

Project Manual | Volume 2 (Divisions 21-33) Heber Hospital Fluoroscopy Replacement Project Heber, Utah

> Construction Documents Bid Set June 26, 2024

PROJECT MANUAL

TABLE OF CONTENTS

LEGEND

First Column:Section NumberSecond Column:Section Title

NOTES FOR REVISED SPECIFICATIONS

- 1. Deleted information is indicated by STRIKETHROUGH; for example, THIS IS DELETED.
- 2. Added information is indicated by DOUBLE UNDERLINE; for example, THIS IS ADDED.

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 2213 Supplemental Instructions to Bidders
- 00 3100 Available Project Information
- 00 4000 Bid Form
- 00 4373 Schedule of Values
- 00 5200 Agreement Form Owner / Contractor
- 00 6000 Certificates and Owner Documents
- 00 6276 Tax Exempt Certificate
- 00 7000 General Conditions
 - Preferred Vendor List Responsibility Matrix

DIVISION 01 - GENERAL REQUIREMENTS

- 01 1000 Summary
- 01 2500 Substitution Procedures
- 01 2600 Contract Modification Procedures
- 01 2900 Payment Procedures
- 01 3100 Project Management and Coordination
- 01 3200 Construction Progress Documentation
- 01 3300 Submittal Procedures
- 01 4000 Quality Requirements
- 01 4200 References
- 01 5000 Temporary Facilities and Controls
- 01 6000 Product Requirements
- 01 7300 Execution
- 01 7700 Closeout Procedures
- 01 7823 Operations and Maintenance Data
- 01 7839 Project Record Documents

DIVISION 02 - EXISTING CONDITIONS

02 4119 Selective Demolition

DIVISION 03 - CONCRETE

Not Used - Refer to drawings for requirements

DIVISION 04 - MASONRY

Not Used

DIVISION 05 – METALS

Not Used

HKS 26651.000 TABLE OF CONTENTS 2024-06-26

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

06 4023 Interior Architectural Woodwork

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

07 9200 Joint Sealants

DIVISION 08 - OPENINGS

Not Used

DIVISION 09 - FINISHES

09 2900	Gypsum Board Assemblies
09 5113	Acoustical Panel Ceilings
09 6500	Resilient Flooring
09 9100	Painting

DIVISION 10 - SPECIALTIES

Not Used

DIVISION 11 – EQUIPMENT

11 7000 Medical Equipment

DIVISION 12 - FURNISHINGS

12 3661 Simulated Stone Countertops

DIVISION 13 - SPECIAL CONSTRUCTION

13 4900 Radiation Protection

DIVISION 14 - CONVEYING EQUIPMENT

Not Used

DIVISION 21 – FIRE SUPPRESSION SYSTEMS

Not Used

DIVISION 22 – PLUMBING

Not Used

HKS 26651.000 TABLE OF CONTENTS 2024-06-26

DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING

Not Used

DIVISION 26 – ELECTRICAL

Index See Specification Index

DIVISION 27 – COMMUNICATIONS

Index See Specification Index

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

Index See Specification Index

DIVISION 31 – EARTHWORK

Not Used

DIVISION 32 – EXTERIOR IMPROVEMENTS

Not Used

END OF TABLE OF CONTENTS

SPECIFICATIONS GROUP

Facility Services Subgroup

DIVISION 26 - ELECTRICAL

260500	COMMON WORK RESULTS FOR ELECTRICAL	4
260519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	7
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	6
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS	6
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	9
260544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL SYSTEMS	4
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	7
260923	LIGHTING CONTROL DEVICES	9
262416	PANELBOARDS	13
262726	WIRING DEVICES	9
262813	FUSES	3
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	7
262913	ENCLOSED CONTROLLERS	7
265119	LED INTERIOR LIGHTING	10
DIVISION	N 27 - COMMUNICATIONS	
270000	COMMON GENERAL CONDITIONS FOR COMMUNICATIONS SECTIONS	9
270100	OPERATION AND MAINTENANCE OF COMMUNICATION SYSTEMS	2
270113	WARRANTY PRODUCT AND SYSTEM	2
270119	FIELD TESTING AND REPORTING	5
270133	SHOP DRAWINGS PRODUCT DATA SAMPLES DESIGN RECORDS AND	3
	EXISTING CONDITIONS	
270143	QUALIFICATIONS AND REQUIRED TRAINING FOR CONTRACTOR AND	1
	INSTALLER	
270171	RESPONSIBILITY AND WORKMANSHIP OF CONTRACTOR	2
270500	COMMON WORK RESULTS FOR COMMUNICATIONS	2
270526	GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS	2
270528	PATHWAYS FOR COMMUNICATIONS SYSTEMS	4
270529	HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS	1
270533	CONDUITS AND BACK BOXES FOR COMMUNICATIONS SYSTEMS	2
270553	IDENTIFICATION FOR LOW-VOLTAGE CABLES AND LABELING	3
271100	EQUIPMENT ROOM FITTING	10
271116	CABINETS, RACKS, FRAMES, AND ENCLOSURES	2
271119	TERMINATION BLOCKS AND PATCH PANELS	2
271500	HORIZONTAL CABLING	4
271513	COPPER CABLE	1
271543	FACEPLATES AND CONNECTORS	2
271619	PATCH CABLES	2

275223	NURSE CALL CODE BLUE SYSTEMS	4
276001	APPENDIX 01 DEVIATION REQUEST PROCESS	2
276002	APPENDIX 02 DOCUMENT REFRESH PROCESS	1
276003	APPENDIX 03 DATA CENTER, TEC, TDR PART NUMBERS	2
276004	APPENDIX 04 REFERENCE STANDARDS	2
276005	APPENDIX 05 DEFINITIONS AND ABBREVIATIONS	2
276006	APPENDIX 06 MATERIAL SUPPLIERS	1
276007	APPENDIX 07 SIEMON - CERTIFIED INSTALLATION FIRMS	4
276008	APPENDIX 08 LEAD WALL PENETRATIONS	2
DIVISION 2	8 - ELECTRONIC SAFETY AND SECURITY	
280544	SLEEVES AND SLEEVE SEALS FOR ELECTRONIC SAFETY AND SECURITY	4
	PATHWAYS AND CABLING	
283111	DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM	15

END OF TABLE OF CONTENTS

SECTION 26 05 00

COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.
- 1.4 SUBMITTALS
 - A. Product Data: For sleeve seals.

1.5 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

- 2.1 SLEEVES FOR RACEWAYS AND CABLES
 - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
 - B. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
 - C. Fire-Rated Assemblies for Low Voltage Penetrations (Communications, etc.): Engineered prefabricated fire stop system. The acceptable manufacturers of firestop systems are:
 - 1. STI Firestop (EZ-Path)

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

- 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
 - A. Comply with NECA 1.
 - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Mock Ups: In each of the rooms listed below, coordinate with the architect and owner to provide one mock up room prior to further work in any identical or similar room for owner review and approval. In rooms or parts of rooms with stud walls, provide in the frame of each room box locations only, without conduits, identified with colored tape as to purpose (receptacle, tele/data, switch, etc.). In rooms with masonry or concrete walls, provide either a layout chalked on the floor of the room or, alternately, a hung sheet of paper with the locations of devices color coded:
 - 1. Procedure Room
 - 2. Prep Room
 - 3. Recovery Room
 - 4. Exam Room
 - 5. Medication Room
 - 6. Consult Room
 - 7. Workroom
- G. Storage: Store all equipment and components in locked, inaccessible spaces during construction. The contractor shall be responsible for the replacement of any lost or damaged equipment.
- H. Workmanship: All work shall be performed by qualified individuals and shall meet the highest standard of workmanship. Any work found by the owner, architect, or engineer to be less than the required standard of workmanship shall be replaced at the contractor's expense.
- 3.2 SLEEVE INSTALLATION FOR ELECTRICAL AND LOW VOLTAGE PENETRATIONS
 - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
 - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
 - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - D. Fire-Rated Assemblies for Electrical Penetrations: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
 - E. Fire-Rated Assemblies for Low Voltage Penetrations (Communications, etc.): Install listed firestop system from one of the acceptable manufacturer products listed below during construction of floor or wall at each point where communications cabling, cable tray, conduit, sleeves, etc., penetrate a fire-rated assembly. The acceptable manufacturers of firestop systems are:
 - 1. STI EZ-Path
 - F. Cut sleeves to length for mounting flush with both surfaces of walls.

- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials where engineered prefabricated fire stop system is not installed per specifications. Comply with requirements in Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boottype flashing units applied in coordination with roofing work.
- M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.
- 3.3 SLEEVE-SEAL INSTALLATION
 - A. Install to seal exterior wall penetrations.
 - B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

- A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."
- 3.5 COMMISSIONING
 - A. Refer to the commissioning specifications for additional scope of work required for commissioning of various project components included in Divisions 26, 27, and 28. The requirements and scope of work included in the commissioning specifications is hereby incorporated by reference.

END OF SECTION 260500

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
- B. Related Requirements:
 - 1. Section 26 05 33 "Raceways and Boxes for Electrical Systems"
 - 2. Section 26 09 23 "Lighting Control Devices"
 - 3. Section 26 09 36 "Standalone Modular Preset Dimming Controls"
 - 4. Section 26 09 43 "Relay-Based Lighting Controls"
 - 5. Section 27 41 33 "Master Antenna Television System"
 - 6. Section 27 51 17 "Networked Public Address and Paging System"
 - 7. Section 27 51 19 "Sound Masking Systems"
 - 8. Section 28 13 00 "Access Control"
 - 9. Section 28 31 11 "Digital, Addressable Fire-Alarm System"
 - 10. Section 27 00 00 "Intermountain Healthcare Networked Structured Cable & Standards" for cabling used for voice and data circuits.

1.3 DEFINITIONS

- A. Outlet Box: Electrical box used to support utilization equipment such as a receptacle or light fixture.
- B. Pull Box: Electrical box through which branch circuit or feeder conductors are run but are not spliced.
- C. Junction Box: Electrical box used for splicing branch circuit or feeder conductors.
- D. Multiwire Branch Circuit: A branch circuit as defined by the National Electrical Code that shares a grounded conductor between two of more phase conductors.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SINGLE CONDUCTORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Alpha Wire Company</u>.
 - 2. <u>Belden Inc</u>.
 - 3. <u>Cerro Wire LLC</u>.
 - 4. <u>Encore Wire Corporation</u>.
 - 5. <u>General Cable; General Cable Corporation</u>.
 - 6. <u>Southwire Company</u>.
 - 7. Thomas & Betts Corporation; A Member of the ABB Group.
- B. Aluminum and Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.

2.2 MULTI-CONDUCTOR CABLES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. <u>Southwire Company</u>.
 - 2. <u>AFC Cable Systems.</u>
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.
- D. Multi-conductor Cable, Type AC-HCF:
 - 1. Armor: Galvanized Interlocking Steel Strip (green striped or solid green).
 - 2. Conductors: Solid Copper
 - 3. Conductor Insulation: THHN-2 with individual moisture resistant, fire retardant paper wrap on each individual conductor.
 - 4. Grounding: 16 AWG integral bond wire and insulated green copper grounding conductor.
 - 5. Neutral (Grounded) Conductor: White for 120Y/208 volt systems and Grey 480Y/277 volt systems.
 - 6. Maximum Voltage Rating: 600 volts.
 - 7. References and Ratings:
 - a. UL 4, 83, 1479, 1581, 2556, File Reference E7330
 - b. NEC 250.118(8), 300.22(C), 392, 320, 517.13, 518, 645
 - c. Federal Specification A-A–59544 (formerly J-C–30B)
 - d. UL Classified 1, 2, and 3-hour through (Fire) penetration product, R-14141
 - e. Environmental Air-Handling Space Installation per NEC 300.22(C)

E. Other Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for Type SO with ground wire.

2.3 CONNECTORS AND SPLICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. 3M.
 - 2. <u>AFC Cable Systems; a part of Atkore International</u>.
 - 3. <u>Hubbell Power Systems, Inc</u>.
 - 4. <u>Ideal Industries, Inc</u>.
 - 5. <u>ILSCO</u>.
 - 6. <u>O-Z/Gedney; a brand of Emerson Industrial Automation</u>.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.4 CORD REELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. APC Group; Kitchen Leash
- B. Case (housing):
 - 1. Dimensions: 9" x 12" x 3"
 - 2. Material: Molded Polypropylene 3.175 mm thickness
 - 3. 94v-2 flammability rating
- C. Power Cord
 - 1. Conductors: 14/3 AWG copper type SJOW
 - 2. Length: 10 feet
 - 3. Rating: 200 degrees F
- D. Receptacle/Plug
 - 1. Rated: 125vac/20 amp
 - 2. Receptacle: NEMA 5-15P
 - 3. Plug: Dual Duplex rated 20 amp
- E. Mounting Bracket: Designed for installation on the ceiling type where the cord reel will be installed.

2.5 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

2.6 FIRE-ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - 1. Low-Voltage Circuits: No. 14 AWG, minimum, in pathway.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper for feeders smaller than No. 4 AWG; for feeders No. 4 AWG and larger provide copper feeders unless aluminum is specifically indicated on the one-line diagrams. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. Aluminum conductors may not be installed for circuiting to imaging and mechanical equipment.
- B. Branch Circuits: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Refer to Section 26 05 33 "Raceways and Boxes for Electrical Systems" for raceway types and applications.
- B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Feeders below Slabs-On-Grade, and Underground: Type THWN-2, single conductors in raceway.
- E. Multiwire Circuits: may not be used for branch circuit wiring. All 120 volt and 277 volt circuits shall be provided with a dedicated grounded conductor (neutral) for each phase conductor. Up to three of these circuits may be installed in a single conduit but not more than one conductor of each phase may be installed in a single conduit.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

- 1. Armored cable, Type AC-HCF may be installed for normal and equipment system single branch circuits concealed in walls, and partitions in lengths between outlet boxes 30' or less and not as homeruns or wiring between pullboxes or junction boxes.
- 2. Armored cable, Type AC-HCF may be installed between the first outlet box concealed in a wall or partition and a junction box above an accessible ceiling immediately above the location where the cable exits the wall or partition framing.
- G. Branch Circuits below Slabs-on-Grade and Underground: Type THHN/THWN-2, single conductors in raceway. Installation of raceways within any concrete slab or composite concrete and steel deck is prohibited. NEC 517.13 (A) requires that all branch circuits serving patient care areas are provided with an effective ground-fault current path by installation in a metal raceway system, or a cable having a metallic armor or sheath assembly that qualifies as an equipment grounding conductor. Metallic raceways are not a specified raceway for branch circuits installed below slabs-on-grade. To assure compliance with the NEC requirement, both initially and when remodels occur in the future, the installation of branch circuit wiring under slabs-on-grade is limited to circuits supplying only the following rooms and area types without extension beyond the room or area to a room or area not listed here:
 - 1. Mechanical Spaces.
 - 2. Electrical Rooms.
 - 3. Food Service.
- H. Branch circuit wiring may also be installed under slabs-on-grade to supply power for the following:
 - 1. Systems Furniture.
 - 2. Floor Boxes.
 - 3. Direct wired equipment that is not located against a wall.
- I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain-relief device at terminations to suit application.
- J. Isolated Power System Conductors: #10 AWG, Type XHHW-2 stranded with cross-linked PE insulation and a dielectric constant of 3.5 or less, installed in EMT conduit. To limit leakagecurrent the branch circuit conductors must be reduced to the shortest overall length possible. Install conduits for Isolated Power System branch circuits in the most direct path between the panel and the outlet box, which is not necessarily parallel and perpendicular to the structure and framing, to reduce conductor length. Install only one circuit in per conduit. Do not use pulling compounds when installing the branch circuit conductors of Isolated Power Systems.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. Do not use pulling compounds or lubricant for installation of branch circuit conductors for Isolated Power Systems.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

3.4 CORD REELS

- A. Coordinate location of cord reels to align with kitchen equipment supplied by the cord reel.
- B. Fasten brackets to structure using minimum 3/8" threaded rod and to rigidly support the cord real. Minimum of 2 rods per bracket with addition if required to provide a rigid support.
- C. Adjust cord stopper as coordinated with owner.

3.5 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.
- D. Comply with requirements in Section 283111 "Digital, Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.6 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with panel and circuit number and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 07 84 13 "Penetration Firestopping."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors and conductors feeding the following critical equipment and services for compliance with requirements.
 - a. Imaging Equipment
 - Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

1.

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - Installation and Bonding of Grounding Electrodes including:
 - a. Metal Underground Water Pipe
 - b. Metal Frame of the Structure
 - c. Concrete-Encased Electrodes including UFER Grounds
 - d. Ground Ring
 - e. Rod Electrodes
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.
 - 4. Electrical Room Ground Bus.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Grounding Electrodes
 - 3. Bonding Jumpers
 - 4. Electrical Room Grounding Bus.
 - 5. TEC and TDR Grounding Bus.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

- 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Instructions for periodic testing and inspection of grounding features at test wells based on NFPA 70B.
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Stranded Conductors: ASTM B 8.
 - 2. Tinned Conductors: ASTM B 33.
 - 3. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
- C. Electrical Room Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V. Length as required for all specified terminations plus 25% spare but not less than 20 inches.
- D. TEC and TDR Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V. Length as required for all specified terminations plus 25% spare but not less than 12 inches.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.4 **GROUNDING ELECTRODES**

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet (19 mm by 3 m).

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install stranded conductors unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 4/0 AWG minimum.
 - 1. Bury at least 18 inches (600 mm) below grade.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Grounding Bus: Install in Normal Power Electrical Room, Essential Power Electrical Room, TEC and all TDR. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 96 inches (2400 mm) above finished floor unless otherwise indicated.
- E. Conductor Terminations and Connections:
 - 1. Pipe Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Pad-Mounted Transformers and Switches: Install tinned-copper conductor not less than No. 4/0 AWG from equipment grounding terminals to ground ring. Bury ground ring not less 18 inches below finished grade.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
 - 9. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- G. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.

3.4 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are shall be at least 12 inches (300 mm) deep, with cover.
 - 1. Test Wells: Install one test well at the ground rod location indicated on the drawings.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through concrete footings.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Use exothermic-welded connectors; if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate interior and exterior columns at distances not more than 60 feet (18 m) apart.
 1.
- G. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod.
 - 1. Install tinned-copper conductor not less than No. 4/0 AWG for bond to ground ring and for taps to building steel.
 - 2. Bury ground ring not less than 24 inches (600 mm) from building's foundation.
- H. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4/0 AWG.
 - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations in mat footing and at four spread footing locations evenly distributed throughout building. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.
- I. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- J. Panelboard Bonding: To comply with NEC 517.14 panelboard bonding requirements install a minimum #10 AWG copper conductor between all branch-circuit panelboard grounding terminal buses in each electrical room. The conductor may be installed in ½" EMT conduit or may be exposed where securely fastened to the walls.

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding conductor, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- B. Grounding system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.
- D. Report measured ground resistances that exceed 3 ohms.
- E. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION

SECTION 26 05 29

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.
- B. Related Requirements:
 - 1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Hangers.
 - b. Steel slotted support systems.
 - c. Nonmetallic support systems.
 - d. Trapeze hangers.
 - e. Clamps.
 - f. Turnbuckles.
 - g. Sockets.
 - h. Eye nuts.
 - i. Saddles.
 - j. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. For fabrication and installation details for electrical hangers and support systems.
 - 1. Trapeze hangers. Include product data for components.
 - 2. Steel slotted-channel systems.
 - 3.
 - 4. Nonmetallic slotted-channel systems.
 - 5. Equipment supports.
 - 6. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for electrical systems.

- 1. Include design calculations and details of trapeze hangers.
- 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which hangers and supports will be attached.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures and lighting control.
 - b. Electrical power devices
 - c. Communications devices.
 - d. Air outlets and inlets.
 - e. Speakers.
 - f. Fire sprinklers.
 - g. Access panels.
 - h. Projectors.
 - i. Fire alarm system devices.
 - j. Nurse call system devices.
- B. Seismic Qualification Certificates: For hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

- 2. Component Importance Factor: 1.5.
- C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 1. Material: Galvanized steel.
 - 2. Channel Width: Use 1-1/4 inches (31.75 mm) where possible and minimum 13/16 inches (20.64 mm) where necessary due to space restrictions.
 - Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for electrical conductors in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include and are limited to the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 05 50 00 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as scheduled in NECA 1, where Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 3/8 inch (9 mm) in diameter.
- D. Multiple Raceways: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70. Only prefabricated openings in structure members may be used. Do not create openings in structure members unless directed to do so by the structural engineer of record.
- C. Cable Support Methods: Cables used for Circuits and Equipment Operating at Less Than 50 Volts and Class 1, 2 or 3 Remote-Control, Signaling and Power-Limited Circuits shall be installed in Jhooks. Where cables extend from J-hooks to equipment cables shall be supported from the structure by straps, hangers, cable ties or similar fittings designed and installed so as not to damage the cable. Do not fasten or secure cables to the raceways of the power system.
- D. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- E. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.

- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on 13/16 inches (20.64 mm) slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- F. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 30 00 "Cast-in-Place Concrete" or Section 03 30 53 "Miscellaneous Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

- B. Touchup: Comply with requirements in Section 09 91 13 "Exterior Painting", Section 099123 "Interior Painting" and Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizingrepair paint to comply with ASTM A 780.

END OF SECTION

SECTION 26 05 33

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways.
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.
- B. Related Requirements:
 - 1. Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. ARC: Aluminum Rigid Conduit.
- B. EMT: Electrical Metallic Tubing.
- C. GRC: Galvanized rigid steel conduit.
- D. IMC: Intermediate metal conduit.
- E. RTRC: Reinforced Thermosetting Resin Conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For color coded EMT conduit, surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of

Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

- C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
- D. Samples: For receptacle raceways and for each color and texture specified, 12 inches (300 mm) long.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
- D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. GRC: Comply with ANSI C80.1 and UL 6.
- C. ARC: Comply with ANSI C80.5 and UL 6A.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. EMT: Comply with ANSI C80.3 and UL 797. Factory applied color finish available in black, orange, green, purple, red, yellow, blue, and white. Refer to Specification Section 26 05 53 "Identification for Electrical Systems" for color coding of raceways.
- F. FMC: Comply with UL 1; zinc-coated steel.

- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- C. Continuous HDPE: Comply with UL 651B.
- D. RTRC: Comply with UL 1684A and NEMA TC 14.
- E. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- F. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- G. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Hinged type unless otherwise indicated.
- D. Finish: Manufacturer's standard enamel finish.

2.4 RECEPTACLE RACEWAYS

- A. Listing and Labeling: Receptacle raceways shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Aluminum with snap-on covers complying with UL. Clear anodized finish.
 - 1. Raceways for receptacles only: Wiremold AL3300 series.
 - 2. Raceways for applications where both receptacles and data devices are installed in the raceway and at all laboratory locations: Wiremold ALA4800 series two-channel and dual-cover. Satin anodized finish.
 - 3. Provide duplex receptacles at 12 inches on center in all receptacle raceways. Provide GFCI receptacles as noted on drawings.

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Floor Boxes and Poke-Through Devices: Refer to Specification Section 26 27 26 "Wiring Devices" for floor boxes and poke-through devices
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions:
 - 1. Wiring Devices other than data or communications devices: Minimum 4 inches square by 2-1/8 inches deep with switch ring as required for the device configuration and wall or ceiling surface. Where light switches are indicated at a common location provide multi-gang boxes to accommodate the quantity and type of switches indicated. Where deeper boxes are required provide masonry type boxes which do not require a separate switch ring.
 - 2. Data and communications devices: Minimum 4-11/16 inches square by 3 inches deep with single-gang 5/8 inch deep (or deeper if wall or ceiling finish is deeper) ring.
- K. Pull boxes behind monitors: Minimum 6 inches square by 3-1/2 inches deep with two-gang ring.
- L. Gangable boxes are prohibited.

- M. Partitions: Provide partitions to separate emergency system conductors from conductors or other systems, where voltage between adjacent switches exceeds 300 volts and where switches controlling Low Voltage Controllers for interface to Nurse Call systems are installed in common boxes with line voltage switches.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250.
 - 1. Indoor: Type 1 with continuous-hinge cover with flush latch unless otherwise indicated. Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Outdoor: Type 4X with continuous-hinge cover with flush latch unless otherwise indicated. 304 stainless steel with smooth brushed finish.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel. Provide interior panels when there are control devices or power blocks located inside the enclosure.
- O. Handholes and Boxes for Exterior Underground Wiring: Refer to Specification Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems".

2.6 PUTTY PADS

- A. Moldable intumescent wall opening-protective pads designed for application to the back of electrical outlet boxes prior to installation of the wall finish to provide up to 2-hour fire barrier ratings and minimum Sound Transmission Class (STC) of 52 when tested in an STC-53 rated wall assembly or 59 according to ASTM E90-97.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>3M Company.</u>
 - 2. <u>Hilti</u>

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC or IMC.
 - 2. Concealed Conduit, Aboveground: EMT.
 - 3. Underground Conduit for branch circuits: RNC, Type EPC-40-PVC, direct buried.
 - 4. Underground Conduit for feeders: Refer to Specification Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems".
 - 5. Raceways Embedded in slabs or composite steel and concrete decks are prohibited.
 - 6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 7. Boxes and Enclosures, Aboveground: NEMA 250, Type 4X, 304 stainless steel.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms below 8 feet.

- d. Gymnasiums.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
- 5. Feeder Raceways under Slabs: RNC, Type EPC-40-PVC encased in not less than 2 inches of 3000 psi concrete. Change from RNC, Type EPC-40-PVC to GRC or IMC before rising above floor.
- 6. Branch Circuit Raceways under Slabs: Refer to Specifications Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for allowable application of under slab raceways. RNC, Type EPC-40-PVC direct buried. Change from RNC, Type EPC-40-PVC to GRC or IMC before rising above floor.
- 7. Raceways Embedded in slabs or composite steel and concrete decks are prohibited.
- 8. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 9. Damp or Wet Locations: GRC or IMC.
- 10. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4X, 304 stainless steel in kitchens and damp or wet locations.
- 11.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- G. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Separation of Life Safety and Critical Branch Wiring: Comply with NFPA 70 Article 517.
- C. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- D. Complete raceway installation before starting conductor installation.
- E. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.
- F. Arrange stub-ups so curved portions of bends are not visible above finished slab except where concealed in chases.

- G. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- H. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- I. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- J. Raceways Embedded in Slabs are prohibited.
- K. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- L. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- M. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- N. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- O. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- P. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- Q. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- R. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- S. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- T. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch (50-mm)radius control at bend points.
 - Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a

blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

- V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - Where conduits pass from warm to cold locations, such as boundaries of refrigerated 1. spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - Where otherwise required by NFPA 70. 3.
- W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- Х. Expansion(Seismic)-Joint Fittings:
 - Install flexible metal conduit at all locations where conduits cross building or structure expansion joints. Allow for minimum 4 inches deflection in all directions or greater if expansion joint exceeds 4 inches. Provide droop in flexible conduit to accommodate movement. Do not loop the flexible conduit. When calculating total bend degrees in conduit runs with expansion fittings use minimum 60 degrees for each expansion-joint fitting
 - 2. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- Υ. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830) mm) of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors. 1.
 - Use LFMC in damp or wet locations.
- Z. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- CC. Locate boxes so that cover or plate will not span different building finishes.
- DD. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- FF. Set metal floor boxes level and flush with finished floor surface.
- Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface. GG.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING AND SOUND TRANSMISSION MITIGATION

- A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
- B. Install putty pads with acoustical and firestopping capabilities on all boxes that are installed in wall or partition cavities and in gypsum board ceilings.

3.5 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 26 05 44

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 07 84 13 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. LEED Submittals:
 - 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 - 2. Sealant shall have VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 4 inches above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boottype flashing units applied in coordination with roofing work.

- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION

SECTION 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels, including arc-flash warning labels.
 - 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Use the following color code for all electrical equipment that is specified to be labeled:
 - 1. Standby Power Circuits: Black letters on red field.
 - 2. Life Safety Branch Circuits: White letters on orange Field
 - 3. Critical Branch Circuits: White letters on red Field
 - 4. Equipment System Circuits: White letters on green field.
 - 5. Normal Power Circuits: White letters on black field.
 - 6. Uninterruptible Power Supply (UPS):
 - a. UPS-A: Blue letters on a grey field.
 - b. UPS-B: Red letters on a grey field.
 - 7. Fire Alarm: Red letters on white field.
 - 8. Communications: White letters on blue field.
- B. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR XX INCHES" where XX is replaced by the clearance requirements of NFPA 70.

C. Raceways:

2.

- 1. Labeling: Black on orange. Include system voltage and type.
 - Color Coding for Raceways:
 - a. Fire Alarm: Red

2.3 LABELS

- A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: printed, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Indoor Equipment Labels: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high. Color coded as indicated in Color and Legend Requirements.
- C. Outdoor Equipment: Engraved, laminated acrylic or melamine plastic label, punched or drilled for mechanical fasteners. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high. Color coded as indicated in Color and Legend Requirements.

2.4 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Cables: Slit, pretensioned, flexible, solid-colored acrylic sleeves,
 2 inches (50 mm) long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

2.5 TAPES AND STENCILS:

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.6 Signs

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. inches (129 sq. cm), minimum 1/16-inch- (1.6-mm-).
 - b. For signs larger than 20 sq. inches (129 sq. cm), 1/8 inch (3.2 mm) thick.
 - c. Engraved legend with white letters on a dark grey background.
 - d. Punched or drilled for mechanical fasteners.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.

- C. Verify identity of each item before installing identification products.
- D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- H. System Identification for Feeder Raceways: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- I. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

3.3 IDENTIFICATION SCHEDULE

- A. Switchboards and Panelboards: Include Identification per the One-Line Diagrams and the Source Location, including the circuit number.
- B. Disconnect Switches, Enclosed Circuits Breakers and Motor Controllers. Identify the equipment that is controlled and the Source, including the circuit number.
- C. Accessible Raceways, including above accessible ceilings, for all Feeder Circuits and for Branch Circuit rated more than 30A: Identify with self-adhesive vinyl label. Install labels at 30-foot (10-m) maximum intervals.
- D. Accessible Raceways and Cables, including above accessible ceilings, within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. Standby Power
 - 2. Life Safety Branch
 - 3. Critical Branch
 - 4. Equipment System
 - 5. Normal Power
 - 6. UPS
 - 7. Fire Alarm
 - 8. Communications
 - 9. Access Control
- E. Identify EMT conduits used for branch circuit wiring as follows:
 - 1. Standby Power Black
 - 2. Life Safety Branch Yellow
 - 3. Critical Branch Orange

- 4. Equipment Branch Green
- 5. Normal No Color
- 6. UPS White
- 7. Fire alarm Red
- 8. Communications Blue
- 9. Access Control Purple
- F. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Grounded Systems: Color-Coding for Phase-, Neutral- and Voltage-Level Identification: Use colors listed below for feeder and branch-circuit conductors.
 - a. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - 4) Feeder Neutral: White
 - 5) Branch Circuit Neutral: White with colored stripe matching the color of the phase circuit that is paired with the neutral.
 - b. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - 4) Feeder Neutral: Grey
 - 5) Branch Circuit Neutral: Grey with colored stripe matching the color of the phase circuit that is paired with the neutral.
 - 2. Isolated Power Systems: Color-Coding for Circuit Identification: Use colors listed below for Isolated Power conductors.
 - a. Isolated Conductor No.1: Orange with at least one distinctive colored stripe other than white, green, or grey along the entire length of the conductor.
 - b. Isolated Conductor No. 2: Brown with at least one distinctive colored stripe other than white, green, or grey along the entire length of the conductor.
 - 3. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - a. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
 - 4. Provide a sign at each panelboard identifying the color coding scheme.
- G. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.
- H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
- I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide selfadhesive vinyl labels with the conductor designation.
- J. Conductors To Be Extended in the Future: Attach write-on tags to conductors and list source.
- K. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

- 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
- 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- L. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 - 1. Limit use of underground-line warning tape to direct-buried cables.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.
- M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- O. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 - 1. Comply with NFPA 70E and ANSI Z535.4.
 - 2. Comply with Section 26 05 74 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
- P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- Q. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer or load shedding.
- R. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - b. Fasten mechanically fastened labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment To Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer.
 - b. Enclosures and electrical cabinets.
 - c. Lighting control relay cabinets.
 - d. Access doors and panels for concealed electrical items.

- e. Switchgear.
- f. Switchboards.
- g. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
- h. Emergency system boxes and enclosures.
- i. Motor-control centers.
- j. Enclosed switches.
- k. Enclosed circuit breakers.
- l. Enclosed controllers.
- m. Variable-speed controllers.
- n. Push-button stations.
- o. Power-transfer equipment.
- p. Contactors.
- q. Remote-controlled switches, dimmer modules, and control devices.
- r. Battery-inverter units.
- s. Battery racks.
- t. Power-generating units.
- u. Monitoring and control equipment.
- v. UPS equipment.
- w. Communications Equipment Racks.
- x. Fire Alarm System.
- y. Access Control System.
- z. Overhead Paging System.
- aa. Nurse Call System.

END OF SECTION

SECTION 26 09 23 LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Photoelectric switches.
 - 2. Standalone daylight-harvesting switching controls.
 - 3. Daylight-harvesting dimming controls.
 - 4. Room Controllers.
 - 5. Stand Alone Indoor occupancy sensors.
 - 6. Lighting contactors.
 - 7. Emergency shunt relays.
 - 8. Low-Voltage Controllers

B. Related Requirements:

1. Section 26 27 26 "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Submit complete scale drawing showing recommended location for each sensor, optimized fro project conditions and coverage patterns for submitted devices.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cooper Industries, Inc</u>.
 - 2. <u>Intermatic, Inc</u>.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. <u>NSi Industries LLC</u>.
 - 5. <u>TE Connectivity Ltd</u>.
- B. Description: Solid state, with SPST dry contacts rated for 1800 VA, to operate connected load, complying with UL 773.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range.
 - 3. Time Delay: Thirty-second minimum, to prevent false operation.
 - 4. Lightning Arrester: Air-gap type.
 - 5. Mounting: Twist lock complying with NEMA C136.10, with base.

2.2 DAYLIGHT-HARVESTING SWITCHING CONTROLS

- A. Provide products that are of the same manufacturer or compatible with the manufacturers listed in Section 26 09 43, Relay Based Lighting Controls.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton (Cooper Controls), Inc</u>.
 - 2. <u>Lutron, Inc</u>.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. Philips Controls
 - 5. Acuity Controls
 - 6. Nextlite
 - 7. ETC
 - 8. Douglas Controls
 - 9. WattStopper
- C. Ceiling-Mounted Switching Controls: Solid-state, light-level sensor unit, with separate power pack, to detect changes in indoor lighting levels that are perceived by the eye.
- D. Electrical Components, Devices, and Accessories:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 - 3. Sensor Output: Contacts rated to operate the associated power pack, complying with UL 773A. Sensor is powered by the power pack.
 - 4. Power Pack: Dry contacts rated for **20**-A ballast load at 120- and 277-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. General Space Sensors Light-Level Monitoring Range: 10 to 200 fc (108 to 2152 lux), with an adjustment for turn-on and turn-off levels within that range.

- 6. Atrium Space Sensors Light-Level Monitoring Range: 100 to 1000 fc (1080 to 10 800 lux), with an adjustment for turn-on and turn-off levels within that range.
- 7. Skylight Sensors Light-Level Monitoring Range: 1000 to 10,000 fc (10 800 to 108 000 lux), with an adjustment for turn-on and turn-off levels within that range.
- 8. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling.
- 9. Set-Point Adjustment: Equip with deadband adjustment of 25, 50, and 75 percent above the "on" set point, or provide with separate adjustable "on" and "off" set points.
- 10. Test Mode: User selectable, overriding programmed time delay to allow settings check.
- 11. Control Load Status: User selectable to confirm that load wiring is correct.
- 12. Indicator: Two digital displays to indicate the beginning of on-off cycles.

2.3 DAYLIGHT-HARVESTING DIMMING CONTROLS

- A. Provide products that are of the same manufacturer or compatible with the manufacturers listed in Section 26 09 43, Relay Based Lighting Controls.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton (Cooper Controls), Inc</u>.
 - 2. <u>Lutron, Inc</u>.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. Philips Controls
 - 5. Acuity Controls
 - 6. NextLite
 - 7. Douglas Controls
 - 8. ETC
 - 9. WattStopper
- C. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present (target level).
 - b. When significant daylight is present.
 - 2. System programming is done with two hand-held, remote-control tools.
 - a. Initial setup tool.
 - b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.
- D. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate controller unit, to detect changes in lighting levels that are perceived by the eye. The separate dimming control may be located in the appropriate relay cabint for these circuits.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Sensor Output: 0- to 10-V dc to operate electronic dimming ballasts. Sensor is powered by controller unit.
 - 3. Power Pack: Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
 - 4. Light-Level Sensor Set-Point Adjustment Range: 20 to 100 fc (120 to 600 lux).

2.4 ROOM CONTROLLERS

A. Room Controllers are used to independently control lighting and switched receptacles.

- B. Provide products that are compatible with Indoor Occupancy Sensors.
- C. Digitally addressable room controller with the following functions.
 - 1. Autonomous space control.
 - 2. Networking to a central Dialog control system.
 - 3. Networking to a central BACnet based management system.
- D. The Room Controller shall consist of:
 - 1. A universal voltage type (120Vac/277Vac/347Vac) power supply.
 - 2. Four 20A rated relays complete with manual override. Circuit Load rating dependent on usage. One circuit dedicated for 20A receptacle control.
 - 3. Four 0-10V control channels, capable of 100mA current sinking
 - 4. A port to connect downstream switches, occupancy sensors and daylight sensors.
 - 5. A port to connect upstream to BACnet IP building management system. The Controller shall communicate using native BACnet command objects appropriate for the application.
 - 6. An indicating LED to aid in locating the controller in a darkened ceiling space.
 - 7. Circuit testing buttons
 - 8. Capable of connecting with WUL-3924
 - 9. Output 24Vac 120mA
 - 10. Relay Ratings
 - a. 20A Suitable for General Purpose Loads @ 120/277 VAC
 - b. 20A Suitable for Standard Ballasts and Tungsten Loads @ 120/277 VAC
 - c. 16A Suitable for Electronic Ballasts @ 120/277 VAC
 - d. 0.5HP @120/277 VAC.
 - 11. The Room Controller relays shall be connected such that 120Vac plug load(s) and 277Vac lighting loads can be switched by a single Controller with no additional add-ons or remote modules
 - 12. The Room Controller shall mount to electrical junction box via threaded ¹/₂" chase nipple. No other mounting hardware shall be required.
 - 13. Switches shall connect to the lighting control network via a common low voltage, 2-wire, non-polarized data line.
 - a. Switches shall be factory configured and programmed to control one or more outputs in the lighting control system.
 - b. Switches can be programmed for preset control to set a specific lighting scene.
 - c. Switches, with LED indicators to indicate both ON and OFF output/group status, shall be available with 2 or 4 single button switches per gang. Switch to fit standard Decora opening.
 - d. Switches and switch hardware shall mount to standard wall boxes.
 - e. Each switch shall provide a location for a label to identify function. The label shall be under a clear plastic cover and shall be field replaceable should the operation of the switch change. Permanently etched switches are not acceptable.
 - 14. Dimmer switches shall be connected to the lighting control network via a common low voltage 2-wire, non-polarized data line.
 - a. Dimmer switches shall be capable of raising or lowering light levels of individual or groups of lighting fixtures.
 - 15. Space Control Requirements:
 - a. Provide manual-on / auto-off control for lighting in all spaces that are controlled by a Room Controller.
 - b. Provide auto-on / auto-off control for all switched receptacles that are controlled by a Room Controller.
 - c. Provide auto-on / auto-off control for HVAC serving all spaces that contain a Room Controller. Control to be provided by either two-wire signal based on relay contact position or direct communication with the building management system

using BACnet commands. Coordinate with building management system installer.

16. Shall have a built in dimmer memory, the light output will remain at the previous setting when the lights are turned off and back on.

2.5 INDOOR OCCUPANCY SENSORS

- A. Provide products that are of the same manufacturer or compatible with the manufacturers listed in Section 26 09 43, Relay Based Lighting Controls.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. In locations where the sensor or the local switch is/are marked "VS" the sensor shall turn the lights off automatically upon room vacancy. The lights shall turn on only upon activation from the associated wall station.
 - 4. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 - 5. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 6. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 7. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 8. Bypass Switch: Override the "on" function in case of sensor failure.
 - 9. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using both PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 - 4. Remote powerpacks using one or more sensors shall be used to cover space as indicated on drawings.
 - 5. Device shall be vacancy sensing (in conjunction with local wall station) if marked "VS". Otherwise device shall be occupancy sensing.

2.6 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Provide products that are of the same manufacturer or compatible with the manufacturers listed in Section 260943, Relay Based Lighting Controls.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application,
 - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 - 3. Switch Rating: Not less than 800-VA LED at 120 V, 1200-VA LED loads at 277 V,
- C. Wall-Switch Sensor:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft. (84 sq. m).
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Switch Type: SP. SP, manual "on," automatic "off."
 - 4. Voltage: Dual voltage, 120 and 277 V;
 - 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
 - 8. Device shall be Vacancy sensing if marked VS or occupancy sensing if not otherwise marked.

2.7 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Allen-Bradley/Rockwell Automation</u>.
 - 2. <u>ASCO Power Technologies, LP; a division of Emerson Electric Co</u>.
 - 3. <u>Eaton Corporation</u>.
 - 4. GE Industrial Systems; Total Lighting Control.
 - 5. <u>Square D; a brand of Schneider Electric</u>.
- B. Description: Electrically operated, electrically held, combination-type lighting contactors with fusible switch complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.
- C. Interface with DDC System for HVAC: Provide hardware interface to enable the DDC system for HVAC to monitor and control lighting control systems and contactors.
 - 1. Monitoring: On-off status
 - 2. Control: On-off operation

2.8 EMERGENCY SHUNT RELAY

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton (Cooper Controls), Inc</u>.
 - 2. <u>Lutron, Inc</u>.
 - 3. <u>Leviton Manufacturing Co., Inc</u>.
 - 4. Philips Controls
 - 5. Acuity Controls
 - 6. NextLite
 - 7. Douglas Controls
 - 8. Wattstopper
- B. Description: Normally closed, electrically held relay, arranged for wiring in parallel with automatic switching contacts; complying with UL 924.
 - 1. Coil Rating: as scheduled.

2.9 LOW-VOLTAGE CONTROLLERS

- A. Low-Voltage Controllers are used to turn on and dim line voltage lighting safely when used with Nurse Call Pillow Speakers, Bed Side-Rail Controls and Momentary Dry Contact Switches.
- B. Manufacturers: Subject to compliance with requirements, provide the following:
 - 1. Curbell Medical Products (Basis of Design is # LVC-2000-001)
- C. Description: 3 Channel lighting controller to continuously dim 2 channels using 0-10 vdc signals to the dimming LED drivers for the ambient light and reading light channels in the luminaire and to switch one channel via the LED driver(s) for the exam light portion of the luminaire. Controller shall have control inputs from nurse call pillow speaker contacts and also be switched from wall switches as shown.
- D. Installation: Lighting Controller shall be installed above the accessible ceiling outside the patient room for ease of access. All leads shall be extended from the switches, luminaire and nurse call system in an approved manner. Installer shall provide a NEMA 12 enclosure suitable for the purpose and mount the controller in this box. Observe required high and low voltage separation and physical barriers. Label the cover with the words "LIGHTING CONTROLLER FOR ROOM ####".

2.10 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 22 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified commissioning agent to evaluate lighting control devices and perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Lighting control devices will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within **12** months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to **two** visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.7 DEMONSTRATION

- A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.13 "Addressable-Fixture Lighting Controls" and Section 26 09 43 "Relay-Based Lighting Controls."
- B. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. GFEP: Ground-fault equipment protection.
- C. MCCB: Molded-case circuit breaker.
- D. SPD: Surge protective device.
- E. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 6. Include evidence of NRTL listing for SPD as installed in panelboard.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than two weeks in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
 - 3. Comply with NFPA 70E.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
- B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 - 1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26 05 48 "Seismic Controls for Electrical Systems."
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.

1

- F. Enclosures: Flush and Surface-mounted, dead-front cabinets as indicated on drawings.
 - Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations including in water feature vaults: NEMA 250, Type 4X, stainless steel.
 - c. Kitchen Areas: NEMA 1, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4X.
 - 2. Height: 84 inches (2.13 m) maximum.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, unless stainless steel is specified elsewhere, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

- b. Back Boxes: Galvanized steel.
- G. Incoming Mains:

1.

- 1. Location: Convertible between top and bottom.
- H. Phase, Neutral, and Ground Buses:
 - Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box. Only required where indicated on drawings.
 - 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- I. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- J. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- K. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices at all locations that are indicated in schedules as space or provision. Note that schedules may include provisions or spaces that are not shown on the one-line diagrams.
- L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings not lower than the calculated symmetrical fault current magnitude as calculated in the Short Circuit Study required by Specification Section 26 05 72, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings not lower than the calculated symmetrical fault current magnitude as calculated in the Short Circuit Study required by Specification Section 26 05 72, but not less than 14,000 A rms symmetrical.
- M. SPD.

- 1. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- 2. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - a. Line to Neutral: 1200 V for 480Y/277 V / 700 V for 208Y/120 V.
 - b. Line to Ground: 1200 V for 480Y/277 V / 700 V for 208Y/120 V.
 - c. Neutral to Ground: 1200 V for 480Y/277 V /700 V for 208Y/120 V.
 - d. Line to Line: 2000 V for 480Y/277 V /1200 V for 208Y/120 V.
- 3. SCCR: Equal to the SCCR of the panelboard in which installed or exceed 100 kA.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and will continue to function after the seismic event."
- B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 **POWER PANELBOARDS**

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: 1. Eaton.
 - 2. <u>General Electric Company; GE Energy Management Electrical Distribution</u>.
 - 3. <u>Siemens Energy</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Mains: Circuit breaker or Lugs only as indicated on drawings.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company; GE Energy Management Electrical Distribution</u>.
 - 3. Siemens Energy.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only as indicated on drawings.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: 1.
 - Eaton.
 - 2. General Electric Company; GE Energy Management - Electrical Distribution.
 - 3. Siemens Energy.
 - 4. Square D; by Schneider Electric.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - Inverse time-current element for low-level overloads. a.
 - Instantaneous magnetic trip element for short circuits. b.
 - Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. c.
 - Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, 2. field-adjustable trip setting.
 - Electronic Trip Circuit Breakers: 3.
 - RMS sensing. a.
 - Field-replaceable rating plug or electronic trip. b.
 - Digital display of settings, trip targets, and indicated metering displays. c.
 - Multi-button keypad to access programmable functions and monitored data. d.
 - Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and e. magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - Field-Adjustable Settings: g.
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 - GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip). 6.
 - MCCB Features and Accessories: 7.
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - UL listed for reverse connection without restrictive line or load ratings. c.
 - Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials. d.
 - Application Listing: Appropriate for application; Type SWD for switching fluorescent e. lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

- g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
- h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with fieldadjustable 0.1- to 0.6-second time delay.
- i. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
- j. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 INSTRUMENTATION

- A. Instrument Transformers: NEMA EI 21.1, and the following:
 - 1. Potential Transformers: NEMA EI 21.1; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.
 - 2. Current Transformers: NEMA EI 21.1; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.
- B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - a. Phase Currents, Each Phase and Neutral: Plus or minus 0.5 percent.
 - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 - d. Megawatts: Plus or minus 1 percent.
 - e. Megavars: Plus or minus 1 percent.
 - f. Power Factor: Plus or minus 1 percent.
 - g. Frequency: Plus or minus 0.1 percent.
 - h. Phase-to-Neutral % Total Harmonic Distortion (THD)
 - i. Phase Current % Total Harmonic Distortion (THD)
 - j. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
 - k. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.
 - 2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door or remote mounted adjacent to panelboard. Where multiple panelboard meters are located within the same electrical room the meters may be mounted in a single enclosure with identification that clearly indicates the panelboard associated with the meter. Provide a separate meter for each panelboard that is indicated to have a meter installed.
 - 3. Communication Format: BACnet / IP Ethernet.

2.7 **IDENTIFICATION**

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

- C. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.8 ISOLATED POWER SYSTEM PANELBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Square D; by Schneider Electric</u>.
 - 2. Isotrol/Bender
 - 3. PG LifeLink
- B. This section covers Isolated Power Panels Dual Systems that incorporate two (2) isolation transformers, two (2) primary circuit breaker, two (2) or more isolated ungrounded secondary circuits connected by conduit to remotely located receptacles, two (2) reference ground buses, and two (2) Line Isolation Monitors (LIM). There must be provisions for connection to remote indicators.
- C. The equipment must be listed under UL1047 Isolated Power Systems Equipment. The Components of these products covered under this standard are judged to include, but are not necessarily limited to the following:
 - 1. Article 517 of the National Electric Code, NFPA 70
 - 2. Standard for Health Care Facilities, NFPA 99
 - 3. Standard for Line Isolation Monitors, UL 1022
 - 4. Standard for Specialty Transformers, UL 506
 - 5. Standard for Cabinets and Boxes, UL 50
- D. Product: this section imposes additional constraints on the product addressing such topics as construction details, size, operator interface, and component performance. This information is intended to supplement the requirements imposed by UL 1047 which is the guiding and governing document in all matters concerning this specification.
- E. Enclosure for single phase isolated power panels dual systems up to 10kva:
 - 1. Backbox: flush mounted units shall be fabricated from 14GA galvanized sheet steel. There shall be a space for a backplate and a transformer shelf to mount an upright isolation transformer. The dimensions of the backbox shall be 71"H x 34"W x 8"D.
 - Backplate: fabricated from 12GA galvanized sheet steel. The backplate shall provide a mounting surface for all isolated power panel components except for the isolation transformer. The backplate shall be mounted to the backbox by means of four (4) 1/4" 20 studs.
 - 3. Heat Shield (Vertical & Horizontal): The vertical heat shield shall be .090" aluminum and the horizontal heat shield shall be 14GA galvanized sheet steel.
- F. Front Trim: Shall be fabricated from 14GA Type 304 Stainless Steel, with #4 brushed finish and shall contain a flush door covering each circuit breaker section. Each door shall contain a flush, keylocking slam-latch capable of being latched whether the latchs are locked or not. A door stop shall shall be firmly attached to the interior of the front trim. All panels shall be keyed alike. Front trim shall contain one (1) cut out for each LIM, which shall remain visible at all times. The front trim for flush mounted units extends 1" on all sides of the backbox. The front trim shall be attached to the backbox by means of twenty (20) #10-32 x 1" Stainless Steel Oval Head Phillips machine screws and twenty (20) #10 Stainless Steel finishing washers.
- G. Isolation Transformers:

- 1. Two (2) single phase, 50 or 60Hz with 480 volt, single phase, primary and 120 volt secondary.
- 2. Class H rated insulation.
- 3. Electrostatic shield between primary and secondary windings grounded to enclosure.
- 4. Electrostatic shield designed so that it will prevent direct shorting of primary winding to secondary winding, and will reduce the coupling of harmonic distortions between the primary and secondary circuits.
- 5. Core is of stacked design, securely clamped.
- 6. Core and coil vacuum impregnated with final wrap of insulating material.
- 7. Core and coils isolated from enclosure by means of a vibration dampening system.
- 8. Total leakage current to ground from transformer secondary winding in compliance withUL1047, Tables 30.1 and 30.2.
- 9. Maximum sound level of transformer: 35dB for 10 kVA units.
- 10. Temperature rise limited to 115 degree C above ambient under full load conditions.
- 11. Transformers UL listed or recognized as a component for the voltages, amperages, and kVA ratings required.
- H. Line Isolation Monitors (LIM):
 - 1. Solid state modular assembly of printed circuit boards utilizing SMD technology.
 - 2. Continuous monitoring of the impedance of each phase to ground.
 - 3. Must be capable of detecting all combinations of capacitive, resistive, balanced, unbalanced and hybrid faults.
 - 4. Total Hazard Current (THC) set at the factory to either 2mA or 5mA and shall be field adjustable to either milliampere.
 - 5. Combined analog and digital display of THC.
 - 6. Audible alarm which sounds in the event of a hazardous condition.
 - 7. Indicating LEDs to visually indicate the status of the system. Green to indicate "SAFE", red to indicate "HAZARD" and amber to indicate that the audible alarm is in the "MUTE" mode. All LEDs and buttons shall be flush with the face of the LIM.
 - 8. A "TEST" button on the LIM faces shall be activated to test all LIM functions. It shall not be possible to leave the button in the "TEST" position.
 - 9. The LIMs shall perform an automatic self-calibration and self-check every twelve hours. An error code display shall alert the staff of an anomaly in the LIM / System operation.
 - 10. Shall contain overload protection with an automatic reset feature.
 - 11. It shall be possible to order the LIMs with an optional RS485 communication port and load monitoring.
 - 12. Field terminals shall be available for wiring remote LIM indicators with or without a display of THC.
 - 13. Shall be UL Recognized as a component.
 - 14. Shall have an easy to clean rugged Lexon front foil.
- I. Primary Circuit Breaker: Shall be one in each section, two-pole sized in accordance with NFPA 70 (N.E.C.) and UL 1047 Standard and selected based on the transformer 480 volt primary voltage on the one-line diagrams. Full size, thermal magnetic type, with minimum 14,000 AIC rating. Primary breaker shall be from same manufacturer that is used for all other panelboards and switchboards.
- J. Secondary Branch Circuit Breakers: Two-pole, bolt-on type, ampacities, and quantities based on the contract documents for each section. Sized in accordance with NFPA 70-2011 (N.E.C.) and UL 1047 Standard. Full size, thermal magnetic type with minimum 10,000 AIC. Secondary breakers shall be from same manufacturer that is used for all other panelboards and switchboards. Minimum 16 each for per isolation transformer.
- K. Bus Bars: Copper.

- L. Reference Ground Bus: Shall be copper and shall contain one (1) reference grounding buses for each section, each with a minimum of one (1) #4-2/0 main lugs and nineteen (19) #14-4 grounding lugs.
- M. Remote Indicators for line isolation monitors: For each section of each Isolated Power Panel provide a single or multiple gang remote indicator which duplicates the audible and visual alarm indications of the LIM installed in the Isolated Power Panel Dual System. The remote indicator shall contain a green "SAFE" LED a red "HAZARD" LED and a "MUTE" button with integral amber LED. The remote indicator shall function as follows:
 - 1. The green LED stays illuminated when the leakage current is within predetermined limits.
 - 2. The green LED extinguishes and the red LED illuminates when the predetermined limit is exceeded; an audible alarm also sounds.
 - 3. When depressed, the "MUTE" button shall mute the audible alarm signal. Actuation of this button shall cause the integral amber LED to illuminate, indicating that the audible alarm has been silenced.
 - 4. When the leakage current has returned to the acceptable limit level, the alarm indicators shall automatically reset.
 - 5. Provide THC digital display.

2.9 ACCESSORY COMPONENTS AND FEATURES

- A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:
 - Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete" or Section 03 30 53 "Miscellaneous Cast-in-Place Concrete."
 - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 - 3. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Comply with mounting and anchoring requirements specified in Section 26 05 48 "Seismic Controls for Electrical Systems."
- G. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- H. Mount panelboard cabinet plumb and rigid without distortion of box.
- I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- J. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.
- K. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.
- L. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- M. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- N. Install filler plates in unused spaces.
- O. For flush mounted panels only stub four 1-inch (27-EMT) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-EMT) empty conduits into raised floor space or below slab not on grade.

P. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

Q. <u>Isolated Power System Installation:</u>

1. <u>Type XHHW wire with crosslinked polyethylene insulation and a dielectric constant of</u> 3.5 or less shall be used for all branch circuit wiring.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Comply with commissioning requirements in specification section 019113 -General Commissioning Requirements, and specification section 260800 (BA2)
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage surge arrestors stated in NETA ATS, Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Do not perform optional tests. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:

- a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
- c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- F. Panelboards will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 TESTING AND CERTIFICATIONS FOR ISOLATED POWER SYSTEMS

- A. An engineer or senior technician shall be provided by the manufacturer for final testing and acceptance of the Isolated Power System. The following tasks shall be performed:
 - 1. Simulate faults using the manufacturer's test kit, or equivalent.
 - 2. Repeat this test at each receptacle to ascertain that the LIM and associated branch circuit are functioning properly.
 - 3. Check the calibration of the LIM meter using the manufacturer's test kit, or equivalent, and record the readings. Record the date and data in a permanent log book.
 - 4. Certify that the system is properly installed and in correct working order.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

END OF SECTION

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Twist-locking receptacles.
 - 3. USB charger devices.
 - 4. Isolated-ground receptacles.
 - 5. Hospital-grade receptacles.
 - 6. Tamper-resistant receptacles.
 - 7. Weather-resistant receptacles.
 - 8. Snap switches and wall-box dimmers.
 - 9. Floor service outlets (floor boxes) and poke-through assemblies.
 - 10. Pendant Cord Connector Devices (Drop Cords).
 - 11. Cord Reels

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton (Arrow Hart)</u>.
 - 2. Hubbell Incorporated; Wiring Device-Kellems.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. All devices must be manufactured for use with modular plug-in connectors, shall comply with UL 2459 and shall be made with stranded building wire. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

- A. Hospital-Grade, Tamper Resistant, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated, brass mounting strap. Mechanical shutter system to help prevent insertion of foreign objects. Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.
- B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from

mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

- C. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 - 1. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that illuminates only when the GFCI has malfunctioned or tripped and no longer provides proper GFCI protection.
- B. Tamper-Resistant GFCI Convenience Receptacles, 125 V, 20 A:
- C. Hospital-Grade, Tamper Resistant, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.

2.5 TWIST-LOCKING RECEPTACLES

A. Provide NEMA configurations as indicated on drawings.

2.6 PENDANT CORD-CONNECTOR DEVICES

- A. Description:
 - 1. Matching, locking-type plug and receptacle body connector.
 - 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.
 - 3. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
 - 4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.7 CORD REELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 1. Kitchen Leash by APC Group
- B. Description:
 - 1. Molded Polypropylene Housing.
 - 2. Retracting cord with adjustable stop.
 - 3. SJOW Power cord, 10 foot; rated 200 degrees.
 - 4. Receptacles Dual Duplex NEMA 5-20R unless noted otherwise.
 - 5. Impact: UL746C

- 6. Hose Down: CSA 6.8.2
- 7. Strain Relief: CSA 6.4
- 8. Flame Retardant: UL 94-94V-2
- 9. Mounting Bracket for ceiling mount.

2.8 CORD AND PLUG SETS

- A. Description:
 - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with greeninsulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
 - 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.9 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
 - 1. Single Pole and Three Way:
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) <u>Eaton (Arrow Hart)</u>.
 - 2) <u>Hubbell Incorporated; Wiring Device-Kellems</u>.
 - 3) <u>Leviton Manufacturing Co., Inc</u>.
 - 4) <u>Pass & Seymour/Legrand (Pass & Seymour)</u>.
- C. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Description: Single pole, with factory-supplied key in lieu of switch handle.
 - a. Public Restrooms and Other Spaces: Keyed switch, heavy duty specification grade (Pass & Seymour PS20AC1-WL or equivalent).
 - b. Behavioral Health Patient Accessible Spaces: Keyed locking switch, extra heavy duty specification grade security switch (Pass & Seymour PS20AC1-KL or equivalent). Coordinate common or differentiated keying of multiple switches with owner.
- D. Momentary Contact Switches: 2-Button, Single Pole, Low-voltage switch, mounts in standard single gang ring.
- E. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.10 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

- B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module for off.
 - 1. These shall be used to control power modules driving large quantity of LED drivers using 0-10VDC control signals. This interface shall operate either 120 or 277 volt circuits, 200 ma rating.
- D. LED Dimmer Switches: Modular; compatible with LED drivers; trim potentiometer to adjust lowend dimming used where "LR" is shown, otherwise full range of 1% to 100% light or as noted. This dimmer shall operate either 120 or 277 volt circuits, 28 ma minimum rating.

2.11 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces, except Operating Rooms and Food Service Kitchen: Smooth, high-impact thermoplastic.
 - 3. Material for Operating Rooms and Food Service Kitchen: 0.035-inch- (1-mm-) thick, satinfinished, Type 302 stainless steel.
 - 4. Material for Unfinished Spaces: Galvanized steel.
 - 5. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant, die-cast aluminum with lockable, weatherproof-in-use cover.

2.12 FLOOR SERVICE FITTINGS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>Wiremold / Legrand</u>.
- B. Type: Modular, flush-type, dual- or multi- service units suitable for wiring method used.
- C. Compartments: Barrier separates power from voice and data communication cabling.
- D. Service Plate: Round, die-cast aluminum with satin finish.
- E. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
- F. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 jacks for UTP cable complying with requirements in owner's Section 27 00 00 requirements.
- G. Description by Device Type:

FB1	Flush, Dual Service, Furniture Feed. One .75" conduit for power and One 2"	Legrand EFBFF
	conduit for data cabling. See plans for circuits and data drops. Finish selected	Hubbell CFB2G30/2GCFFCVR
	by architect.	

FB4	Flush, Dual Service, one piece finish flange. Four gang capacity. One .75"	Legrand EFG45S
	conduit for power and one 2" conduit for data cabling. See plans for circuits	Hubbell CFB2G30/24GCCVR
	and data drops. Finish selected by architect.	
FB6	Flush, Dual Service, one piece finish flange. Six gang capacity. One .75"	Legrand EFB6S Evolution
	conduit for power and one 2" conduit for data cabling. See plans for circuits	Hubbell CFB6G30/610GCCVR
	and data drops. Finish selected by architect.	
FB8	Flush, Dual Service, one piece finish flange. Eight gang capacity. One .75"	Legrand EFB8S Evolution
	conduit for power and one 2" conduit for data cabling. See plans for circuits	
	and data drops. Finish selected by architect.	
FB10	Flush, Dual Service, one piece finish flange. Ten gang capacity. One .75"	Legrand EFB10S Evolution
	conduit for power and one 2" conduit for data cabling. See plans for circuits	Hubbell CFB10G30/610GCCVR
	and data drops. Finish selected by architect.	
FB11	Flush single service floor box suitable for the wiring method used. NEMA	Legrand 880MS(CS)/817/828
	5-20R duplex receptacle with brushed aluminum flange and cover plate.	Hubbell B2431/S3825
	Hinged receptacle covers. Housing material shall be stamped steel above	
	grade and cast iron at grade. Provide appropriate carpet and tile flanges.	

2.13 POKE-THROUGH ASSEMBLIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - 1. <u>Wiremold / Legrand</u>.
- B. Description:
 - 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 - 2. Comply with UL 514 scrub water exclusion requirements.
 - 3. Size: Selected to fit cored holes in floor and matched to floor thickness.
 - 4. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 - 5. Closure Plug: Arranged to close unused cored openings and reestablish fire rating of floor.
- C. Description by Device Type:

PT1	Flush, Dual Service, 4" Diameter Furniture Feed Poke-Thru. One piece	Legrand 4FFATC
	finish flange. One .75" conduit for power, One 1.5" conduit for data	Hubbell PT73FFS/FRF3
	cabling. See plans for circuits and data drops. Finish selected by architect.	
PT2	Flush, Dual Service Capable, 4"Diameter Poke-Thru. One .75" conduit for	Legrand 4AT Evolution
	power, one 1.5" conduit for data cabling. Two Gang Capacity. See plans	Hubbell S1R4PT
	for circuits and data drops. Receptacles shall be NEMA 5-20R, Finish	
	selected by architect.	
PT3	Flush, Dual Service Capable, 6"Diameter Poke-Thru. One .75" conduit for	Legrand 6AT Evolution
	power, one 1.5" conduit for data cabling. Three Gang Capacity. See plans	Hubbell S1R6PT
	for circuits and data drops. Receptacles shall be NEMA 5-20R, Finish	
	selected by architect.	
PT8	Flush, Dual Service Capable, 8"Diameter Poke-Thru. One .75" conduit for	Legrand 8AT Evolution
	power, one 2" conduit for data cabling. Five Gang Capacity. See plans for	Hubbell S1R8PT
	circuits and data drops. Receptacles shall be NEMA 5-20R, Finish	
	selected by architect.	
PT10	Flush, Dual Service Capable, 10"Diameter Poke-Thru. One .75" conduit	Legrand 10AT Evolution
	for power, one 2" conduit for data cabling. Eight Gang Capacity. See	Hubbell S1R10PT
	plans for circuits and data drops. Receptacles shall be NEMA 5-20R,	
	Finish selected by architect.	
PT11	Flush single service floor box suitable for the wiring method used.	Legrand RC7CTC
	NEMA 5-20R duplex receptacle with brushed aluminum flange and cover	Hubbell PT7FS/FRF

plate. Hinged receptacle covers.	

2.14 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Gray in Food Service Kitchen. As selected by Architect in other finished spaces unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Essential Power System: Red.
 - 3. Isolated-Ground Receptacles: Orange.
- B. Wall Plate Color:
 - 1. Plastic covers: Match device color.
 - 2. Cover plates for receptacles mounted above data racks in TEC and TDR rooms: Provide blue cover plates for receptacles served by UPS-A and red cover plates for receptacles served by UPS-B.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold devicemounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
 - 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
 - 3. Install 0-10VDC control wiring in conduit with power wiring. Use conductors with insulation equivalent to insulation of power wiring.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor boxes and pokethroughs to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Test straight-blade convenience outlets in patient-care areas for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g). Submit test report indicting each receptacle and test result.
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION

SECTION 26 28 13 FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in enclosed switches, panelboards and enclosed controllers.,
 - 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Comply with UL 248-11 for plug fuses.

1.7 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.8 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Cooper Bussmann, Inc</u>.
 - 2. Edison Fuse, Inc.
 - 3. Ferraz Shawmut, Inc.
 - 4. <u>Littelfuse, Inc</u>.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.3 PLUG FUSES

A. Characteristics: UL 248-11, nonrenewable plug fuses; 125-V ac.

2.4 PLUG-FUSE ADAPTERS

A. Characteristics: Adapters for using Type S, rejection-base plug fuses in Edison-base fuseholders or sockets; ampere ratings matching fuse ratings; irremovable once installed.

2.5 SPARE-FUSE CABINET

- A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and keycoded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch- (38-mm-) high letters on exterior of door.
 - 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

- E. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 FUSE APPLICATIONS
 - A. Cartridge Fuses:1. Feeders: Class J, time delay.
- 3.3 INSTALLATION
 - A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
 - B. Install spare-fuse cabinet(s).

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION

SECTION 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Receptacle switches.
 - 4. Shunt trip switches.
 - 5. Molded-case circuit breakers (MCCBs).
 - 6. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of NRTL listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NFPA 70.

1.9 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than 2 weeks days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

1.10 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 240, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.

- 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 6. Service-Rated Switches: Labeled for use as service equipment.
- 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.2 NONFUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Type HD, Heavy Duty, Single Throw, 240, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 5. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 MOLDED-CASE CIRCUIT BREAKERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company</u>.
 - 3. <u>Siemens Industry, Inc</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, fieldadjustable trip setting.

- E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following fieldadjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I²t response.
- F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- J. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Locations (other than Wash Down Areas): NEMA 250, Type 4X, stainless steel.
 - 4. Kitchen Wash Down Areas: NEMA 250, Type 4X, stainless steel.
 - 5. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 6. Imaging Rooms: Flush Mount.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

C. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

END OF SECTION

SECTION 26 29 13 ENCLOSED COTNROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
 1. Full-voltage magnetic.
- B. Related Section:
 - 1. Section 26 29 23 "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustablefrequency, pulse-width-modulated controllers for use on variable torque loads in ranges up to 200 hp.

1.3 **DEFINITIONS**

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. N.C.: Normally closed.
- E. N.O.: Normally open.
- F. OCPD: Overcurrent protective device.
- G. SCR: Silicon-controlled rectifier.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Show tabulations of the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Nameplate legends.
 - d. Short-circuit current rating of integrated unit.
 - e. Listed and labeled for integrated short-circuit current (withstand) rating of OCPDs in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 - f. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- D. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- E. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and installed components.
 - 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - 3. Manufacturer's written instructions for setting field-adjustable overload relays.
 - 4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

1.8 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 4. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.9 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- D. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

1.10 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.11 **PROJECT CONDITIONS**

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Owner no fewer than two weeks in advance of proposed interruption of electrical systems.
 - 2. Indicate method of providing temporary utilities.
 - 3. Do not proceed with interruption of electrical systems without Owner's written permission.
 - 4. Comply with NFPA 70E.

1.12 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Magnetic Controllers: Full voltage, across the line, electrically held.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Eaton</u>.
 - b. <u>General Electric Company</u>.
 - c. <u>Siemens Industry, Inc</u>.
 - d. <u>Square D; by Schneider Electric</u>.
 - 2. Configuration: Nonreversing.
 - 3. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120 -V ac; obtained from integral CPT, with primary and secondary fuses, with CPT control power source of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 50 VA.
 - 6. Solid-State Overload Relay:
 - a. Switch or dial selectable for motor running overload protection.
 - b. Sensors in each phase.
 - c. Class 20 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - 7. External overload reset push button.

2.2 ACCESSORIES

1.

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - Selector Switches: Heavy-duty, oiltight type.
 - a. Pilot Lights: LED types; colors as indicated.
 - b. Selector Switches: Rotary type.

- B. Reversible N.C./N.O. auxiliary contact(s).
- C. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Install fuses in each fusible-switch enclosed controller.

3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers and remote devices and facility's central control system.
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control selection devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 - 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- D. Tests and Inspections:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multi-pole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multipole enclosed controller 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.
- D. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

END OF SECTION

SECTION 26 51 19 LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Interior solid-state luminaires that use LED technology.
- 2. Lighting fixture supports.
- 3. Standby Emergency Power supplies for individual luminaires

B. Related Requirements:

- 1. Section 26 09 23 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
- 2. Section 26 09 36 "Standalone Multipreset Modular Dimming Controls" for architectural dimming systems and for fluorescent dimming controls with dimming ballasts specified in interior lighting Sections.
- 3. Section 26 09 43 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.

- 3. Include physical description and dimensions of luminaires.
- 4. Include emergency lighting units, including batteries and chargers.
- 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
- 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project. Report data compliant with IES LM-79 and IES LM-80. Only Absolute Photometry is acceptable.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products (NVLAP).
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.2: For paints and coatings, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit IEQ 4.2: For paints and coatings, documentation indicating that products comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- D. Samples: For each luminaire and for each color and texture with standard factory-applied finish.
- E. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 1. Include Samples of luminaires and accessories involving color and finish selection.
- F. Samples for Verification: For each type of luminaire.
 - 1. Include Samples of luminaires and accessories to verify finish selection.
- G. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Lighting luminaires.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches (300 mm) of the plane of the luminaires.
 - 4. Structural members to which equipment and or luminaires will be attached.
 - 5. Initial access modules for acoustical tile, including size and locations.
 - 6. Items penetrating finished ceiling, including the following:
 - a. Other luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.

- e. Access panels.
- f. Ceiling-mounted projectors.
- g.
- 7. Moldings.
- B. Qualification Data: For testing laboratory providing photometric data for luminaires.
- C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Product Certificates: For each type of luminaire.
- F. Product Test Reports: For each luminaire, for tests performed by manufacturer or a qualified testing agency holding NVLAP accreditation.
- G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types LED Modules and LED Drivers used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents citing lighting fixture types.
 - 1. Lamps: 2 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- E. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. Recessed Fixtures: Comply with NEMA LE 4.
- E. Bulb shape complying with ANSI C79.1.
- F. Lamp base complying with ANSI C81.61 or IEC 60061-1, where employing universal base or mount.
- G. CRI of minimum 80. CCT of 3500 K.
- H. L70 rated lamp life of 50,000 hours.
- I. Lamps dimmable as indicated or 0.5 to 100 percent of maximum light output, via 0-10 VDC control signal or, where indicated, Digital Dimming Control Signal.
- J. Field Replaceable driver.
- K. Nominal Operating Voltage: Universal voltage 120 V ac or 277 V ac unless scheduled differently.
 1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- L. Housings:
 - 1. Hydroformed, cast or extruded-aluminum housing and heat sink suitable for the environment.
 - 2. Anodized or powder-coat finish.

2.3 LED LAMPS AND DRIVERS:

- A. Minimum CRI Ra- 82 or as specified.
- B. Lumen output shall be Luminaire Lumens or Delivered Lumens. Source lumens shall not be used.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- D. LED Rated life L70 of 50,000 hours per (IES LM-80). Luminaire shall maintain LED operating temperature to achieve this rating per TM-21.
- E. Flicker: No visible or detectable flicker, operating on all dimmed intensities.
- F. Dimming drivers shall be compatible with the control method shown on the drawings. All dimmed drivers shall use 0-10vdc control unless specified differently. Minimum level as scheduled.
- G. Inrush current shall be reported and the lighting controls adjusted for inrush of LED product supplied.
- H. THD: THD shall not exceed 80%.
- I. Minimum driver efficiency shall be 83%.

- J. LED module shall be replaceable in the field using modules with digitally traceable matching modules.
- K. Luminaire shall be NRTL Listed at intended operating temperature.
- L. Photometry shall be measured or absolute photometry. Derived or calculated photometry shall not be provided for consideration.
- M. Approved Manufacturers- Drivers
 - 1. General Electric.
 - 2. Philips.
 - 3. Osram / Sylvania.
 - 4. Lutron
 - 5. EldoLED
 - 6. Thomas Research
- N. Approved Manufacturers- LEDs
 - 1. General Electric
 - 2. Philips
 - 3. Osram
 - 4. Cree
 - 5. Xicato
 - 6. Nichia
- O. Approved Manufacturers for Luminaires shall be as scheduled.

2.4 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
- D. Housings:
 - 1. Hydroformed, cast or extruded-aluminum housing and heat sink suitable for the environment.
 - 2. Anodized or powder-coat finish.
- E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and line wattage. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:

- a. "USE ONLY" and include specific lamp type.
- b. Lamp diameter, shape, size, wattage, and coating.
- c. CCT and CRI for all luminaires.

2.5 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE FIXTURE SUPPORT COMPONENTS

- A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gauge (2.68 mm).
- D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

2.7 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.
- C. Comply with NFPA 70 and NFPA 101.
- D. Comply with NEMA LE 4 for recessed luminaires.
- E. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with LED light source and driver, including dimming driver.
 - 1. Emergency Connection: Operate luminaire continuously at an output of 5 watts upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 - 2. Operation: Relay automatically turns driver/led module on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

- a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F with an average value exceeding 95 deg over a 24-hour period.
- b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F
- c. Humidity: More than 95 percent (condensing).
- d. Altitude: Exceeding 3300 feet
- 4. Battery: Sealed, maintenance-free, lead-acid type.
- 5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
- 6. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and repair.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- D. Flush-Mounted Luminaire Support:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.

- E. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members or approved backer plate in walls
 - 2. Do not attach luminaires directly to gypsum board.
- F. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with four 5/32-inch- (4-mm) diameter steel wire or aircraft cable supports.
 - 2. Ceiling mount with hook mount.
- G. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- H. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- I. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Comply with requirements for startup specified in Section 26 09 43 "Relay-Based Lighting Controls."

3.7 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

GENERAL COMMON CONDITIONS FOR ALL COMMUNICATION SECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, and other documents as designated, apply to this Document.
- B. See Division 7 and section 27 01 00 Part 3 for additional requirements.

1.2 RELATED SECTIONS

- A. Specifications throughout all Divisions of the Project Manual are directly applicable to this section, and this section is directly applicable to them.
 - 1. All Division 27 Sections
 - 2. Requirements of the following Division 26 sections apply to this section
 - a. Basic electrical requirements
 - b. Basic electrical materials and methods
 - c. Grounding, earthing, and bonding
 - 3. Division 21 Fire Suppression
 - 4. Division 22 Plumbing
 - 5. Division 23 HVAC
 - 6. Division 28 Electronic Safety and Security

1.3 SUMMARY

- A. The work on many processes in this section are not part of the Division 27 contract. The respective trades shall include their portions, and administration topics that are applicable to all Division 27 Sections in their proposals.
- B. This document is based upon the 2018 Construction Specification Institute (CSI) Master Format numbers and titles for sections within Division 27: Communications.
- C. Where IT or Owner representation is stipulated in this Division, it shall be provided by the Data Center Operations Infrastructure Cabling team.

1.4 SUBMITTALS

- A. Product data shall be supplied for any parts/equipment that does not match the specified part number.
- B. Shop drawings
 - 1. Labeling schedules and layouts in owner designated electronic format
 - 2. Cabling administrative drawings

1.5 CONDITIONS

A. Drawings and General provisions of the contract, including Uniform General Conditions, Supplementary General Conditions, architectural plans and specifications, requirements of Division 1, electrical, mechanical, plumbing, audio visual, security and telecommunications specifications and plans apply to the communications section, and shall be consider a part of this section. The contractor shall read all sections in their

entirety and apply them as appropriate for work in this section.

- B. Prior to beginning installation, a kick-off meeting to properly coordinate the tray installation and expectations should be held. It should be arranged by the General Contractor, and at a minimum include representatives of the following trades: FP&D, Electrical (Div. 26), Structured cable, Nurse Call, paging, building automation and control, plumbing, HVAC, fire sprinkler, framing, and others as applicable. The Data Center Operations Infrastructure Cabling Team will lead the meeting.
- C. Conflicts:
 - 1. Drawings and specifications are to be used in conjunction with one another and to supplement one another. In general, the drawings determine the nature and quality of the installation, materials, and tests. The quantities are derived from the drawings, details, listings, and manufacturer's directions.
 - a. Final order counts and distances are the contractor's responsibility.
 - 2. If there is an apparent conflict between the drawings and specifications, or between specification sections, the items with the greater quality or quantity shall be submitted, estimated, and installed.
 - 3. Clarification with the Owner and/or Owner's Representative about these items shall be made prior to the ordering and installation.
- D. Owner / Contractor
 - 1. The Architect/Project Manager will submit appropriate scope of work information that will allow the contractor to appropriately plan and bid the project.
- E. Contractor
 - 1. Furnish all labor, materials, tools, equipment and services for the installation described herein. Provide add/deduct unit pricing for all components as part of the bid response. Base fixed price add/deduct units on an average cable length of 175 linear feet.
 - 2. The Contractor shall procure and maintain for the duration of this agreement, insurance against claims.
 - 3. Use of Subcontractors: Successful bidder shall inform the Owner's contact and/or General Contractor in writing about the intention to use Subcontractors and the scope of work for which they are being hired. The Owner or Owner's designated contact must approve the chosen Subcontractors in writing prior to the Subcontractor's hiring and start of any work. The low voltage Subcontractor must be approved and certified. Refer to the listing in appendix 7.
 - 4. Use of Subcontractors: The Contractor's designated project manager will be recognized as the single point of contact. The Project manager shall oversee all work performed to ensure compliance with specifications as outlined in bid documents (which includes all specifications and drawings) to ensure a quality installation.

1.6 SCOPE OF WORK:

- A. This establishes a communications infrastructure to be used as signal pathways for voice, high-speed data transmission, and other low voltage services. Contractor shall:
 - 1. Comply with all Master Specifications documents and the following requirements for a complete project installation.
 - 2. Provide a structured cabling system as described hereafter that includes, but is not limited to, supplying, installing, labeling and testing of fiber backbone, fiber and voice riser cable; data copper, fiber, and voice copper horizontal cabling, cable connectors, communications outlets and terminations, patch cables, and equipment racks/cabinets for networking hardware and patch panels.
 - 3. All requirements and specifications will be enforced. Cable pathways and runs to individual outlets are not shown in their entirety but shall be provided as if shown in their entirety.

- 4. Coordinate with electrical tradespersons to verify conduit routing does not cause cabling to exceed allowable link length.
- 5. Follow industry standard installation procedures, including BICSI Installation Standard and guidelines as well as specified manufacturers standard recommended procedures and installation practices for communications cable to assure that the mechanical and electrical transmission characteristics of this cable plant and equipment are maintained.
- 6. The Division 27 work shall be performed by an approved, certified installer.
- 7. The low voltage communications Subcontractor shall complete non-concealed work.

1.7 REFERENCE STANDARDS:

- A. The latest published edition of a reference shall be applicable to this Project unless identified by a specific edition date.
- B. All reference amendments adopted prior to the effective date of the Contract shall be applicable to this Project.
- C. The publications listed below form a part of this specification. The publications are referred to in the text by basic designation only.
- D. Specific reference in specifications to codes, rules, regulations, standards, manufacturer's instructions, or requirements of regulatory agencies shall mean reference to the latest printed edition of each in effect at the date of contract.
- E. Codes and Standards (Most recent editions with addenda/TSB, etc.) All materials, installation and workmanship shall meet or exceed the applicable requirements and standards addressed within the references listed in **Appendix 04**.

1.8 DEFINITIONS:

A. Definitions and Abbreviations are listed in **Appendix 05**:

PART 2 - PRODUCTS

- 2.1 PRODUCTS AND WORK NOT included BY DIVISION 27
 - A. Others shall separately purchase and/or provide certain equipment and miscellaneous items that will be installed during the installation process. Such items may not be indicated in the documents. Contractor shall coordinate with the Owner and his suppliers when considering:
 - 1. Provision and installation of phone systems, computer hardware, and related networking software and equipment.
 - 2. Provision and installation of multi-port routers, hubs in communications rooms.
 - a. TEC/TDR UPS's are owner provided.
 - 3. Communications grounding bus bars and grounding wires connecting to the main building electrode system by Division 26.
 - 4. Dedicated power panels, ground bus bars, circuits and utility outlets.
 - 5. Installation and finishing of fire-rated plywood backboards.
 - 6. Building mechanical ductwork, cooling/heating system, and environmental control sensors.
 - 7. Communication pathway devices such as, conduits, conduit sleeves, back boxes, and penetrations in walls and floors. Including, but not limited to concealed work, office spaces and open areas.
 - 8. Provision and installation of modular furniture and millwork.

PART 3 - PENETRATIONS

3.1 THE WORK IN THIS SECTION IS IN DIVISION 7 CONTRACT; AND VERIFIED COMPLETE AT PROJECT TURNOVER.

- A. Wall Penetrations Fire Smoke Sound
 - 1. All fire, smoke, and sound wall penetrations must be correctly made to protect the safety of patients and employees. A facility is designed/architected and built with fire integrity that must not be lost as the building is modified over its lifetime.
 - 2. The items listed often penetrate 1 and 2 hour fire-resistance-rated (FRR) assemblies. General requirements for filling the space between the item in question and the wall are found in NFPC 101® Section 8.2.3.2.4.2. There is the option to either fill the space with appropriately rated fire-stop material or protect the space with an approved device designed to maintain the fire resistance of the wall.
 - 3. If a sleeve is used around the item that transverses the wall, the sleeve must be installed into the wall without any opening between the sleeve and the wall. The open space within the sleeve must then be filled with appropriately rated fire stop.
- B. All items listed in 1 through 2 must have penetrations in fire-resistance-rated assemblies filled to maintain the integrity of the fire barrier.
 - 1. Conduits
 - a. When conduit passes through a wall that is either rated or must be firestopped due to lack of sprinklers in the compartment, it is essential to fill any gap around the conduit as described above.
 - 2. Cables/Wires
 - a. Sometimes cables or wires are passed through a penetration contained in a fire wall as a single installation. This often happens in a health care organization with communication cables. Even in these cases, the penetration must be patched appropriately.
 - 3. NOTE: Fire, smoke, and sound wall penetrations are also governed by local and state building codes.
 - 4. NOTE: This requirement applies to all departments, organizations, employees, and/or vendors who perform structured cable work in the facilities for:
 - a. Telephony and Computer networks, fire, smoke, and sound wall penetrations, alarm systems, security systems, HVAC Control or sensors, patient entertainment systems, announcing systems, nurse call, telemetry, RFID, etc.
 - 5. NOTE: While this document is written specifically for low voltage wiring, the JCAHO standards apply for any fire or smoke wall penetration. As you perform work in the facility, if you note any existing penetrations that are not up to standard, please notify the construction Project Manager immediately.
 - 6. While Facility Engineering has the overall responsibility, each department, organization, employee, and/or vendor has the responsibility to follow the process in obtaining a permit from facility engineering before work is started and to follow the guidelines to maintain the fire/smoke wall integrity.
- C. Process:
 - 1. NOTE: This process applies to any person, group, and/or vendor who perform low voltage cable installations at any Intermountain facility or clinic.
 - a. Fire/Smoke Walls
 - Any Vendor, department, and/or person needing to do any cable work that involves wall penetrations, adding to existing or new, are required to obtain a "Low Voltage Cable Work Permit" from Facility Engineer.

- b. Above Ceiling Work
 - 1) Any vendor, department, and/or person needing to do any cable work above ceiling tiles, adding to existing or new, are required

to obtain all required permits.

- c. Above Ceiling Permit to be obtained from Facilities Management
 - 1) The permit requires detail information as to what work is being done, where the work will be done. The permit will also state the current approved sealing compound for the facility and specific requirements for conduits etc.
 - 2) There may also be specific rules regarding how work may be conducted in certain areas of the hospital. NOTE: Different manufacture's sealing products can NOT be used in the same penetration. Therefore, if an additional cable is added to an existing penetration, and you don't have the same brand of caulk, you must remove all of the caulk and re-do the seal completely.
- d. ICRA Permit to be obtain from Infectious Preventionist
- e. Hot Work Permit to be obtain from Facilities Engineer
- 2. Quality of Work
 - a. Facility Engineering Orientation

3.2 MEASUREMENT PROCEDURES:

- A. The Contractor shall
 - 1. Coordinate supports, adjacent construction, and fixture locations to ensure actual dimensions correspond to established dimensions.
 - 2. Verify dimensions in areas of installation by field measurements before fabrication and indicate measurements and scale on shop drawings.
 - 3. Coordinate fabrication schedule with construction progress to avoid delaying the work.
 - 4. Where field measurements cannot be made without delaying the work, establish dimensions and coordinate with the General Contractor.
 - 5. When approved, proceed with fabricating units without field measurements.

3.3 CHANGES

- A. ALTERNATES:
 - 1. If an alternate material is proposed that is equal to or exceeds specified requirements, Contractor shall provide manufacturers' specifications in writing for Owner approval prior to purchase and installation.
 - 2. Substitutions of material by the Contractor shall be in writing complete with written manufacturers' specifications. The material substituted shall not void, alter or change manufacturers' structured cabling system warranty.
 - 3. Contractor shall:
 - a. Provide a complete cabling infrastructure according to these written specifications and drawings. If the Owner changes the scope of work to be performed by the Contractor, it shall be in writing.
 - b. Promptly respond to these changes with a complete material list, including pricing, and labor in writing presented to the Owner for approval. Also include unit pricing.
 - c. Do not proceed with any additional scope of work without a signed approval by the Owner.

- 4. Owner will not pay for additional work performed by the Contractor without signed approval of these changes. Contractor will submit a copy of signed change order upon billing.
- 5. The Owner's Infrastructure Cable team will be the final judge of acceptability, with review by Owner's Representative and the distribution of the acceptance by the Architect. No substitute shall be ordered, installed or utilized without the

Architect's prior written verification of acceptance from the Owner's Infrastructure Cable team.

- B. SUBSTITUTION PROCEDURES
 - 1. Substitution may be considered when a product becomes unavailable through no fault of the Contractor.
 - 2. Document each request with complete data substantiating compliance of proposed substitution with Contract Documents. Include in each request for substitution:
 - a. Product identification, manufacturer's name and address.
 - b. Product Data: Description, performance and test data, reference standards, finishes and colors.
 - c. Samples: Finishes
 - d. Complete and accurate drawings indicating construction revisions required (if any) to accommodate substitutions.
 - e. Data relating to changes required in construction schedule.
 - f. Cost comparison between specified and proposed substitution.
 - 3. Substitutions will not be considered when they are indicated or implied on shop drawing or product data submittals, without separate written request, or when acceptance will require revision to the Contract Documents.
 - 4. The Owner will be the final judge of acceptability, with review by Owner's Representative and the distribution of the acceptance by the Architect.
 - 5. No substitute shall be ordered, installed or utilized without the Architect's prior written verification of acceptance from the Owner's Infrastructure Cable team.

PART 4 - EXECUTION

- 4.1 QUALITY ASSURANCE
 - A. Regulatory Requirements:
 - 1. Contractor shall supply all city, county, and state telecommunication cabling permits required by appropriate governing agency.
 - 2. Prior to commencing work, the Contractor and staff shall secure all required Intermountain Healthcare permits including, but not limited to; facility sign in, ceiling work permits, hot work permits, and confined space permits.
 - 3. Contractor shall be city, county, and state-licensed and/or bonded as required for communications/low voltage cabling systems work.
 - B. Certifications:
 - 1. Contractor shall submit an up-to-date and valid certification verifying qualifications of the Contractor and installers to perform the work specified herein at time of bid submission.
 - 2. Contractor shall have a complete working knowledge of low voltage cabling applications such as, but not limited to data, voice and video network systems.
 - 3. Contracting firm shall have installed similar-sized systems in at least ten (10) other projects in the last five years prior to this bid and be regularly engaged in the business of installation of the types of systems specified in this document. Certification shall include, but not be limited to, items such as name and location of project contacts and numbers, total square footage, total number of cables/drops, types of media, etc.

- 4. Contractor shall provide certificates for the appropriate insurance coverage as defined in contract documents.
- 5. All installer personnel that will be assigned to this project shall be listed in a qualification document. 50% of the personnel working on the job site shall have a minimum of 3 years' experience in the installation of the types of systems, equipment, and cables specified in this document. Any personnel substitutions shall be noted in writing to Owner's Data Center Operations Infrastructure

Cabling representative prior to commencement of work.

- 6. BICSI ITS Cabling Installation Program Installer Level 1 or 2 or Technician certifications may be substituted in lieu of the 3-year requirement. All cabling installers shall be trained and certified by the cable manufacturer for communication cabling installations and maintenance of said materials.
- 7. Refer also to General Conditions.
- C. Administrative Requirements and Coordination:
 - 1. The Contractor shall:
 - a. Ensure that all technicians performing work have obtain badge access 48 hours prior to scheduled start.
 - b. Provide a specified contact person (name and contact number) for coordination to attend project meetings with the communication consultant, the Owner and others.
 - c. Coordinate work of this section with Owner's system specifications, workstations, equipment suppliers, and installers.
 - d. Coordinate installation work with other crafts (examples include ceiling grid contractors, HVAC and sheet metal contractors, etc.) under the direction of the General Contractor to resolve procedures and installation placement for cable trays and cable bundle pathways. The goal of this coordination will be to establish priority pathways for critical data/voice network cable infrastructure, materials, associated hardware, as well as mitigate delays to the project and to allow service access for communications and HVAC components. Damage by Contractor to the craftwork of others will be remediated at the Contractor's expense in a timely manner.
 - e. Exchange information and agree on details of equipment arrangements and installation interfaces. Record agreements reached in meetings and distribute record to other participants, Owner and communication consultant.
 - f. Arrangement, layout, and locations of distribution frames, patch panels, and cross-connect blocks in equipment rooms and racks to accommodate and optimize arrangement and space requirements of any service provider equipment, telephone system, and LAN equipment as directed by Data Center Operations. Tasks shall be coordinated with the Owner's Data Center Operations team, and other trades' installation representatives.
 - g. Where installed, confirm exact locations and method of mounting outlets in modular furniture. Follow furniture manufacturers' written instructions for installing cable and devices in modular partitions. Obtain modular furniture and power pole locations from the General Contractor. Wiring locations noted in plans along walls for modular furniture are approximate and will have to be determined by Contractor at time of installation. Field condition adjustments for installation may have to be made and coordination efforts with the mechanical and electrical contractor for pathway must take place early in the project to comply with maximum 40% conduit fill factor requirements.

- h. When requested by Owner or Owner's representative, furnish extra materials that match specified products and that are factory packaged with protective covering for storage and identified with labels describing contents. Unit pricing shall apply.
- D. Contract Administration:

1

1.

- 1. Change orders shall be submitted to the Owner/Project Manager complete with price breakdown and description for approval before any work is done.
- 2. Owner's Data Center Operations Representative will provide job field reports upon inspection of Contractor's installation, materials, supporting hardware,

coordination with other trades and progress to schedule to the Owner's project manager.

- 3. Job Field Report outline:
 - a. General installation progress in relation to scheduled work made by the Contractor up to that date.
 - b. All deficiencies noted in the cable installation to be corrected by the Contractor.
- E. Pre-Installation Meetings Contractor shall:
 - Attend and/or arrange a scheduled pre-installation conference prior to beginning any work of this section.
 - a. Agenda: This venue is to ask and clarify questions in writing related to work to be performed, scheduling, coordination, etc. with consultant and/or project manager/and Data Center Operations Infrastructure Cabling representative.
 - b. Attendance: Communications project manager/supervisor shall attend meetings arranged by General Contractor, Owner's Data Center Operations Infrastructure Cabling representatives, and other parties affected by work of this document.
 - c. All individuals who will be installers of communication cables and equipment in an on-site supervisory capacity shall be required to attend the pre-installation conference. Individuals who do not attend the conference will not be permitted to supervise the installation of, or install, terminate, or test communications cables on the project. This includes supervisors, project managers, and lead installers of this project.
- F. Request for Change (RFC)
 - A Request for Change shall be opened and approved by the Change Approval Board prior to any modifications, attachments, or other activities that may affect production systems.
 - a. Policy and details available through the Data Center Operations Infrastructure Cable Representative.
- G. Post-Installation Meetings:
 - 1. Schedule Div. 27 Final Inspection
 - 2. At the time of substantial completion, or shortly thereafter, the low voltage Sub-Contractor shall call and arrange for a post-installation meeting to present and review all submittal documents to include, but not limited to as-built drawings, test reports, warranty documentation, etc. Attendees shall be Owner staff, Owner's Representative, General Contractor, and others that the General Contractor deems appropriate.
 - 3. At this meeting the Contractor shall present and explain all documentation, including test results, and ask for feedback on its completeness. Any discrepancies or deviations noted by and agreed to by participants shall be remedied by Contractor and resubmitted within one week of meeting.
- 4.2 DELIVERY, STORAGE, AND HANDLING:

- A. Coordination with delivery companies, drivers, site address, and contact person(s) will be the responsibility of the Contractor.
- B. Contractor Shall:
 - 1. Be responsible for prompt material deliveries to meet contracted completion date.
 - 2. Coordinate deliveries and submittals with the General Contractor to ensure a timely installation.
 - 3. No equipment materials shall be delivered to the job site more than three weeks prior to the commencement of its installation.
 - 4. Equipment shall be delivered in original packages with labels intact and identification clearly marked.
 - 5. Materials shall not be damaged in any way and shall comply with manufacturer's operating specifications.
 - 6. Equipment and components shall be protected from the weather, humidity, temperature variations, dirt, dust, or other contaminants. Equipment damaged prior to system acceptance shall be replaced at no cost to the Owner.
 - 7. Material Contractor shall be responsible for all handling and control of equipment.
 - 8. Material Contractor is liable for any material loss due to delivery and storage problems.
- C. Owner/General Contractor shall supply a list of security requirements for Contractor to follow.

4.3 PROJECT/SITE CONDITIONS

- A. For all environmental recommendations, refer to master Architectural section.
- B. For all security recommendations, refer to related Division 01.
- C. After completing system installation, including outlet fittings and devices, inspect exposed finish. Contractor will remove burrs, dirt, and construction debris. If applicable, the Contractor will repair damaged finishes, including chips, scratches, and abrasions.
- D. Contractor shall provide daily a clean work environment, free from trash/rubbish accumulated during and after cabling installation.
- E. Food and drink are not permitted in work areas. They shall be stored, prepared, and consumed only in designated break or cafeteria areas.
- F. Contractor shall keep all liquids (drinks, sodas, etc.) off finished floors, carpets, and tiles. If any liquid or other detriment (cuts, soils, stains, etc.) damages the above finishes, Contractor shall provide professional services to clean or repair scratched/soiled finishes, at Contractor's expense.

4.4 CLEANING

- A. Work areas will be kept in a broom clean condition throughout the duration of the installation process.
- B. Remove all unnecessary tools and equipment, unused materials, packing materials, and debris from each area where work has been performed daily, unless designated for storage.
- C. The Contractor will damp clean all surfaces prior to final acceptance by Owner.

OPERATION AND MAINTENANCE OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 INTRODUCTION

A. To make the approval of such a large topic possible, the structured cable topic has been broken into its subcomponents and each subcomponent was completed, reviewed, and approved in turn. The result is this comprehensive guideline that should provide adequate guidance on this topic.

PART 2 - PRODUCT

2.1 KEY POINTS

- A. Category 6A shielded foil over unshielded twisted pair (F/UTP) is the only approved standard for cabling.
 - 1. Specifically, Siemon category CAT6A F/UTP (foil over unshielded twisted pair) cable and associated patch panels, wall plates and jacks; for data centers, and all clinical and hospital campus'.
 - 2. Only Siemon certified contractors or certified Intermountain Healthcare cable technicians will install structured cable at Intermountain Healthcare facilities.

2.2 IMPLEMENTATION

- A. This guide is to be used for New Construction and Remodels. These standards will be implemented over time in existing cabling environments as rework is performed.
- B. If there is a current need to connect servers at 10GBaseT and the <u>only</u> option is copper, CAT6A F/UTP is required. New Server connections shall be a minimum OS1 Single Mode Fiber.
- C. Installations already in place are not required to remove or replace existing cabling CAT5e or newer. All new cabling shall follow the recommendation to use CAT6A F/UTP cabling.

2.3 STANDARD PRODUCT

1.

- A. The Approved cable type for horizontal cabling is CAT 6A F/UTP.
 - The Approved Standard Manufacturer for Intermountain Healthcare's horizontal cabling is:
 - a. Siemon Company USA

101 Siemon Company Drive Watertown, CT 06795

2. Approved Suppliers of Siemon cable, patch panels, jacks, and parts are listed in Appendix 06:

PART 3 - EXECUTION

3.1 Horizontal Cabling

A. Horizontal Subsystem is the portion of the cabling system that extends from (and includes) the work area telecommunications outlet/connector to the Floor Distributor (FD)/Horizontal Cross-connect (HC) in the telecommunications room (TDR). It consists of the communications outlet/connector, the horizontal cable, optional consolidation point,

and that portion of the cross-connect in the telecommunications room serving the horizontal cable. Each floor of a building should be served by its own Floor Distributor/Horizontal (FD/HC) Subsystem located in the telecommunications Room (TDR).

- 1. NOTE: Cable installers have rigorous requirements to be certified for Siemon cables and products. Validation of certification is required prior to accepting a bid.
- 2. Current Siemon Approved/Certified Cable Installers for Siemon Network are listed in Appendix 07.
- B. Reliability of the horizontal cabling system is critical to the operation of IS equipment throughout a facility. Installing the cable is extremely labor intensive and there are several learned skills used to correctly install the cable. Cable installers are certified, and installers must demonstrate the ability to install the cable correctly to be certified. If the cable is installed by a certified installer and is installed in accordance with the manufacture's guidelines, the manufacturer will warranty the cable installation.
- C. The manufacturer also requires the cables to be individually labeled and 100% tested and certified. Cable testing and certification equipment is usually expensive and is not commonly available at the facility or by many telecom installers. Certified Installer companies are required by the manufacturer to be knowledgeable in the use of "Qualified" Field Testing equipment and provide test results for warranty registration.
 - 1. Contractor is to verify with the manufacturer the current "Qualified" tester manufacturers and the current operating software.
 - 2. Contractors will provide test results in the operating software format (not PDF, text or Word) to Intermountain Healthcare upon completion.
- D. Much of the cable is installed in walls and in the ceiling and usually lasts the lifespan of the building. As with most technology, the lifespan of cable is its usability and applicability to its use on future computing technology.

WARRANTY, PRODUCT AND SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Specifications throughout all Divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them, including but not limited to the listing found in Section 27 00 00.

PART 2 - PRODUCTS

2.1 STANDARD WARRANTY

- A. Contractor shall provide a minimum one (1) year warranty on installation and workmanship PLUS an Extended Product Warranty and System Assurance Warranty for this wiring system and shall commit to make available local support for the product and system during the Warranty period.
- B. System Certification: Upon successful completion of the installation and subsequent inspection, the customer shall be provided with a Manufacture Warranty certificate.
- C. Either a permanent link or channel model configuration may be applied to the horizontal and/or backbone sub-systems of the structured cabling system. Applications assurance is only applied to a channel model configuration. All channels are to be qualified for linear transmission performance up to 500 MHz to ensure that high-frequency voltage phase and magnitude contributions do not prove cumulative or adversely affect channel performance.

2.2 EXTENDED WARRANTY

- A. The manufacturer of passive telecommunications equipment used in a manner not associated with the Systems Warranty must have a minimum five (5) year Component Warranty on all its product. The Products Warranty covers the components against defects in material or workmanship under normal and proper use.
 - 1. Special Project Warranty: A full end-to-end written warranty mutually executed by manufacturer and the principal Installer, agreeing to replace and install voice/data distribution system components that fail in materials or workmanship, or do not meet manufacturer's official published specifications and performance criteria within the special Project warranty period specified below. This shall cover applications assurance, cable, and connecting hardware including both labor and materials. This warranty shall be in addition to, and not a limitation of, other rights and remedies the Owner may have against the Contractor under the Contract Documents.
- B. A twenty (20) year warranty available for the Category 6A Z-MAX copper structured cabling system shall be provided for an end-to-end channel model installation which covers applications assurance, cable, connecting hardware and the labor cost for the repair or replacement thereof. The fiber warranty will be an XGLO twenty (20) year warranty, which is based on using laser optimized single mode fiber as minimum.

- 1. Performance claims based on worst case testing and channel configurations.
- 2. Special Project Warranty Period: 20 years minimum, beginning on the date of Substantial Completion.
- 3. Siemon Certified Warranty Requirements:
 - a. Upon Completion of the project, Intermountain Healthcare must receive the Full Warranty Documentation from The Siemon Company before final retention funds are released to the general contractor, electrical contractor and structured cabling subcontractor if applicable.

2.3 MAINTENANCE

A. Support Availability: The Contractor shall commit to make available local support for the product and system during the Warranty or Extended Warranty period.

FIELD TESTING AND REPORTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Specifications throughout all Divisions of the Project Manual are directly applicable to this Section, and this Section is directly applicable to them, including but not limited to the listing found in Section 27 00 00.

1.2 SYSTEM DESCRIPTION

- A. Owner reserves the right to be present during any or all testing.
- B. The objective of this project is to provide a complete communications cabling infrastructure system installation including, but not limited to: fiber backbone, riser system, horizontal data and voice cabling with associated terminations, mounting equipment, cable pathway and management systems, testing and other items/materials, as specified in drawings, these specifications, and contract documents.
- C. The Contractor's BICSI Registered Communications Distribution Designer (RCDD) supervisor shall review, approve and stamp all documents prior to submitting. The Contractor's RCDD shall warrant in writing that 100% of the installation meets the requirements specified herein upon completion of all work.
- D. Product Certificates shall be signed by manufacturers of cables, connectors, and terminal equipment certifying that products furnished comply with requirements.
- E. Contractor shall submit the required Field Test Reports in the format and media specified, upon completion of testing the installed system.
- F. Contractor shall deliver manufacturer's signed long-term Warranty of installed cabling system to include all components that comprise the complete cabling system. Delivery to be affected within two weeks of the time of final punch list review. Failure of any component to pass system component tests shall be promptly corrected, repaired or replaced to meet standards compliance.

1.3 PREFERRED OWNER INSPECTION & TEST CHECKPOINTS

- A. DCO & ICT Inspection Milestones & Responsibilities need to be coordinated into master project plan to allow the GC to make timely arrangements. All are per floor and/or phase.
 - 1. ICT & DCO = Framing, during and/or after boxes & conduits are in place; prior to sheetrock.
 - 2. ICT = When cable basket is starting to be installed.
 - 3. ICT = When cable basket is ready, but prior to starting to pull cable.
 - 4. ICT & DCO = When TDR's are ready for racks and ladders.
 - 5. DCO = When anchoring racks and laying out equipment.
 - 6. ICT & DCO = When TDR environmental requirements are ready, room is dust free, and securable.
 - a. The TEC and TDRs must be high on the build timeline and be completed early in the construction to accommodate the building systems to be tested and commissioned, such as BAS, Security, and Wireless Network.
 - 7. ICT = When trim and testing are in progress.
 - 8. OTHERS

- a. Depending on project, the manufacturer will inspect 1 or 2 times.
- b. DCO or ICT = When problems or questions arise.

PART 2 - PRODUCTS

2.1 SITE TESTS & INSPECTIONS

- A. Prior to pulling cable, the cabling contractor shall schedule an inspection of the pathways with a member of the Data Center Operations Infrastructure cabling team.
- B. Upon completion of the communications infrastructure systems, including all pathways and grounding, the Contractor shall test the system.
 - 1. Cables and termination modules shall be affixed, mounted or installed to the designed/specified permanent location prior to testing.
 - 2. Any removal and reinstallation of any component in a circuit, including faceplates, shall require retesting of that circuit and any other disturbed or affected circuits.
 - 3. Approved instruments, apparatus, services, and qualified personnel shall be utilized.
 - 4. If tests fail, Contractor shall correct as required to produce a legitimate passing test.
 - 5. Manipulation of tester parameters on a failing test in order to achieve a passing test is unacceptable.
- C. These specifications will be strictly enforced. The Contractor must verify that the requirements of the specifications are fully met through testing with an approved tester (rated for testing the cable type in use), and documentation as specified below. This includes confirmation of requirements by demonstration, testing and inspection. Demonstration shall be provided at final walk-through in soft copy.
- D. Notification of the likelihood of a cable exceeding standardized lengths must be made prior to installation of the cable. Without contractor's prior written notice and written approval by the Owner, testing that shows some or all pairs of cable not meeting specifications, shall be replaced at Contractor's expense (including respective connectors).
- E. Testing is still required for non-compliant cabling. The tests shall be for wire-mapping, opens, cable-pair shorts, and shorts-to-ground. The test results must be within acceptable tolerances and shall be submitted with the Owner's acceptance document.

2.2 CABLE TESTING PLAN

- A. The Contractor shall:
 - 1. Provide a complete and detailed test plan for approval of the cabling system specified herein, including a complete list of test equipment for copper and fiber optic components and accessories prior to beginning cable testing. The following minimal items shall be submitted for review:
 - a. All testing methods that clearly describes procedures and methods.
 - b. Product data for test equipment
 - c. Certifications and qualifications of all persons conducting the testing.
 - d. Calibration certificates indicating that equipment calibration meets National Institute of Standards and Technology (NIST) standards and has been calibrated at least once in the previous year of the testing date.
 - 2. Include validation, and testing. Owner will require that the telecommunications cabling system installed by the Contractor be fully certified to meet all necessary requirements to be compliant with referenced IEEE and TIA specifications and vendor's warranty.

3. Will determine the source/cause of test failure readings and correct malfunctioning component and/or workmanship within each channel or permanent link and retest to demonstrate compliance until corrected failure produces a passing result.

2.3 CABLE TESTING REPORTS

- A. The Contractor shall submit cable test reports as follows:
 - 1. Submit certified test reports of Contractor-performed tests.
 - a. The tests shall clearly demonstrate that the media and its components fully comply with the requirements specified herein.
 - b. (1) set of electronic test reports shall be submitted and clearly identified with cable identification.

PART 3 - EXECUTION

3.1 TEST EQUIPMENT

- A. All transmission testing of balanced twisted-pair cables shall be performed with an approved Level III balance twisted pair tester found on the Siemon Ally Website. The latest version of software shall be installed prior to performing testing. Refer to the Siemon Warranty Documents for proper testing requirements of associated cable and components.
- B. All balanced twisted-pair field testers shall be factory calibrated each calendar year by the field test equipment manufacturer as stipulated by the manuals provided with the field test unit. The calibration certificate shall be provided for review prior to the start of testing
- C. Auto test settings provided in the field tester for testing the installed cabling shall be set to the default parameters
- D. Test settings selected from options provided in the field testers shall be compatible with the installed cable under test.

3.2 TEST METHOD / CRITERIA

- A. Copper Testing
 - 1. Testing of all newly installed cable channels shall be performed prior to system cutover.
 - a. Visually inspect F/UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments and inspect cabling connections for compliance with TIA/EIA-568-C.1.
 - b. Visually confirm Category 6A marking of outlets, cover plates, outlet/connectors, and patch panels.
 - c. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - d. Test F/UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - e. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-C, and those required by manufacturer to validate and start warranty.
 - 2. Copper Testing all 500 MHz category 6A field-testing shall be performed with an approved level 111e balanced twisted-pair field test device, that complies with performance requirements in "Test Instruments (Normative)" Annex, complying

with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex (Level IIe or IIIe balanced twisted pair field test device). Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- 3. All installed 500 MHz category 6A channels shall perform equal to or better than the minimum requirements as specified below:
 - a. Category 3, balanced twisted-pair backbone cables, for the channel shall be 100 percent tested according to ANSI/TIA/EIA-568-C.1. Test parameters include wire map plus F/UTP (ScTP) shield continuity (when present), insertion loss, length and NEXT loss (pair-to-pair). NEXT testing shall be done in both directions.
 - b. 500 MHZ Category 6A balanced twisted-pair horizontal and backbone cables, shall be 100 percent tested.
- 4. F/UTP Performance Tests
 - a. Wire map.
 - b. Length (physical vs. electrical, and length requirements)
 - c. Insertion loss
 - d. Near-end crosstalk (NEXT) loss
 - e. Power sum near-end crosstalk (PSNEXT) loss
 - f. Equal-level far-end crosstalk (ELFEXT)
 - g. Power sum equal-level far-end crosstalk (PSELFEXT)
 - h. Return loss
 - i. Propagation delay
 - j. Delay skew
 - k. F/UTP Shield continuity
- 5. Final Verification Tests: Perform verification tests for F/UTP systems after the complete communications cabling and workstation outlet/connectors are installed.
- 6. Document data for each measurement. Data for submittals shall be printed in a summary report.
- 7. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- 8. Prepare and submit test and inspection reports.
- B. Horizontal Fiber Testing
 - 1. Fiber horizontal cables shall be 100% tested for insertion loss and length.
 - Insertion loss shall be tested at 850 nm or 1300 nm for 50/125µm and 62.5/125µm multimode cabling in at least one direction using the Method B (1jumper) test procedure as specified in ANSI/TIA/EIA-526-14A.
 - 3. Length shall be tested using an OTDR, optical length test measurement device or sequential cable measurement markings.
 - 4. The horizontal link performance guarantees are based on an optical fiber calculation for the appropriate fiber solution. Optical fiber calculations shall be determined using the Siemon Fiber Loss Calculator found on the Siemon Ally Website.
- C. Backbone Fiber Testing
 - 1. Fiber backbone cables shall be 100% tested for insertion loss.
 - Insertion loss shall be tested at both 850 nm and 1300 nm for 50/125µm and 62.5/125µm multimode cabling and both1310 nm and 1550 nm for 8.5/125µm single mode cabling and in at least one direction using the Method B (1-jumper) test procedure as specified in ANSI/TIA/EIA-526-14A.
 - Insertion loss shall be tested at 1310 and 1550 for single-mode cabling in at least one direction using the Method A.1 (1-jumper) test procedure as specified in ANSI/TIA/EIA-526-7.

- 4. Length shall be tested using an OTDR, optical length test measurement device or sequential cable measurement markings.
- 5. The backbone link performance guarantees are based on an optical fiber calculation for the appropriate fiber solution. Optical fiber calculations for any fiber cable greater than 90m (295 ft.) shall be determined using the Siemon Fiber Loss Calculator found on the Siemon Ally Website.

3.3 DEMONSTRATION

A. Include training for appropriate IT staff in numbering system and documentation system methods and record keeping. Proper fiber terminations and fiber jumper installations.

SHOP DRAWINGS, PRODUCT DATA, SAMPLES DESIGN RECORDS & EXISTING CONDITIONS

PART 1 - SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

1.1 SUBMITTALS

A. The Contractor:

1.

- Shall not perform any portion of the work requiring submittal and review of shop drawings, product data, or samples until Owner has approved the respective submittal. Such work shall be in accordance with approved submittals.
 - a. Shop drawings as required by the owner or as a minimum to include a minimum of two sets of a plan view and elevations of all work to be installed. The Contractor shall make any corrections required by the owner or the owner's representative or consultant team, file with him two corrected copies and furnish such other copies as may be needed. The consultant's approval of such drawings or schedules shall not relieve the Contractor from responsibility for deviations from drawings or specifications, unless he has in writing and called to the Architect's attention such deviations at the time of submission, nor shall it relieve him from responsibility for errors of any sort in shop drawings or schedules.
- B. The Contractor shall provide a copy of the Certified Test Data Sheet, available from the delivering distribution warehouse for either a full run or cut piece from the Master Reel of the fiber cable to be installed
 - 1. The Certified Test Data Sheet shall include the Master Reel number, cable description, a passing test result with details, test equipment description, date certified, and a certificate of compliance stamp, and shall be included in the O&M Manual as a component of the final deliverables submittal package.

1.2 DRAWINGS

- A. Shop Drawings
 - 1. The Contractor shall:
 - a. Submit catalogue cut sheets that include manufacturer, trade name, and complete model number for each product specified. Model number shall be handwritten, marked with an arrow or underlined to indicate exact selection.
 - b. Identify applicable specification section reference for each product performance for each component specified for approval prior to purchase and installation.
- B. Record Drawings
 - 1. Drawings for the cabling system infrastructure elements shall be maintained and kept on file by the Siemon Certified Installer (Company) for the entire term of the warranty. Drawings shall include:
 - a. Horizontal cable routing and terminations
 - b. Telecommunications outlets/connectors
 - c. Backbone cable routing and terminations
 - d. Telecommunication Spaces (TS)
- C. Samples

1. For workstation outlet connectors, jack assemblies, housing and faceplates for color selection and evaluation of technical specifications and requirements. Confirm with Architect, interior designer, and Owner representative for color before purchasing materials. Face plates shall match the electrical face plates in

Color and material type.

- 2. Upon request, provide samples for workstation outlets, jacks, jack assemblies, in specified finish, one for each size and outlet configuration
- 3. Sample mock-up rooms may be required in some areas to ensure proper equipment placement and fit.
- D. Qualifications:
 - 1. The Contractor shall provide the appropriate documentation to comply with the requirements set forth in Section 01 43 23 Qualifications, included with, and at the time of, bid submittal.

PART 2 - SUSTAINABLE DESIGN RECORDS AND REPORTS

- 2.1 DRAWINGS
 - A. Closeout Submittals (As-built Drawings):
 - 1. Communications Design drawings are to be supplied to the Architect to prepare the master "As-Built" drawings.
 - 2. As-Built drawings shall be in a format that is compatible with the format used by the Architect and consultant. Dimensions and scale of the drawing sheets submitted shall match the size of the drawing used for the contract documents and shall include the cable numbers labeled in accordance with this document.
 - 3. Utilize normal recognized drafting procedures that match standards, Architect and consultant guidelines and methodology.
 - 4. The As-Built drawings shall incorporate all changes made to the building identified in, but not limited to, addendum, change notices, site instructions or deviations resulting from site conditions.
 - B. Contractor shall:
 - 1. Clearly identify any resubmitted drawing sheets, documents or cut sheets either by using a color to highlight or cloud around resubmitted information.
 - 2. Maintain drawing numbering or page/sheet scheme consistency as per previously issued drawings/documents.
 - 3. Provide dimensioned plan and elevation views of networking components, showing:
 - a. All communications data/voice outlet locations complete with outlet/cable labeling.
 - b. Cable routing paths of communications cables to identified infrastructure pathways.
 - c. All rack and cabinet locations and labeling thereof.
 - d. One-line diagram of equipment/device interconnecting data/voice cabling of the data and voice systems.
 - e. Standard or typical installation details of installations unique to Owner's requirements.
 - f. Graphic symbols and component identification on detail drawing shall conform to the latest ANSI/TIA 568-C, ANSI/TIA 569-B, ANSI/TIA 606-A and ANSI/NECA/BICSI 607-A conventions.
 - 4. Submit one soft (compatible with Microsoft software) and hard copy with project deliverables within three weeks subsequent to substantial completion.
 - 5. Hard copy of floor plans for record shall be plotted to a standard, saleable, identified drawing scale.

2.2 RECORDS AND REPORTS

- A. All records shall be created by the installation contractor and turned over at the completion of work.
 - 1. The format shall be computer based
 - a. Soft copies and hard copies shall be part of the As-built package.
 - b. The minimum requirements include:
 - 1) Cable records must contain the identifier, cable type, termination positions at both ends, splice information as well as any damaged pairs/conductors.
 - 2) Connecting hardware and connecting hardware position records must contain the identifier, type, damaged position numbers, and references to the cable identifier attached to it.
 - 2. Test documentation on all cable types shall be included as part of the As-built package.
- B. All Siemon Warranty Registration documents shall be included.
- C. All reports shall be generated from the computer-based program used to create the records above. These reports should include but not limited to:
 - 1. Cable Reports
 - 2. Cross-connect Reports
 - 3. Connecting Hardware Reports

PART 3 - EXISTING CONDITIONS SITE SURVEY

- 3.1 SITE SURVEY
 - A. Prior to placing any cable pathways or cable, the contractor shall survey the site to determine job conditions will not impose any obstructions that would interfere with
 - B. the safe and satisfactory placement of the cables. The arrangements to remove any obstructions with the Project Manager need to be determined at that time.

QUALIFICATIONS AND REQUIRED TRAINING FOR CONTRACTORS AND INSTALLERS

PART 1 - GENERAL INSTALLLER QUALIFICATIONS

1.1 ENTITIES

- A. Communications contractors
 - 1. The Communications Contractor shall at a minimum possess the following qualifications:
 - a. Contractor shall be a Siemon Certified Contractor with valid up to date contract certification and in good standing with the Siemon Company.
 - b. Be in business a minimum of five (5) years.
 - c. Contractor shall demonstrate satisfaction of sound financial condition and can be adequately bonded and insured if the project deems necessary.
 - d. Possess those licenses/permits required to perform telecommunications installations in the specified jurisdiction.
 - e. Use personnel knowledgeable in local, state, province and national codes and regulations. All work shall comply with the latest revision of the codes or regulations. When conflict exists between local or national codes or regulations, the most stringent codes or regulations shall be followed.
 - 2. Contractor must possess current liability and workers compensation insurance certificates.
 - 3. Contractor must be registered with BICSI and have at least one RCDD on staff or ITS Cabling Installer Program Technician certification and Installer Level 1 & 2 for a minimum of 75 percent of staff.

1.2 TRAINING

- A. The Contractor shall be fully conversant and capable in the cabling of low voltage applications such as, but not limited to data, voice and imaging network systems. The Contractor shall at a minimum possess the following qualifications:
 - 1. Personnel trained and certified in the design of the Siemon Cabling System®.
 - 2. Personnel trained and certified to install the Siemon Cabling System®.
 - The Designer and Installer shall show proof of current certification of the Siemon Cabling System® via an updated certificate given after attending the Certified Installer training course or an on-line re-certification class given every two years.
 - 4. Provide references of the type of installation provided in this specification.
 - 5. Personnel trained and certified in the installation of copper cable and in the use of Level IIIe Copper Transmission Performance testers, fiber optic cabling, splicing, termination and testing techniques. Personnel must have experience using an optical light source and power meter plus an OTDR.
 - 6. Personnel trained in the installation of pathways and supports for housing horizontal and backbone cabling.
- B. Facilities Orientation

RESPONSIBILITY AND WORKMANSHIP OF CONTRACTOR

PART 1 - GENERAL

1.1 CONTRACTOR RESPONSIBILITY

- A. Contractor shall be obligated to exercise the highest standard of care in performing its obligations as defined in a request for proposal. All work shall be done in a workman like fashion of the highest standards in the telecommunications industry.
- B. All equipment and materials are to be installed in a neat and secure manner, while cables are to be properly dressed in accordance with standards recommendation for a specific type of media (i.e. UTP vs. F/UTP @ 10 Gigabit)
- C. Workers must clean any debris and trash at the close of each job and workday.
- D. Contractor acknowledges that Intermountain Healthcare will rely on contractor's expertise, ability and knowledge of the system being proposed and shall be obligated to exercise the highest standard of care in performing contractual obligation as defined in the Scope of Work.
- E. Contractor must submit The Siemon warranty, Cable Records, As Built Drawings and Test Results at the completion of work. Note: Intermountain Healthcare reserves the right to withhold final payments until all registration documents are approved by the Siemon Company and received by Intermountain Healthcare.

1.2 CONTRACTOR AND EMPLOYEE RESPONSIBILITY

- A. Contractors, their employees, and installers will attend annually Intermountain Healthcare required Infection Control training.
- B. Contractors, their employees, and installers will complete Reptrax registration.
- C. Contractors, their employees, and installers will attend Intermountain Healthcare required site and job specific orientation.
- D. Contractors, their employees, and installers will maintain Intermountain Healthcare required immunizations.
- E. Contractors, their employees, and installers will keep their Intermountain Healthcare required confidentiality agreements current.
- F. Contractors, their employees, and installers always agree to follow all Intermountain Healthcare Policies and procedures and wear the appropriate ID while on any of Intermountain properties.
- G. Contractor will determine with Owner the appropriate level of Environmental Containment precautions to utilize for each work location. Infection Control Risk Assessments and permits will be performed as required.
- H. Upon request, provide qualification data for all qualified layout technicians, installation supervisors, and field inspector
 - 1. Siemon issued qualification badges shall be readily available for this purpose.

1.3 EXAMINATION

- A. Field Measurements: Verify dimensions in areas of installation by field measurements before fabrication and indicate measurements on shop drawings. Coordinate fabrication schedule with construction progress to avoid delaying the work.
- B. Established Dimensions: Where field measurements cannot be made without delaying the work, establish dimensions and proceed with fabricating units without field

measurements. Coordinate supports, adjacent construction, and fixture locations to ensure actual dimensions correspond to established dimensions.

1.4 PREPARATION

- A. Pre-installation inspection
 - 1. The Contractor shall visually inspect all cables, cable reels, and shipping cartons to detect possible cable damage incurred during shipping and transport. Visibly damaged goods are not acceptable and shall be replaced by the contractor at no additional cost to the Owner.

1.5 MISCELLANEOUS CONTRACTOR RESPONSIBILITIES

- A. Contractor will maintain unobstructed egress in work areas.
- B. Contractor will keep an access for all Emergency Services.
- C. Contractor will maintain training for Personnel in alternate exits if needed.
- D. Contractor will maintain Temporary construction partitions, as required, that are smoke tight and built of non-combustible materials.
- E. Additional Fire Extinguishers may be required and will be properly maintained and inspected.
- F. Construction site will be maintained clean and orderly.
- G. Contractor will observe Intermountain Healthcare's Tobacco Use Policy. (All forms of tobacco use are strictly prohibited)
- H. All Electrical Extension cords will be grounded, and in good condition and, plugged into approved GFI Receptacles.
- I. Construction site will be restricted. (Approved personnel Only)
- J. Required Personal Protective Equipment (PPE) will be worn as required. (i.e. hard hats, safety glasses, safety shoes, fluorescent vest, in accordance with general contractor's safety policy)
- K. Tools will be unplugged, and power secured at the end of each working day.
- L. All employees and contractors will understand how to obtain MSDS sheets.
- M. Contractor will notify proper personnel of any fire system shut down. A 48-hour notification is required.
- N. Contractor will address all vibration concerns with Intermountain Healthcare and general contractor's staff.
- O. Contractor will address all Noise Issues with Intermountain Healthcare and general contractor's staff.
- P. Contractor will fill out a Hot Work permit and keep it on site daily as needed.
- Q. Contractor will fill out an Above Ceiling Work Permit and keep it on site daily as needed.
- R. Contractor will obtain a Confined Space Permit, when required, and keep it on site.
- S. Contractor shall notify Information Systems 72 hours in advance of any shutdown or known interruption of required environmental services. Follow up by notifying the Service Desk.
- T. Demolition of low voltage cabling shall be performed by the Low Voltage installation contractor.
 - 1. To prevent accidental removal of in-use circuits.
 - 2. To allow for re-use of circuits where practical.

COMMON WORK RESULTS FOR COMMUNICATONS

PART 1 - PRODUCT

1.1 SUMMARY

- A. This section covers general work results for all Communications Division detail subsections.
- B. Work of the following sections cover a complete installation of both permanent and channel links for a data and voice communications network utilizing copper and fiber transmission media.

PART 2 - EXECUTION

2.1 SCOPE OF WORK

- A. Includes, but is not limited to the following.
 - 1. The Contractor shall:
 - a. Provide and install fabric and/or either plenum, PE or PVC Innerduct, rated appropriately for the installation environment; in accordance with all applicable codes and ordinances.
 - b. Provide, install, terminate, test, label and document all fiber backbone, fiber and copper riser cable.
 - c. Provide, install, terminate, test, and document all fiber, copper voice, and data horizontal cable.
 - 1) CAT6A UTP and CAT6A F/UTP shall not be mixed on the same campus.
 - d. Provide and place all termination devices such as, but not limited to, modular patch panels, termination blocks, information outlets (jacks and plates), phone jacks, fiber distribution panels, bulkheads, connectors, and fiber fan out kits.
 - e. Provide in quantities specified interconnect components such as, but not limited to, copper patch cords, fiber patch cables and data station cables.
 - f. Provide and place horizontal and vertical cable support devices such as, but not limited to, rack and wall-mounted horizontal and vertical cable management, cable runway, communications cable runway, and all required mounting hardware, unless otherwise noted.
 - g. Provide and install all equipment mounting racks, cabinets and/or brackets.
 - h. Provide and install UL-approved fire stopping systems in all communication pass-thru, conduits, cable trays and ceiling, wall and floor penetrations in coordination with General Contractor.
 - i. Provide all appropriate consumable items required to complete the installation.
 - j. Grounding and bonding in TEC and TR rooms to grounding bus provided by Division 26.
 - k. Provide complete documentation and demonstration of work.
 - I. Completion of all punch list deficiencies within 10 working days.

- m. Provide indexed and organized complete Test Results of all copper and fiber cable and their components.
- n. Provide Submittals.
- o. Conduct a final document handover meeting with client, consultant, and PM to review, discuss and educate the Owner on the test results and As-Built Drawings.
- p. Provide a Manufacturer's Extended Product Warranty and System Assurance Warranty for this wiring system.

GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. This work shall be provided by Division 26.
 - 1. Division 26 shall provide and install the communications system grounding bus bar.
 - 2. Systems other than the voice/data system shall be bonded by their respective installers or Division 26.
- B. Exception: Division 27 shall bond racks, ladders, and other conductive IT equipment and enclosures as required.
- C. Requirements of the following Division 26 Sections apply to this section:
 - 1. Basic Electrical Requirements
 - 2. Basic Electrical Materials and Methods
 - 3. Grounding and Bonding for Electrical Systems

1.2 SUMMARY

- A. This Section includes methods and materials for grounding and bonding Communications systems.
- B. All grounding / earthing and bonding shall be done to applicable codes and regulations. It is recommended that the requirements of IEC/TR 61000-5-2: 1.0, ANSI-J-STD-607-A, or both be observed throughout the entire cabling system.

PART 2 - PRODUCTS

- 2.1 CONDUCTORS
 - A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
 - 1. Stranded conductors No. 6 AWG.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Compression fitting 2-hole strap.

PART 3 - EXECUTION

- 3.1 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70 (NEC), Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with UL 467 for grounding and bonding materials and equipment.

3.2 APPLICATIONS

A. Conductors: Install stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

3.3 INSTALLATION

- A. Grounding Conductors
 - 1. Route along shortest and straightest paths possible, unless otherwise indicated or required by Code.
 - 2. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
 - a. Jumper across all tray junctions use two-hole crimp lugs with a bolt, lock washer and nut to prevent loosening of ground connections over time.
 - b. Contractor to remove small area of powder coat or paint to create a metal to metal bonding connection.
 - c. Per current BICSI TDMM "Grounding, Bonding and Electrical Protection":
 - 1) Grounding and bonding connectors should be one of the following: Tin plated copper, copper or copper alloy
 - 2) Connections should be made using crimp connectors, or exothermic welding.
 - d. Per TIA/EIA 607-A the TBB (Telecommunications Bonding Backbone) connections "shall be made using irreversible compression-type connectors, exothermic welding or equivalent."

PATHWAYS FOR COMMUNICATONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Main pathways for communications systems shall be the responsibility of the Division 27 low voltage contract.
 - 1. Includes, but is not limited to, hangars, supports, J-hooks and cable tray.
 - 2. Sections 270536, 270539, and 270543_46, are supplemental clarifications that are additions to this section. The appropriate section(s) shall add for the material used.
- B. Conduits, pathways, and boxes which are embedded within building finishes for communications systems shall be the responsibility of the Division 26 electrical contractor
- C. Requirements of the following Division 26 sections apply to this section
 - 1. Basic electrical requirements
 - 2. Basic electrical materials and methods
 - 3. Grounding, earthing, and bonding for electrical systems

1.2 SUMMARY

A. Contractor shall install work following specifications, drawings, manufacturer's instructions and approved submittal data.

PART 2 - PRODUCTS

2.1 CABLE PATHWAYS

- A. Comply with TIA/EIA-569-B.
- B. Pathways shall be designed and installed to meet applicable local and national building and electrical codes or regulations.
 - 1. All materials shall be UL- and/or CSA and/or ETL-approved and labeled in accordance with NEC for all products where labeling service normally applies.
 - 2. NRTL labeled for support of Category 6A cabling, designed to prevent degradation of cable performance and pinch points that could damage cable
 - 3. Materials and equipment requiring UL 94, 149 or 1863 listing shall be so labeled. Modification of products that nullifies UL labels are not permitted.
 - 4. The installed systems shall not generate, nor be susceptible to any harmful electromagnetic emission, radiation, or induction that degrades, or obstructs any equipment.
- C. Pathways consist of conduit, basket tray/ladder rack, J-hooks, surface mounted raceway and power poles.
 - 1. Basket tray shall be utilized for distribution pathways
 - a. Provides proper support and load distribution along pathways.
 - b. Flexibility, scalability, and accessibility
 - c. Ladder rack shall be used in data rooms.
 - 2. Conduits may be utilized where cable tray is not viable, providing the crosssectional area of the conduit is greater than the cross-sectional area of the cable tray.
 - 3. J-hooks are the minimum pathway device required for all low voltage contractors for use in ceiling distribution.

- a. Refer to section 270529.
- 4. Note: Surface mounted raceway and power poles should be installed only when

other pathway choices are not feasible.

2.2 EQUIPMENT

- A. Compatibility
 - 1. All material and equipment as provided should be the standard Commercial-Off-The-Shelf (COTS) products of a manufacturer engaged in the manufacturing of such products. All shall be typical commercial designs that comply with the requirements specified. All material and equipment shall be readily available through manufacturers and/or distributors.
 - a. All equipment shall be standard catalogued items of the manufacturer and shall be supplied complete with any optional items required for proper installation.
 - b. Coordinate the features of materials and equipment so they form an integrated system. Match components and interconnections for optimum future performance and backward compatibility
- B. Horizontal cables shall be installed in "clean, dry" locations that provide protection from moisture levels above the intended operating range of inside plant (ISP) cables
 - 1. Cable pathways shall be installed to provide protection from the elements (i.e. moisture) and other hazards.
 - 2. Cables and cable pathways shall be protected from detritus elements such as paints, adhesives, water and cleaners.
 - a. In case of contamination, cables shall be replaced at the General Contractors expense. Cleaning is not acceptable.
 - 3. Pathways shall not have exposed sharp edges that may come into contact with telecommunications cables.
- C. Pathways shall not be in elevator shafts.
- D. Grounding / Earthing and bonding of pathways shall comply with applicable codes and regulations. It is recommended that the requirements of IEC/TR3 61000-5-2 Ed. 1.0, ANSI-J-STD-607-B, or both be observed throughout the entire cabling system.

2.3 SURFACE MOUNTING

- A. Surface Mount Cable Runs and Faceplate Boxes
 - 1. Surface mounting of cable pathway runs and/or boxes for outlets/faceplates are only authorized as a last resort and exception to running cables through the wall and above the ceiling.
 - 2. If surface mount cable runs are used:
 - a. Burrs will be removed from the inside of the plastic or metal surface mount pathway to prevent damage to cables pulled through the run.
 - b. Raceway manufacturer plastic bushings shall be installed at all outlet openings in raceway to prevent damage to cable.
 - c. "T", Splice, and corner pieces will be used to join runs. Runs will not be butted together without the appropriate joining pieces.

PART 3 - EXECUTION

- 3.1 HORIZONTAL PARAMETERS
 - A. Allowable Cable Bend Radius and Pull Tension:
 - 1. In general, communications cable cannot tolerate sharp bends or excessive pull tension during installation.

a. Bend radius for 4 pair UTP and F/UTP under no load (no pulling tension) shall not exceed four (4) times the outside diameter of the cable and eight (8) times the outside diameter of the cable under load (110N/25lbf). Note: Cable bend radius and pulling tensions for cables other than 4 pair

cable increase with the diameter and type of cable refer to the manufacturer's recommendations for specific requirements.

- 2. After installation, exposed cable and other surfaces must be cleaned free of lubricant residue. Use only lubricants specifically designed for cable installation.
- B. Pull Strings:
 - 1. Horizontal and Vertical Pathways
 - a. The pathway installer shall:
 - 1) Provide pull strings in all new conduits, including all conduits with cable installed as part of this contract.
 - 2) Provide pull strings in all new cable trays.
 - 3) Pull string shall have a rated average breaking strength of 200 pounds.
 - 4) During pulling sessions, pull strings must move freely to prevent cable jacket/cable damage.
 - 5) Free moving pull strings shall be provided in all locations where they are utilized as part of this contract.
- C. Conduit Fill:
 - 1. Reference manufacturer's Design Installation Guidelines manual.
 - 2. Comply with requirements of NFPA 70 (NEC)
 - 3. The number of cables placed in a pathway shall not exceed manufacture specifications, nor, will the geometric shape of a cable be affected.
 - a. Conduit pathways shall have a maximum fill ratio of 40% to allow for proper pulling tension and lay of the CAT6A F/UTP cable. A minimum of a 1" diameter conduit is required for new construction. Existing conduits will require the reduction of the number of cables placed in the conduit to meet the required fill ratio.

3.2 INTRA-BUILDING CABLE ROUTING

- A. Pathways
 - 1. The backbone subsystem shall include cable installed in a vertical manner between floor telecommunications rooms and the main or intermediate crossconnect in a multi-story building and cable installed horizontally between telecommunications rooms and the main or intermediate cross-connect in a long single-story building.
 - 2. Adequate riser sleeve/slot space shall be available with the ability to ingress the area later in all telecommunications rooms, such that no drilling of additional sleeves/slots is necessary. Proper fire stopping is required for all sleeves/slots per national and local codes. Install fire stop material designed specifically for the building construction conditions and to meet the existing fire stop material as directed by the building engineer.
 - 3. Backbone pathways shall be installed or selected such that the minimum bend radius of backbone cables is kept within manufacturer specifications both during and after installation.
 - 4. Where redundant paths are required, they shall be separated by a minimum of 24".
 - a. Separate innerducts and/or armored fiber are required for each leg of the redundant path.
 - b. Separate physical routing for each path shall be utilized where possible.

5. Building backbone cables shall be installed in "dry" locations that provide protection from moisture levels above the intended operating range of inside plant (ISP) cables. "Slab-on-Grade" building designs wherein pathways are installed underground on/in the poured concrete slabs that are in direct contact with the soil are considered wet locations and hence are not permitted.

HANGERS AND SUPPORTS FOR COMMUNICATION SYSTEMS

PART 1 - PRODUCTS

1.1 APPROVED PRODUCT

- A. The J-hooks shall meet or exceed the below characteristics of construction and features
 - 1. Provide broad based support for cabling to aid in maintaining overall system performance.
 - 2. Be available in 50.8mm (2") and 101.6mm (4") options
 - 3. Come equipped with a cable retention clip
 - 4. Offers a full line of mounting accessories.

1.2 APPROVED MANUFACTURERS

- A. Ericson / Caddy
- B. B-Line
- C. Stiffy

PART 2 - EXECUTION

- 2.1 J-HOOKS AND OTHER SUPPORTS SHALL BE INSTALLED SUCH THAT THEY:
 - A. Shall be supported with devices designed for this purpose and shall be installed independently of any other structural component. J-Hooks shall not use the suspended ceiling support wires or lighting fixture support wires.
 - B. The number of cables placed into the J-hooks shall be limited to a number that will not cause a change to the geometric shape of the cables.
 - 1. Limit to a 40% fill in new construction.
 - C. J-hooks shall not be spaced farther than 1.5 meters (5 ft.) apart, with a recommendation that they be space at 1 meter (3 ft.) apart. Note: Construction may require distances to exceed the maximum and are considered an exception requiring approval of project manager or building engineer.
 - D. J-hooks or better must be installed without exception.

2.2 UNACCEPTABLE INSTALLATIONS

- A. Free flight of cables
- B. Resting or attaching of cables on pipes, conduits, HVAC duct work, fire sprinkler systems, basket tray, basket tray supports or on the ceiling tiles/grid.

CONDUITS AND BACK BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Division 26 Electrical work
- PART 2 PRODUCTS
- 2.1 APPROVED PRODUCT
 - A. Conduits and Back boxes shall meet the construction requirements of the NEC for the type of structure and space in which they are installed and will be of the diameter and size to provide adequate fill, bend radius and connector space. Refer to section 270528.

PART 3 - EXECUTION

3.1 CONDUIT SIZING

- A. Conduit size shall be based on the type of cable installed and the required fill ratio and bend radius associated with the type of cable specified.
 - 1. Minimum conduit size to back box for CAT6A F/UTP shall be 1-inch EMT.
- B. Conduit and installation shall be provided by Division 26.
- C. All conduit stubs shall be installed with plastic bushings appropriate for the size of conduit used.
- D. Conduits that stub to accessible ceiling shall be installed in the direction to provide the shortest path to the TDR, complete with pull string.

3.2 BACK BOX SIZING

- A. New work back boxes for CAT6A F/UTP shall be a minimum of trade size 4-11/16" x 4-11/16" x 3" (depth) plus a 5/8" plaster ring to allow for proper bend radius and connector termination/installation. Side knockouts shall be avoided.
- B. Back boxes for rework shall meet the same specification as for new work.
 - 1. If existing back boxes or back boxes that are smaller due to construction restrictions, then devices such as extension rings, bezels or faceplates shall be used to modify the back box to insure proper bend radius and connector termination/installation.
 - a. Verification and approval of the size change must have DCO Infrastructure Cabling and engineering approval.

3.3 BACK BOX COMPOSITION

- A. All back boxes for IT systems shall be UL/CSA listed and approved for the purpose.
 - 1. Non-metal back boxes shall not be used for any interior IT related device.
- 3.4 SPECIAL CONDITIONS LEAD LINED WALLS FOR RADIATION CONTROL
 - A. Refer to the complete IT Lead Lined Wall Procedure Attachment Appendix 8

SECTION 270553

IDENTIFICATION FOR LOW-VOLTAGE CABLES AND LABELING

PART 1 - GENERAL

1.1 NOT USED

PART 2 - PRODUCTS

2.1 LABELING

- A. Structured cabling shall be labeled in accordance with ANSI/TIA 606-B standards.
- B. A unique identifier shall be marked on each faceplate to identify it as connecting hardware.
- C. Each port in the faceplate shall be labeled with its identifier.
- D. A unique identifier shall be marked on each piece of connecting hardware to identify it as connecting hardware.
- E. Each port on the connecting hardware shall be labeled with its identifier.
- F. Cable Labeling
 - 1. Label System
 - a. Labels Identification (Labeling) System:
 - 1) Brady
 - 2) Dymo
 - 3) Hellerman-Tyton
 - 4) Panduit
 - 5) Acceptable alternate
 - a) Approval from Data Center Operations Infrastructure Cabling team member required prior to bid
 - 2. Cable Labels
 - a. Self-adhesive vinyl or vinyl-cloth wraparound tape markers, machine printed with alphanumeric cable designations. Plastic, self-adhesive labels are not acceptable.
 - b. Each end of the Horizontal cables shall be labeled with a <u>mechanically</u> <u>generated</u> label within 300mm (12 in) of the end of the cable jacket with the link identifier which shall be a unique configuration determined by owner. This also applies to the Backbone Cables.
 - 3. Flat-surface labels
 - a. Self-adhesive vinyl or vinyl-cloth labels, machine printed with alphanumeric cable designations
 - 4. Contractor shall:
 - a. Provide transparent plastic label holders, and 4 pair marked colored labels.
 - b. Install colored labels according to the type of field as per ANSI/TIA 606-B.1 color code designations.
- G. PALLETTE
 - 1. Use the owners color-code guidelines for voice, data, cross-connect, riser, and backbone fields. Otherwise, use the ANSI/TIA 606-B designation strip color-code guidelines for voice, data, cross-connect, riser, and backbone fields. Color designations for F/UTP cable:

a. Intermountain Healthcare Standard Wiring Palettes for Horizontal Cabling

Use		Color
1)	Data & IP Phones	Blue
2)́	Analog Phone	Blue
3)	Security Card Readers	Grey/Yellow
4)	IP Security Cameras	Blue
5)	Fire Systems	Red
6)	TV Coax	Black
7)	Public Address/Telecom Patching in TEC only	White
8)	Clinical Engineering –	Orange
	 a) Monitoring, Bed Systems 	Orange
	b) Nurse Call (5e)	Orange
	 c) Real time patient data 	Orange
9)	Wireless	Yellow
10)	Foreseer (Belden 1422)	Red

H. Outlet/Jack/Faceplate Icons/labeling will match the color of the cable attached to the back side of the outlet/jack.

PART 3 - EXECUTION

3.1 GENERAL IDENTIFICATION

b.

- A. Installer shall label all cable, regardless of length.
- B. Identify system components, wiring, and cabling complying with TIA/EIA-606-B.1. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- C. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- D. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.
- E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- F. Cabling Administration Drawings: Show building floor plans with cabling administrationpoint labeling. Identify labeling convention and show labels for telecommunications rooms, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-B.1. Furnish electronic record of all drawings, in software and format selected by Owner
- 3.2 CONCEALED ENDS
 - A. Jacks, connectors, terminations, and similar that are in concealed locations such as above grid ceilings, shall have additional labeling. The additional label shall be on the face of the grid in a visible location, immediately adjacent to the termination location.

3.3 CABLE AND WIRE IDENTIFICATION

- A. Label each cable visibly within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
- B. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
- C. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - 1. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building mounted device shall be identified with name and number of particular devices as shown.
 - 2. Label each unit and field within distribution racks and frames.
- D. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-B.1.

EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Requirements of the following Division 26 sections apply to this section
 - 1. Basic electrical requirements
 - 2. Basic electrical materials and methods
 - 3. Grounding, earthing, and bonding
- B. Standards
 - 1. Minimum equipment room specifications shall comply with the 2010 AIA Guidelines for Design and Construction of Healthcare Facilities.
 - 2. Minimum recommended room sizes are requirements, not suggestions.
 - 3. Enterprise IS Architecture (EISA) maintains several documents around standards. The primary standards list is the <u>EISA Standards 2010 Master List</u>. Occasionally, there is a need to breakout specific standards for an area.

1.2 SUMMARY

- A. This Section specifically details the facilities design and operations standards to be utilized for Intermountain Health Care's Data Rooms (TEC) and data closets (TDR).
- 1.3 COMMON REQUIREMENTS
 - A. Rack layout and mounting
 - 1. Standard room layouts are located on the plans.
 - B. Rack and wall mounting locations
 - 1. Rack and wall space use is pre-designated at the design stage. Before mounting any equipment on a wall or in a rack, the location must be verified by the Div 27 sub-contractor and the Data Center Operations.

1.4 DEFINITIONS

- A. **Data Center** Major computer/technology/network facilities providing a significant percentage of the data and application services for the enterprise.
- B. **Data Rooms** ((TEC) Technology Equipment Center) Purpose built buildings or rooms that provide communications point-of-presence along with some data and applications services for a local facility or region.
- C. **TSER (Telecommunications Service Entrance Room)** Houses the point at which data and voice circuits and services enter the facility and outdoor cabling interfaces with the building infrastructure. Typically, the TSER will be located in the TEC.
- D. Data Closets ((TDR) Technology Distribution Room) Specific location within a facility that provides communication services for a specific area (floor, wing, office area) of that facility only. A secure, flexible, and easily managed location for the structured cabling systems, network electronics, clinical systems, nurse call systems, and other technology and communications equipment.

PART 2 - TECHNOLOGY ROOM SPECIFIC REQUIREMENTS

2.1 **TECHNOLOGY EQUIPMENT CENTER (TEC)**

Each Hospital will have a dedicated TEC which will serve as the main communications Α. point-of-presence along with data and application services for the local facility or region. Houses the core networking equipment, application servers and data storage devices that serve the buildings on the campus. The Telecommunications Service Entrance Room (TSER) will be in the same room.

2.2 **TEC IN HOSPITALS**

- Α. **Physical Construction**
 - The TEC should be in an area easily accessed for delivery of equipment and 1. high traffic without disturbing patient care.
 - 2. The size of the TEC will be based on the number of cabinets required to support the campus, plus 30% growth.
 - Walls will be constructed from the from the floor to the deck and be completely 3. sealed from surrounding spaces.
 - 4. A minimum 50% of open wall space will have ³/₄" fire rated plywood covering the walls.
 - 5. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
 - 6. The TEC should not have a ceiling other than the deck.
 - 7. Static Dissipative Tile is required in the TEC.
 - The door to the TEC shall be 8' tall and 4' wide to accommodate the cabinet 8. height. 9.
 - The walls of the TEC should not have any windows installed.
- Β. Lavout
 - 1. Cabinets will be in a cold isle configuration.
 - 2. Containment will be installed, including removable ceiling panels and isle doors.
- C. Electrical
 - The electrical distribution system will follow an A (BLUE) B (RED) design. 1.
 - 2. Each system A (BLUE) and B (RED) will be backed up by a dedicated UPS.
 - 3. Outlet type is L21-30
 - 4. All power is to be run in conduit.
 - 5. Lighting will be installed above each isle.
- D. Mechanical
 - The mechanical system will be a precision cooling solution installed in an in row, 1. N+1 configuration designed to maintain 72 degrees F at mid cabinet.
 - 2. The mechanical system will be redundant and concurrently maintainable including on the electrical supply.
 - 3. The system shall meet engineering specifications for the room at 110 degrees outside air at 4500 feet above sea level.
 - Chilled water, DX (Air Cooled) and Glycol (30% polyethylene glycol to water) are 4. all acceptable cooling strategies.
- E. Security
 - 1. Doors will be fitted with an auditable card reader.
- F. Fire System
 - 1. A pre-action dry pipe fire system will be installed
- G. Monitoring
 - Eaton Forseer system will be used to monitor all critical systems. 1.
 - 2. Forseeer cables will be run to all UPSs, cooling units and TDRs.
 - 3. One Cat 6a F/UTP cable to each UPS.
- 2.3 TEC in Clinics and Office Buildings

- A. Clinics and Offices will have a room which will serve as a TEC and TDR. This room will be sized to accommodate the multifunction of the space.
- 2.4 TEC/TDR in Clinics
 - A. Physical Construction
 - 1. TDRs should be in a central location off the main corridor away from patient areas.
 - 2. TDRs should be stacked from floor to floor.
 - 3. TDR size will be at least 12' x 14'.
 - 4. Walls will be constructed from the floor to the deck and be completely sealed from surrounding spaces.
 - 5. A minimum 50% of open wall space will have ³/₄" fire rated plywood covering the walls.
 - 6. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
 - 7. The TDR should not have a ceiling other than the deck.
 - 8. Flooring can be Static Dissipative Tile or Epoxy Paint.
 - 9. 3' wide door is required.
 - 10. When permissible, doors shall swing out of the room to provide maximum available space and rapid egress.
 - B. Layout
 - 1. Racks in a single row with the front being the cold isle.
 - 2. The front of the racks should face the door.
 - C. Electrical
 - 1. The electrical distribution system will follow an A (BLUE)-B (RED) design.
 - 2. System A(BLUE) will be backed up by a dedicated UPS.
 - 3. System B(RED) will be from a dedicated utility circuit.
 - 4. Outlet type is L6-30 and L5-20.
 - 5. All power is to be run in conduit.
 - 6. Lighting will be installed above each isle.
 - D. Mechanical
 - 1. TDRs will have redundant cooling
 - a. Primary cooling is from the facility cooling system via a dedicated source.
 - b. Secondary cooling is from a standalone split or ceiling mount source.
 - c. The secondary system will be fed from the facility generator equipment electrical source if available.
 - d. The Mechanical system will be designed to maintain 72 degrees F at mid rack.
 - e. The coordination scheme between primary and secondary cooling systems can be accomplished by setting the primary system to 72 degrees F and the secondary system to 75 degrees F.

E. Security

- 1. Doors will be fitted with an auditable card reader.
- F. Fire System
 - 1. TDRs will utilize the facility fire detection and suppression systems.
 - 2. Sprinkler heads should have a 200-degree fuse.
 - 3. Sprinklers should be protected from accidental activation.
- G. Monitoring
 - 1. TDRs will be monitored using Eaton/Foreseer.
 - 2. Run 3 foreseer cables to each TDR.
 - 3. One Cat6a F/UTP cable to each UPS.

2.5 **TEC/TDR** in Offices

- **Physical Construction** Α.
 - TDRs should be in a central location off a main corridor. 1.
 - TDRs should be stacked from floor to floor. 2.
 - TDR size will be at least 12' x 14'. 3.
 - 4. Walls will be constructed from the floor to the deck and be completely sealed from surrounding spaces.
 - 5. A minimum 50% of open wall space will have $\frac{3}{4}$ " fire rated plywood covering the walls.
 - 6. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
 - The TDR should not have a ceiling other than the deck. 7.
 - Flooring can be Static Dissipative Tile or Epoxy Paint. 8.
 - 3' wide door is required. 9.
 - When permissible, doors shall swing out of the room to provide maximum 10. available space and rapid egress.
- Β. Layout
 - Racks in a single row with the front being the cold isle. 1.
 - The front of the racks should face the door. 2.
- C. Electrical
 - The electrical distribution system will follow an A (BLUE)-B (RED) design. 1.
 - 2. System A(BLUE) will be backed up by a dedicated UPS.
 - System B(RED) will be from a dedicated utility circuit. 3.
 - Outlet type is L6-30 and L5-20. 4.
 - 5. All power is to be run in conduit.
 - Lighting will be installed above each row. 6.
- D. Mechanical
 - TDRs will have redundant cooling system designed to maintain 72 degrees F at 1. mid rack.
 - Primary cooling is from the facility cooling system via a dedicated source. a. b.
 - Secondary cooling is from a standalone split or ceiling mount source.
 - The secondary system will be fed from the facility generator 1) equipment electrical source if available.
 - The coordination scheme between primary and secondary cooling C. systems can be accomplished by setting the primary system to 72 degrees F and the secondary system to 75 degrees F.
 - Doors will be fitted with an auditable card reader. 2.
- E. Fire System
 - TDRs will utilize the facility fire detection and suppression systems. 1.
 - 2. Sprinkler heads should have a 200-degree fuse.
 - Sprinklers should be protected from accidental activation. 3.
- F. Monitoring
 - 1. TDRs will be monitored using Eaton/Foreseer.
 - Run 3 foreseer cables to each TDR. 2.
 - One Cat 6a F/UTP cable to each UPS. 3.

TECHNOLOGY DISTRIBUTION ROOM (TDR) 2.6

There shall be a minimum of one TDR on each floor of the facility. TDR's shall be Α. provided throughout the facility as necessary to meet the 292' (90-meter) maximum cables distance. The TDR is located on each floor within a facility to house equipment

and cabling, providing communication and technology services for a specific area of that facility. Based on the different needs of different facilities, the TDR's will be broken down into three categories. Hospital, Clinic and Office spaces.

2.7 TDR IN HOSPITALS

- A. Physical Construction
 - 1. TDRs should be in a central location off a main corridor and away from patient areas.
 - 2. TDRs should be stacked from floor to floor.
 - 3. TDR size will be at least 14' x 16'.
 - 4. Walls will be constructed from the floor to the deck and be completely sealed from surrounding spaces.
 - 5. A minimum 50% of open wall space will have ³/₄" fire rated plywood covering the walls.
 - 6. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
 - 7. The TDR should not have a ceiling other than the deck.
 - 8. Flooring can be Static Dissipative Tile or Epoxy Paint.
 - 9. 3' wide door is required.
 - 10. When permissible, doors shall swing out of the room to provide maximum available space and rapid egress.
- B. Layout
 - 1. Racks will be in a cold isle configuration.
 - 2. Two rows with the cold isle in the middle.
- C. Electrical
 - 1. The electrical distribution system will follow an A (BLUE)-B (RED) design.
 - 2. Each system A(BLUE) and B(RED) will be backed up by a dedicated UPS.
 - 3. Outlet type is L6-30 and L5-20.
 - 4. All power is to be run in conduit.
 - 5. Lighting will be installed above each row.
- D. Mechanical
 - 1. TDRs will have redundant cooling designed to maintain 72 degrees F at mid rack.
 - a. Primary cooling is from the facility cooling system via a dedicated source.
 - b. Secondary cooling is from a standalone split or ceiling mount source.
 - c. The secondary system will be fed from the facility generator equipment electrical source if available.
 - d. The coordination scheme between primary and secondary cooling systems can be accomplished by setting the primary system to 72 degrees F and the secondary system to 75 degrees F.
- E. Security
 - 1. Doors will be fitted with an auditable card reader.
- F. Fire System
 - 1. TDRs will utilize the facility fire detection and suppression systems.
 - 2. Sprinkler heads should have a 200-degree fuse.
 - 3. Sprinklers should be protected from accidental activation.
- G. Monitoring
 - 1. TDRs will be monitored using Eaton/Foreseer.
 - 2. Run 3 foreseer cables to each TDR.
 - One Cat 6a F/UTP cable to each UPS.
- 2.8 TDR in Clinics

- A. Physical Construction
 - 1. TDRs should be in a central location off a main corridor and away from patient areas.
 - 2. TDRs should be stacked from floor to floor.
 - 3. TDR size will be at least 10' x 12'.
 - 4. Walls will be constructed from the floor to the deck and be completely sealed from surrounding spaces.
 - 5. A minimum 50% of open wall space will have ³/₄" fire rated plywood covering the walls.
 - 6. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
 - 7. The TDR should not have a ceiling other than the deck.
 - 8. Flooring can be Static Dissipative Tile or Epoxy Paint.
 - 9. 3' wide door is required.
 - 10. When permissible, doors shall swing out of the room to provide maximum available space and rapid egress.
- B. Layout
 - 1. Racks in a single row with the front being the cold isle.
 - 2. The front of the racks should face the door.
- C. Electrical
 - 1. The electrical distribution system will follow an A (BLUE)-B (RED) design.
 - 2. System A(BLUE) will be backed up by a dedicated UPS.
 - 3. System B(RED) will be from a dedicated utility circuit.
 - 4. Outlet type is L6-30 and L5-20.
 - 5. All power is to be run in conduit.
 - 6. Lighting will be installed above each isle.
- D. Mechanical
 - 1. TDRs will have redundant cooling designed to maintain 72 degrees F at mid rack
 - a. Primary cooling is from the facility cooling system via a dedicated source.
 - b. Secondary cooling is from a standalone split or ceiling mount source.
 - c. The secondary system will be fed from the facility generator equipment electrical source if available.
 - d. The coordination scheme between primary and secondary cooling systems can be accomplished by setting the primary system to 72 degrees F and the secondary system to 75 degrees F.
- E. Security
 - 1. Doors will be fitted with an auditable card reader.
- F. Fire System
 - 1. TDRs will utilize the facility fire detection and suppression systems.
 - 2. Sprinkler heads should have a 200-degree fuse.
 - 3. Sprinklers should be protected from accidental activation.
- G. Monitoring
 - 1. TDRs will be monitored using Eaton/Foreseer.
 - 2. Run 3 foreseer cables to each TDR.
 - 3. One Cat 6a F/UTP cable to each UPS.
- 2.9 TDR in Offices
 - A. Physical Construction
 - 1. TDRs should be in a central location off a main corridor.
 - 2. TDRs should be stacked from floor to floor.
 - 3. TDR size will be at least 10' x 12'.
 - 4. Walls will be constructed from the floor to the deck and be completely sealed from surrounding spaces.

- 5. A minimum 50% of open wall space will have ³/₄" fire rated plywood covering the walls.
- 6. Fire rated plywood shall be painted with fire resistant paint, leaving the fire rating stamp un-painted.
- 7. The TDR should not have a ceiling other than the deck.
- 8. Flooring can be Static Dissipative Tile or Epoxy Paint.
- 9. 3' wide door is required.
- 10. When permissible, doors shall swing out of the room to provide maximum available space and rapid egress.
- B. Layout
 - 1. Racks in a single row with the front being the cold isle.
 - 2. The front of the racks should face the door.
- C. Electrical
 - 1. The electrical distribution system will follow an A (BLUE)-B (RED) design.
 - 2. System A(BLUE) will be backed up by a dedicated UPS.
 - 3. System B(RED) will be from a dedicated utility circuit.
 - 4. Outlet type is L6-30 and L5-20.
 - 5. All power is to be run in conduit.
 - 6. Lighting will be installed above each isle.
- D. Mechanical
 - 1. TDRs will have redundant cooling designed to maintain 72 degrees F at mid rack.
 - a. Primary cooling is from the facility cooling system via a dedicated source.
 - b. Secondary cooling is from a standalone split or ceiling mount source.
 - c. The secondary system will be fed from the facility generator equipment electrical source if available.
 - d. The coordination scheme between primary and secondary cooling systems can be accomplished by setting the primary system to 72 degrees F and the secondary system to 75 degrees F.
- E. Security
 - 1. Doors will be fitted with an auditable card reader.
- F. Fire System
 - 1. TDRs will utilize the facility fire detection and suppression systems.
 - 2. Sprinkler heads should have a 200-degree fuse.
 - 3. Sprinklers should be protected from accidental activation.
- G. Monitoring
 - 1. TDRs will be monitored using Eaton/Foreseer.
 - 2. Run 3 foreseer cables to each TDR.
 - 3. One Cat 6a F/UTP cable to each UPS.

PART 3 - EXECUTION

3.1 COMMON REQUIRED CHARACTERISTICS FOR TDR, TEC, & TSER

- A. SECURITY COMMON
 - 1. Any visitor, vendor, or contractor requiring access to a Technology Room, who does not have appropriate approvals or clearances, must be escorted by a properly credentialed tech from the appropriate system.
 - 2. The main technology equipment shall be secured in a dedicated, locked Technology Room.
 - 3. Unused access jacks should be disconnected from the patch panels, and unused switch ports disabled.
 - 4. Technology Rooms shall be dedicated to the data and telecommunications functions.

- 5. Access to the Technology Room shall be restricted to authorized service personnel and shall not be shared with building services that may interfere with the main networking interfaces, the networking equipment, the application servers, data storage devices, and telecommunications equipment systems.
- 6. Technology Rooms shall not be used for building maintenance services, custodial services, or be used for general storage.
- 7. Security cameras may be installed in each Technology Room upon owner's preference.
 - a. At entrances
 - b. At the end of each row of equipment racks
 - c. In electrical and mechanical rooms serving the Technology Room
 - d. Approved camera manufacturers: Axis and Bosch
- 8. Access to a Technology Room shall be restricted and controlled by an auditable access control system. The access control system shall comply with the requirements of this document.
- 9. All secure data areas must be secured by an auditable badge reader system.
 - a. Refer to plans or quotes for detailed information
 - b. Approved supplier: Intermountain Lock and Security Supply / 3106 S Main St / Salt Lake City, UT 84115 / 801-486-0079
 - c. Owner of security locks and badge readers: Intermountain Healthcare Data Center
 - d. For programing on the Medeco XT Electronic Keys contact: Intermountain Healthcare Data Center
- B. PHYSICAL ENVIRONMENT
 - 1. The Technology Room shall be in a dry area not subject to flooding and should be as close as possible to the electrical service room in order to reduce the length of the bonding conductor to electrical grounding system.
 - 2. The Technology Room shall be in an accessible, non-sterile area.
 - 3. Access to the Technology Room shall be directly off a corridor and not through another space.
 - 4. The Technology Room shall be located to avoid large ducts, beams, and other building elements that may interfere with proper cable routing and may limit future access.
 - 5. Mechanical and electrical equipment or fixtures not directly and exclusively related to the support of the Technology Room shall not be installed in, pass through, or enter the Technology Room.
 - 6. Technology rooms shall not be located on exterior walls.
 - 7. Technology rooms shall not have windows or other exterior openings.

3.2 TECHNOLOGY DISTRIBUTION ROOM (TDR) / DATA CLOSET

A. ELECTRICAL ENVIRONMENT

- 1. Separation from sources of EMI shall be in accordance with ANSI/TIA/EIA-569-C and local codes.
- 2. Communication grounding/earthing and bonding shall be in accordance with applicable codes and regulations. It is recommended that the requirements of IEC/TR3 61000-5-2 Ed. 1.0, ANSI-J-STD-607-C, or both be observed throughout the entire cabling system.
 - a. All racks, equipment frames, furniture, flooring, ductwork within the IT space shall be bonded to the Central Ground bar provided and installed by Division 26.

- 1) No AC electrical equipment bonding will be done at the Central Ground Bar. AC electrical grounding and bonding will be done according to the NEC.
- 3. Some TDRs will require redundant power and data feeds. See plans and drawings.
- 4. Lighting in the TDRs should be a minimum of 500 lx (50-foot candles) at the lowest point of termination.
 - a. Light switch should be easily accessible when entering the room.
 - b. Lighting will be fed from the generator system or have fixtures with battery backup.
- 5. A minimum of two dedicated duplex or two dedicated simplex electrical outlets, each on a separate 120V 20A circuit, should be provided for equipment power. Additional convenience duplex outlets should be placed at 1.8 m (6 ft) intervals around the perimeter walls.
 - a. Only twist lock receptacles will be used for rack power points. Type L-6-30R for 208 volt and type Nema L-5-20R for 120 volt
- 6. All power is to originate from the facilities generator backup system with one system (A-B) originating from the critical system.
- 7. All circuits serving the TDR and the equipment within it shall be dedicated to serving the TDR.
- 8. TDRs shall be connected by a backbone of insulated, #6 (minimum) to 3/0 AWG stranded copper cable between all technology rooms. This cable shall be provided and installed by Division 26.
- B. MECHANICAL ENVIRONMENT
 - Reliable cooling shall be provided.
 - a. Based on criticality tiering structure individual rooms may require redundant, concurrently maintainable cooling systems.
 - b. Tier structure level shall be determined from the design guide.
 - 2. Heat load shall be calculated at 4KW per equipment rack
 - 3. Temperature and humidity in the TDR shall be controlled to an operating range of 64 to 75 degrees F (18 to 24 degrees C) with 30 to 55 percent relative humidity.
- C. EQUIPMENT

1.

- 1. Each TDR shall be connected to the TEC (Technology Equipment Center) to provide a building-wide network and communications system.
- 2. All racks, cabinets, sections of cable tray, and metal components of the technology system that do not carry electrical current shall be grounded.

3.3 TECHNOLOGY EQUIPMENT CENTER (TEC) / DATA ROOM

- A. ELECTRICAL ENVIRONMENT
 - 1. The TDR and TEC electrical environments shall match with the following exceptions:
 - 2. All circuits serving the TEC and the equipment within it shall be dedicated to serving the TEC.
- B. MECHANICAL ENVIRONMENT
 - 1. TEC and TSER have the same mechanical environment.
 - 2. Reliable cooling shall be provided.
 - 3. Heat load shall be calculated at 4KW per equipment rack
 - 4. Temperature and humidity in the TEC shall be controlled to an operating range of 64 to 75 degrees F (18 to 24 degrees C) with 30 to 55 percent relative humidity.
- C. EQUIPMENT
 - 1. Each TEC shall be connected to the TSER (Telecommunications Service Entrance Room) to provide an enterprise-wide network and communications system.

2. All racks, cabinets, sections of cable tray, and metal components of the technology system that do not carry electrical current shall be grounded.

3.4 TELECOMMUNICATION SERVICE ENTRANCE ROOM (TSER) / D-MARC

- A. PURPOSE
 - 1. The TSER (Telecommunications Service Entrance Room) equipment subsystem shall consist of shared (common) electronic communications equipment in the TEC or the TSER required to interface this equipment and distribution hardware to the transmission media of enterprise Wide Area Network (WAN) infrastructure.
 - 2. The TSER shall be equipped to contain telecommunications equipment, cable terminations, and associated cross-connects.
 - a. Note that the AIA/State guidelines specify that the minimum size for a TSER is 12' by 14'.
 - b. Doors shall swing out of the room to provide maximum available space and rapid egress.
 - 1) Exception: where prohibited by fire or safety code.
 - 3. The TSER shall be dedicated to the telecommunications function.
- B. MECHANICAL ENVIRONMENT
 - 1. Reliable cooling and heating shall be provided.
 - 2. Temperature and humidity in the TSER shall be controlled to an operating range of 64 to 75 degrees F (18 to 24 degrees C) with 30 to 55 percent relative

humidity.

- C. EQUIPMENT
 - 1. The TSER (Telecommunications Service Entrance Room) shall be connected to the specified WAN equipment to provide connectivity to the enterprise-wide network and communications system.
 - 2. All racks, cabinets, sections of cable tray, and metal components of the technology system that do not carry electrical current shall be grounded.

CABINETS, RACKS, FRAMES, AND ENCLOSURES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Cabinets and racks specifications are in TIA569-C and in the ET pages of the plans.
- PART 2 PRODUCTS
- 2.1 APPROVED PRODUCT
 - A. OPEN RACKS
 - 1. For rack-mounted installations in a telecommunications room the installer shall use a 19 inch by 3-inch-deep equipment rack.
 - a. Equipment Rack 19" X 8', 52 RU, Black Chatsworth 55053-715
 - b. Equipment Rack 19" X 7', 45 RU, Black Chatsworth 55053-703
 - c. Exception: Where other size cabinets are specified by design team at owner's direction
 - B. WIRE MANAGERS
 - 1. Part Numbers
 - a. Vertical Wire Manager, Double Sided, Black 10" wide x 8' tall Chatsworth 40096-715
 - b. Vertical Wire Manager, Double Sided, Black 10" wide x 7' tall Chatsworth 40096-703
 - c. Horizontal Wire Manager, 4U Panduit PEHF4
 - 2. Typical Standard Layout
 - a. Layout is 10" vertical manager, then 19" rack, then 10" vertical manager, then 19" rack, then 10" vertical manager.
 - b. Where more than 2 racks are called for, maintain the pattern of 10" vertical wire management on the ends, and 10" vertical management between racks.
 - C. CABINETS
 - 1. Standard Cabinet
 - a. 2-Sided Cabinet Vertiv E4562121120001S
 - b. 1-Sided Cabinet Vertiv E4562122120001S
 - 2. Wall Mount Cabinet
 - a. Vertical Wall Mount Cabinet Legrand VWMSD-4RU-42-B
 - b. Vertical Wall Mount Cabinet Legrand VWMSD-8RU-42-B
 - c. Fixed Mounting Rail Kit Legrand VWM-RR-4RU
 - d. Fixed Mounting Rail Kit Legrand VWM-RR-8RU
 - e. Pivoting Mounting Rail Kit Legrand VWM-PIV-4RU
 - f. Fan Kits with 115 VAC fans Legrand VWMFK-115
 - g. Top Brush Grommet Kit Legrand VWMBGK
 - h. Circular Knockout Grommet Kit Legrand VWMGR-30

TERMINATION BLOCKS AND PATCH PANELS

PART 1 - GENERAL

RELATED DOCUMENTS 1.1

- Α. Requirements of the following Division 26 sections apply to this section
 - Basic electrical requirements 1.
 - 2. Basic electrical materials and methods
 - 3. Grounding, Earthing, and Bonding

PART 2 - PRODUCTS

2.1 APPROVED PRODUCT

- Α. PATCH PANELS – COPPER
 - 48 Port CAT 6A Shielded, 1RU Angled Patch Panel with Outlets -1. Siemon Z6AS-PA-48A
 - 48 Port CAT 6A Shielded, 1RU Flat Patch Panel with Outlets -2. Siemon Z6AS-PNL-U48K
 - 3. 24 Port CAT 6A Shielded, 1RU Plat Patch Panel with Outlets -Siemon Z6AS-PNL-U24K
 - 4. 48 Port CAT 5e, 2RU Angled Patch Panel, 110 Style - Siemon HD5-48A
 - 5. 48 Port CAT 5e, 2RU Flat Patch Panel, 110 Style - Siemon HD5-48
 - 24 Port CAT 5e, 1RU Angled Patch Panel, 110 Style Siemon HD5-24A 6.
 - 7. 24 Port CAT 5e, 1RU Flat Patch Panel, 110 Style - Siemon HD5-24
 - 19" Angled Blank Filler Panel, 1U, Black Siemon PNL-BLNKA-1 8.
 - Provide blank fillers where appropriate. a.
 - 9. 19" Flat Blank Filler Panel, 1U, Black - Siemon PNL-BLNK-1 Provide blank fillers where appropriate.
 - a.
- Β. PATCH PANELS – FIBER
 - Rack Mount Fiber Enclosure Siemon RIC3-48E-01 1.
 - Wall Mount Fiber Enclosure Siemon SWIC3G-AA-01 2.
 - Blank Adapter Plate, Black Siemon RIC-F-BLANK-01 3.
 - 12F-LCUPC-SM-Loaded-Splice Cassette Siemon RSC12-LCUSMA-B1 4.
- **CABINET PATCH PANEL FIBER** C.
 - 1. Lightstack Surface Mount Module Enclosure - Siemon - LSE-01
 - 2. Lightstack Surface Mount Splice Enclosure – Siemon – LSS-01
 - LightStack LC Adapter Plate Siemon LS-LS12-01C-AQ 3.

PART 3 - EXECUTION

3.1 INSTALLATION

- For angled patch panels, the terminations shall cross in the back to the opposite path of Α. the patch panel to maximize available cable bend radius.
- See illustration below in this section: Β.

HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section.
- B. Section 27 05 28 Pathways for Communications Systems

1.2 SUMMARY

- A. This section includes requirements and guidelines for the installation of F/UTP, ScTP, and Fiber horizontal cabling.
 - 1. Horizontal cable and its connecting hardware provide the means of transporting signal between the telecommunications outlet/connector and the horizontal cross-connect located in the communications termination room This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.

PART 2 - EXECUTION

- 2.1 HORIZONTAL CABLE
 - A. Quantity
 - 1. Two horizontal cables shall be routed to each work area. Cable connected to information outlets shall be CAT6A F/UTP, 4-pair, 100Ω balanced twisted-pair.
 - a. A work area is approximately 100 sq. ft. and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
 - b. Two (2) standard cables shall be run to each wireless access point location per current best practice.
 - c. One (1) standard horizontal cable may be run to the following locations:
 - 1) Each building control system enclosure as directed by the building controls vendor.
 - 2) Each IP Video Surveillance Camera at each of the designated locations.
 - 3) Each wall phone.
 - 4) Each wall monitor/display.
 - 2. For voice or data applications, 4-pair balanced twisted-pair or fiber optic cables shall be run using a star topology from the telecommunications room serving that floor to every individual information outlet. The customer prior to installation of the cabling shall approve all cable routes.
 - 3. Installation interfaces shall be T568B wiring standards.
 - B. Maximum Length
 - 1. All horizontal cables, regardless of media type, shall not exceed 90 m (295 ft.) from the telecommunications outlets in the work area to the Floor
 - 2. Distributor/Horizontal Cross connect (FD/HC) located in the Telecommunication Room.

- 3. The combined length of jumpers, patch cords inclusive of equipment cables in the Floor Distributor/Horizontal Cross-connect shall not exceed 5m (16 ft.).
- 4. The maximum length of Work Area equipment cables shall be 5m (16 ft.) If a

MuTOA (Multiple User Telecommunication Outlet) environment exists, then the maximum equipment cable shall not exceed 22m (72 ft.) (Lake Park Facility)

- 5. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
- C. Minimum Length
 - 1. It is recommended that a minimum horizontal cable distance of 15m (49 ft.) shall be maintained between the telecommunications room and the work area. This will provide adequate Insertion Loss/Attenuation for applications over 1 Gig.
 - 2. For installations with consolidation points, a minimum horizontal cable distance of 15m (49 ft.) shall be maintained between the telecommunications room and consolidation point, and 5m (16 ft.) between the consolidation point and the work area. This will provide adequate Insertion Loss/Attenuation for applications over 1 Gig.
- D. Splice Free
 - 1. Each run of balanced twisted-pair cable between Floor Distributor/Horizontal Cross-connect in the telecommunication room and the information outlet at the Work Area shall not contain splices.
 - 2. Bridged taps and splices shall not be installed in the horizontal cabling
- E. Protection 1. Ho
 - Horizontal distribution cables shall not be run in under slab raceways that are damp or wet locations unless suitably rated for the environment.
 - a. Under slab conduits that are outside of the building are considered wet locations.
- F. Slack -Service Loop Routing
 - 1. In the work area, a minimum of 1m (3 ft) should be left for balanced twisted-pair cables and fiber cables.
 - 2. In telecommunications rooms a minimum of 3m (10 ft) of slack should be left for all cable types. This slack must be neatly managed on trays or other support types

2.2 SEPARATION

- A. Separation from EMI sources
 - 1. Installation shall comply with BICSI TDMM and TIA/EIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and EMI Source shall be as follows:
 - a. EMI Source Rating Less Than 2 kVA: A minimum clearance of 5 inches.
 - b. EMI Source Rating between 2 and 5 kVA: A minimum clearance of 12 inches.
 - c. EMI Source Rating More Than 5 kVA: A minimum clearance of 24 inches.
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or EMI Source shall be as follows:
 - a. EMI Source Rating Less Than 2 kVA: A minimum clearance of 2-1/2 inches.
 - b. EMI Source Rating between 2 and 5 kVA: A minimum clearance of 6 inches.

- c. EMI Source Rating More Than 5 kVA: A minimum clearance of 12 inches.
- 4. Separation between communications cables in grounded metallic raceways and power lines and EMI Source located in grounded metallic conduits or enclosures shall be as follows:
 - a. EMI Source Rating Less Than 2 kVA: A minimum clearance of 2 inches.
 - b. EMI Source Rating between 2 and 5 kVA: A minimum clearance of 3 inches.
 - c. EMI Source Rating More Than 5 kVA: A minimum clearance of 6 inches.
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or 1 HP and Larger: A minimum clearance of 48 inches.
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum clearance of 5 inches
- B. Other Clearances
 - 1. Horizontal pathways used for telecommunications cabling shall be dedicated for telecommunications use and not shared by other building services.
 - 2. In a false ceiling environment, a minimum of 75 mm (3 in) shall be observed between the cable supports and the false ceiling.

2.3 PATHWAY

- A. Cable Tie Wraps
 - 1. Cable Tie Wraps are not permitted as a pathway device or support.
 - 2. Tie Wraps shall only be used to provide strain relief at termination points.
 - 3. Tie wraps shall not be over tightened to the point of deforming or crimping the cable sheath.
- B. Constraints
 - 1. Horizontal cables shall be installed in "dry" locations that provide protection from moisture levels above the intended operating range of inside plant (ISP) cables.
 - a. If cabling is intentionally or unintentionally exposed to water or otherwise coated with or exposed to direct contact with solvents, paints, adhesives, sealants or other third-party materials, Siemon will not warranty the cabling product or if after the warranty has been issued, it would become void. Therefore, any cabling that has been exposed as listed above, must be removed and replaced.
 - 2. Horizontal pathways shall be installed or selected such that the minimum bend radius of horizontal cables is kept within manufacturer specifications both during and after installation.
 - 3. A minimum of a 1" diameter conduit is recommended for new construction. Existing conduits will require the reduction of the number of cables placed in the conduit to meet the required fill ratio.
 - a. The Contractor shall observe the bending radius and pulling strength requirements of the 4-pair balanced twisted-pair and fiber optic cable during handling and installation.
 - 4-Pair UTP, F/UTP, S/FTP bend radius = 4 times outside diameter of cable under no-load conditions. 8 times the outside diameter under load (pulling 110 N/25 lbf.) conditions.
 - 2) Multi-pair or Hybrid cable bend radius = 10 times the outside diameter under all conditions.
 - 3) 2-Fiber and 4 Fiber cables bend radius = 25mm (1 in.) under noload conditions. 50mm (2 in.) under load (pulling 222 N 50 lbf)
 - 4. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

- 5. Cable that passes through non-Intermountain Healthcare spaces must be installed in conduit.
- 6. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
- 7. Do not install bruised, kinked, scored, deformed, abraded cable or otherwise damaged cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 8. During Cold-Weather Installation, bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- C. Capacity
 - 1. The number of horizontal cables placed in a cable support or pathway shall be limited to the number of cables that will not alter the geometric shape of the cables.
 - 2. Maximum pathway (cable tray/basket tray/wireway) capacity shall not exceed a calculated fill ratio of 50% to a maximum of 75 mm (3 in) inside depth.
 - 3. Maximum conduit pathway capacity shall not exceed a 40% fill. However, perimeter and furniture fill are limited to 60% fill for move and changes. A 40% fill ratio is the maximum fill for CAT6A F/UTP cables.
 - 4. All unused cables shall be removed
 - a. Or labeled at both ends designating future purpose and locations of each end.

COPPER CABLE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 PALLETTE

A. Color palette shall be in accordance with Section 27 05 53

1.3 SUMMARY

- A. This Section covers approved F/UTP cable types
- B. Systems shall be CAT6A F/UTP unless a written deviation has been approved.
- C. CAT6A UTP and CAT6A F/UTP shall not be mixed on the same campus.
- D. This cable shall be used for both voice and data applications and shall be plenum rated where required by code

PART 2 - PRODUCT

2.1 APPROVED PRODUCT

- A. TYPE 6A F/UTP (foil over unshielded twisted pair) Siemon
 - 1. CAT 6A F/UTP Riser, (CMR) Siemon 9A6R4-A5-(XX)-R1A
 - 2. CAT 6A F/UTP Plenum, (CMP) Siemon 9A6P4-A5-(XX)-R1A
 - a. (XX) = Color 06, Blue 05, Yellow 09, Orange

FACEPLATES AND CONNECTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITION

- A. Work-Area Cabling
 - 1. The work area is comprised of work area outlet/connectors, faceplates, outlet boxes and equipment cords. It acts as the interface to the horizontal cabling from the horizontal cross-connect (HC) to telephone, network equipment, wireless access points (WAP) and OIP devices.

PART 2 - PRODUCT

2.1 OUTLETS

- A. Category 6A Jack Siemon Z6A-S(XX)
 - 1. Use (XX) to specify color.
 - 2. Universal design allows the same outlet to be mounted in a flat or angled orientation.
- B. Category 6A Z-Plug WO Latch Protector Siemon ZP1-6AS-(00)S
- C. Voice Outlet, Single Gang Faceplate, White W/Wall Hung Phone W/6A Insert Siemon MX-WP-Z6AS-SS

2.2 FACEPLATES/BOXES

- A. 10G Single Gang Faceplate, White, 4 Position Siemon 10GMX-FP-04-02
- B. MAX Single Gang Faceplate, White Siemon MX-FP-S-(XX)-02
 1. USE (XX) to specify the number of ports.
- C. MAX Single Gang Faceplate, Stainless Steel, 4 Position, with Label Holder Siemon MX-FP-S-04-SS-L
 - 1. To be used in the Operation Rooms
- D. Surface Mount Box, White, 2 Position Siemon MX-SMZ2-02
- E. Furniture Faceplate, Black Siemon MX-UMA-01
- F. Conference Room Table Inserts should include and HDMI port.

PART 3 - EXECUTION

3.1 WORK AREA TERMINATION

A. All balanced twisted-pair cables wired to the telecommunications outlet/connector, shall have 4-pairs terminated in eight-position modular outlets in the work area. All pairs shall be terminated.

- B. Outlet/connector back boxes shall be a minimum 4-11/16 square box (4-11/16" x 4-11/16" x 3") with a minimum single gang 5/8" mud ring for new construction to accommodate the CAT6A connectors.
- C. Existing back boxes will require a faceplate stand-off and/or a faceplate that can accommodate a bezel to extend the CAT6A jack out to allow the installation of the CAT6A connectors.
- D. All outlets need to be installed in the angled position.

PATCH CABLES

PART 1 - GENERAL

1.1 SUMMARY

Α. This section is issued as a guide for patch cable installations in the Data Center, wiring closets (TDR) and user areas where patch cables are required for connectivity to IP and TDM phones, and IP data connectivity needs for Intermountain Healthcare. All patch cables will support voice, data, and imaging applications within the Intermountain Healthcare Enterprise.

PART 2 - PRODUCTS

APPROVED PRODUCT 2.1

- Patch Cable, CAT 6A Shielded Siemon SP6A-S (XX)-(XX) Α.
 - Use 1st (xx) to specify length. Use 2nd (xx) for color. 1.
- Β. Patch Cable, CAT 5e, Orange - Siemon MC5-(XX)-0909 1. Use (xx) to specify length. For use with NURSE CALL only.
- C.
 - Patch Cable, CAT 5e, White Siemon MC5-(XX)-0202
 - Use (xx) to specify length. 1.
 - For use in the TEC for the Copper Backbone Patch only. 2.
- Patch Cable, Fiber, Singlemode Duplex W/LC Connectors, Yellow -D. Siemon FJ2-LCULCUL-(xx)
 - Use (xx) to specify length. 1.
- Patch Cable, Fiber, Multimode Duplex W/LC Connectors, Agua -E. Siemon FJ2-LCLC5V-(xx)AQ
 - Use (xx) to specify length. For use in the Data Center. 1.

PART 3 - EXECUTION

- 3.1 PALLETTE
 - Α. Patch Cable Color Codes
 - The Intermountain Healthcare Enterprise standard for patch cable color is in 1. Section 27 05 53.
 - 2. The patch cable color shall match the feed cable color to identify the service provided.
 - Β. Contractor furnished
 - All patch cables for the TEC, TDR's shall be included in the low voltage contract 1 and will be required to match or exceed the existing level of the installed structured cabling system.
 - 2. All patch cables for the user areas shall be Owner furnished and will be required to match or exceed the existing level of the installed structured cabling system.
 - 3. All patch cables shall be Owner installed.
 - 4. The quantity of patch cables to be provided by the low voltage contractor shall be specified in the plans.
 - 50% 5ft 30% 7ft 15% 10ft 5% 15ft a.

SECTION 27 52 23 NURSE CALL/CODE BLUE SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Specification Section 27 00 00 "Intermountain Healthcare Structured Cabling Standards".

1.2 SUMMARY

- A. Section includes raceways, back boxes and cabling for a Hill-Rom Navicare Nurse Call (NNC) system.
- B. All active components and software to be provided, installed and programmed by Hill-Rom Vendor under contract with the owner.

PART 2 - PRODUCTS

2.1 NURSE-CALL SYSTEM:

A. Nurse-Call System: Hill-Rom Navicare Nurse Call (NNC) System. All electronic components

2.2 CONDUCTORS AND CABLES

- A. Data Cable and Hardware: Category 6, Orange, UTP and UTP hardware. Comply with requirements in Section 270000.
- B. Power Conductors and Cables: Copper, solid, No. 20 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Grounding Conductors and Cables: Copper, stranded, No. 16 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Wiring Method:
 - 1. Install cables in raceways and J-Hooks except within consoles, cabinets, desks, and counters
 - a. Conceal raceway and cables except in unfinished spaces.
 - Conduit and Boxes: Comply with requirements in Section 26 05 33 "Raceway and Boxes for Electrical Systems." Flexible metal conduit shall not be used.
 - a. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.
 - b. Coordinate each outlet box type with Hill-Rom.
- B. Install cables without damaging conductors, shield, or jacket.
- C. Do not bend cables, while handling or installing, to radii smaller than as recommended by manufacturer.
- D. Pull cables without exceeding cable manufacturer's recommended pulling tensions.
 - 1. Pull cables simultaneously if more than one is being installed in same raceway.
 - 2. Use pulling compound or lubricant if necessary. Use compounds that will not damage conductor or insulation.
 - 3. Use pulling means, including fish tape, cable, rope, and basket-weave wire or cable grips, that will not damage media or raceway.
- E. Install exposed raceways and cables parallel and perpendicular to surfaces or exposed structural members, and follow surface contours. Secure and support cables by straps, staples, or similar fittings designed and installed so as not to damage cables. Secure cable at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, or fittings.
- F. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- G. Separation of Wires: Separate speaker/microphone, line-level, speaker-level, and power-wiring runs. Run in separate raceways or, if exposed or in same enclosure, provide 12-inch (300-mm) minimum separation between conductors to speaker/microphones and adjacent parallel power and telephone wiring. Provide separation as recommended by equipment manufacturer for other conductors.
- H. Splices, Taps, and Terminations: Make splices, taps, and terminations on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Install terminal cabinets where there are splices, taps, or terminations for eight or more conductors.

- I. Impedance and Level Matching: Carefully match input and output impedances and signal levels at signal interfaces. Provide matching networks if required.
- J. Identification of Conductors and Cables: Comply with requirements in Section 271500 "Communications Horizontal Cabling" for cable administration, cable schedule, and cable and wire identification.
- K. Equipment Identification:
 - 1. Comply with requirements in Section 260553 "Identification for Electrical Systems" for equipment labels and signs and labeling installation requirements.
 - 2. Label stations, controls, and indications using approved consistent nomenclature.

3.2 EXISTING SYSTEMS

A. Examine existing systems for proper operation, compatibility with new equipment, and deficiencies. If discrepancies or impairments to successful connection and operation of interconnected equipment are found, report them and do not proceed with installation until directed. Schedule existing systems' examination so there is reasonable time to resolve problems without delaying construction.

3.3 GROUNDING

- A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other signal impairments.
- B. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding except at connection to main building ground bus.
- C. Grounding Provisions: Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

APPENDIX 01 – DEVIATION REQUEST PROCESS

PART 1 - GENERAL

1.1 DEFINITIONS

- A. Cable Plant Deviation
 - 1. A business need to not fully comply with the requirements of the "Division 27 Communications and Structured Cabling Specification document"
- B. Cable Plant Deviation Request form.
 - 1. The document is available from the Facilities Planning team, the Data Center Ops team, or the Infrastructure Cabling team.
 - 2. Usage:
 - a. The deviation request form shall be used if there is a business need to not comply with the requirements of the "Division 27 Communications and Structured Cabling Specification document"
 - b. The deviation request form should also be used to propose a change to that document. Always verify that you are using the current version of the Standard before requesting a modification.

PART 2 - PROCESS

Β.

- 2.1 STANDARDS MODIFICATION
 - A. Check the box and explain why the standard should be modified.
- 2.2 ALTERNATE PRODUCT
 - A. The deviation form must be completed, submitted through channels, and approved prior to any deviation from the specifications. This includes issuing change orders.
- 2.3 AUTHORIZED SIGNATURES
 - A. Both the Standards Holder and the DCO Manager signatures are required for a deviation to be valid.
- 2.4 DEVIATION REVIEW PROCESS STEPS
 - A. First be sure that there is an actual need. Then be certain that your manager, supervisor, or project manager agrees with the requested deviation. Be sure to state this or obtain their signature on the deviation form. By doing so you are confirming that your supervisor or project manager has approved.
 - The requestor will then complete sections 1, 2, and 3 of the deviation form.
 - 1. The requestor should then digitally sign in the designated location at the end of Section 3. Do not write in the sections below 3.
 - C. Forward the saved copy of this form to the Standards Holder via email.
 - 1. Email to: <u>melissa.lopez2@imail.org</u>

- D. The Standards Holder will then review and evaluate the request. The requestor should be prepared to provide plans, specifications, and competitive bids if requested. Any email threads or meeting discussions regarding the issue will be taken into consideration.
- E. The Standards Holder will then cast an Approve or Deny vote and forward the request to the DCO Manager for a decision.
- F. When the decision has been made by the Operations Manager, the Standards Holder will then notify the requestor by returning the completed and signed form via email.
- G. An approved deviation will have the final disposition button 'Approved' and be signed by at least 2 people. One will be from the Standards Holder, and the other the DCO Manager. Other signatures may be required for specific features and areas such as Safety, Security, Print, Medical group, etc.

PART 3 - EXECUTION

- 3.1 POST DECISION EXECUTION
 - A. DENIED
 - 1. If the requester is not satisfied with the decision, they may file an appeal with the Data Center Operations manager (shawn.folkman@imail.org), who will then escalate the issue to the appropriate business leaders as needed. The decision from the appeal is final.

B. APPROVED

1. If a deviation is approved for contracted material, labor, or method; the facilities project manager will arrange for fulfillment or contract adjustment as needed via appropriate contract channels such as change orders.

APPENDIX 02 – DOCUMENT REFRESH PROCESS

PART 1 - GENERAL

1.1 NOT USED

PART 2 - PRODUCTS

2.1 APPROVED PRODUCT

- A. The purpose of this section is to help ensure a current standards document.
- B. The product delivered will be a current revision or version of the Cable Plant Standards Document.
- C. All changes must be approved by Enterprise Infrastructure Cabling team.

PART 3 - EXECUTION

3.1 REVIEWS AND UPDATES

- A. Minor updates
 - 1. Changes that do not significantly affect scope of work, or contract pricing will be made, and the Rev number will be updated. (i.e. updated part numbers, etc.)
 - 2. Significant changes will be added to the Change Log for review and approval from the DCO/Infrastructure Cabling Team.
 - a. When approved, they will be submitted for approval; and then implemented in the new Version.
- B. Major updates
 - 1. The DCO/Infrastructure Cabling Team will review the entire document at least once every three years.
 - 2. This review will coincide with the release of new versions of NFPA70 (National Electrical Code) (2017, 2020, etc. to be completed by the end of each designated year).
 - 3. The review will cover standards adjustments that may be deemed necessary and ensure compliance with applicable codes and standards.
 - 4. Upon completion of the reviews and updates, the standards document will be submitted for approval.

APPENDIX 03 – DATA CENTER, TEC, TDR PART NUMBERS

ITEM	MANUFACTURER	PART NO.	DESCRIPTION
Blanking Panel	Upsite Hotlok	10031	Blanking Panel 1U
Blanking Panel	Upsite Hotlok	10033	Blanking Panel 2U
UPS	Eaton	9PX1500R	Eaton Powerware 9PX-1500V
UPS Network Card	Eaton	NETWORK-M	Card for 9PX-1500VA
PDU	Eaton	ePBZ79	Horizontal Mount ePDU 208vac
PDU	Eaton	ePBZ82	Horizontal Mount ePDU 120vac
PDU	Server Technology	C1S24VS-YCFA13C9	Vertical 30A PDU (Blue) for TEC
PDU	Server Technology	C1L24VS-YCFA13C9	Vertical 30A PDU (Red) for TEC
PDU	Server Technology	C2SG36TE-YCMFAM66/C	Vertical 30A PDU (Blue) for
			Data Centers
PDU	Server Technology	C2LG36TE-YCMFAM66/C	Vertical 30A PDU (Red) for
	5		Data Centers
PDU	Server Technology	C2SG36TE-DQME2M66/ZB	Vertical 60A PDU (Blue) for
. 20	cerver reenhology		Data Centers
PDU	Server Technology	C2LG36TE-DQME2M66/ZR	Vertical 60A PDU (Red) for
			Data Centers
UPS	Eaton	K4151200000000	Eaton 9155-15kVA UPS
Modbus Card	Eaton		
		103005425-5591	Eaton Modbus Card X-Slot
Reverse Transfer UPS System	Eaton	9GPV15C0009E00R2	Eaton 93PM-150kW Reverse Transfer UPS System
CRAC Cooling Unit	Liebert	DE363G	
Vertical Wall Mount Cabinets	Legrand	VWMSD-4RU-42-B	42" 12" 4RU Fixed
Vertical Wall Mount Cabinets	Legrand	VWMSD-8RU-42-B	42" 18" 8RU Fixed
Rail Accessories	Legrand	VWM-RR-4RU	Fixed Mounting Rail Kit, 4RU
Rail Accessories	Legrand	VWM-RR-8RU	Fixed Mounting Rail Kit, 8RU
Rail Accessories	Legrand	VWM-PIV-4RU	Pivoting Mounting Rail Kit, 4RU
Fan Kit	Legrand	VWMFK-115	VWM Fan Kit w/115 VAC Fans
			(includes 2 fans and mounting
			hardware) (2 kits needed for
VAMA Top Bruch Crommot Kit	Logrand		8RU cabinet)
VWM Top Brush Grommet Kit Circular Knockout Grommet Kit	Legrand Legrand	VWMBGK VWMGR-30	VWM Top Brush Grommet Kit Circular Knockout Grommet Kit
Vertical Wall-Mount Cabinets	Hubbell	IR221APG	Refrigerated cabinet 24"
Vertical Wall-Mount Cabinets	Hubbell	IR321APG	Refrigerated cabinet 36"
Vertical Wall-Mount Cabinets	Hubbell	IR421APG	Refrigerated cabinet 48"
Air Conditioners	Hubbell	IRAC1	Air conditioner for Hubbell
			refrigerated cabinets
Cylinder	Medeco	100500 G	1 ¼" Mortise Cylinder
Cylinder	Medeco	100400H G	Rim Cylinder, Horizontal
• • • •			Tailpiece
Cylinder	Medeco	EA-100108	Small Format Interchangeable
			Core (SFIC) Cylinder

Cylinder	Medeco	20200S1 G	Cylinder Package for Schlage
Cam Lock	Medeco	EN-150002-219	7/8" Cam Lock Assembly, Key Retaining
Cam Lock	Medeco	EN-150003-219	1 1/8" Cam Lock Assembly, Key Retaining
Cylinder for Legrand cabinet front door	Medeco	232301S 800 G	Modular Profile Cylinder – 30mm Half Profile - Assembled
Electronic Key	Medeco	94-0271	Medeco Slim Line Key (G2) & Charger Bundle
Programming Station for Small Locations	Medeco	EA-100109	Medeco XT Desktop USB Programming Station (not preferred)
Programming Station for Large Locations	Medeco	EA-100158	Medeco XT Wall USB Programming Station (preferred)
Wall Mount for Wall Programmer	Medeco	94-0294	Medeco XT Remote Wall Programmer Wall Mount Kit
Padlock for use with Electronic Cylinder	Master	6842D045KZ	Padlock
Red C20 C19 Dual Lock 12 gauge 6'	Stay Online	5914	Red C20 C19 Dual Lock 12 gauge 6'
Blue C20 C19 Dual Lock 12 gauge 6'	Stay Online	6766	Blue C20 C19 Dual Lock 12 gauge 6'
Red C14 Locking C15 Notched 14 gauge 6'	Stay Online	9144	Red C14 Locking C15 Notched 14 gauge 6'
Blue C14 Locking C15 Notched 14 gauge 6'	Stay Online	9138	Blue C14 Locking C15 Notched 14 gauge 6'
Red C14 C13 Dual Lock 18 gauge 6'	Stay Online	5656	Red C14 C13 Dual Lock 18 gauge 6'
Blue C14 C13 Dual Lock 18 gauge 6'	Stay Online	6694	Blue C14 C13 Dual Lock 18 gauge 6'

APPENDIX 04 – REFERENCE STANDARDS

PART 1 - GENERAL

1.1 REFERENCE STANDARDS

- A. Codes and Standards (Most recent editions with addenda/TSB, etc.) All materials, installation and workmanship shall meet or exceed the applicable requirements and standards addressed within the references listed below:
 - 1. ANSI/TIA-568.0-D and addenda "Generic Telecommunications Cabling for Customer Premises
 - 2. ANSI/TIA-568.1-D and addenda "Commercial Building Telecommunications Cabling Standard
 - 3. ANSI/TIA-568.2-D and addenda "Balanced Twisted-Pair Telecommunications Cabling and Components
 - 4. ANSI/TIA-568.3-D and addenda "Optical Fiber Cabling Components Standard"
 - 5. ANSI/TIA-568.4-D and addenda "Broadband Coaxial Cabling and Components Standard"
 - 6. ANSI/TIA-569-D and addenda "Telecommunications Pathways and Spaces"
 - 7. ANSI/TIA-606-C and addenda "Administration Standard for Commercial Telecommunications Infrastructure"
 - 8. ANSI/TIA-607-D and addenda "Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises"
 - 9. ANSI/TIA-758-B "Customer-Owned Outside Plant Telecommunication Infrastructure Standard"
 - 10. IEEE 802.3at PoE Plus and Next Gen PoE CFI March 2013 and IEEE P802.3ba latest draft revision and amendments.
 - 11. "Media Access Control Parameters, Physical Layers and Management Parameters for 40 Gbp/s and 100 Gbp/s Operation".
 - 12. ANSI/TIA-526-7-A "Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant"
 - 13. ANSI/TIA/EIA-526-14-C "Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant"
 - 14. ANSI/TIA-942-B "Telecommunications Infrastructure Standard for Data Centers"
 - 15. ANSI/TIA 1179-A "Healthcare Facility Telecommunications Infrastructure Standard"
 - 16. IEC/TR3 61000-5-2 Ed. 1.0 and amendments "Electromagnetic compatibility (EMC) Part 5: Installation and mitigation guidelines Section 2: Earthing and cabling"
 - 17. ISO/IEC 11801-1 (2017) and amendments "Information technology Generic cabling for customer premises PART 1: General Requirements"
 - 18. EN 50173-1 and amendments "Information Technology Generic cabling systems PART 1 General Requirements"
 - 19. AIA Guidelines for Design and Construction of Hospital and Healthcare Facilities
 - 20. Construction Specification Institute Master Format
 - 21. BICSI: Comply with the most current editions of the following BICSI manuals:
 - a. BICSI Telecommunications Distribution Methods Manual
 - b. BICSI Installation Transport Systems Information Manual
 - c. BICSI Network Design Reference Design Manual
 - d. BICSI Outside Plant Design Reference Manual

- e. BICSI Wireless Design Reference Manual
- f. BICSI -Electronic Safety and Security Design Reference Manual
- g. Infocomm/BICSI AV Design Reference Manual
- 22. Underwriters Laboratories (UL) Cable Certification and Follow-Up Program.
- 23. National Electrical Manufacturers Association (NEMA)
- 24. American Society for Testing Materials (ASTM)
- 25. National Electrical Code (NEC) NFPA70 2020
- 26. National Electrical Safety Code (NESC) 2017
- 27. Institute of Electrical and Electronic Engineers (IEEE)
- 28. UL Testing Bulletin
- 29. Building Industry Consulting Services International (BICSI) Information Transport Systems Methods Manual (ITSMM)
- 30. Local, county, state and federal regulations and codes in effect as of date of installation.
- 31. Equipment of foreign manufacture must meet U.S. codes and standards. It shall be indicated in the proposal the components that may be of foreign manufacture, if any, and the country of origin.

SECTION 276005

APPENDIX 05 – DEFINITIONS AND ABBREVIATIONS

PART 1 - GENERAL

1.1 RELATED TERMS

- A. Codes and Standards (Most recent editions with addenda/TSB, etc.) All materials, installation and workmanship shall meet or exceed the applicable requirements and standards addressed within the references listed below:
 - 1. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
 - 2. BICSI: Building Industry Consulting Service International.
 - 3. CBC: Coupled Bonding Conductor
 - 4. CFCI: Customer Furnished Customer Installed
 - 5. Cable Run A single cable to a single location
 - 6. Cable Drop Two cables to a single location
 - 7. Cable Tri Drop Three cables to a single location
 - 8. CT Coupler A type of wall connector made by the Siemon Company
 - 9. DCO: Data Center Operations
 - 10. Div.1: Division 1 General and Performance Requirements
 - 11. Div. 23: Division 23 Heating, Ventilating, and Air Conditioning
 - 12. Div. 22: Division 22 Plumbing
 - 13. Div. 26: Division 26 Electrical
 - 14. Div. 27: Division 27 Communications and Audio Visual
 - 15. Div. 28: Division 28 Electronic Safety and Security
 - 16. E.E.: Electrical Engineer
 - 17. EMI: Electromagnetic Interference
 - 18. F/UTP: Foil over Unshielded Twisted Pair. Individual pairs are unshielded.
 - 19. GC: General Contractor
 - 20. GE: Ground Equalizer
 - 21. Horizontal Cabling: The cable and connecting hardware utilized to transport communications signals
 - 22. ICT: Infrastructure Cabling Team
 - 23. LAN: Local Area Network
 - 24. N/A: Not Applicable
 - 25. NIC: Not in Contract
 - 26. OFCI: Owner Furnished Contractor Installed
 - 27. OFOI: Owner Furnished Owner Installed
 - 28. OTDR: Optical Time Domain Reflectometer
 - 29. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
 - 30. RCDD: Registered Communications Distribution Designer
 - 31. RFI: Radio Frequency Interference
 - 32. TBA or TBD: To Be Determined
 - 33. TDR: Technology Distribution Room
 - 34. TEC: Technology Equipment Center
 - 35. TGB: Telecommunications Ground Bus Bar
 - 36. TMBC: Telecommunications Main Bonding Conductor
 - 37. TMGB: Telecommunications Main Grounding Bus Bar
 - 38. TSER: Telecommunications Service Entrance Room
 - 39. UTP: Unshielded Twisted Pair

- 40. Work Area: approx. 100 sq. ft. equipped for workstation equipment
- 41. DCO = Data Center Operations <u>Boe.Sausedo@imail.org</u>
- 42. ICT = Information and Communications Technology <u>Melissa.Lopez2@imail.org</u>

SECTION 276006

APPENDIX 06 - MATERIAL SUPPLIERS

PART 1 - GENERAL

1.1 RELATED TERMS

A. Siemon Authorized Suppliers are listed below. To help prevent counterfeiting and support warranties, known, factory authorized distributers are recommended.
 1. Approved Suppliers of Siemon cable, patch panels, jacks, and parts:

Anixter

Randi WhittakerMain Phone: (801) 973-2121Inside SalesMain Phone: (801) 973-21213775 W. California Ave. Ste 400 Fax: (801) 973-4472Email: randi.whittaker@anixter.comSalt Lake City, UT 84104 USEmail: randi.whittaker@anixter.com

Karl BartlamEnd User/Outside SalesMain Phone: (801) 973-21213775 W. California Ave. Ste 400 Fax: (801) 973-4472Salt Lake City, UT 84104 USEmail: karl.bartlam@anixter.com

Graybar Electric

Elizabeth Vaughn Inside Sales 2841 South 900 West Salt Lake City, UT 84119 US

Main Phone: (801) 656-3016 Fax: (801) 973-4314 Email: <u>Elizabeth.Vaughn@graybar.com</u>

Erika Morrison	
Contractor Outside Sales	Main Phone: (801) 656-3014
2841 South 900 West	Fax: (801) 973-4314
Salt Lake City, UT 84119 US	Email: Erika.Morrison@graybar.com

WESCO / CSC

Brian Walters Inside Sales 3210 South 900 West Salt Lake City, UT 84119 US

Main Phone: (801) 975-0600 Fax: (801) 907-4450 Email: <u>Bwalters@gocsc.com</u>

Adam Tueller Contractor Outside Sales 3210 South 900 West Salt Lake City, UT 84119 US

Main Phone: (801) 975-0600 Direct: (801) 618-6665 Email: <u>Atueller@wesco.com</u>

B. The Siemon Company is represented locally by: Marc.Lovestrand@Siemon.com

SECTION 276007

APPENDIX 07 – SIEMON CERTIFIED INSTALLATION FIRMS

PART 1 - GENERAL

1.1 RELATED TERMS

- A. NOTE: Cable installers have rigorous requirements to be certified for Siemon cables and products. Validation of certification is required prior to accepting a bid.
- B. The firms selected to bid must be pre-approved by the local facility IT manager. Installation firms desiring to do work for Intermountain Healthcare must be selected from the official CI list below.
- C. Current Siemon Approved/Certified Cable Installers for Siemon Network Cable. This list is up to date as of 2018-12-01.
 - 1. Orion Integration Group: 8880 W. Barnes Street, Boise, ID 83709 / Phone 208 321 8000
 - 2. ACS Systems: 925 North Main St. Meridian, ID 83642 / Phone 208 331 8554
 - 3. **IES Commercial**: 1960 S. Milestone, Suite D, Salt Lake City, UT 84104
 - a. Jason King Branch Manager // Phone 801 975 8182 / Fax 385 242 7366 / Mobile 801 381 1508 // Jason.King@iescomm.com / www.iescomm.com
 - b. Boyd Evans Project Manager // Phone 801 975 8191 / Fax 385 242 7366 Mobile 801 381 1518 // Boyd.Evans@iescomm.com / www.iescomm.com
 - 4. Cache Valley Electric: 1338 S. Gustin Rd., Salt Lake City, UT 84104
 - a. Travis Grant Acct. Manager // Phone 801 908 4170 / Fax 801 908 7401 Mobile 801 870 7226 // <u>Travis.Grant@cve.com</u> / <u>www.cve.com</u>
 - b. Brad Readicker Acct. Manager // Phone 801 908 2686 / Fax 801 908 7401 // <u>Brad.Readicker@cve.com</u> / www.cve.com
 - 5. Data Tech Professionals: 1199 S 520 W, Payson, UT 84651
 - a. Jesse Pierce President // Phone 801 960 2202 / Mobile 801 420 0463 Jesse@datatechprofessionals.com / www.datatechprofessionals.com
 - 6. Hunt Electric, Inc.: 1863 W. Alexander St., Salt Lake City, UT 84119
 - a. Darrin Guevara Division Manager // Phone 801 975 8844 Darrin@huntelectric.com / www.huntelectric.com
 - 7. NCNS Communications: 419 West Universal Circle, Sandy, UT 84070
 a. Jayson Nosack Owner // Phone 801 361 4572
 Jnosack@ncns-co.com / www.ncns-co.com
 - 8. **Data Plus**: 769 Middlegate Road, Henderson, NV 89118
 - a. Chris Tettamanti Project Manager // Phone 702 795 3282 Chris@dpcnv.com
 - 9. Bombard Electric: 4380 West post Road, Las Vegas, NV 89118
 - a. Bob Reese Project/Division Manager // Phone 702 263 3570 Bob.reese@bombardelec.com / www.bombardelectric.com
 - 10. Rosendin Electric: 7470 Dean Martin Dr. #112, Las Vegas, NV 89139
 - a. Cora Shadbolt Assistant Project Mgr. // Phone 702 258 1443 <u>cshadbolt@rosendin.com</u>
 - b. Adrian Youngblood Sr. Estimator // Phone 702 258 1455 ayoungblood@rosendin.com
 - c. Breck Hardesty Sr. Project Mgr. // Phone 702 258 1428 <u>bhardesty@rosendin.com</u> / <u>www.rosendin.com</u>
 - 11. **Mojave Electric**: 3755 W. Hacienda Ave., Las Vegas, NV 89118

Phone 702 798 2970

12. **The Morse Group**: 3874 Silvestri Lane, Las Vegas, NV 89120 Phone 702 257 4400

SECTION 276008

APPENDIX 08 - LEAD WALL PENETRATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Sections 13090 & 134900

1.2 RELATED TERMS

Procedure Name: New Port and Electrical Box Installation Lead Lined Walls Document Detail Information: (This section must be completed in full.)

Implements Policy: Click here to enter policy title					
Content Owner	Craig Allen, Safety Security Environment Health Director, Central Office Jeremy Hawk Medical Physicist Radiation Safety Coordinator	Content Consultant(s):	Jeremy Hawk, Radiation Safety Officer, Medical Physicist Imaging		
			John Ellis, Facilities Management Director, Central Office Steve Kelly, System Project Facility Design Manager, Planning Melissa Lopez, Cabling, IS		
Date of Final Draft:	12/29/2015	Who Reviewed Content?	<name, dept="" title,=""> <name, dept="" title,=""></name,></name,>		
			<name, dept="" title,=""></name,>		
Keywords (must have at least 3):	Searchable Keywords (e.g., PHI, EMTALA, Coding)		<committee name=""></committee>		

1.3 PURPOSE

A. Maintain radiation safety controls in lead lined walls during installation of new power and data outlets in existing lead lined walls.

1.4 SCOPE

A. Intermountain Hospitals, Intermountain Clinics Medical Group

1.5 DEFINITIONS

A. Lead lined Walls – Structured element designed to provide a barrier to block radiation penetration beyond the designated space.

- B. Maintenance Manager The person responsible for plant maintenance operations or his/her delegate.
- C. Radiation Safety Coordinator The person responsible for Radiation Safety or his/her

Delegate. Medical Physicist.

D. Worker – The person responsible for completing work with the lead lined wall. This includes Intermountain Employees as well as any outside supplier or contractor.

1.6 PROVISIONS

A. The Radiation Safety Program is following Utah regulation R313-15-101, R313-28 and U.S. Nuclear Regulatory Commission Regulation 1- CFR Part 20-1101.

1.7 PROCEDURE

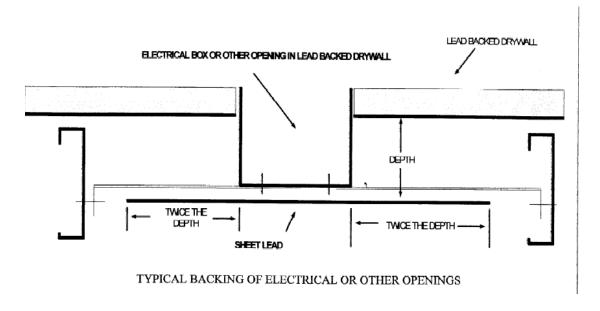
- A. Prior to any work within a lead lined wall, the Worker reports to the Radiation Safety Coordinator, Maintenance Manager and completed a review of planned work "ACWP" Identification of specific description related to the lead lined wall planned work.
 - 1. Intermountain workers, outside suppliers or contractors hired to work in any Intermountain facility must contact the Maintenance Manager and Radiation Safety Coordinator prior to beginning work to discuss the project and ensure that the planned work will not interfere with facility operations, maintenance, or other projects.
 - 2. Failure to scheduled and complete the planning meeting described above may results in the delay or rescheduling of work. Outside suppliers or contractors are responsible for any costs incurred because of their failure to schedule and complete this meeting.
- B. The Radiation Safety Coordinator, Maintenance Manager and the worker conduct a prework inspection of the areas in which work is to be performed. This inspection identified the following:
 - 1. Areas of special concern or sensitivity, including those noted or described on the facility Life Safety records and drawings, and Radiation Safety records and drawings.
 - 2. Appropriate areas or structures to use for support of any work, as applicable.
 - 3. Existing deficiencies in Barriers.
 - 4. The as act assemblies impacted by the work.
 - 5. The type of shielding material acceptable in the area.
 - a. Lead lined boxes
 - b. Lead lined wall "inside wall" installation, and OR
 - c. Lead shielding for wall installation of "outside wall" maintaining radiation safety barriers.
 - 6. The exact condition of the areas upon completion of work.
- C. Upon completion of the work and before closing the wall, the worker, Radiation Safety Coordinator and Maintenance Manager conduct a post-work inspection of the area in which the work was performed, this inspection verifies the following:
 - 1. No Tools, Supplies or debris are left within the walls.
 - 2. Lead lining is installed to maintain radiation safety protection according to regulatory requirements.
 - 3. All work affecting Radiation Safety Lead Barriers has been properly sealed.
 - 4. The overall condition of the area meets the expectation outline in the per-work inspection.

- E. The Maintenance Manager and Radiation Safety Coordinator signs and logs the completed "ACWP"
- 1.8 EXCEPTIONS
 - A. None.
- 1.9 PRIMARY SOURCES
 - A. List the regulatory references upon which the procedure is based (cite the code, the title, and the statute).

1.10 SECONDARY MATERIALS

- A. Radiation Safety Policy
- B. Above Ceiling Work Permit
- C. Lead lined wall requirements as defined by Radiation Safety Building Requirements

 NEW Power or Data Box	************************


Option 1: worker to install new power utility wall box and add Lead Lining to wall behind box If worker can access posterior wall entry

	8	
	8	NEW Power or Data Box
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Data Box
·····	$\ge$	

Option 2: worker to install new power utility wall box – box is lead Lined by manufacturer



Option 3: worker to install new power utility wall box - no additional lead lining required if installation does not disrupt the existing shielding



### **SECTION** 280544

### SLEEVES AND SLEEVE SEALS FOR ELECTRONIC SAFETY AND SECURITY PATHWAYS AND CABLING

#### PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
  - 2. Sleeve-seal systems.
  - 3. Sleeve-seal fittings.
  - 4. Grout.
  - 5. Silicone sealants.
- B. Related Requirements:
  - 1. Division 26 Section "Common Work Results for Electrical" and "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.
  - 2. Penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

### 1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. LEED Submittals:
  - 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
  - Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

### PART 2 - PRODUCTS

#### 2.1 SLEEVES

- A. Wall Sleeves:
  - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

- C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- D. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- E. Sleeves for Rectangular Openings:
  - 1. Material: Galvanized-steel sheet.
  - 2. Minimum Metal Thickness:
    - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
    - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

### 2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
    - a. Advance Products & Systems, Inc.
    - b. CALPICO, Inc.
    - c. Metraflex Company (The).
    - d. Pipeline Seal and Insulator, Inc.
    - e. Proco Products, Inc.
  - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
  - 3. Pressure Plates: Carbon steel.
  - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

### 2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
  - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
    - a. Presealed Systems.

## 2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydrauliccement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

#### 2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
  - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
  - 2. Sealant shall have VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Silicone Foams: Multicomponent, silicone-based, liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

#### PART 3 - EXECUTION

### 3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
  - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
    - a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
    - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
  - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
  - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
  - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
  - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
  - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
  - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

### 3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

### 3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

# SECTION 28 31 11

### DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

### PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

Α.

- Section Includes:
  - 1. Fire-alarm control unit.
  - 2. Manual fire-alarm boxes.
  - 3. System smoke detectors.
  - 4. Nonsystem smoke detectors.
  - 5. Heat detectors.
  - 6. Notification appliances.
  - 7. Firefighters' two-way telephone communication service.
  - 8. Magnetic door holders.
  - 9. Remote annunciator.
  - 10. Addressable interface device.
  - 11. Digital alarm communicator transmitter.
  - 12. Radio alarm transmitter.
  - 13. System printer.

### 1.3 DEFINITIONS

- A. LED: Light-emitting diode.
- B. NICET: National Institute for Certification in Engineering Technologies.

### 1.4 SYSTEM DESCRIPTION

A. Noncoded, UL-certified FMG-placarded addressable system, with automatic sensitivity control of smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only.

### 1.5 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

### 1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
  - 1. Comply with recommendations in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72.
  - 2. Include voltage drop calculations for notification appliance circuits.
  - 3. Include battery-size calculations.
  - 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

- 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations. Provide remote test switches (RTS) as required by NFPA 72.
- 6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
- 7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
- C. General Submittal Requirements:
  - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
  - 2. Shop Drawings shall be prepared by persons with the following qualifications:
    - a. Trained and certified by manufacturer in fire-alarm system design.
    - b. NICET-certified fire-alarm technician, Level III minimum.
    - c. Licensed or certified by authorities having jurisdiction.
- D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.
  - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.

### 1.7 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

### 1.8 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - 1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
  - 2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
  - 3. Record copy of site-specific software.
  - 4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
    - a. Frequency of testing of installed components.
    - b. Frequency of inspection of installed components.
    - c. Requirements and recommendations related to results of maintenance.
    - d. Manufacturer's user training manuals.

- 5. Manufacturer's required maintenance related to system warranty requirements.
- 6. Abbreviated operating instructions for mounting at fire-alarm control unit.
- B. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
  - 3. Device address list.
  - 4. Printout of software application and graphic screens.

### 1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
  - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
  - 3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
  - 4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
  - 5. Keys and Tools: One extra set for access to locked and tamperproofed components.
  - 6. Audible and Visual Notification Appliances: One of each type installed.
  - 7. Fuses: Two of each type installed in the system.

### 1.10 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as firealarm Level II technician.
- C. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL.
- F. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.
- G. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FMG-approved alarm company.
- H. NFPA Certification: Obtain certification according to NFPA 72 by the Authority Having Jurisdiction.

### 1.11 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
  - 1. Notify Construction Manager no fewer than 7 days in advance of proposed interruption of fire-alarm service.
  - 2. Do not proceed with interruption of fire-alarm service without Construction Manager's written permission.

### 1.12 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

### 1.13 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
  - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

### PART 2 - PRODUCTS

#### 2.1 MANUFACTURERS

- A. Subject to compliance with requirements, provide product by the following:
  - 1. Notifier
  - 2. Siemens

### 2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices[and systems]:
  - 1. Manual stations.
  - 2. Smoke detectors.
  - 3. Duct smoke detectors.
  - 4. Verified automatic alarm operation of smoke detectors.
  - 5. Automatic sprinkler system water flow.
  - 6. Heat detectors in elevator shaft and pit.
  - 7. Fire-extinguishing system operation.
  - 8. Fire standpipe system.
- B. Fire-alarm signal shall initiate the following actions:
  - 1. In the Clinic and Central Utility Plant (CUP), continuously operate alarm notification appliances.
  - 2. In the hospital, continuously operate chime/strobe appliances in smoke zone where alarm is initiated. Continuously operate strobe appliances throughout the hospital
  - 3. Identify alarm at fire-alarm control unit and remote annunciators.
  - 4. Transmit an alarm signal to the remote alarm receiving station.
  - 5. Unlock electric door locks in designated egress paths.
  - 6. Release fire and smoke doors held open by magnetic door holders.
  - 7. Activate voice/alarm communication system.
  - 8. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
  - 9. Activate smoke-control system (smoke management) at firefighter smoke-control system panel.

- 10. Activate stairwell and elevator-shaft pressurization systems.
- 11. Close smoke dampers in air ducts of designated air-conditioning duct systems.
- 12. Recall elevators to primary or alternate recall floors.
- 13. Activate emergency lighting control.
- 14. Activate emergency shutoffs for gas and fuel supplies.
- 15. Record events in the system memory.
- 16. Record events by the system printer.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
  - 1. Valve supervisory switch.
  - 2. Low-air-pressure switch of a dry-pipe sprinkler system.
  - 3. Elevator shunt-trip supervision.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
  - 1. Open circuits, shorts, and grounds in designated circuits.
  - 2. Opening, tampering with, or removing alarm-initiating and supervisory signalinitiating devices.
  - 3. Loss of primary power at fire-alarm control unit.
  - 4. Ground or a single break in fire-alarm control unit internal circuits.
  - 5. Abnormal ac voltage at fire-alarm control unit.
  - 6. Break in standby battery circuitry.
  - 7. Failure of battery charging.
  - 8. Abnormal position of any switch at fire-alarm control unit or annunciator.
  - 9. Fire-pump power failure, including a dead-phase or phase-reversal condition.
  - 10. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system.
- E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators. Record the event on system printer.

## 2.3 FIRE-ALARM CONTROL UNIT

- A. General Requirements for Fire-Alarm Control Unit:
  - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
    - a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
    - b. Include a real-time clock for time annotation of events on the event recorder
    - c. Must be able to operate and monitor Pre-action systems throughout hospital
  - 2. Addressable initiation devices that communicate device identity and status.
    - a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
    - b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.
  - 3. Addressable control circuits for operation of mechanical equipment.
- B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

- 1. Annunciator and Display: Liquid-crystal type, 3 line(s) of 80 characters, minimum.
- 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.
- C. Circuits:
  - 1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class A.
    - a. Initiating Device Circuits: Style D.
    - b. Notification Appliance Circuits: Style Z.
    - c. Signaling Line Circuits: Style 7.
    - d. Install no more than 50 addressable devices on each signaling line circuit.
  - 2. Serial Interfaces: Two RS-232 ports for printers.
- D. Stairwell Pressurization: Provide an output signal using an addressable relay to start the stairwell pressurization system. Signal shall remain on until alarm conditions are cleared and fire-alarm system is reset. Signal shall not stop in response to alarm acknowledge or signal silence commands.
  - 1. Pressurization starts when any alarm is received at fire-alarm control unit.
  - 2. Alarm signals from smoke detectors at pressurization air supplies have a higher priority than other alarm signals that start the system.
- E. Smoke-Alarm Verification:
  - 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
  - 2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
  - 3. Record events by the system printer.
  - 4. Sound general alarm if the alarm is verified.
  - 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.
- F. Notification Appliance Circuit: Operation shall sound in a temporal.
- G. Elevator Recall:
  - 1. Smoke detectors at the following locations shall initiate automatic elevator recall. Alarm-initiating devices, except those listed, shall not start elevator recall.
    - a. Elevator lobby detectors except the lobby detector on the designated floor.
    - b. Smoke detector in elevator machine room.
    - c. Smoke detectors in elevator hoistway.
  - 2. Elevator lobby detectors located on the designated recall floors shall be programmed to move the cars to the alternate recall floor.
  - 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
    - a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.
  - 1. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke barrier walls shall be connected to fire-alarm system. Review Door Hardware Schedule for sequence of operation requiring an interface with the fire alarm system, such as release upon fire alarm. Provide all fire alarm system components to accomplish the specified sequence of operation which may require components beyond those that are indicated on drawings. Provide fire alarm release at all delayed egress doors and any other doors in the path of egress that are allowed to be locked.
- Η.
- I. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity

settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

- J. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- K. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.
- L. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
  - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
- M. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

1. Batteries: Sealed, valve-regulated, recombinant lead acid.

N. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

### 2.4 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
  - 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
  - 2. Station Reset: Key- or wrench-operated switch.
  - 3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
  - 4. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

# 2.5 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
  - 1. Comply with UL 268; operating at 24-V dc, nominal.
  - 2. Detectors shall be four-wire type.
  - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
  - 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
  - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.

- 6. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
- 7. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
  - a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
  - b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
  - c. Provide multiple levels of detection sensitivity for each sensor.
- B. Photoelectric Smoke Detectors:
  - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
  - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
    - a. Primary status.
    - b. Device type.
    - c. Present average value.
    - d. Present sensitivity selected.
    - e. Sensor range (normal, dirty, etc.).
- C. Ionization Smoke Detector:
  - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
  - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
    - a. Primary status.
    - b. Device type.
    - c. Present average value.
    - d. Present sensitivity selected.
    - e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
  - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
  - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
    - a. Primary status.
    - b. Device type.
    - c. Present average value.
    - d. Present sensitivity selected.
    - e. Sensor range (normal, dirty, etc.).
  - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
  - 4. Each sensor shall have multiple levels of detection sensitivity.
  - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
  - 6. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.
  - 7. Remote Test Station (RTS): Provide keyed type RTS. Comply with NFPA 72, owner, AHJ, architect, and EOR locations.

# 2.6 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.

- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise indicated.
  - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
  - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

### 2.7 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling line circuit, equipped for mounting as indicated and with screw terminals for system connections.
- B. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
  - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
- C. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.
- D. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.
- E. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.
- F. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
  - 1. Rated Light Output:
    - a. 15/30/75/110 cd, selectable in the field.
  - 2. Mounting: Wall mounted unless otherwise indicated.
  - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
  - 4. Flashing shall be in a temporal pattern, synchronized with other units.
  - 5. Strobe Leads: Factory connected to screw terminals.
  - 6. Mounting Faceplate: Factory finished, white.

## 2.8 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
  - 1. Electromagnet: Requires no more than 3 W to develop 25-lbf (111-N) holding force.
  - 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
  - 3. Rating: 24-V ac or dc.
  - 4. Rating: 120-V ac.
- B. Material and Finish: Match door hardware.

### 2.9 **REMOTE ANNUNCIATOR**

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
   1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

### 2.10 ADDRESSABLE INTERFACE DEVICE

- A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall to circuit-breaker shunt trip for power shutdown.

### 2.11 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
  - 1. Verification that both telephone lines are available.
  - 2. Programming device.
  - 3. LED display.
  - 4. Manual test report function and manual transmission clear indication.
  - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
  - 1. Address of the alarm-initiating device.
  - 2. Address of the supervisory signal.
  - 3. Address of the trouble-initiating device.
  - 4. Loss of ac supply or loss of power.
  - 5. Low battery.
  - 6. Abnormal test signal.
  - 7. Communication bus failure.
- E. Secondary Power: Integral rechargeable battery and automatic charger.
- F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

# 2.12 SYSTEM PRINTER

A. Printer shall be listed and labeled by an NRTL as an integral part of fire-alarm system.

### 2.13 DEVICE GUARDS

- A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
  - 1. Factory fabricated and furnished by manufacturer of device.
  - 2. Finish: Paint of color to match the protected device.

### PART 3 - EXECUTION

### 3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72 for installation of fire-alarm equipment.
- B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.

- 1. Comply with requirements for seismic-restraint devices specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- C. Smoke- or Heat-Detector Spacing:
  - 1. Comply with NFPA 72, "Smoke-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for smoke-detector spacing.
  - 2. Comply with NFPA 72, "Heat-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for heat-detector spacing.
  - 3. Smooth ceiling spacing shall not exceed 30 feet (9 m).
  - 4. HVAC: Locate detectors not closer than 3 feet (1 m) from air-supply diffuser or return-air opening.
  - 5. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture.
- D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Install keyed remote test stations in acceptable locations.
- E. Heat Detectors in Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.
- F. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.
- G. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.
- H. Remote Test Station (RTS): Install keyed test station in wall near each duct smoke detector that is not readily visible from normal viewing position. Provide in locations acceptable to owner, AHJ, Architect, & EOR.
- I. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling.
- K. Device Location-Indicating Lights: Locate in public space near the device they monitor.
- L. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
- M. Annunciator: Install with top of panel not more than 72 inches (1830 mm) above the finished floor.

### **3.2 WIRING INSTALLATION**

- A. Wiring Method: Install wiring in metal raceway according to Division 26 Section 260519 Conceal raceway except in unfinished spaces and as indicated.
- B. Wiring for Grid Ceiling Mounted Devices: Install junction box at accessible location above ceiling. Use flexible metal conduit for wiring between junction box and outlet box for ceiling mounted device. Secure flexible conduit within 12 inches of junction box.
- C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by the manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any

enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

- D. Cable Taps: Use numbered terminal strips in junction, pull and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- E. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- F. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signal from other floors or zones.
- G. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the FACP and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

# 3.3 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
  - 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet (1 m) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
  - 1. Alarm-initiating connection to smoke-control system (smoke management) at firefighter smoke-control system panel.
  - 2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
  - 3. Smoke dampers in air ducts of designated air-conditioning duct systems. Provide end switches at each smoke and fire/smoke damper
  - 4. Alarm-initiating connection to elevator recall system and components.
  - 5. Alarm-initiating connection to activate emergency lighting control.
  - 6. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
  - 7. Supervisory connections at valve supervisory switches.
  - 8. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
  - 9. Supervisory connections at elevator shunt trip breaker.
  - 10. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
  - 11. Supervisory connections at fire-pump engine control panel.

### 3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

### 3.5 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

### 3.6 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
  - 1. Visual Inspection: Conduct visual inspection prior to testing.
    - a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
    - b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
  - 2. System Testing: Comply with "Test Methods" Table in the "Testing" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
  - 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
  - 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
  - 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
  - 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
- E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- F. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.
- H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- I. Annual Test and Inspection: One year after date of Substantial Completion, test firealarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

### 3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.