minimum, include:
 - a. Controller installation.
 - b. Sensor installation, calibration and checkout.
 - c. Point-to-point wiring checkout.
 - d. Third-party interface validation.
 - e. Control loop verification.
 - f. Alarm verification.
- C. Closeout Submittals
 - 1. Comply with the requirements of Division 1 for Operation and Maintenance manuals and with the following
 - a. Manufacturer's equipment parts list of all functional components of the system.
 - b. Electronic copies of system schematics, including wiring diagrams.
 - c. System schematics, including wiring diagrams.
 - d. Description of sequence of operations.
 - e. As-built interconnection wiring diagrams.
 - f. Operator's Manuals.

- g. Riser diagram showing panel locations and networking.
- h. List of connected data points, including panels to which they are connected and input device (occupancy sensors, push buttons, light sensors, etc).
- i. Conduit routing diagrams.
- j. Transformer and Breaker locations.
- k. Control program, point definitions, and all other setup information needed to replace the controller.
- 1. Printout of supplied dynamic graphics displays.

1.6 WARRANTY

- A. Provide all service, materials and equipment necessary for the successful operation of the entire BAS system for a period of one year after beneficial use or manufacturer's standard warranty, whichever is longer.
- B. The adjustment, required testing, and repair of the system includes all computer equipment, transmission, equipment and all sensors and control devices.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURER

A. Siemens Industry, Inc. Building Technologies Division. All equipment shall be compatible with the latest version of Siemens Enterprise Software.

2.2 WIRING AND CABLES

- A. Low voltage cables including field device, network and signal cables shall comply with Division 27.
- B. All power wiring and related devices shall comply with Division 26.
- C. All power, field device and network wiring shall be in minimum of $\frac{3}{4}$ " conduit, except the final 12" of field device wiring.
- D. All wiring shall comply with project specifications, codes, and BAS manufacturer's published standard.

2.3 PROJECT DESIGN REQUIREMENTS

- A. Control Panels shall contain controllers, power supplies, I/O modules, bus interface modules and any other necessary devices.
 - 1. Panel enclosure shall be Siemens, UL listed, with hinged, lockable door. NEMA 1 for panels inside and NEMA 4X for panels outside or exposed to ambient air.
 - 2. Panel enclosure shall have sufficient space for 50% increase in I/O points.

- 3. All control wiring shall be routed through a gutter before entering control panel.
- 4. Controller shall be PXCM.
- 5. Controller and I/O modules shall be provided with 10% spare points of each type (AI, AO, BI, BO)
- 6. All digital and analog output modules shall include manual override feature. Analog modules shall include LCD display.
- 7. Install transformers in a separate enclosure
- 8. Provide permanent printed labels on each control panel. Label information shall include cabinet number designation and power feed information
- B. Provide Control Panels for the following:
 - 1. One panel for each Air Handling Unit
 - 2. One Panel for each pump room.
 - 3. Other locations as required for monitoring and systems integration.
- C. Terminal Unit Controllers shall be standard products as required for the sequences of operation. Terminal Unit Controllers with integral damper actuators are not allowed. Each controller shall be labeled with system name, address, transformer location, and circuit breaker number
- D. Provide one Terminal Unit Controller for each Fan Coil Unit and each Air Terminal Unit. Air Terminal Units shall be connected to a floor level network originating in the AHU control panel serving the terminal unit.
- E. All transformers required, shall be sized so that power load is no more then 50% of full load.
- F. Install transformers in a separate enclosure from the controllers. Transformer locations and devices served need to be clearly labeled on enclosure.
- G. Junction boxes shall be in an accessible location for troubleshooting.
- H. Surge transient protection shall be incorporated in design of system to protect electrical components in all DDC Controllers and operator's workstations.

PART 3 - EXECUTION

3.1 EXISTING CONTROL DEVICES

A. Where work of this section includes interfacing with existing systems, Contractor shall assume that existing control devices are fully operational otherwise noted. Verify existing conditions and locations of devices and communications tie-ins before beginning the project.

3.2 SEQUENCE OF OPERATION HVAC SYSTEM

- A. VAV Boxes
 - 1. Controls shall maintain space temperature by modulating the VAV damper. No reheat is on the boxes. Heating mode shall close VAV damper until desired space temperature is maintained.
- B. Exhaust Fans (Restrooms):

1. Operate continuously.

3.3 SYSTEMS INTEGRATION

- A. The following specification sections include BAS interface for monitoring or control.
 - 1. 220520 "Meters and Gages for Plumbing Piping"
 - 2. 223500 "Electric Domestic Water Heaters"
 - 3. 260913 "Electrical Power Monitoring"
 - 4. 250944 "Relay-Based Lighting Controls"
 - 5. 263354 "Static Uninterruptable Power Supply"
 - 6. 263601 "Transfer Switches"
 - 7. 283111 "Digital Addressable Fire-Alarm System"
- B. Monitoring, including hardwired points, or control is further defined by equipment schedules, control diagrams, sequences and points lists in the drawings.

3.4 INSTALLATION

- A. All BAS equipment, conduit and other devise shall be located to provide adequate clearance for maintenance and shall not interfere with maintenance or code required clearances for other equipment.
- B. Any connection to the Owner's LAN or other system devices shall be connected to a termination outlet (wall jack, biscuit type jack, patch panel, etc.) on both ends of the connection via a Category 6a patch cable complying with specification 27 15 10 "Communications Horizontal Cabling". No field device shall be directly connected to an Owner's local area network switch or similar device.
- C. Provide all necessary copper and fiber patch cables for making all network switch interconnections to support the BAS including room-to-room cabling connections and from network equipment to in-room termination panel. The Contractor shall ensure that all patch cables meet patch cable requirements as specified in Section 27 15 10 Communication Horizontal Cabling. Any known cabling issues discovered during implementation shall be brought to the attention of the Owner.
- D. Coordinate with other Divisions so that application specific controllers have a minimum of 18" clearance from the controller face to any obstruction and that this service space can be accessed from below.
- E. All BAS conduit, including those for field devices and networks shall be labeled. Network conduit labels shall identify the specific network.

3.5 PROGRAMMING

A. Provide necessary programming to implement the written sequences of operation.

3.6 ALARM MANAGEMENT

- A. System alarms are defined in the specifications and on the drawings.
- B. Each alarm shall be assigned an Alarm Level. The Alarm Levels are characterized as:
 - 1. Level 1: Life Safety / Security Critical Alerts
 - 2. Level 2: Life Safety / Security non-Critical Alerts
 - 3. Level 3: Critical Equipment Failure
 - 4. Level 4: Non-Critical Equipment Failure
 - 5. Level 5: Energy Conservation Alert
 - 6. Level 6: Maintenance Notification
- C. Alarm reports and messages shall be routed to a user-defined list of responsible groups.
- D. The alarm message text shall be used to describe the nature and location of the alarm, required response and contact information.
- E. Each alarm shall be individually resettable. In addition each system shall be capable of resetting all associated alarms with a single input.

3.7 DATA LOGGING

- A. Data logging and trending is described on the drawings. Points to be logged shall be recorded at the intervals given, for a period of one year. Data logs shall be easily retrievable, and shall be displayed in either tabular form or graph form.
- B. Logs shall include the equipment identification (EQUIPMENT NAMEPLATE), value recorded, units, date and time.

3.8 DYNAMIC COLOR GRAPHICS (SCREEN DISPLAYS)

- A. Contractor is responsible for updating Owner's screen displays with new graphics as required for this work
- B. Screen displays shall be hierarchical linked dynamic operator interface for displaying system data and for commanding and modifying equipment operation. The interface shall use pull-down menus, tool bar and dialog boxes.
- C. Screen displays shall include systems segregated by user groups. For each user group screens shall be provided for the complete project, showing the extent of this project, each building or area (such as parking lots), each floor and each room.
- D. User Groups are:
 - 1. Facilities Maintenance
 - 2. Plumbing / FM Coordination / 520
 - 3. Fire
 - 4. Control Center
 - 5. Electrical
 - 6. Lighting

- 7. IT / Technical
- 8. Environmental
- 9. Energy Conservation.
- E. Screen displays shall be provided for each system and piece of equipment monitored or controlled. Each piece of equipment shall show all associated points and alarms. All points shall be dynamic with continuously updated values.
- F. The Contractor shall develop, coordinate, and administer a series of workshops with BAS stakeholders to define, prototype and finalize the screen displays that will be provided with the system. At a minimum the contractor shall support three (3) workshops. These workshops shall include:
 - 1. Initial workshop; Contractor shall provide a baseline prototype of the screen display and describe to the stakeholders the available options, fields, layouts, etc. During this workshop the stakeholders will provide input and direction to the desired layouts, fields to include, and other information required by the Contractor to develop the initial screen layouts. An appropriate number of specific screen displays shall be identified for further development.
 - a. Following the initial workshop, the contractor shall develop screen displays for further review by the stakeholders.
 - 2. Follow up workshop: Following the initial workshop, and after the development of preliminary screen displays, a follow up workshop will be conducted by the Contractor. The intent of the follow up workshop is to review the preliminary screen displays and for the stakeholders to provide comments and further input into the desired displays. The results of the follow up workshop will be to gather all required information and input to finalize the screen displays.
 - 3. Final workshop: The final workshop will be utilized to present the final screen displays and to obtain stakeholder acceptance for incorporation into the screen display submittals.

3.9 NAMING CONVENTIONS

A. All BAS points and graphics shall incorporate naming conventions as defined by the Owner which are shown on drawings as "EQUIPMENT NAMEPLATE". This name shall be used for all system points, equipment identification on system graphics, point logs and other items.

3.9 SYSTEM START UP, CALIBRATION, AND SIGNOFF

- A. Contractor shall be responsible for start up, check out, and calibration for the BAS. All setpoints shall be input, and the system shall be operated and adjusted, as required, to provide satisfactory operation as to the intent of the plans and specifications during the warranty period. Owner shall be notified before any start-up or calibration processes.
- B. The Contractor shall provide the labor and test apparatus required to calibrate and prepare for operation of all instruments, controls and accessory equipment furnished under this specification. This work includes; zero, span and calibration checks of all instruments, devices, equipment and accessories both field and panel mounted.
- C. The Contractor shall furnish labor and test apparatus required to check the operation of all

control loops, setpoints and interlocks. After testing, the BAS operation shall be officially demonstrated to and accepted by the Owner. Contractor will be responsible for correcting any work unaccepta- ble to the Owner

- 1. Owner will select a number of systems to be demonstrated. For each system, all related equipment and sub-systems shall be tested.
- 2. Demonstration testing shall include :
 - a. Each system point shall be tested for hardware and software functionality.
 - b. Each control loop shall be tested to verify the sequence of operation.
 - c. Alarm verification including alarm level and alarm clearing.
 - d. Graphics verification including displayed values, parameter updating.
- D. Systems integration testing: test each system for proper integration. Show that each point imported into the BAS is correctly displayed, the variables are correct and alarms functional. Test performed by contractor, witnessed by owner.
- E. The Contractor shall provide signoff forms for all operational testing to be accomplished under this contract. Sign off shall include verification of all changes made to the existing BAS, and for each item of mechanical, electrical, and instrumentation equipment provided or installed under this Contract, and shall contain provisions for recording relevant performance data for original testing and not less than 2 retests. Separate sections shall be provided to record values and for the initials of the Contractor and the Owner's representative.
- F. Provide Owner with a copy of commissioning data showing that each device is operating properly.
- G. Contractor shall demonstrate that equipment monitoring and system integration requirements are fully functional.
- H. Provide any recommendation for system modification in writing to the Owner. Do not make any system modification, including operating parameters and control settings, without prior approval of owner.

3.10 TRAINING

- A. The contractor shall provide factory-trained instructor to give full instruction to designated personnel in the operation of the system installed. Instructors shall be thoroughly familiar with all aspects of the subject matter they are to teach. The contractor shall provide all students with a student binder containing project specific training modules for the system installed. All training shall be held during normal working ours of 8:00 AM to 4:30 PM weekdays.
- B. Provide 16 hours of training for Owner's designated operating personnel. Training shall include:
 - 1. Explanation of drawings, operations and maintenance manuals.
 - 2. Walk-through of the job to locate control components.
 - 3. Operator workstation and peripherals.
 - 4. DDC controller and ASC operation/function.
 - 5. Operator control functions including graphic generation and field programming.
 - 6. Operation of portable operator's terminal.
 - 7. Explanation of adjustment, calibration and replacement procedures.

- 8. Student binder with training modules.
- 9. Unused hours of training will be added to an on-going Airport training account maintained by SBT and the Airport to be used at Airport's discretion.
- C. Since the Owner may require personnel to have more comprehensive understanding of the hardware and software, additional training must be available from the Contractor. If the Owner requires such training, it will be contracted at a later date.
- D. Since the Owner may require personnel to have more comprehensive understanding of the hardware and software, additional training must be available from the Contractor. If the Owner requires such training, it will be contracted at a later date.

END OF SECTION 250125
SECTION 250130 – BAS INTERFACE REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This section defines product requirements and documentation to be provided for devices which are a part of, or communicate with the Building Automation System (BAS) through a network connection.
- B. Related Requirements:
 - 1. Section 25 01 25 "Building Automation System"
 - 2. Section 27 15 10 "Communications Horizontal Cabling".
 - 3. Section 27 13 10 "Communications Backbone Cabling".

1.3 DEFINITIONS

- A. BAS: Building Automation System.
- B. BACnet Specific Definitions:
 - 1. BACnet: Building Automation Control Network Protocol, ANSI/ASHRAE 135.1. A communications protocol allowing devices to communicate data and services over a network.
 - 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
 - 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
 - 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
 - 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.
- C. BTL: BACnet Testing Laboratory.
- D. Device: any physical object that is controlled, monitored or otherwise communicates with the BAS.
- E. Gateway: Bidirectional protocol translator that connects control systems using different communication protocols.

- F. MODBUS/RTU: A serial data communication protocol.
- G. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- H. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- I. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- J. Third-Party Device: A device not manufactured specifically for or manufactured by a supplier.

1.4 **PRODUCT REQUIREMENTS**

- A. Any system or device which is part of, connected to, monitored by or communicates with the BAS through a network connection must use either MODBUS or BACnet protocol. All cabling required to support the network connection shall be installed in accordance with Division 27 requirements.
- B. BACnet Requirements
 - 1. BACnet systems or devices must be certified by BTL and must carry a "BTL Mark" signifying compliance with ANSI/ASHRAE 135.1.
 - 2. All systems and devices shall use BACnet/IP or MSTP protocol.
 - 3. Devices shall communicate peer-to-peer with other devices.
 - 4. Devices shall be able to use local broadcasts received by all peer devices on the network.
 - 5. Devices shall be able to send remote broadcasts to devices residing on networks having different network numbers.
 - 6. Devices shall be capable of data sharing to include BACnet priority, change of value, trending, scheduling, alarm/event management, device and network management.
 - 7. Devices shall conform to the BACnet PICS.
 - 8. All devices shall be certified, listed and stamped by the BTL.
- C. MODBUS Requirements:
 - 1. Devices shall adhere to MODBUS TCP/IP or MODBUS RTU protocol.
 - 2. Devices shall follow the client/server model for communication between devices. The client initiates the transaction, the server responds to complete the transaction.
 - 3. Devices which translate any protocol to MODBUS shall not be used.
- D. Gateways shall not be used.

1.5 SUBMITTALS

- A. Action Submittals
 - 1. Product Data: For each type of product demonstrating compliance with this specification including the following:

- a. Product description with complete technical data and product specification sheets.
- b. Installation, operation and maintenance instructions.
- c. BACnet specific information:
 - 1) PICS data sheet.
 - 2) BIBB document.
 - 3) Functional Specification Document (FSD) describing how the device will provide the specified BAS interface.
- d. MODBUS specific information:
 - 1) Configuration guide including a register of all system points.
- B. Informational Submittals:
 - 1. Data Communications Protocol Certificates: Certifying that each proposed BACnet system component complies with ASHRAE 135.

1.6 TRADE CONTRACTOR'S QUALITY ASSURANCE

A. MODBUS devices shall be installed, configured, and programmed by technicians or application engineers certified by the manufacturer for MODBUS products.

PART 2 - PRODUCTS

NOT USED

PART 3 - EXECUTION

3.1 INTEGRATION RESPONSIBILITIES

- A. BAS responsibility for systems integration:
 - 1. Provide the necessary server and software to act as a BACnet or Modbus client.
 - 2. Verify that the Source device is communicating with the BAS.
 - 3. Configure all points provided by the third-party system (Source) as BACnet or Modbus objects.
 - 4. Represent the integrated points on BAS graphics.
 - 5. Display and update objects, including alarms, using COV or polling mechanism of the Source. Data will be represented as received from the Source. No additional processing will be performed.
 - 6. Provide Source with necessary addressing and network information for Source programming.
- B. Third-party (Source) responsibility for systems integration:
 - 1. Program intrinsic reporting of alarms and events as Notification Class objects.

- 2. Provide Device ID, Name, Object ID, Object Type, Description and other parameters as a electronic file of the proper type.
- 3. Install source communication device and configure settings to communicate with the BAS.
- 4. Program Device ID, Port Numbers, and Network Numbers into Source device, based on information provided by BAS.
- 5. Program IP addresses into all Source IP devices.
- 6. Provide BACnet PICS or equivalent Modbus information for Source.
- 7. Provide necessary Source equipment.
- 8. Verify that the Source device is communicating with the BAS.
- 9. Provide support for integration, startup, testing and commissioning.
- 10. Coordinate with Division 27 contractor to provide all horizontal cabling for any BAS device that requires an Internet Protocol (IP) network connection. All horizontal cabling shall be installed in accordance with Division 27 specification requirements.

3.2 ACCEPTANCE TESTING

- A. Acceptance testing for any system or equipment with network connection to BAS shall include demonstrating that all points required by the contract documents are properly originated (by the Source or BAS) and received (by the BAS or Source).
- B. Systems or equipment will not be accepted until the network communication is functional.

END OF SECTION 25 01 30

SECTION 25 0205 – FIELD DEVICES FOR BUILDING AUTOMATION SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Air-temperature sensors.
 - 2. Space-temperature sensors
 - 3. Space occupancy sensors
 - 4. Airflow sensors
 - 5. Damper actuators
 - 6. Current sensors

1.3 SUBMITTALS

- A. Action Submittals
 - 1. Product Data: For each type of product, including the following:
 - a. Field device matrix: provide a matrix of all field devices including generic description, specification reference, model number and application. This must be submitted with the produce information. Produce information will not be approved without this matrix.
 - b. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - c. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - d. Product description with complete technical data, performance curves, and product specification sheets.
 - e. Installation operation and maintenance instructions, including factors affecting performance.
- B. Informational Submittals
 - 1. Product Certificates: For each product requiring a certificate.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Environmental Conditions:
 - 1. Instruments shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.

2.2 AIR-TEMPERATURE SENSORS

- A. Platinum RTDs: Common Requirements:
 - 1. 1000 ohms at zero deg. C and a temperature coefficient of 0.00385 ohm/ohm/deg. C.
 - 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 - 3. Performance Characteristics:
 - a. Range: Minus 50 to 275 deg F.
 - b. Accuracy: Plus or minus 0.2 percent at calibration point.
 - c. Repeatability: Within 0.5 deg F.
 - d. Self-Heating: Negligible.
- B. Platinum RTD, Single-Point Air Temperature Duct Sensors:
 - 1. Probe: Single-point sensor with a stainless-steel sheath.
 - 2. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches.
 - 3. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 - 4. Gasket for attachment to duct or equipment to seal penetration airtight.

2.3 SPACE TEMPERATURE SENSORS

- A. Temperature Sensors for Unit Controllers: Each unit controller shall be provided with a matching room temperature sensor.
 - 1. Auxiliary Communication Port. Each space temperature sensor shall include an integral terminal jack used to connect a portable operator's terminal to control and monitor all hardware and software points associated with the controller. RS-232 communications port shall allow the operator to query and modify operating parameters of the local room terminal unit from a portable operator's terminal.
 - 2. Plain Space Temperature Sensors: Where called for on the drawings, provide sensors with plain covers.
 - a. The sensing element for the space temperature sensor shall be thermistor type providing the following.

1)	Element Accuracy:	+ /- 1.0°F
2)	Operating Range:	55 to 95°F
ITY DEPARTMENT OF AIRPORT		250205 - 2
ITY INTERNATION/		

- 3) Set Point Adjustment Range: 55 to 95°F
- 4) Calibration Adjustments: None required
- 5) Installation: Up to 100 ft. from controller
- 3. Digital display temperature sensor :
 - a. As called for on the drawings, provide temperature sensors with digital displays.
 - b. The sensing element for the space temperature sensor must be IC-based and provide the following.
 - 1) IC Element Accuracy: $+/-0.9^{\circ}F$
 - 2) Operating Range: $55 \text{ to } 95^{\circ}\text{F}$
 - 3) Setpoint Adjustment Range: User limiting, selectable range between 55 and 95°F
 - 4) Calibration: Single point, field adjustable at the space sensor to $\pm -5^{\circ}F$
 - 5) Installation: Up to 100 ft. from controller
 - 6) OLED Temperature Display
 - 7) Display of temperature setpoint with numerical temperature values to one decimal place.
 - 8) Display of temperature setpoint graphically, with a visual Hotter/Colder setpoint indication
 - 9) Tamper proof temperature sensor:
 - c. Where called for on the drawings, provide sensors with tamper proof covers.
 - d. The sensing element for the space temperature sensor shall be thermistor type secured to the back of a blank cover plate, suitable for mounting in a standard electrical box. Attachment by tamper proof screws/. No communication port is required.
 - 1) Element Accuracy: $+/-1.0^{\circ}F$
 - 2) Operating Range: $55 \text{ to } 95^{\circ}\text{F}$
 - 3) Set Point Adjustment Range: 55 to 95°F
 - 4) Calibration Adjustments: None required
 - 5) Installation: Up to 100 ft. from controller
 - 6) Cover Plate: Stainless steel, brushed finish.
- 4. Provide the following options as they are called for on the drawings:
 - a. Setpoint Adjustment. The setpoint adjustment function shall allow for modification of the temperature by the occupant or building operator. Setpoint adjustment may be locked out, overridden, or limited as to time or temperature through software by an operator at any workstation, Building Controller, room sensor two-line display, or via a portable operator's terminal.
 - b. Override Switch. An override button shall initiate override of the night setback mode to normal (day) operation when activated by the occupant and enabled by building operators. The override shall be limited to two (2) hours (adjustable.) The override function may be locked out, overridden, or limited through software by an operator at the operator interface, Building Controller, room sensor two-line display or via a portable operator's terminal.

2.4 SPACE OCCUPANCY SENSORS

- A. Where shown on the drawings or described by the sequences of operation provide occupancy sensors.
- B. Occupancy sensors shall use passive infrared detection having the ability to detect low activity level occupants.
- C. Detectors shall provide separately adjustable on and off delays.
- D. Units shall be wall- or ceiling- mounted as required for space coverage. Provide sufficient quantity for each space for complete coverage.

2.5 AIRFLOW SENSORS AND TRANSMITTERS:

- A. Transmitters for Pitot Tube Airflow Stations:
 - 1. Basis of Design Product: Air Monitor Corporation; DPT 2500 Plus.
 - 2. Transmitter shall receive total- and static-pressure signals from a flow element, amplify signals, extract the square foot, and scale the signals to produce 4- to 20-mA dc output signals linear to airflow.
 - 3. NEMA 250, Type 1 enclosure.
 - 4. Construct assembly so shock, vibration, and pressures surges of up to 1 psig will neither harm transmitter, nor affect its accuracy.
 - 5. Transmitter with automatic zeroing circuit capable of automatically readjusting transmitter zero at predetermined time intervals. The automatic zeroing circuit shall re-zero the transmitter to within 0.1 percent of true zero.
 - 6. Performance:
 - a. Range: As required by application and at least 10 percent below minimum airflow and 10 percent greater than design airflow.
 - b. Calibrated Span: Field adjustable, minus 40 percent of the range.
 - c. Accuracy: Within 0.25 percent of natural span.
 - d. Repeatability: Within 0.15 percent of calibrated span.
 - e. Linearity: Within 0.2 percent of calibrated span.
 - f. Hysteresis and Deadband (Combined): Less than 0.2 percent of calibrated span.
 - 7. Integral digital display for continuous indication of airflow.

2.6 CONTROL DAMPER ACTUATORS

- A. General Requirements
 - 1. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.
 - 2. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.

- 3. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.
- 4. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.
- 5. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.
- 6. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.
- 7. Provide mounting hardware and linkages for connecting actuator to damper.
- 8. Select actuators to fail in desired position in the event of a power failure.
- B. Type: Motor operated, with or without gears.
- C. Construction:
 - 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 - 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.
 - 3. Greater Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- D. Field Adjustment:
 - 1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
 - 2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
- E. Modulating Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 4- to 20-mA signals.
- F. Air Terminal Unit Damper Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.

- G. Position Feedback:
 - 1. Where indicated, equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and closed position.
 - 2. Where indicated, equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- H. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- I. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- J. Damper Attachment:
 - 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 - 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 - 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- K. Temperature:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
- L. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
- M. Stroke Time:
 - 1. Operate damper from fully closed to fully open within 60 seconds.
 - 2. Operate damper from fully open to fully closed within 60 seconds.
 - 3. Move damper to failed position within 30 seconds.
 - 4. Select operating speed to be compatible with equipment and system operation.
 - 5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

2.7 CURRENT SENSORS

- A. Binary Sensors: minimum 1 135 continuous amperage rating with trip setpoint adjustable to plus or minus 1 percent of range.
 - 1. Operating Parameters; 5 degrees F to 140 degrees F; Humidity 0 95 percent noncondensing.
 - 2. Output Signal: Solid state, NO contact closure, 0.1A at 30 VAC/Vdc
 - 3. Supply Voltage: self-induced from load being monitored.
- B. Analog Sensors: Minimum 0 200 continuous amperage rating with adjustable zero and span, frequency insensitive range between 10- 80 Hz to 1 percent of range, minimum response of 150 ms.
 - 1. Accuracy: 0.5 percent of full scale
 - 2. Output Signal 4-20 ma directly proportional to sensed amperage range.
 - 3. Supply Voltage: 12 30 Vdc, 30 mA maximum supply circuit.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
- C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Install products level, plumb, parallel, and perpendicular with building construction.
- B. Properly support instruments, tubing, piping, wiring, and conduit to comply with requirements indicatedFastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

C. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.3 TEMPERATURE INSTRUMENT INSTALLATIONS

- A. Mounting Location:
 - 1. Roughing In:
 - 1. Outline instrument mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
 - a. Provide independent inspection to confirm that proposed mounting locations comply with requirements indicated and approved submittals.
 - 1) Indicate dimensioned locations with mounting height for all surface-mounted products on Shop Drawings.
 - 2) Do not begin installation without submittal approval of mounting location.
 - b. Complete installation rough-in only after confirmation by independent inspection is complete and approval of location is documented for review by Architect on request.
 - 2. Install switches and transmitters for air and liquid temperature associated with individual air-handling units and associated connected ductwork and piping near air-handling units co-located in air-handling unit system control panel to provide service personnel a single and convenient location for inspection and service.
 - 3. Install liquid temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 4. Install air temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 5. Mount switches and transmitters on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
- B. Special Mounting Requirements:
 - 1. Protect products installed outdoors from solar radiation, building and wind effect with stand-offs and shields constructed of Type 316 stainless.
 - 2. Temperature instruments having performance impacted by temperature of mounting substrate shall be isolated with an insulating barrier located between instrument and substrate to eliminate effect. Where instruments requiring insulation are located in finished space, conceal insulating barrier in a cover matching the instrument cover.
- C. Mounting Height:
 - 1. Mount temperature instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with

codes and accessibility requirements.

- 2. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code or state and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
- D. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
- E. Single-Point Duct Temperature Sensor Installation:
 - 1. Install single-point-type, duct-mounted, supply- and return-air temperature sensors. Install sensors in ducts with sensitive portion of the element installed in center of duct cross section and located to sense near average temperature. Do not exceed 24 inches in sensor length.
 - 2. Install return-air sensor in location that senses return-air temperature without influence from outdoor or mixed air.
 - 3. Rigidly support sensor to duct and seal penetration airtight.
 - 4. If required to have transmitter, mount transmitter remote from sensor at accessible and serviceable location.

3.4 FLOW INSTRUMENTS INSTALLATION

- A. Airflow Sensors:
 - 1. Install sensors in straight sections of duct with manufacturer-recommended straight duct upstream and downstream of sensor.
 - 2. Installed sensors shall be accessible for visual inspection and service. Install access door(s) in duct or equipment located upstream of sensor, to allow service personnel to hand clean sensors.
- B. Transmitters:
 - 1. Install airflow transmitters serving an air system in a single location adjacent to or within system control panel.
 - 2. Install liquid flow transmitters, not integral to sensors, in vicinity of sensor. Where multiple flow transmitters serving same system are located in same room, co-locate transmitters by system to provide service personnel a single and convenient location for inspection and service.

3.5 CONTROL VALVES

- A. Install pipe reducers for valves smaller than line size. Position reducers as close to valve as possible but at distance to avoid interference and impact to performance. Install with manufacturer-recommended clearance.
- B. Install flanges or unions to allow drop-in and -out valve installation.
- C. Valve Orientation:
 - 1. Where possible, install globe and ball valves installed in horizontal piping with stems upright and not more than 15 degrees off of vertical, not inverted.

- 2. Install valves in a position to allow full stem movement.
- 3. Where possible, install butterfly valves that are installed in horizontal piping with stems in horizontal position and with low point of disc opening with direction of flow.
- D. Clearance:
 - 1. Locate valves for easy access and provide separate support of valves that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install valves with at least 12 inches of clear space around valve and between valves and adjacent surfaces.
- E. Threaded Valves:
 - 1. Note internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.
 - 2. Align threads at point of assembly.
 - 3. Apply thread compound to external pipe threads, except where dry seal threading is specified.
 - 4. Assemble joint, wrench tight. Apply wrench on valve end as pipe is being threaded.
- F. Flanged Valves:
 - 1. Align flange surfaces parallel.
 - 2. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.7 CLEANING

- A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed interior and exterior surfaces.
- B. Wash and shine glazing.
- C. Polish glossy surfaces to a clean shine.

3.8 CHECK-OUT PROCEDURES

- A. Check installed products before continuity tests, leak tests, and calibration.
- B. Check temperature instruments for proper location and accessibility.
- C. Verify sensing element type and proper material.

- D. Verify location and length.
- E. Verify that wiring is correct and secure.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING

- A. Description:
 - 1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
 - 2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
 - 3. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.
 - 4. Equipment and procedures used for calibration shall meet instrument manufacturer's written instructions.
 - 5. Provide diagnostic and test equipment for calibration and adjustment.
 - 6. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
 - 7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
 - 8. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
 - 9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements and to supplement requirements indicated.
- B. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistance source.
- C. Digital Signals:
 - 1. Check digital signals using a jumper wire.
 - 2. Check digital signals using an ohmmeter to test for contact.
- D. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- E. Switches: Calibrate switches to make or break contact at set points indicated.
- F. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform according to manufacturer's written instruction.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Prepare test and inspection reports.

3.11 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.12 TRAINING

- A. Train Owner's maintenance personnel to adjust, operate, and maintain temperature instruments.
- B. Provide a complete set of instructional videos covering each product specified and installed and showing the following:
 - 1. Software programming.
 - 2. Calibration and test procedures.
 - 3. Operation and maintenance requirements and procedures.
 - 4. Troubleshooting procedures.
- C. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- D. Record videos on DVD disks.
- E. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 25 02 05

SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire.
 - 2. Connectors and splices.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

260519 - 1

- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Alpha Wire Company</u>.
 - 2. <u>Belden Inc</u>.
 - 3. <u>Cerro Wire LLC</u>.
 - 4. <u>Encore Wire Corporation</u>.
 - 5. <u>General Cable Technologies Corporation</u>.
 - 6. <u>Southwire Company</u>.
- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.
- E. Conductor Insulation:
 - 1. Type THHN/THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.

2.2 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M Electrical Products</u>.
 - 2. <u>Emerson Electric Co. (Automation Solutions Appleton O-Z/Gedney)</u>.
 - 3. <u>Gardner Bender</u>.
 - 4. <u>Hubbell Incorporated (Hubbell Power Systems)</u>.
 - 5. <u>Ideal Industries, Inc</u>.
 - 6. <u>ILSCO</u>.
 - 7. <u>NSi Industries LLC</u>.
- C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.
- D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: Two hole with standard barrels.
 - 3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders:

- 1. Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits:
 - 1. Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders inside the building: Type THHN/THWN-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION, GENERAL

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 **IDENTIFICATION**

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Administrant for Tests and Inspections:
1. Engage qualified testing agency to administer and perform tests and inspections.

- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.
 - c. Inspect compression-applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.
 - 3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- C. Cables will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

260519 - 5

BLANK PAGE

SECTION 260526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Ground rods.
 - 2. Grounding arrangements and connections for separately derived systems.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
 - 1) Ground rods.
 - 2) Grounding arrangements and connections for separately derived systems.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Emerson Electric Co. (Automation Solutions Appleton O-Z/Gedney).
 - 2. Fushi Copperweld Inc.
 - 3. <u>Galvan Industries, Inc.; Electrical Products Division, LLC</u>.
 - 4. <u>Harger Lightning & Grounding</u>.
 - 5. <u>Hubbell Incorporated (Burndy)</u>.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- E. Conduit Hubs: Mechanical type, terminal with threaded hub.
- F. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- G. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- H. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- I. Water Pipe Clamps:
 - 1. Mechanical type, two pieces with zinc-plated bolts.
 - a. Material: Die-cast zinc alloy.
 - b. Listed for direct burial.
 - 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 5/8 by 96 inches (16 by 2400 mm).

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install barecopper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 30 inches (750 mm) below grade.
- C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.

260526 - 3

- D. Isolated Grounding Conductors: Green-colored insulation with more than one continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- E. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- F. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.

- 4. Single-phase motor and appliance branch circuits.
- 5. Three-phase motor and appliance branch circuits.
- 6. Flexible raceway runs.
- 7. Armored and metal-clad cable runs.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.4 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
 - 3. For grounding electrode system, install at least two rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

- E. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install [tinned]bonding jumper to bond across flexible duct connections to achieve continuity.
- G. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.
- H. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.
- I. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:

- 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
- 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- 4. Prepare dimensioned Drawings locating each ground rod, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 5 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

BLANK PAGE

SECTION 260529

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Steel slotted support systems.
 - 2. Nonmetallic slotted support systems.
 - 3. Conduit and cable support devices.
 - 4. Support for conductors in vertical conduit.
 - 5. Structural steel for fabricated supports and restraints.
 - 6. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 - 7. Fabricated metal equipment support assemblies.
- B. Related Requirements:
 - 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Sockets.
 - e. Eye nuts.
 - f. Fasteners.
 - g. Anchors.
 - h. Saddles.
 - i. Brackets.

- 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. For fabrication and installation details for electrical hangers and support systems.
 - 1. Hangers. Include product data for components.
 - 2. Slotted support systems.
 - 3. Equipment supports.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of hangers.
 - 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Ductwork, piping, fittings, and supports.
 - 3. Structural members to which hangers and supports will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f.
- B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."
 - 2. Component Importance Factor: 1.5.
 - 3.
- C. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Atkore International (Allied Tube & Conduit)</u>.
 - b. <u>Atkore International (Unistrut)</u>.
 - c. <u>Eaton (B-line)</u>.
 - d. Flex-Strut Inc.
 - e. <u>GS Metals Corp</u>.
 - f. <u>G-Strut</u>.
 - g. <u>Haydon Corporation</u>.
 - h. <u>Metal Ties Innovation</u>.
 - i. <u>Wesanco, Inc</u>.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.

260529 - 3

- 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
- 4. Channel Width: Selected for applicable load criteria .
- 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with minimum 13/32-inch- (10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c., in at least one surface.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Atkore International (Allied Tube & Conduit)</u>.
 - b. Eaton (B-line).
 - c. <u>Fabco Plastics Wholesale Limited</u>.
 - d. <u>G-Strut</u>.
 - e. <u>Haydon Corporation</u>.
 - f. <u>Seasafe, Inc.; AMICO, a Gibraltar Industries Company</u>.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 3. Channel Width: Selected for applicable load criteria.
 - 4. Fittings and Accessories: Products provided by channel and angle manufacturer and designed for use with those items.
 - 5. Fitting and Accessory Materials: Same as those for channels and angles.
 - 6. Rated Strength: Selected to suit applicable load criteria.
 - 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

- a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Hilti, Inc</u>.
 - 2) <u>ITW Ramset/Red Head; Illinois Tool Works, Inc</u>.
 - 3) <u>MKT Fastening, LLC</u>.
 - 4) <u>Simpson Strong-Tie Co., Inc</u>.
- 2. Mechanical-Expansion Anchors: Insert-wedge-type, [zinc-coated] [stainless] steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Eaton (B-line)</u>.
 - 2) <u>Empire Tool and Manufacturing Co., Inc</u>.
 - 3) <u>Hilti, Inc</u>.
 - 4) <u>ITW Ramset/Red Head; Illinois Tool Works, Inc.</u>
 - 5) <u>MKT Fastening, LLC</u>.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325 (Grade A325M).
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101

- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slottedsupport system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529

SECTION 260533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Surface raceways.
 - 4. Boxes, enclosures, and cabinets.
- B. Related Requirements:
 - 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

260533 - 1

- a. <u>Anamet Electrical, Inc (Anaconda Sealtite)</u>.
- b. <u>Atkore International (Allied Tube & Conduit)</u>.
- c. <u>Electri-Flex Company</u>.
- d. <u>FSR Inc</u>.
- e. <u>Republic Conduit</u>.
- f. <u>Southwire Company</u>.
- g. <u>Western Tube and Conduit Corporation</u>.
- h. <u>Wheatland Tube Company</u>.
- 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 3. GRC: Comply with ANSI C80.1 and UL 6.
- 4. ARC: Comply with ANSI C80.5 and UL 6A.
- 5. IMC: Comply with ANSI C80.6 and UL 1242.
- 6. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch (1 mm), minimum.
- 7. EMT: Comply with ANSI C80.3 and UL 797.
- 8. FMC: Comply with UL 1; zinc-coated steel.
- 9. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Atkore International (Allied Tube & Conduit)</u>.
 - b. <u>Electri-Flex Company</u>.
 - c. <u>Emerson Electric Co. (Automation Solutions Appleton O-Z/Gedney)</u>.
 - d. FSR Inc.
 - e. <u>Republic Conduit</u>.
 - f. <u>Southwire Company</u>.
 - g. <u>Topaz Lighting & Electric</u>.
 - h. <u>Western Tube and Conduit Corporation</u>.
 - i. <u>Wheatland Tube Company</u>.
 - 2. Comply with NEMA FB 1 and UL 514B.
 - 3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 4. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 6. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.

- 7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- 8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Nonmetallic Conduit:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Anamet Electrical, Inc (Anaconda Sealtite)</u>.
 - b. <u>Atkore International (AFC Cable Systems)</u>.
 - c. <u>Cantex Inc</u>.
 - d. <u>CertainTeed Corporation</u>.
 - e. <u>Electri-Flex Company</u>.
 - f. <u>Hubbell Incorporated (Raco Taymac Bell)</u>.
 - g. <u>Kraloy Fittings</u>.
 - 2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fiberglass:
 - a. Comply with NEMA TC 14.
 - b. Comply with UL 2515 for aboveground raceways.
 - c. Comply with UL 2420 for belowground raceways.
 - 4. ENT: Comply with NEMA TC 13 and UL 1653.
 - 5. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
 - 6. LFNC: Comply with UL 1660.
 - 7. Rigid HDPE: Comply with UL 651A.
 - 8. Continuous HDPE: Comply with UL 651A.
 - 9. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D3485.
 - 10. RTRC: Comply with UL 2515A and NEMA TC 14.
- B. Nonmetallic Fittings:
 - 1. <a>Souther click here to find, evaluate, and insert list of manufacturers and products.
 - 2. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

- a. Fittings for LFNC: Comply with UL 514B.
- 4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hubbell Incorporated (Wiring Device-Kellems)</u>.
 - b. Legrand North America, LLC (Wiremold).
 - c. <u>MonoSystems, Inc</u>.
- C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>HellermannTyton</u>.
 - b. <u>Hubbell Incorporated (Wiring Device-Kellems)</u>.
 - c. Legrand North America, LLC (Wiremold).

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Erickson Electrical Equipment Company.
 - 2. <u>Hubbell Incorporated</u>.
 - 3. <u>Kraloy Fittings</u>.
 - 4. <u>Legrand North America, LLC (Wiremold)</u>.
 - 5. <u>Oldcastle Enclosure Solutions</u>.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

260533 - 4

- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- F. Metal Floor Boxes:
 - 1. Material: Cast metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
 - 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: [4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep)].
- M. Gangable boxes are allowed.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.

- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Armorcast Products Company</u>.
 - b. <u>Hubbell Incorporated (Quazite)</u>.
 - c. <u>Oldcastle Precast, Inc</u>.
 - 2. Standard: Comply with SCTE 77.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "ELECTRIC." or "COMMUNICATIONS".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: GRC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 4. Damp or Wet Locations: GRC.
 - 5. Boxes and Enclosures: NEMA 250, Type 1.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use compression, fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- G. Install surface raceways only where indicated on Drawings.
- H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- D. Do not fasten conduits onto the bottom side of a metal deck roof.
- E. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- F. Complete raceway installation before starting conductor installation.
- G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- K. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- L. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m) intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 2 inches (50 mm) of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to GRC before rising above floor.
- M. Stub-Ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.

- 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- R. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- S. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- T. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- U. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- V. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- W. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- X. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.

- 2. Where an underground service raceway enters a building or structure.
- 3. Conduit extending from interior to exterior of building.
- 4. Conduit extending into pressurized duct and equipment.
- 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
- 6. Where otherwise required by NFPA 70.
- Y. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- Z. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- AA. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- BB. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

- CC. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- DD. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- EE. Locate boxes so that cover or plate will not span different building finishes.
- FF. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- GG. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- HH. Set metal floor boxes level and flush with finished floor surface.
- II. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete for a minimum of 12 inches (300 mm) on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

260533 - 11

- 6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above directburied conduits but a minimum of 6 inches (150 mm) below grade. Align planks along centerline of conduit.
- 7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
- D. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install 0sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

BLANK PAGE

SECTION 260543

UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 - 2. Rigid nonmetallic duct.
 - 3. Duct accessories.
 - 4. Precast concrete handholes.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. GRC: Galvanized rigid (steel) conduit.
- E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including spacers and miscellaneous components.
 - 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Include accessories for manholes, handholes, boxes.

260543 - 1

- 4. Include underground-line warning tape.
- 5. Include warning planks.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Anamet Electrical, Inc (Anaconda Sealtite)</u>.
 - 2. <u>Atkore International (Allied Tube & Conduit)</u>.
 - 3. <u>Electri-Flex Company</u>.
 - 4. Emerson Electric Co. (Automation Solutions Appleton O-Z/Gedney).
 - 5. FSR Inc.
 - 6. <u>Republic Conduit</u>.
 - 7. <u>Southwire Company</u>.
 - 8. <u>Western Tube and Conduit Corporation</u>.
 - 9. <u>Wheatland Tube Company</u>.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 **RIGID NONMETALLIC DUCT**

- A. Underground Plastic Utilities Duct: Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Underground Plastic Utilities Duct: Type DB-60 PVC and Type DB-120 PVC RNC, complying with NEMA TC 6 & 8 and ASTM F512 for direct burial, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- C. Underground Plastic Utilities Duct: Type EB-20 PVC RNC, complying with NEMA TC 6 & 8, ASTM F512, and UL 651, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- D. <<u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ARNCO Corp</u>.
 - 2. <u>Beck Manufacturing</u>.
 - 3. <u>Cantex Inc</u>.
 - 4. <u>CertainTeed Corporation</u>.
 - 5. <u>Condux International, Inc</u>.
 - 6. Crown Line Plastics.
 - 7. <u>ElecSys, Inc</u>.

8. <u>Electri-Flex Company</u>.

E. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.3 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
 - 1. <<u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Atkore International (Allied Tube & Conduit)</u>.
 - b. <u>Cantex Inc</u>.
 - c. Carlon; a brand of Thomas & Betts Corporation.
 - d. <u>IPEX USA LLC</u>.
 - e. <u>PenCell Plastics</u>.
 - f. <u>Underground Devices, Inc</u>.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.4 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
- B. <<u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Christy Concrete Products</u>.
 - 2. <u>Elmhurst-Chicago Stone Co</u>.
 - 3. <u>Oldcastle Precast, Inc</u>.
 - 4. <u>Rinker Group, Ltd</u>.
 - 5. <u>Riverton Concrete Products</u>.
 - 6. <u>Utility Concrete Products, LLC</u>.
 - 7. <u>Utility Vault Co</u>.
 - 8. <u>Wausau Tile Inc</u>.
- C. Comply with ASTM C858 for design and manufacturing processes.
- D. Frame and Cover (refer to drawings for additional details):
 - 1. Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

- 2. Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamperresistant, captive, cover-securing bolts.
- 3. Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 - a. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - b. Cover Handle: Recessed.
- 4. Weatherproof aluminum frame with hinged aluminum access door assembly with tamperresistant, captive, cover-securing bolts.
 - a. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - b. Cover Handle: Recessed.
- E. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- F. Cover Legend: Molded lettering, "ELECTRIC." or "COMMUNICATIONS".
- G. Configuration: Units shall be designed for flush burial and have open, closed, or integral closed bottom (refer to drawings) unless otherwise indicated.
- H. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 - 1. Extension shall provide increased depth of 12 inches (300 mm).
 - 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
- I. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.
- C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 311000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 311000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Cables More Than 600 V: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
- C. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- D. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- E. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 - 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 structural load rating.
 - 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.

5. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavyduty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm), both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

- G. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator, without reducing duct line slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch (19 mm).
- H. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- I. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- J. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- K. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 7. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
 - 8. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
 - 9. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.

- a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
- b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)abovefinished floor and minimum 3 inches (75 mm)from conduit side to edge of slab.
- c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)abovefinished floor and no less than 3 inches (75 mm)from conduit side to edge of slab.
- 10. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 11. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
- 13. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 - a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.
 - b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (15-mm) reinforcing-rod dowels extending a minimum of 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
- 14. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.
- L. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install top of duct at least 36 inches (900 mm) below finished grade unless otherwise indicated.

- 5. Set elevation of bottom of duct bank below frost line.
- 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 8. Install duct with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and communications duct.
- 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)abovefinished floor and minimum 3 inches (75 mm)from conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - Stub-ups shall be minimum 4 inches (100 mm)abovefinished floor and no less than 3 inches (75 mm)from conduit side to edge of slab.
- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches (75 mm) of sand as a bed for duct. Place sand to a minimum of 6 inches (150 mm) above top level of duct.
 - b. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct.
- M. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried duct, placing them 24 inches (600 mm) o.c. Align planks along the width and along the

centerline of duct or duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.

N. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE HANDHOLES, AND BOXES

- A. Precast Concrete Handhole Installation:
 - 1. Comply with ASTM C891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- B. Elevations:
 - 1. Install handholes with bottom below frost line, below grade.
 - 2. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
 - 3. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

3.7 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
- B. Correct deficiencies and retest as specified above to demonstrate compliance.

260543 - 10

C. Prepare test and inspection reports.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION 260543

BLANK PAGE

SECTION 260553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Labels.
 - 2. Bands and tubes.
 - 3. Tapes and stencils.
 - 4. Tags.
 - 5. Signs.
 - 6. Cable ties.
 - 7. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.

- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 4. Color for Neutral: White.
 - 5. Color for Equipment Grounds: Green with a yellow stripe.
 - 6. Colors for Isolated Grounds: Green with two or more yellow stripes.
- C. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."

- D. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
 - 2.
- E. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."
- F. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.
- C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, polyester flexible label with acrylic pressure-sensitive adhesive.
 - 1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 - 2. Marker for Labels:
 - a. Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - b. Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
- D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 - b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 - c. As required by authorities having jurisdiction.

2.4 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.
- C. Tape and Stencil: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background and are 12 inches (300 mm) wide. Stop stripes at legends.
- D. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
- E. Underground-Line Warning Tape:
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electricalutility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".

2.5 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch (0.38 mm) thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
- C. Write-on Tags:
 - 1. Polyester Tags: 0.010 inch (0.25 mm) thick, with corrosion-resistant grommet and cable tie for attachment.
 - 2. Marker for Tags:
 - a. Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - b. Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.6 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

- 1. Minimum Width: 3/16 inch (5 mm).
- 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
- 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
- 4. Color: Black, except where used for color-coding.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 7000 psi (48.2 MPa).
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 - 5. Color: Black.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.

- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- K. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "STANDBY POWER."
 - 2. "POWER."
- L. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- M. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.
- N. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- O. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.

- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
- P. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- Q. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- R. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- S. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- T. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- U. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- V. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trenchexceeds 16 inches (400 mm) overall.
 - 2. Limit use of underground-line warning tape to direct-buried cables.
 - 3. Install underground-line warning tape for direct-buried cables and cables in raceways.
- W. Metal Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using general-purpose cable ties.
- X. Nonmetallic Preprinted Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using general-purpose cable ties.
- Y. Write-on Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using general-purpose cable ties.
- Z. Baked-Enamel Signs:

- 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on minimum 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use signs minimum 2 inches (50 mm) high.
- AA. Metal-Backed Butyrate Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.
- BB. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.
- CC. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil. Stencil legend "DANGER - CONCEALED HIGH-VOLTAGE WIRING" with 3-inch- (75-mm-) high, black letters on 20-inch (500-mm) centers.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot (3-m) maximum intervals.
- D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "STANDBY POWER."
 - 2. "POWER."
- G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
- I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.
- J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.
- K. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- L. Auxiliary Electrical Systems Conductor Identification: Marker tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
- M. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- N. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:
 - 1. Floor surface directly above conduits running beneath and within 12 inches (300 mm) of a floor that is in contact with earth or is framed above unexcavated space.
 - 2. Wall surfaces directly external to raceways concealed within wall.
 - 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

- O. Workspace Indication: Apply floor marking tape or tape and stencil to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- P. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- Q. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.
 - 1. Apply to exterior of door, cover, or other access.
 - 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- R. Arc Flash Warning Labeling: Self-adhesive labels.
- S. Operating Instruction Signs: Self-adhesive labels.
- T. Equipment Identification Labels:
 - 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchgear.
 - e. Switchboards.
 - f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - g. Substations.
 - h. Emergency system boxes and enclosures.
 - i. Motor-control centers.
 - j. Enclosed switches.
 - k. Enclosed circuit breakers.
 - l. Enclosed controllers.
 - m. Variable-speed controllers.
 - n. Push-button stations.
 - o. Power-transfer equipment.
 - p. Contactors.
 - q. Remote-controlled switches, dimmer modules, and control devices.
 - r. Battery-inverter units.
 - s. Battery racks.
 - t. Power-generating units.

- u. Monitoring and control equipment.
- v. UPS equipment.

END OF SECTION 260553

BLANK PAGE

SECTION 260573.13

SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

- A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.
- B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.
- G. SCCR: Short-circuit current rating.
- H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
- I. Single-Line Diagram: See "One-Line Diagram."

1.4 ACTION SUBMITTALS

A. Product Data:

- 1. For computer software program to be used for studies.
- 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - a. Short-circuit study input data, including completed computer program input data sheets.
 - b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 - 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
 - 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
 - 1. For Power Systems Analysis Software Developer.
 - 2. For Power System Analysis Specialist.
 - 3. For Field Adjusting Agency.
- B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data:
 - 1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
 - 2. The following are from the Short-Circuit Study Report:
 - a. Final one-line diagram.
 - b. Final Short-Circuit Study Report.
 - c. Short-circuit study data files.
 - d. Power system data.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
 - 1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>SKM Systems Analysis, Inc</u>.
- B. Comply with IEEE 399 and IEEE 551.
 - 1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
 - 6. Derating factors and environmental conditions.
 - 7. Any revisions to electrical equipment required by the study.
- D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.
- E. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
 - 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 - 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 - 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
 - 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- F. Short-Circuit Study Input Data:
 - 1. One-line diagram of system being studied.
 - 2. Power sources available.
 - 3. Manufacturer, model, and interrupting rating of protective devices.
 - 4. Conductors.
 - 5. Transformer data.
- G. Short-Circuit Study Output Reports:
 - 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Equivalent impedance.
 - 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.

- b. Calculated symmetrical fault-current magnitude and angle.
- c. Fault-point X/R ratio.
- d. Calculated asymmetrical fault currents:
 - 1) Based on fault-point X/R ratio.
 - 2) Based on calculated symmetrical value multiplied by 1.6.
 - 3) Based on calculated symmetrical value multiplied by 2.7.
- 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the study.
 - 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 - 3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.
- B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
 - 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Obtain electrical power utility impedance at the service.
 - 3. Power sources and ties.

- 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
- 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
- 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
- 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
- 9. Motor horsepower and NEMA MG 1 code letter designation.
- 10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
- 11. Derating factors.

3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
 - 3.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 260573.13

BLANK PAGE

SECTION 260573.16

COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.
 - 1. Study results shall be used to determine coordination of series-rated devices.

1.3 DEFINITIONS

- A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.
- B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.
- G. SCCR: Short-circuit current rating.
- H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

I. Single-Line Diagram: See "One-Line Diagram."

1.4 ACTION SUBMITTALS

- A. Product Data:
 - 1. For computer software program to be used for studies.
 - 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - a. Coordination-study input data, including completed computer program input data sheets.
 - b. Study and equipment evaluation reports.
 - 3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 - a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
 - 1. For Power System Analysis Software Developer.
 - 2. For Power Systems Analysis Specialist.
 - 3. For Field Adjusting Agency.
- B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
 - 1. The following are from the Coordination Study Report:
 - a. Final one-line diagram.
 - b. Final protective device coordination study.
 - c. Coordination study data files.
 - d. List of all protective device settings.
 - e. Time-current coordination curves.
 - f. Power system data.

1.7 QUALITY ASSURANCE

- A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications:
 - 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>SKM Systems Analysis, Inc</u>.
- B. Comply with IEEE 242 and IEEE 399.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- D. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 - 1. Optional Features:

- a. Arcing faults.
- b. Simultaneous faults.
- c. Explicit negative sequence.
- d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 - 6. Any revisions to electrical equipment required by the study.
 - 7. Study Input Data: As described in "Power System Data" Article.
 - a. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."
- D. Protective Device Coordination Study:
 - 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 - a. Phase and Ground Relays:
 - 1) Device tag.
 - 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 - 3) Recommendations on improved relaying systems, if applicable.
 - b. Circuit Breakers:
 - 1) Adjustable pickups and time delays (long time, short time, and ground).
 - 2) Adjustable time-current characteristic.
 - 3) Adjustable instantaneous pickup.
 - 4) Recommendations on improved trip systems, if applicable.
 - c. Fuses: Show current rating, voltage, and class.
- E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists

between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

- 1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
- 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
- 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
- 4. Plot the following listed characteristic curves, as applicable:
 - a. Power utility's overcurrent protective device.
 - b. Medium-voltage equipment overcurrent relays.
 - c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 - d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 - e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 - f. Cables and conductors damage curves.
 - g. Ground-fault protective devices.
 - h. Motor-starting characteristics and motor damage points.
 - i. Generator short-circuit decrement curve and generator damage point.
 - j. The largest feeder circuit breaker in each motor-control center and panelboard.
- 5. Maintain selectivity for tripping currents caused by overloads.
- 6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
- 7. Provide adequate time margins between device characteristics such that selective operation is achieved.
- 8. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
 - 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.

- 1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
- 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
- 3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.
- B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
 - 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Electrical power utility impedance at the service.
 - 3. Power sources and ties.
 - 4. Short-circuit current at each system bus (three phase and line to ground).
 - 5. Full-load current of all loads.
 - 6. Voltage level at each bus.
 - 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 - 8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 - 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
 - 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 - 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
 - 12. Maximum demands from service meters.
 - 13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
 - 14. Motor horsepower and NEMA MG 1 code letter designation.
 - 15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
 - 16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
 - 17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:
 - a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 - b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.

- c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
- d. Generator thermal-damage curve.
- e. Ratings, types, and settings of utility company's overcurrent protective devices.
- f. Special overcurrent protective device settings or types stipulated by utility company.
- g. Time-current-characteristic curves of devices indicated to be coordinated.
- h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
- i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
- j. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.
- k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

- A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.
- B. Comply with IEEE 399 for general study procedures.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 - 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
 - 3.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Transformer Primary Overcurrent Protective Devices:
 - 1. Device shall not operate in response to the following:
 - a. Inrush current when first energized.
 - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.

- c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
- 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.
- H. Motor Protection:
 - 1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
 - 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.
- I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.
- K. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.
- L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- M. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 - 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
 - 3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
 - 4. Include in the report identification of any protective device applied outside its capacity.

3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

- A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:
 - 1. Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
 - 2. Determine load flow and voltage drop based on 80 percent of the design capacity of load buses.

3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.

3.5 MOTOR-STARTING STUDY

A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.

3.6 FIELD ADJUSTING

- A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.
- B. Make minor modifications to equipment as required to accomplish compliance with shortcircuit and protective device coordination studies.
- C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.7 DEMONSTRATION

- A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:
 - 1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
 - 2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
 - 3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 260573.16

BLANK PAGE

260573.16 - 10

SECTION 260573.19

ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS

- A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
- B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
- G. SCCR: Short-circuit current rating.
- H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
- I. Single-Line Diagram: See "One-Line Diagram."

1.4 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals [shall] [may] be in digital form:
 - 1. Arc-flash study input data, including completed computer program input data sheets.
 - 2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
 - 3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
 - 1. For Power Systems Analysis Software Developer.
 - 2. For Power System Analysis Specialist.
 - 3. For Field Adjusting Agency.
- B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data:
 - 1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
 - 2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

- A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

- 1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
- 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- G. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>SKM Systems Analysis, Inc</u>.
- B. Comply with IEEE 1584 and NFPA 70E.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
 - 4. Motor and generator designations and kVA ratings.

- 5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.
- D. Study Input Data: As described in "Power System Data" Article.
- E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."
- F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
- G. Arc-Flash Study Output Reports:
 - 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
- H. Incident Energy and Flash Protection Boundary Calculations:
 - 1. Arcing fault magnitude.
 - 2. Protective device clearing time.
 - 3. Duration of arc.
 - 4. Arc-flash boundary.
 - 5. Restricted approach boundary.
 - 6. Limited approach boundary.
 - 7. Working distance.
 - 8. Incident energy.
 - 9. Hazard risk category.
 - 10. Recommendations for arc-flash energy reduction.
- I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.

2.3 ARC-FLASH WARNING LABELS

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for selfadhesive equipment labels. Produce a 3.5-by-5-inch (76-by-127-mm) self-adhesive equipment label for each work location included in the analysis.
- B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

- 1. Location designation.
- 2. Nominal voltage.
- 3. Protection boundaries.
 - a. Arc-flash boundary.
 - b. Restricted approach boundary.
 - c. Limited approach boundary.
- 4. Arc flash PPE category.
- 5. Required minimum arc rating of PPE in Cal/cm squared.
- 6. Available incident energy.
- 7. Working distance.
- 8. Engineering report number, revision number, and issue date.
- C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

- A. Comply with NFPA 70E and its Annex D for hazard analysis study.
- B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination study studies prior to starting the Arc-Flash Hazard Analysis.
 - 1. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."
 - 2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
- C. Calculate maximum and minimum contributions of fault-current size.
 - 1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
 - 2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
 - 3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.
 - 4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.

- D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.
- E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.
- F. Calculate the limited, restricted, and prohibited approach boundaries for each location.
- G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 - 1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
 - 2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
- H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:
 - 1. When the circuit breaker is in a separate enclosure.
 - 2. When the line terminals of the circuit breaker are separate from the work location.
- I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the arc-flash hazard analysis.
 - 1. Verify completeness of data supplied on one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to Architect's attention.
 - 2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
 - 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys conducted by qualified technicians and engineers.
- B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

- 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
- 2. Obtain electrical power utility impedance or available short circuit current at the service.
- 3. Power sources and ties.
- 4. Short-circuit current at each system bus (three phase and line to ground).
- 5. Full-load current of all loads.
- 6. Voltage level at each bus.
- 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
- 8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
- 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
- 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
- 12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
- 13. Motor horsepower and NEMA MG 1 code letter designation.
- 14. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
- 15. Medium-voltage conductor sizes, lengths, conductor material, conductor construction and metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

3.4 LABELING

- A. Apply one arc-flash label on the front cover of each section of the equipment and on side or rear covers with accessible live parts and hinged doors or removable plates for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.
- B. Each piece of equipment listed below shall have an arc-flash label applied to it:
 - 1. Motor-control center.
 - 2. Low-voltage switchboard.
 - 3. Switchgear.
 - 4. Medium-voltage switch.
 - 5. Medium voltage transformers
 - 6. Low voltage transformers. Exclude transformers with high voltage side 240 V or less and less than 125 kVA.
 - 7. Panelboard and safety switch over 250 V.
 - 8. Applicable panelboard and safety switch under 250 V.
 - 9. Control panel.
 - 10.
- C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.

- 1. Indicate arc-flash energy.
- 2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION 260573.19

SECTION 262213

LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
- B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Seismic Qualification Data: Certificates, for transformers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- 4. Certification: Indicate that equipment meets Project seismic requirements.
- C. Source quality-control reports.
- D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 - 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.
- B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.
- C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
- D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Acme Electric Corporation</u>.
 - 3. <u>Federal Pacific</u>.
 - 4. <u>MGM Transformer Company</u>.

TECHNICAL SPECIFICATIONS

- 5. <u>Powersmiths International Corp.</u>
- 6. <u>Schneider Electric USA (Square D)</u>.
- 7. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Transformers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the transformer will remain in place without separation of any parts when subjected to the seismic forces specified."

2.3 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Comply with NFPA 70.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Transformers Rated 15 kVA and Larger:
 - 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 - 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.
- D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.4 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70, and list and label as complying with UL 1561.
- B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - 1. One leg per phase.
 - 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 - 3. Grounded to enclosure.
- D. Coils: Continuous windings without splices except for taps.
 - 1. Coil Material: Copper.

- 2. Internal Coil Connections: Brazed or pressure type.
- E. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.
- F. Enclosure: Ventilated.
 - 1. NEMA 250, Type 3R: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
 - 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 - 3. Wiring Compartment: Sized for conduit entry and wiring installation.
 - 4. Finish: Comply with NEMA 250.
 - a. Finish Color: ANSI 61 gray weather-resistant enamel.
- G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- H. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
- I. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- J. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
- K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor, without exceeding the indicated insulation class in a 40 deg C maximum ambient and a 24-hour average ambient of 30 deg C.
 - 2. Indicate value of K-factor on transformer nameplate.
 - 3. Unit shall comply with requirements of DOE 2016 efficiency levels when tested according to NEMA TP 2 with a K-factor equal to one.
- L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
- M. Neutral: Rated 200 percent of full load current for K-factor-rated transformers.
- N. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 - 1. 9.00 kVA and Less: 40 dBA.

- 2. 9.01 to 30.00 kVA: 45 dBA.
- 3. 30.01 to 50.00 kVA: 45 dBA for K-factors of 1, 4, and 9.
- 4. 50.01 to 150.00 kVA: 50 dBA for K-factors of 1, 4, and 9.
- 5. 150.01 to 300.00 kVA: 55 dBA for K-factors of 1, 4, and 9.
- 6. 300.01 to 500.00 kVA: 60 dBA for K-factors of 1, 4, and 9.
- 7. 500.01 to 700.00: 62 dBA for K-factors of 1, 4, and 9.
- 8. 700.01 to 1000.00: 64 dBA for K-factors of 1, 4, and 9.

2.5 **IDENTIFICATION**

- A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."
- B. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 - 1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
 - 2. Ratio tests at rated voltage connections and at all tap connections.
 - 3. Phase relation and polarity tests at rated voltage connections.
 - 4. No load losses, and excitation current and rated voltage at rated voltage connections.
 - 5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
 - 6. Applied and induced tensile tests.
 - 7. Regulation and efficiency at rated load and voltage.
 - 8. Insulation-Resistance Tests:
 - a. High-voltage to ground.
 - b. Low-voltage to ground.
 - c. High-voltage to low-voltage.
 - 9. Temperature tests.
- B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
- B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Secure transformer to concrete base according to manufacturer's written instructions.
- D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.
3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection.
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.
 - e. Perform specific inspections and mechanical tests recommended by manufacturer.
 - f. Verify that as-left tap connections are as specified.
 - g. Verify the presence of surge arresters and that their ratings are as specified.
 - 2. Electrical Tests:
 - a. Measure resistance at each winding, tap, and bolted connection.
 - b. Perform insulation-resistance tests winding-to-winding and each winding-toground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 - c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 - d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- F. Large (Larger Than 167-kVA Single Phase or 500-kVA Three Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.
 - e. Perform specific inspections and mechanical tests recommended by manufacturer.
 - f. Verify that as-left tap connections are as specified.
 - g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:

- a. Measure resistance at each winding, tap, and bolted connection.
- b. Perform insulation-resistance tests winding-to-winding and each winding-toground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
- c. Perform power-factor or dissipation-factor tests on all windings.
- d. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
- e. Perform an excitation-current test on each phase.
- f. Perform an applied voltage test on all high- and low-voltage windings to ground. See IEEE C57.12.91, Sections 10.2 and 10.9.
- g. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- G. Remove and replace units that do not pass tests or inspections and retest as specified above.
- H. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- I. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262213

SECTION 262416

PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. SPD: Surge protective device.
- G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.

- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Include evidence of NRTL listing for series rating of installed devices.
- 7. Include evidence of NRTL listing for SPD as installed in panelboard.
- 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 9. Include wiring diagrams for power, signal, and control wiring.
- 10. Key interlock scheme drawing and sequence of operations.
- 11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823
 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 5. .

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or ISO 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than two seven days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
 - 3. Comply with NFPA 70E.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 24 months from date of Substantial Completion.
- B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.
- F. Enclosures: Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Height: 84 inches (2.13 m) maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 7. Finishes:
 - a. Panels and Trim: galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- G. Incoming Mains:
 - 1. Location: Top or Bottom, or as shown on drawings.

- 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- H. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 - 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 - 6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
 - 7. Split Bus: Vertical buses divided into individual vertical sections.
- I. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: [Mechanical] type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
 - 9. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

- K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 20 percent.
- L. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.
 - 1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.
- M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Schneider Electric USA (Square D)</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Schneider Electric USA (Square D)</u>.
 - 3. Siemens Industry, Inc., Energy Management Division.

2.5 **IDENTIFICATION**

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Computer generated circuit directory mounted inside panelboard door with transparent card holder.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
- D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.6 ACCESSORY COMPONENTS AND FEATURES

- A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NECA 407.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 - 3. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- G. Mount top of trim between 60inches and 90 inches above finished floor unless otherwise indicated.
- H. Mount panelboard cabinet plumb and rigid without distortion of box.

- I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.
- K. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- M. Install filler plates in unused spaces.
- N. Stub four 1-inch (25 mm) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (25 mm) empty conduits into raised floor space or below slab not on grade.
- O. Mount spare fuse cabinet in accessible location.

3.3 **IDENTIFICATION**

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.

- 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- D. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- E. Panelboards will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.

- 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
- 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
- 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

BLANK PAGE

SECTION 262726

WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. GFCI receptacles, 125 V, 20 A.
 - 3. Toggle switches, 120/277 V, 20 A.
 - 4. Occupancy sensors.
 - 5. Wall plates.

1.3 DEFINITIONS

- A. AFCI: Arc-fault circuit interrupter.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.
- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with requirements in this Section.
- F. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
- G. Wall Plate Color: For plastic covers, match device color.
- H. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Duplex Receptacles, 125 V, 20 A:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hubbell Incorporated (Wiring Device-Kellems)</u>.
 - b. Legrand North America, LLC (Pass & Seymour).
 - c. <u>Leviton Manufacturing Co., Inc</u>.

- 2. Description: Two pole, three wire, and self-grounding.
- 3. Configuration: NEMA WD 6, Configuration 5-20R.
- 4. Standards: Comply with UL 498 and FS W-C-596.
- B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hubbell Incorporated (Wiring Device-Kellems)</u>.
 - b. Legrand North America, LLC (Pass & Seymour).
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - 2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 3. Configuration: NEMA WD 6, Configuration 5-20R.
 - 4. Standards: Comply with UL 498.
 - 5. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

2.3 GFCI RECEPTACLES, 125 V, 20 A

- A. Duplex GFCI Receptacles, 125 V, 20 A:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Hubbell Incorporated (Wiring Device-Kellems)</u>.
 - b. Legrand North America, LLC (Pass & Seymour).
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - 2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
 - 3. Configuration: NEMA WD 6, Configuration 5-20R.
 - 4. Type: Non-feed through.
 - 5. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.

2.4 TOGGLE SWITCHES, 120/277 V, 20 A

- A. Single-Pole Switches, 120/277 V, 20 A < Insert drawing designation>:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Eaton (Wiring Devices Arrow Hart)</u>.
 - b. <u>Pass and Seymour; Legrand North America, LLC</u>.
 - c. <u>Leviton Manufacturing Co., Inc</u>.
 - 2. Standards: Comply with UL 20 and FS W-S-896.

2.5 OCCUPANCY SENSORS

- A. Wall Switch Sensor Light Switch, Dual Technology:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>nLight.</u>
 - b. <u>WattStopper</u>.
 - 2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.
 - 3. Standards: Comply with UL 20.
 - 4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 - 5. Adjustable time delay of 15 minutes.
 - 6. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).
 - 7. Connections: RJ-45 communications outlet.
 - 8. Connections: Integral wireless networking.
- B. Wall Sensor Light Switch, Passive Infrared:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>nLight.</u>
 - b. <u>WattStopper.</u>
 - 2. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.
 - 3. Standards: Comply with UL 20.
 - 4. Connections: Provisions for connection to BAS.
 - 5. Connections: Hard wired.
 - 6. Connections: Wireless.
 - 7. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 - 8. Integral relay for connection to BAS.
 - 9. Adjustable time delay of 15 minutes.
 - 10. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).

2.6 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.

- 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.
- C. Antimicrobial Cover Plates:
 - 1. Contact surfaces treated with a coating that kills 99.9 percent of certain common bacteria within two hours when regularly and properly cleaned.
 - 2. Tarnish resistant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan-speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device, listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
- C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Perform the following tests and inspections:
 - 1. In healthcare facilities, prepare reports that comply with NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- D. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- E. Wiring device will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 262726

BLANK PAGE

SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.

2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.10 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One yearfrom date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Schneider Electric USA (Square D)</u>.

- 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Number of poles as per electrical drawings.
 - 3. 600-V ac.
 - 4. 1200 A and smaller.
 - 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
 - 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Lugs: Compression type, suitable for number, size, and conductor material.
 - 6. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Schneider Electric USA (Square D)</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Type GD, General Duty, Three Pole, Single Throw, 240-V ac, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- C. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Type HD, Heavy Duty, Three Pole, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

- F. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Lugs: Compression type, suitable for number, size, and conductor material.
 - 6. Service-Rated Switches: Labeled for use as service equipment.

2.5 MOLDED-CASE CIRCUIT BREAKERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>ABB (Electrification Products Division)/GE</u>.
 - 2. <u>Schneider Electric USA (Square D)</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
- C. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
- D. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated. Series rated circuit breakers are not allowed.
- E. MCCBs shall be equipped with a device for locking in the isolated position.
- F. Lugs shall be suitable for 167 deg F (75 deg C) rated wire.
- G. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- H. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- I. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

- J. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I-squared t response.
- K. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- L. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- M. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- N. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- O. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.

2.6 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the

circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.

3.4 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in fusible devices.
- F. Comply with NFPA 70 and NECA 1.

3.5 **IDENTIFICATION**

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

- 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
- i. Verify correct phase barrier installation.
- j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
 - d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
 - e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."
- F. Tests and Inspections for Molded Case Circuit Breakers:
 - 1. Visual and Mechanical Inspection:
 - a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and clearances.
 - d. Verify that the unit is clean.
 - e. Operate the circuit breaker to ensure smooth operation.
 - f. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.

- a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
- 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- g. Inspect operating mechanism, contacts, and chutes in unsealed units.
- h. Perform adjustments for final protective device settings in accordance with the coordination study.
- 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
 - c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
 - e. Determine the following by primary current injection:
 - 1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

- f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.
- g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.
- h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.
- i. Verify operation of charging mechanism. Investigate units that do not function as designed.
- 3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 4. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- G. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- H. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

END OF SECTION 262816

SECTION 264313

SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:
 - 1. Type 1 surge protective devices.
 - 2. Enclosures.
 - 3. Conductors and cables.
- B. Related Requirements:
 - 1. Section 262413 "Switchboards" for integral SPDs installed by switchboard manufacturer.
 - 2. Section 262416 "Panelboards" for integral SPDs installed by panelboard manufacturer.
 - 3. Section 262726 "Wiring Devices" for integral SPDs installed by receptacle manufacturer.

1.3 DEFINITIONS

- A. Inominal: Nominal discharge current.
- B. MCOV: Maximum continuous operating voltage.
- C. Mode(s), also Modes of Protection: air of electrical connections where the VPR applies.
- D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
- E. NRTL: Nationally recognized testing laboratory.
- F. OCPD: Overcurrent protective device.
- G. SCCR: Short-circuit current rating.
- H. SPD: Surge protective device.
- I. Type 1 SPDs: Permanently connected SPDs intended for installation between the secondary of the service transformer and the line side of the service disconnect overcurrent device.

- J. Type 2 SPDs: Permanently connected SPDs intended for installation on the load side of the service disconnect overcurrent device, including SPDs located at the branch panel.
- K. Type 3 SPDs: Point of utilization SPDs.
- L. Type 4 SPDs: Component SPDs, including discrete components, as well as assemblies.
- M. Type 5 SPDs: Discrete component surge suppressors, such as MOVs that may be mounted on a printed wiring board, connected by its leads or provided within an enclosure with mounting means and wiring terminations.
- N. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include electrical characteristics, specialties, and accessories for SPDs.
 - 2. NRTL certification of compliance with UL 1449.
 - a. Tested values for VPRs.
 - b. Inominal ratings.
 - c. MCOV, type designations.
 - d. OCPD requirements.
 - e. Manufacturer's model number.
 - f. System voltage.
 - g. Modes of protection.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within [five] [10] <Insert number> years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 TYPE 1 SURGE PROTECTIVE DEVICES (SPDs)

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB (Electrification Products Division)/GE.
 - 2. <u>Schneider Electric USA, Inc</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
- B. Source Limitations: Obtain devices from single source from single manufacturer.

C. Standards:

- 1. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1.
- D. Product Options:
 - 1. Include integral disconnect switch.
 - 2. Include internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Include indicator light display for protection status.
 - 4. Include audible alarm.
 - 5. Include NEMA ICS 5, dry Form C contacts rated at 2 A and 24 V ac for remote monitoring of protection status.
 - 6. Include surge counter.
- E. Performance Criteria:
 - 1. MCOV: Not less than 125 percent of nominal system voltage for 208Y/120 V and 120/240 V power systems, and not less than 115 percent of nominal system voltage for 480Y/277 V power systems.
 - 2. Peak Surge Current Rating: Minimum single-pulse surge current withstand rating per phase must not be less than 200 kA. Peak surge current rating must be arithmetic sum of the ratings of individual MOVs in a given mode.
 - 3. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, threephase, four-wire circuits must not exceed the following:
 - a. Line to Neutral: 700 V for 208Y/120 V.
 - b. Line to Line: 1200 V for 208Y/120 V.
 - 4. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits must not exceed the following:
 - a. Line to Neutral: 700 V.
 - b. Line to Line: 1200 V.
 - 5. SCCR: Not less than 100 kA.

6. Inominal Rating: 20 kA.

2.2 ENCLOSURES

- A. Indoor Enclosures: NEMA 250, Type 1.
- B. Outdoor Enclosures: NEMA 250, Type 3R.

2.3 CONDUCTORS AND CABLES

A. Power Wiring: Same size as SPD leads, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Provide OCPD and disconnect for installation of SPD in accordance with UL 1449 and manufacturer's written instructions.
- C. Install leads between disconnects and SPDs short, straight, twisted, and in accordance with manufacturer's written instructions. Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Do not splice and extend SPD leads unless specifically permitted by manufacturer.
 - 2. Do not exceed manufacturer's recommended lead length.
 - 3. Do not bond neutral and ground.
- D. Use crimped connectors and splices only. Wire nuts are unacceptable.

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Compare equipment nameplate data for compliance with Drawings and the Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. SPDs that do not pass tests and inspections will be considered defective.
- C. Prepare test and inspection reports.

264313 - 4

3.3 STARTUP SERVICE

- A. Complete startup checks in accordance with manufacturer's written instructions.
- B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests; reconnect them immediately after the testing is over.
- C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313

BLANK PAGE

SECTION 265119

LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior lighting fixtures, LED boards, and drivers.
 - 2. Lighting fixture supports.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.
 - 5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The

adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.

- a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications:
 - 1. Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
 - 2. Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance:
 - 1. Luminaires shall withstand the effects of earthquake motions determined in accordance with ASCE/SEI 7.
 - 2. Luminaires and lamps shall be labeled vibration and shock resistant.
 - 3. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI.
- C. Recessed luminaires shall comply with NEMA LE 4.
- D. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- E. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- F. California Title 24 compliant.

2.3 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Steel:
 - 1. ASTM A36/A36M for carbon structural steel.
 - 2. ASTM A568/A568M for sheet steel.

- C. Stainless Steel:
 - 1. Manufacturer's standard grade.
 - 2. Manufacturer's standard type, ASTM A240/240M.
- D. Galvanized Steel: ASTM A653/A653M.
- E. Aluminum: ASTM B209.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaires:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaires:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Suspended Luminaires:
 - 1. Ceiling Mount:
 - a. Two 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 10 feet (3 m) in length.
 - 2. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- H. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Comply with requirements for startup specified in Section 260943.16 "Addressable-Luminaire Lighting Controls."
- B. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."

END OF SECTION 265119

SECTION 265619

LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Luminaire-mounted photoelectric relays.
 - 2. Luminaire types.
 - 3. Materials.
 - 4. Finishes.
 - 5. Luminaire support components.
- B. Related Requirements:

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color rendering index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaire.
 - 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.

- 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.
 - a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 - b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- 6. Wiring diagrams for power, control, and signal wiring.
- 7. Photoelectric relays.
- 8. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 - 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications:
 - 1. Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
 - 2. Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- D. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- E. Mockups: For exterior luminaires, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed work.

- 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
- 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.8 FIELD CONDITIONS

- A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.
- B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.9 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including luminaire support components.
 - b. Faulty operation of luminaires and accessories.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - d.
 - 2. Warranty Period: 5 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance:
 - 1. Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 2. Luminaires and lamps shall be labeled vibration and shock resistant.
 - 3. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. UL Compliance: Comply with UL 1598 and listed for wet location.
- E. Bulb shape complying with ANSI C79.1.
- F. CRI and CCT as indicated on drawings.
- G. L70 lamp life of 50,000 hours.
- H. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- I. Internal driver.
- J. Nominal Operating Voltage: as indicated on drawings..
- K. In-line Fusing: On the primary for each luminaire.
- L. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
- M. Source Limitations:
 - 1. Obtain luminaires from single source from a single manufacturer.
 - 2. For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.3 MATERIALS

- A. Metal Parts: Free of burrs and sharp corners and edges.
- B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
- D. Diffusers and Globes:

- 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- 2. Glass: Annealed crystal glass unless otherwise indicated.
- 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- G. Housings:
 - 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 - 2. Provide filter/breather for enclosed luminaires.
- H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage and coating.
 - c. CCT and CRI for all luminaires.

2.4 FINISHES

- A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.

- 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
- 4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 - a. Color: refer to drawings.
- D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color:
 - 1) As selected from manufacturer's standard catalog of colors.
 - 2) Match Architect's sample of [manufacturer's standard] [custom] color.
 - 3) As selected by Architect from manufacturer's full range.

2.5 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

2.6 STEEL POLES

A. Poles: Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.

1. Shape: Round, tapered.

- 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- B. Steel Mast Arms: Single-arm type, continuously welded to pole attachment plate. Material and finish same as pole.
- C. Brackets for Luminaires: Detachable, cantilever.
- 1. Match pole material and finish.
- D. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.

- E. Steps: Fixed steel, with nonslip treads, positioned for 15-inch (381-mm) vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet (3 m) above finished grade.
- F. Intermediate Handhole and Cable Support: Weathertight, 3-by-5-inch (76-by-127-mm) handhole located at midpoint of pole with cover for access to internal welded attachment lug for electric cable support grip.
- G. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260527 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- H. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor.
- I. Platform for LED board and driver Servicing: Factory fabricated of steel with finish matching that of pole.
- J. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- K. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M.
- L. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or with SSPC-SP 8, "Pickling."
 - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.
- C. Examine walls, roofs, canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Install lamps in each luminaire.
- D. Fasten luminaire to structural support.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
- G. Wiring Method: Install cables in raceways. Conceal raceways and cables.
- H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.
- I. Coordinate layout and installation of luminaires with other construction.
- J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.
- K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 POLE INSTALLATION

A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.

- B. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 - 3. Install base covers unless otherwise indicated.
 - 4. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
- C. Raise and set poles using web fabric slings (not chain or cable).

3.5 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Verify operation of photoelectric controls.
- C. Illumination Tests:
 - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
 - a. IES LM-5.
 - b. IES LM-50.
 - c. IES LM-52.

- d. IES LM-64.
- e. IES LM-72.
- 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- D. Luminaire will be considered defective if it does not pass tests and inspections.
- E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 **DEMONSTRATION**

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

END OF SECTION 265619

SECTION 01 56 32

TEMPORARY TREE AND PLANT PROTECTION

Part 1 - General

015632-1.1 Summary

- A. This Section includes trimming, protection, and irrigation of trees and plants that are to remain. Trees which are to remain and must be protected are indicated on the drawings.
- B. Related Division 2 Section 02110, "Site Clearing" limits removal of trees, shrubs, and other vegetation to plants interfering with new construction, unless otherwise indicated.

015632-1.2 Submittals

- A. Certification: Submit written statement from an Arborist certified by the International Society of Arboriculture that trees indicated to remain have been protected during the course of construction in accordance with recognized standards, and that where damage did occur trees were promptly and properly treated. Indicate which damaged trees (if any) are incapable of retaining full growth potential and are recommended to be replaced.
- B. Tree Protection Plan: Contractor to submit a 'Tree Protection Plan' for approval by the Owner's Authorized Representative prior to beginning construction. The tree protection plan may include fencing, barricades, temporary irrigation, signage, employee education, etc.

015632-1.3 Quality Assurance

- A. Arborist Qualifications: Engage an Arborist certified by the International Society of Arboriculture who has successfully completed tree protection and trimming to perform the following work:
 - 1. Remove branches from trees that are to remain, if required.
 - 2. Recommend procedures to compensate for loss of roots and perform initial pruning of branches and stimulation of root growth where removed to accommodate new construction.
 - 3. Recommend procedures for excavation and grading work juxtaposed to established plants.
 - 4. Perform tree repair work for damage incurred by new construction.

015632-1.4 Project Conditions

- A. Temporary Protections: Provide fencing located outside drip-line (outer perimeter of branches) to protect trees and other plants that are to remain from damage for any tree within one hundred feet of construction activity.
 - 1. Tree protection fence that is protecting trees on adjoining properties needs only be on this project site and not on the adjoining property unless otherwise noted.

- B. Protect Root Systems: Do not store construction materials, debris, or excavated material within drip-line of trees to remain. Do not permit vehicles within drip line. Restrict foot traffic to prevent excessive compaction of soil over root systems within fenced area.
- C. Do not direct vehicle or other equipment exhaust toward plant protection zones.
- D. Watering: Provide irrigation to landscape and trees to remain.
- E. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones and any organic mulch.

015632-1.5 Arborist Observations:

- A. The certified arborist shall visit the site a minimum of once each month throughout the growing season to advise the Contractor and Owner's Authorized Representative of changes or modifications to the protection and maintenance procedures.
 - 1. The Arborist shall provide a Tree Monitoring Report for each site visit indicating tree damage, soil moisture/irrigation, color of foliage, canopy density, trunk and limb discoloration, and pest presence.
 - 2. The Arborist shall provide a Post-Construction Management Plan for the trees indicating tree assessments, fertilizing recommendations, and other long term maintenance recommendations.

Part 2 - Materials

015632-2.1 Fencing:

- A. Tree protection fence shall be sturdy and highly visible to discourage entrance and disturbance.
 - 1. Fence to be 4 ft high minimum.
 - 2. Fence to be constructed using heavy posts, using heavy wire between posts.
 - 3. Signage fencing shall be signed indicating the fence as a tree protection fence with the contractor and arborist contact information.

015632-2.2 Temporary Irrigation

A. Polyethylene pipe, fittings, risers, nozzles, and valve(s) as needed to ensure proper application. Temporary irrigation system shall be connected to an automatic controller.

015632-2.3 Root Protection Mulch

- A. Temporary construction within the tree protection fence requires additional root protection from soil compaction and mechanical root damage. Methods of protection to be determined by the certified arborist. Methods may include;
 - 1. Apply 4 inches of woodchip mulch to the area.

- 2. Use $\frac{3}{4}$ inch plywood
- 3. Use large wood beams
- 4. Use 4 inches of gravel mulch over a landscape fabric
- 5. Use commercial road mats
- B. Temporary methods of root protection to be removed and the tree protection fence re-installed as soon as construction activity near the tree is completed.

Part 3 - Execution

015632-3.1 General

- A. Install Tree Protection Fence at drip line of trees and at edges of plant protection zones before materials or equipment are brought on the site and construction operations begin. Set posts into ground a minimum of one-third the total height of the fence without concrete footings. Maintain fencing and signage in good condition throughout the length of construction.
- B. Protect tree root systems from damage due to noxious materials caused by run-off or spillage during mixing, placement, or storage of construction materials. Protect root systems from flooding, eroding, or excessive wetting resulting from dewatering operations.
- C. Do NOT allow fires under or adjacent to trees or other plants that are to remain.
- D. Remove branches from trees that are to remain, if required, to clear new construction.
 - 1. Where directed by Owner's Authorized Representative and Arborist, extend pruning operation to restore natural shape of entire tree.
 - 2. Cut branches and roots, if required, with sharp pruning instruments; do not break or chop.
- E. Watering: Water trees with temporary irrigation system at a rate to allow each tree to receive adequate water as directed by the Certified Arborist.
 - 1. Irrigation system to the trees and landscaping shall be operated by an automatic controller.
 - 2. Provide temporary irrigation to landscape and trees to remain if irrigation systems are not in operation.
 - 3. Irrigation water should penetrate the soil to a depth of 18 inches with a minimum of 1 inch of irrigation water weekly in the absence of rainfall.

015632-3.2 Excavation Around Trees

A. Excavate within proximity of trees only where indicated. Do not machine excavate within drip line.

- B. Where excavating for new construction is required within drip line of trees, hand excavate to minimize damage to root systems. Provide sheeting at excavations if required. Use narrow-tine spading forks and comb soil to expose roots.
 - 1. Relocate roots in backfill areas wherever possible. If large, main lateral roots are encountered, expose beyond excavation limits as required to bend and relocate without breaking. If encountered immediately adjacent to location of new construction and relocation is not practical, cut roots approximately 3 inches back from new construction.
- C. Do not allow exposed roots to dry out before permanent backfill is placed; provide temporary earth cover or pack with peat moss and wrap with burlap. Water and maintain in moist condition and temporarily support and protect from damage until permanently relocated and covered with earth.
- D. Where trenching for utilities is required within drip line, tunnel under or around roots by hand digging. Do not cut main lateral roots or tap roots; cut only smaller roots that interfere with installation of new work. Cut roots with sharp pruning instruments; do not break or chop.
- E. Prune branches to balance loss to root system caused by damage or cutting of roots.

015632-3.3 Grading And Filling Around Trees

- A. Maintain existing grade within drip line of trees.
- B. Lowering Grades: Where existing grade is above new finish grade shown around trees, gradually slope grade away from trees as recommended by arborist. Do not reduce grade within drip line.
 - 1. Prune branches to stimulate root growth and to compensate for loss of roots. Provide subsequent maintenance during the contract period as recommended by arborist. Provide Owner with typed instructions for recommended long-range maintenance procedures to be followed after completion of construction operations.

015632-3.4 Raising Grades

- A. Minor Fills: Where existing grade is 6 inches or less below elevation of finish grade shown, use topsoil fill material specified. Place in single layer and do not compact; hand grade to required finish elevations. Do not place soil material against trunk of tree.
- B. Raising Grades: Where existing grade is greater than 6" below elevation of finish grade shown, provide stone retaining walls or adjust grading to maintain existing grading within drip lines. Coordinate with owner's authorized representative and certified arborist.

015632-3.5 Repair and Replacement Of Trees

- A. Repair trees damaged by construction operations. Make repairs promptly after damage occurs to prevent progressive deterioration of damaged trees.
- B. If a tree is damaged, the Arborist and Owner's Authorized Representative shall determine if the tree can be restored to normal growth pattern. When it is determined that a tree cannot be restored, the following shall occur:

- 1. Provide a new tree of the same size and species as those being replaced. Plant and maintain in accordance with current horticultural requirements.
- 2. If trees over 6 inches in caliper measurement (taken 12 inches above grade) are required to be replaced, provide new trees with 6-inch caliper size and of species selected by the Owner.
- 3. The contractor shall provide the Owner with a monetary compensation for trees over 6-inch caliper size. The monetary amount will be determined using the Trunk Formula Method of tree appraisal as outlined in the current Edition of the Guide for Plant Appraisal, The International Society of Arboriculture. The appraisal shall be performed by an independent Arborist certified by the International Society of Arboriculture who is experienced in this type of appraisal.

015632-3.6 Disposal

- A. Burning on Owner's property of removed trees and branches is NOT permitted on site.
- B. Removal from Owner's Property: Remove excess excavation, displaced trees, and trimmings in a legal manner at no additional expense to the Owner.

Part 4 - Method of Measurement and Basis of Payment

015632-4.1 Existing Tree Protection. Method of measurement and basis of payment will be made at 50% of the lump sum once the trees are protected with fence and final payment of the lump sum amount will be paid at the end of the project once it is accepted.

END OF SECTION

THIS PAGE INTENTIONALLY BLANK

SECTION 328400

IRRIGATION SYSTEM

Description

328400-1.1 Related Documents

- A. The general and supplementary general conditions shall apply to all work under this section.
- B. Separation of these specifications into sections is for convenience only and is not intended to establish limits of work.

328400-1.2 Summary

- A. The irrigation system will be constructed using the irrigation, valves, piping, fittings, controllers, wiring, emitters, nozzles, etc., of sizes specified.
- B. Irrigation lines shown on the drawings are essentially diagrammatic. Locations of all irrigation heads, valves, piping, wiring, etc. will be modified only with the permission of the Owner's Authorized Representative.
- C. It is the intention of these specifications, together with the accompanying drawings and reference materials, to accomplish the work of installing an irrigation system that will operate in an efficient and satisfactory manner according to the workmanlike standards established for the irrigation industry.
 - As-built Irrigation Drawings: Contractor shall prepare as-built drawings which shall show deviations from the contract documents made during construction affecting the main line pipe, controller locations, remote control valves, and manual drain valves. The drawings shall also indicate and show approved substitutions of size, materials and manufacturer's name and catalog number. The Contractor will keep a record of all departures from the contract drawings that occur during construction. These shall be kept on a clean set of prints of the contract drawings.
 - 2. As-built Drawings shall be furnished to the Owner's Authorized Representative at the time of the Inspection before any Substantial Completion Date will be issued.
- D. The work consists of furnishing and installing an underground irrigation system as shown on the drawings and specifications. Include all labor, equipment and materials and perform all operations in connection with the construction of the irrigation system.
- E. It will be the Contractor's responsibility to report to the Owner's Authorized Representative any deviations between the drawings, specifications and the site. Failure to do so prior to the installing of equipment, and resulting in replacing, and/or relocating, will be done at the Contractor's expense.
- F. Permits and Fees: Obtain all permits and pay required fees to any governmental agency having jurisdiction over the work. Inspections required by local ordinances during the course

of construction shall be arranged as required. On completion of the work, satisfactory evidence shall be furnished to the Owner's representative to show that all work has been installed in accordance with the ordinances and code requirements. See existing utilities paragraph below.

- G. Coordination: Coordinate and cooperate with other contractors to enable the work to proceed as rapidly and efficiently as possible.
- H. Inspection of Site: Installer shall acquaint himself with all site conditions. Should utilities not shown on the plans be found during excavations notify the Owner's Authorized Representative. Failure to do so will make installer liable for any and all damage thereto arising from his operations subsequent to discovery of such utilities not shown on plans.
- I. Existing Utilities: Before any trenching, excavation or digging below the surface for any reason is begun, the Contractor shall have the area "Blue Staked" in order to determine as close as possible the location of all underground utilities. The Contractor will conduct his work in such a manner to protect all utilities from damage. It is the responsibility of the Contractor to repair or replace any damage incurred by the Contractor's work or workers at no expense to the owner.
- J. Protection of Existing Site Conditions: The Contractor shall take necessary precautions to protect site conditions to remain. Should damage be incurred, the Contractor shall repair the damage to its original condition at his own expense.
- K. Milestone Inspections: A series of milestone inspections is required during construction as detailed in these specifications.
- L. Backflow Requirements, Inspections, and Tests: Existing. Any new device shall be installed in compliance with the Utah State Plumbing codes and Utah Division of Public Water Supplies regulations. The location of device installation must be approved by the Owner's Authorized Representative prior to installation. Each device shall be tested within ten (10) days of installation and at least once yearly thereafter by a backflow technician licensed by the State of Utah.
- M. Guarantee: All work shall be guaranteed for compliance with the drawings and specifications for a period of one year after the date of substantial completion. The Contractor shall make good any deficiencies at the time he is notified of any faults, and place in satisfactory condition any damage to the buildings or grounds without cost to the Owner. All guarantees shall be in writing and approved by the Owner's Authorized Representative before submitting to the Owner.
- N. The work covered by this section of the specifications consists of furnishing all labor, material, equipment and supplies in performing all operations in connection with irrigation system and all site work in strict accordance with this section of specifications and applicable drawings.
- O. Any minor items of labor or materials not specifically noted on the drawings or specifications; but obviously necessary for the proper completion of the work, are to be considered as incidental to and are to be included in the contract.

328400-1.3 Quality Assurance

- A. Manufacturer's Qualifications: Licensed firms regularly engaged in manufacture of irrigation systems products of types, materials, and sizes required, whose products have been in satisfactory use in similar service.
- B. Installer Qualifications: Licensed firm and regularly engaged in successful installation of irrigation systems similar to that required for project.

328400-1.4 Submittals

- A. Product Data: Submit manufacturer's technical product data and installation instructions for irrigation system materials and products.
- B. Maintenance Data: Submit maintenance data and parts lists for irrigation system materials and products.
- C. Supplier: Submit names, addresses, and phone numbers of the distributors of the materials and products used.

Material

328400-2.1 Pipe and Fittings

- A. All pipes, mainlines and laterals 3-inches and smaller shall be schedule 40 PVC with ratings printed on pipe. All pipes and mainlines 4-inches and larger shall be Class 200 PVC with ratings printed on pipe.
- B. All fittings for lateral pipe shall be PVC SCH 40 for laterals, and PVC SCH 80 for mainlines. Fittings shall be Lasco, Dura, or Spears Factory assembled fittings or approved equivalent.
- C. All quick couplers to be installed on triple swing joint.

328400-2.2 Primer and Glue

A. Solvent & Cement, shall be IPS Weld-On-Line - No. P-70 Primer and No. 711 Cement, for PVC socket fittings for use on all pipe fittings.

328400-2.3 Point of Connection

A. Existing irrigation connections: sizes will vary.

328400-2.4 Valve Boxes

A. Existing: sizes will vary.

328400-2.5 Electrical Wire

- A. Control wire shall be a Rain Bird Maxicom Compatible.
- B. All wire to be continuous. For all wire connections to remote control valves and all splices of wire in the field, use 3M DBY connectors with 6' extra length coiled in the box. If splices are necessary, they are to be installed in a standard size valve box.
- C. All irrigation wiring under asphalt, concrete, or any other hard surface needs to be in its own conduit.
- D. Three foot (3') expansion loop required at all corners.

328400-2.6 Controller

A. Existing Controllers

328400-2.7 Quick Coupler Valve

A. Existing

328400-2.8 Drip Irrigation Equipment

A. Drip Control Zone Assembly: Rain Bird XCZ-PRB-100-COM

- 1. Existing
- B. Rain Bird XFS-06-18 (18) Drip tubing.
 - 1. 0.6 gph Emitters at 18" O.C. UV resistant tubing with copper shield technology
 - 2. 3.5 psi check valves
 - 3. Fittings compatible with tubing.

328400-2.9 Trench Bedding Material and Backfill

- A. Bedding material shall be a sandy material free of rocks greater than 1/2 inch in diameter. Where existing soil does not meet this requirement, fill dirt or sand shall be used.
- B. Fill dirt or sand shall be used as filling three (3) inches around the pipe. The remainder of the backfill shall contain no lumps or rocks larger one (1) inch in diameter.

328400-2.10 Sleeves

- A. Pipe and control wiring and tubing under walks, roads and other hard surfaces shall be installed in Schedule 40 PVC sleeves as noted on the plans (2 times the sum of the pipes).
- B. Piping under existing paving shall be installed by jacking, boring, or hydraulic driving. Cutting or breaking of sidewalks and/or concrete work is not permitted unless no other alternative is possible.

C. Sleeves for control wires shall have minimum conduit size as per the chart in the details.

Construction Methods

328400-3.1 General

A. The Contractor, prior to installing the system, must verify existing irrigations systems.

328400-3.2 Point Of Connection

A. Existing Point of Connection

328400-3.3 Trenches and Sleeves

- A. Trenches shall be dug as deep and wide as necessary to properly place the irrigation piping. Trenching depth shall be 2" below normal trench depth to allow for proper bedding. All trenches shall be backfilled and tamped sufficiently to be level with adjacent soil level and to insure no settling of the surface.
- B. The Contractor, in placing the irrigation lines, etc. may uncover material not suitable for finished grading. This material shall be removed from the site. After the installation of the lines, the finished grading shall be smoothed over and restored to its original condition.
- C. Sleeves under new hard surfaces (roadway, walks, curbs) to be placed before hardscape. Sleeves under existing hard surfaces to be bored or cut and patched as per Owner's requirements. Sleeves through walls to be core drilled and sealed as required.

328400-3.4 Pipe Assembly

- A. The plans show the general arrangement of all piping. Should local conditions necessitate the rearrangement of some, or if piping can be run to better advantage, the Contractor, before proceeding with the work, shall prepare and submit drawings of such to the Owner's Authorized Representative's office and obtain written approval before commencing work shown by these drawings.
- B. A bedding material shall be placed a minimum of 3 inches in all directions around all pipes prior to backfilling.
- C. All mainlines, as shown on drawings, shall be installed to a depth of 18 -24 inches.
- D. All PVC lateral lines as shown on drawings shall be installed to a depth of 12-18 inches.
- E. Lines bordering curbs or sidewalks shall be 6 inches away to allow for maintenance and access to the lines.
- F. All mainlines shall be installed with thrust blocks wherever a change of direction occurs.

- G. After the irrigation pipes are connected and the irrigation risers are in place, but before any heads, bubblers, or drip lines are installed, the control valves shall be opened and flushed with a full head of water to clean out the system. The sprinkler main lines shall then be pressure tested before backfilling. The pressure test shall be for a period of not less than one hour, and shall prove there are no signs of leakage or loss of pressure at full pressure.
 - 1. The mainline must be flushed prior to the installation of station/control valves.
 - 2. The lateral lines must be flushed prior to the installation of sprinkler heads, drip lines, etc.
- H. PVC joints shall be glued according to manufacturer's recommendations. Burrs at cut ends shall be removed prior to installation to guarantee a smooth, unobstructed flow of water.
- I. Glued joints shall set for 24 hours before pressure is applied to lines. Before trenches are backfilled all lines shall be pressurized and checked for leaks.
- J. Milestone Inspections
 - 1. Limitations on Inspection Periods: Due to limited growth season, no inspections will be performed from October 31 through March 31 unless conditions permit and at the Owner's Representative's discretion.
 - 2. Scheduling and Notice of Requested Inspection: Prior to each inspection date, the Contractor shall give twenty-four (24) hour notice to the Owner.

328400-3.5 Valves

A. Existing

328400-3.6 Wiring

A. Install as per Rain Bird Maxicom requirements.

328400-3.7 Controller and Control Wires

- A. All wire connections to valves and all splices shall be water tight.
- B. Control wires must be buried at least 12 inches below finished grade and bundled with a plastic tape every 20 feet. Provide boxes at direction changes greater than 45 degrees. Tie a loose 20" loop in all wiring in pull boxes. Where control wire leaves main or lateral line, enclose it in Class 200 PVC conduit.
- C. Coil wire 14 times (minimum) at each valve.
- D. Control wires to be buried to one side of mainline. Where it is not possible to run the controller wire in the main line trench, the wires are to be buried 24 inches deep in a conduit.
- E. In relocated mainline trench continue all wires along mainline and connect at each end.

328400-3.8 Inspection

- A. At the time of final irrigation inspection, the entire system must be tested in the presence of the Owner's Authorized Representative. It must operate in a satisfactory manner, with a full uniform coverage of the areas. Contractor must turn over one quick coupler valve key to the Owner's Representative at the completion of the project.
- B. Before the Substantial Completion is complete, the Contractor must furnish 'as-built' drawings. These drawings should be updated on a daily basis to assure accuracy. The drawings must show the location of all valves, pipe, heads, controller control lines, and drain valves used on the job. These drawings and maintenance manuals must be submitted at the time of final inspection or in accordance to the general conditions.

328400-3.9 Guarantee

A. In accordance with the General Conditions.

Method of Measurement and Basis of Payment

328400-4.1 Payment for existing irrigation system renovation and irrigation system will each be made at two contract lump sum prices.

Payment will be made under:

328400-1	Existing Irrigation System Renovation	Per Lump Sum
328400-2	Enclosure Complete New Above Ground Backflow Preventer	
		Per Lump Sum

END OF SECTION 328400

THIS PAGE INTENTIONALLY BLANK

SECTION 329000

LANDSCAPE

Description

329000-1.1 Summary

- A. The extent of the landscape development work is shown on the drawings and in schedules and includes soil amendments, preparation of landscaped areas, placement of all plant materials, mulches, and maintenance and guarantee.
- B. Related Documents: Drawings and general provisions of the Contract apply to this Section.
- C. Milestone Inspections: A series of milestone inspections is required during construction as detailed in these specifications.
- D. Any minor items of labor or materials not specifically notes on the drawings or specifications, but necessary for the proper completion of the work, shall be considered incidental to and are to be included in the work.

329000-1.2 Record Drawings

- A. The Contractor will keep a record of all departures from the contract drawings that occur during construction. These shall be kept on a clean set of prints of the contract drawings. The Owner's Authorized Representative will review the "Record Drawings" to verify that changes are being recorded as construction occurs.
- B. The Contractor to deliver to the Owner's Authorized Representative a copy of the record drawings in hard copy form prior to final payment.

329000-1.3 Quality Assurance

A. The landscape work shall be done by a single licensed Landscape Contractor specializing in landscape work. The on site supervisor must have a minimum of three years experience in landscape construction and one year experience in a supervisory role.

329000-1.4 Submittals

- A. Shop Drawings, Product Data, Samples, and similar submittals (all of which shall be referred to as "Submittals") are not changes to the Contract Documents, unless incorporated by a Contract Modification. The purpose of Submittals is to demonstrate for those portions of work for which Submittals are required, the manner in which the Contractor proposes to conform to the information given and the design concept expressed in the Contract Documents.
- B. The Contractor shall review, stamp as approved and submit through the Owner's Authorized Representative, for review by the Designer, Submittals required by the Contract Documents

with reasonable promptness and in such sequence as to cause no delay in the Work or in the activities of the Owner or of separate Contractors.

- C. Product Data: Submit manufacturer's technical product data and installation instructions for landscape materials and products.
- D. Maintenance Data: Submit maintenance data and parts lists for landscape materials and products.
- E. Plant Material Source: Submit the source or supplier for all plant materials.

329000-1.5 Plant Material Source Quality Control

- A General: Ship landscape materials with certificates of inspection as required by governmental authorities. Comply with governing regulations applicable to landscape materials.
- B. The source or supplier for all plant materials shall be furnished to the Owner's Authorized Representative prior to the delivery of any plant materials on site or stored elsewhere.
- C. Plant materials and other landscape items will be evaluated according to compliance with drawings, schedules, and specifications; as well as overall aesthetic quality, grower or supplier reputation, physical inspection, and American Association of Nurseryman Standards (AANS).
- D. All plant materials are to be inspected and approved by the Owner's Authorized Representative at the time of delivery on site. This approval does not constitute final acceptance of any plant material. All plant materials will be inspected again at time of final inspection and once again at the end of the warranty period. Any plant found to be unacceptable at any of these inspections shall be immediately removed and replaced.
- E. DO NOT MAKE SUBSTITUTIONS. If specified landscape material is not obtainable, submit in writing to Owner's Authorized Representative proof of non-availability from a minimum of three suppliers regularly engaged in the growing and sale of the kind and species of plants specified and a proposal for use of equivalent material for evaluation to be accepted or not accepted. Any approved substitutions shall be of the same quality and size equal to that specified on the plans. Except for the variations so authorized, all substitute plant material shall conform to the requirements of these specifications.

329000-1.6 Plant Materials

- A. Deliver plants after preparations for planting have been completed and plant immediately. If planting is delayed more than 6 hours after delivery, set plants in shade, protect from weather and mechanical damage, and keep roots moist.
- B. Do not remove container-grown stock from container until planting time.
- C. Label at least one plant of each variety with a securely attached waterproof tag bearing legible designation of botanical and common name.
D. Sizes: Provide plants of the sizes shown or specified. Plants of a larger size may be used pending approval by the Owner's Authorized Representative and if sizes of root balls or containers are increased proportionately.

329000-1.7 Storage and Handling

- A. Packaged Materials: Deliver packaged materials in containers showing weight, analysis and name of manufacturer. Protect materials from deterioration during delivery, and while stored at the site.
- B. The Contractor shall check the materials upon delivery to assure that proper material has been received.

329000-1.8 Existing Utilities

A. Determine location of underground utilities and perform work in a manner which will avoid possible damage. Hand excavate, as required, to minimize possibility of damage to underground utilities. The Contractor shall have the area "Blue Staked" prior to digging. It is the responsibility of the Contractor to repair or replace any damage incurred by the Contractor or the Contractor's employees at no expense to the Owner. In the event of a conflict between utility lines and plant locations, promptly notify the Owner's Authorized Representative. Failure to follow this procedure places the responsibility and expense upon the Contractor for making any and all repairs.

329000-1.9 Excavation

- A. When conditions detrimental to plant growth are encountered, such as rubble fill, adverse drainage conditions, or obstructions, notify the Owner's Authorized Representative before planting.
- B. Remove rock, road base, or other underground obstructions, except utility lines, to a minimum of a one-foot depth to permit proper installation of planting.

329000-1.10 Guarantee

- A. The guarantee specified shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with other warranties made by the Contractor under requirements of the Contract Documents.
- B. Guarantee plant material for one year following substantial completion against defects including death and unsatisfactory growth, except for defects resulting from lack of adequate maintenance, neglect, or abuse by Owner, abnormal weather conditions unusual for warranty period, or incidents that are beyond Contractor's control.
- C. Remove and replace plant material found to be unacceptable at the time of substantial completion and once again at the end of the warranty period. Replacements shall be made during the growing season and shall comply with all requirements and specifications. Any

delay in the completion of any item of work in the planting operation which extends the planting into more than one season shall extend the guarantee period accordingly.

329000-1.11 Maintenance

- A. Maintenance shall consist of watering, weeding, caring for plants, fertilizing, and performing the following plant establishment work:
 - 1. At completion of maintenance period, all areas including sidewalks and gutters shall be clean and free of debris and weeds. All plants shall be alive, healthy, free of infestations or weeds, and be of acceptable growth until the 100-percent bond release. The Contractor shall obtain a written release from the Owner's Representative before ending maintenance obligations.
- B. The entire project shall be satisfactorily maintained until substantial completion of the landscape. The maintenance period will begin when all items of work have been completed as specified in the foregoing articles until substantial completion. If project is not accepted, Contractor shall be required to continue maintenance until project is accepted.

Materials

329000-2.1 Topsoil

- A. Prior to importing and amending soil, Contractor shall inspect the existing grade for compliance to the specifications with regards to the grade and cleanliness. Any discrepancy shall be brought to the attention of the Owner's Authorized Representative for appropriate action.
- B. Topsoil: Imported topsoil.
 - 1. Imported topsoil to have the following minimum requirements.

A A	•
PH	5.0 - 8.2
Soluble Salts	<4 ds/m or mmho/cm
Sodium Absorption Ratio (SAR)	3 - 7
Organic Matter	>2%
Sand	<70%
Silt	<70%
Clay	<30%

2. Additional Properties of Imported Topsoil or Manufactured Topsoil: Screened and free of stones 1 inch or larger in any dimension; free of roots, plants, sod, clods, clay lumps, pockets of coarse sand, paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials harmful to plant growth; free of obnoxious weeds and invasive plants including quackgrass, Johnsongrass, poison ivy, nutsedge, nimblewill, Canada thistle, bindweed, bentgrass, wild garlic, ground ivy, perennial sorrel, and bromegrass; not infested with nematodes, grubs, other pests, pest eggs, or other undesirable organisms and disease-causing plant pathogens; friable and

with sufficient structure to give good tilth and aeration. Continuous, air-filled, porespace content on a volume/volume basis shall be at least 15 percent when moisture is present at field capacity. Soil shall have a field capacity of at least 15 percent on a dry weight basis.

- 3. Mix imported topsoil or manufactured topsoil soil amendments, and fertilizers as recommended by soil laboratory to produce planting soil.
- 4. Obtain topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches deep; do not obtain from bogs or marshes.

329000-2.2 Plant Materials

- A. Quality: Provide shrubs and other plants that comply with the recommendations and requirements of ANSI Z60.1 "Standard for Nursery Stock" and as further specified. The Owner's Authorized Representative reserves the right to refuse plant materials, which does not meet the quality required for the project.
- B. Shrubs, Perennials, and Ground Covers:
 - 1. Shrubs: Provide shrubs of the height and size shown or listed and with not less than the minimum number of canes required by ANSI Z60.1 for the type and height of shrub required.
 - 2. Container grown shrubs will be acceptable subject to specified limitations of container grown stock.
 - 3. Perennials, grasses and other plants: Provide materials of the species and size indicated and grown according to ANSI requirements.

329000-2.3 Miscellaneous Materials

A. Fertilizer Soil Amendment:

- 1. Sustane 4-4-4+Fe Bolster Granular medium grade.
- 2. Local Sustane Representative: BioGrass Sod Farms (801) 562-9090.
- B. Stone Mulch: Stone Mulch to match existing, contractor to investigate and submit sample for review before delivery to the site.
- C. Landscape Fabric: Landscape fabric to be woven weed barrier geotextile with elongation less than 50 percent. Basic weight 3.0 oz/sq yd with a water flow rate greater than 40 gal/min/sqft. Submit sample for approval.
 - 1. Securing pins shall be galvanized steel 0.09 inch diameter, U-shaped with 6 inch legs.

Construction Methods

329000-3.1 Coordination

- A. The Contractor shall coordinate his work with that of other Contractors on site, and shall cooperate to the fullest extent to see that the work is completed in a timely and workmanship like manner.
- B. All irrigation work shall be inspected and approved prior to beginning any landscaping work in this section.

329000-3.2 Preparation for Planting

- A. The exact locations of all plants must be approved by the Owner's Authorized Representative prior to the digging of any holes. Refer to the drawings for the sizes and preparation of holes. Prepare all holes according to the details on the drawings.
- B. When plant material is organized in rows, all plants shall be equally spaced. Where plants are placed in a meandering fashion, spacing shall be as shown on the Landscape Plan.
- C. Excavated soil material from planting holes should be used as backfill material and amended with the specified soil fertilizer amendment for each tree and shrub.
 - 1. Tree 0.50 Cubic Foot Soil amendment
 - 2. Shrub 5 Gallon 0.25 Cubic Foot Soil amendment
 - 3. Shrub 1 Gallon 0.10 Cubic Foot Soil amendment
- D. Finish Grading and Soil Preparation
 - 1. Finish grading shall consist of the following:
 - a. Planting areas shall conform to the uniform grade by floating or hand raking.
 - b. It shall be the responsibility of the landscape Contractor to insure proper drainage. Surface drainage shall be modeled to facilitate the natural runoff of water. Low spots and pockets must be graded to drain properly.

329000-3.3 Landscape Fabric and Mulch

- A. Complete all required topsoil placement, landscape grading and irrigation installation prior to placing landscape fabric.
- B. Place landscape fabric under all mulch areas.
 - 1. Overlap seems 6 inches minimum.
 - 2. Place securing pins 4 ft O.C. (grid) and 2.5 ft O.C. (linear) along seams and edges.
- C. Place mulch in areas of the type specified and as detailed to a depth of 3 inches.
- D. DO NOT place mulch next to tree trunks and shrub bases.

329000-3.4 Planting

- A. Prior to planting, fill excavated plant pit with water and allow to percolate out. If, after 24 hours, the water has not percolated out of the pit, notify the Owner's Authorized Representative. Do not plant until the problem has been corrected.
- B. The planting holes should be so that the root flare or first order tree roots will be at or above the adjacent finish grade. The root flare is NOT the top of the root ball.
- C. Upon completion of backfilling operation, thoroughly water the plant to completely settle the soil and fill any voids that may have occurred.
- D. The amount of pruning shall be limited to the minimum necessary to remove dead or injured twigs and branches. Proper pruning techniques shall be used. Do NOT leave stubs and do

NOT cut the leader branch. Improper pruning shall be cause for rejection of the plant material.

E. Mulching: Upon completion of all planting operations, remove all undesirable material from the surface of planting beds, including rocks over the size of 1-inch diameter; re-establish all watering basins and spread a three-inch layer of mulch in all planting beds. Do not place mulch next to shrub bases.

329000-3.5 Weed Control

- A. Weed control is required. The extent of control depends on the type, quantity, and stage of weeds. The following are methods that may be used to control weeds. Apply herbicide so no damage to protected vegetation occurs whether inside or outside of the project site. Damage to protected vegetation or vegetation outside the project site will be reimbursed to the Owner or replaced by the Contractor in a manner satisfactory to the Owner's Authorized Representative, and according to the International Society of Arboriculture Method of "Valuation for Landscape Trees, Shrubs, and Other Plants", latest edition.
- B. Post-emergent For control of broad-leafed weeds without damage to grasses.
 - 1. Mix and apply post-emergent herbicide according to manufacturer's recommendations indicated in the "Weeds Controlled" section of the label, and apply to actively growing vegetation.
 - 2. Apply the spray mixture so that all undesired vegetation is uniformly covered, but avoid causing overspray and drift. Spray target vegetation so that it is wet, but short of run-off.
 - 3. Prune all suckers at the base of any trees to the soil level prior to application.
 - 4. Do not apply post-emergent herbicide in any of these conditions: When rainfall is expected within six hours; when there is growth stress as a result of drought, insects, disease, or plant damage; or when there is heavy dust on plants.
 - 5. Do not walk or permit other traffic on treated areas when they are wet from application. Shoes and equipment may track spray solution to areas where vegetation is not to be treated.
 - 6. Repeat application, as necessary to completely eradicate undesired vegetation.
- C. License: Use a Utah State Licensed applicator to apply herbicide.
- D. Mechanical Control:
 - 1. Mechanically control the weeds by pulling, cutting, hoeing, or by any other direct means approved by the Owner's Authorized Representative.
 - 2. Weeds in a dormant stage or other condition which cannot be effectively controlled with post-emergent herbicide shall be removed from the site by mechanical methods.

329000-3.6 Cleanup and Protection

- A. During landscape work store materials and equipment where directed. Keep pavements clean and work area in an orderly condition.
- B. Protect landscape areas, work and materials from damage due to operations by other Contractors, trades and trespassers. Maintain protection during installation and maintenance periods. Treat, repair or replace damaged landscape work as directed.

C. The Contractor shall keep the site free from accumulation of waste material. At the time of completion, all areas must be swept or washed clean and all rubbish removed to the satisfaction of the Owner's Authorized Representative.

329000-3.8 Inspection, Acceptance, and Maintenance

- A. When the landscape work is completed, the Owner's Authorized Representative will, upon request, make an inspection to determine Substantial Completion.
- B. The one year plant guarantee begins from the date of Substantial Completion.
- C. Where inspected landscape work does not comply with the requirement, replace rejected work and continue specified maintenance until re-inspected by the Owner's Authorized Representative and found to be acceptable. Remove rejected plants and materials promptly from the project site.
- D. As-built Drawings: Furnished to the Owner's Authorized Representative at the time of the Final Inspection before Certificate of Substantial Completion will be issued.

Method of Measurement and Basis of Payment

329000-4.1 Deciduous Tree, Shrubs, and Boulders. Method of measurement and basis of payment for these item will be made at the contract unit price for each unit installed and accepted.

329000-4.2 Geotextile Fabric._Method of measurement and basis of payment for this item will be made at the contract unit price per square foot of geotextile fabric wall installed and accepted.

329000-4.3 Mulch-Stone Mulch, Mulch-Wood Bark, and Topsoil. Method of measurement and basis of payment for this item will be made at the contract unit price per cubic yard of item installed and accepted.

Payment will be made under:

329000-1	Shrub (5 Gal)	Per Each
329000-2	Shrub (1 Gal)	Per Each
329000-3	Boulder Relocation	Per Lump Sum
329000-4	Mulch-Stone Mulch (3" Deep)	Per Cubic Yard
329000-5	Geotextile Fabric - Woven	Per Square Foot
329000-6	Topsoil- Shrub Areas (30" Deep)	Per Cubic Yard

END OF SECTION 32 90 00

SECTION 330000

WATER AND SEWER UTILITY WORK

DESCRIPTION

330000-1.1 The work to be performed under this section shall consist of constructing all water and sewer utility work as shown on drawings or as directed by the Engineer. All water and sewer utility work will be performed according to APWA specs and SLC standard practices. These items shall be constructed to the lines, grades and dimensions as indicated on the drawings or as directed by the Engineer.

METHOD OF MEASUREMENT and BASIS OF PAYMENT

The accepted quantities and work shall be paid for at the contract unit price for the items listed below. This price shall be full compensation for all materials, tools, equipment, forms, labor, shoring, trenching, backfill for utility lines, water meters, vaults, fittings, bedding, compaction, dewatering, public utility permitting fees, and all incidental items necessary to fully complete these items.

Payment will be made under:

330000-1	1" Water Meter and Fees	. Per Lump Sum
330000-2	1" Type K Copper Water Service	. Per Linear Foot
330000-3	Water Service Mainline Connection and Fees	. Per Lump Sum
330000-4	6" PVC SDR 35 Sewer Line	. Per Linear Foot
330000-5	6" Sanitary Sewer Line Clean Out	. Per Each
330000-6	Sanitary Sewer Mainline Connection and Fees	. Per Lump Sum
330000-7	Relocate Existing Water Meter and Fees	. Per Lump Sum
330000-8	Relocate Existing Fire Hydrant and Gate Valve	. Per Each
330000-9	Cap and Abandon Existing 2" Water Service and Fees	. Per Each
330000-10	Demo Existing Yard Hydrant	. Per Each

END OF SECTION 330000