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Cholera, hepatitis and typhoid are well-recognized water-borne illnesses that take the lives of many every year in areas of
uncontrollable flood, but far less attention is afforded to the allegedly safe potable water in affluent nations and the presumed
healthful quality of water in communities and hospitals. Recent literature, however, points to increasing awareness of serious
clinical sequelae particularly experienced by immunocompromised patients at high risk for disease and death from exposure to
water-borne microbes in hospitals. This review reflects the literature indicting hospital water as an important source for
nosocomial infections, examines patient populations at greatest risk, uncovers examples of failures in remedial water treatment
methods and the reasons for them, and introduces point-of-use water filtration as a practical alternative or complementary
component of an infection control strategy that may reduce the risk of nosocomial infections. (Am J Infect Control 2005;33:S1-19.)
Despite advances in health care and with total
admissions remaining constant (Figure 1A), the rate of
hospital-acquired (nosocomial) infections in the United
States has actually increased over the 20-year period
from 1975 to 1995 (Figure 1B).1

Successful initiatives to shorten hospital length of
stay (LOS) further confound assessment of the true
incidence of nosocomial infections, because the incu-
bation period may be longer than the average hospital
LOS.1 Among the types of nosocomial infections,
pneumonia is a common cause of morbidity and
mortality second only to urinary tract infections in
frequency of occurrence and it ranks first among
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nosocomial infections in critical care settings.2 The
added cost of infectious complications is estimated to
range from $15,2753 to $38,6564 per infection.

Concern for the health and welfare of the patient
should be the most important impetus to control
nosocomial infections. Another factor includes cost
pressures derived from increasingly scarce profes-
sional resources such as critical care physicians and
nurses, which drive costs up as well as costly litigation,
particularly evident in litigious societies.5 What pro-
portion of these nosocomial infections may be attrib-
utable to hospital water? In a call to arms for physicians
and infection control practitioners alike, it has been
said that ‘‘Although numerous hospital sources cause
nosocomial outbreaks, perhaps the most overlooked,
important, and controllable source of nosocomial
pathogens is hospital water.’’6

LEGIONELLA

An excellent example of the profound implications
of water-borne nosocomial infection relate to recent
observations of Legionella. Legionella species (sp.) are
well recognized as water-borne microorganisms and
were made infamous with the devastation of an
American Legion Convention in a hotel in Philadelphia
in 1976. Since then, its history as a water-borne
mediator of morbidity has been reviewed both micro-
biologically7 and clinically.8,9 Legionella sp. have been
isolated in as few as 1% to as many as 40% of cases
of hospital-acquired pneumonia; consequently, under-
diagnosis and underreporting are high with only
2-10% of estimated cases believed to be accurately
reported.10
S1
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Fig 1. Nosocomial infections are a growing concern in US hospitals (adapted from Weinstein1) (see also http://
www.cdc.gov/ncidod/eid/vol4no3/contents.htm).
Transmission of Legionella sp. from hospital water
can occur by inhalation of aerosolized microbes that
are commonly generated during showering11 or run-
ning bath water.12 Equipment washed or rinsed with
contaminated water can also confer infection.13

Hospital water supplies are frequently contaminated
with Legionella sp.14-16 and recent evidence of noso-
comial infection is also available17 making this micro-
organism one of current concern. In one study, 55% of
transplant units in the United Kingdom tested positive
for Legionella18 as well as 80% of 11 hospitals sampled
in Italy.19 A hospital in Canada reported nearly 25% of
the 2200 samples taken over 4 years were positive for
Legionella with some locations more problematic than
others.20

Interestingly, guidelines for the prevention of
health-care-associated pneumonia include the routine
culturing of water systems for Legionella sp. limited,
however, to patient-care areas at high risk for infec-
tion.21 Despite this observation and with many
regulations in place to support prevention and detec-
tion, a recent survey shows that ‘‘.only 5% of health
care facilities have developed and implemented a
waterborne pathogen risk management plan for build-
ing water systems.’’22 This underscores the perception
by many that Legionella sp., and to a greater extent
other microbes, are not recognized for the dangers they
present.

OTHER BACTERIA

Three major categories of water-borne nosocomial
infectious organisms, including bacteria, mycobacte-
rium and fungi have been delineated and are shown in
Table 1 modified from Anaissie and co-workers.6 Many
ª Ecosse Publishing Limited 2004.
of these organisms were shown to be resistant to
antibiotics.6 Additional evidence was compiled by the
authors suggestive of a causal relationship between
contaminated hospital water and infectious complica-
tions. The causal relationship is supported by the use of
antibiograms, serotyping or temporal association and
supports the view that nosocomial infections may be
derived from hospital water-borne microorganisms
such as Campylobacter,23 Aeromonas,24 Flavobacte-
rium, Enterobacter, Serratia and Klebsiella sp. Other
literature reviews support these observations.25,26 Add-
ing to the compendium is a recent report of a Myco-
bacterium simiae outbreak from contaminated hospital
water27 and Mycobacterium is frequently recovered
from hospital water.28

Pseudomonas is an organism that can cause serious
nosocomial infection.29 Stamm-Balderjahn30 and co-
workers, presenting at the Society for Healthcare in
Epidemiology (SHEA) meeting in April 2004, reviewed
the literature disclosing Pseudomonads as one of the
most frequently reported pathogens concerning noso-
comial outbreaks. The results (expressed as percent of
total) are shown in Figure 2 and illustrate blood stream
infections occurred most often and the most frequent
environmental source reportedly is hospital water.

The timeliness and increasing awareness of the
dangers of hospital water are reflected in the observa-
tions of clinicians at a hospital in Lebanon citing
‘‘.potentially the largest single-source nosocomial
bloodstream infection outbreak ever reported, and the
first report of an alcohol skin antiseptic contaminated
by tap water as a source for nosocomial bacteremia.’’31

Moreover, the contribution of tap water and environ-
mental surfaces towards bronchoscope and endo-
scope mediated transmission of antibiotic-resistant

http://www.cdc.gov/ncidod/eid/vol4no3/contents.htm
http://www.cdc.gov/ncidod/eid/vol4no3/contents.htm
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Table 1. Evidence correlating infection inpatients with microorganisms found in hospital water

Organism Site of infection

Molecular-relatedness

evidence

Number

of

reports

Bacteria

Pseudomonas aeruginosa Blood, CVC, lungs,

peritoneum, sinuses,

trachea, urine

PCR; DNA macrorestriction

analysis, PFGE,

ERIC-PCR, RAPD,

DNA fingerprinting, DNA

typing, serotyping, phage

typing, serogrouping,

genotyping, ExoA DNA

probe, biotyping,

electrophoretic esterase

typing

10

Stenotrophomonas

maltophilia

Blood, peritoneum,

respiratory tract,

skin, stools, throat,

trachea, urine

PFGE, RAPD 4

Serratia marcescens Eye, stools PFGE 1

Acinetobacter baumannii Skin, wound PFGE, biotyping 1

Aeromonas hydrophila Blood electrophoretic esterase

typing

1

Chryseobacterium

species

Blood AP-PCR 1

Mycobacterium

Mycobacterium avium Disseminated PFGE 1

Mycobacterium fortuitum Disseminated,

respiratory tract,

sputum, sternal

wound infection

wound

AP-PCR, PFGE, phenotype

analysis, plasmid profiles,

4

Mycobacterium xenopi Various, spine PCR-based techniques,

chromosomal restriction

fragment patterns

2

Mycobacterium kansasii Abscess, blood, bone,

sputum, stomach,

urine

RFLP, PFGE 1

Mycobacterium chelonae Sternal wound

infection, prosthetic

valve

Electrophoresis of enzymes,

plasmid profiling

1

Fungi

Fusarium solani Disseminated RFLP, RAPD, IR-PCR 1

Exophiala jeanselmaei Disseminated RAPD 1

Aspergillus fumigatus Lungs PCR, SSPD 1

Adapted from Anaissie et al.6

CVC, central venous catheter; AP, arbitrarily primed; PCR, polymerase chain reaction; PFGE, pulse-field gel electrophoresis; ERIC, enterobacterial repetitive intergenic consensus

sequencing; RAPD, random amplified polymorphic DNA; ExoA, exotoxin A; RFLP, restriction fragment-length polymorphism; AFLP, amplified fragment-length polymorphism;

IR, interrepeat; SSPD, sequence-specific DNA primer analysis.
nosocomial Pseudomonas aeruginosa infections was
reviewed recently, and a compelling argument for their
role as a contributing factor in clinically important
disease was provided.32

MOLDS

Fungi including molds and yeasts were cultured
from hospital water and their reported prevalence was
quite high33 and observed by others.34,35 Among 126
potable water samples, two-thirds of which came from
hospitals, molds were present in nearly 83% and
yeasts from 11%. Aspergilluswas recovered from 53, or
a third, of the samples. Interestingly, a pattern emerged
showing yeasts were correlated with coliforms,
whereas filamentous fungi correlated more with total
heterotrophic bacteria counts. Therefore, detection of
elevated heterotrophic plate count might be a prog-
nosticator of filamentous fungal infections.

Aspergillus species abound in the hospital setting
and the rise in prevalence has startled some.36 Molec-
ular biology techniques applied to water and air-borne
ª Ecosse Publishing Limited 2004.
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Fig 2. Distribution of Pseudomonas nosocomial infections reported from 91 outbreaks over the period 1965-early
2004 (adapted from Stamm-Balderjahn et al30). Abbreviations: UTI, urinary tract infections; SSI, surgical site infections.
Aspergillus confirm these as the source of infections in
patients.37 Recent studies were performed in a he-
matologic malignancy patient population immuno-
compromised by virtue of their disease or the
chemotherapy treatment they require. Molds, includ-
ing Aspergillus, were recovered from 70% of water
samples, 22% of swabs from the plumbing and 83% of
indoor air in over 1900 samples taken in a bone
marrow transplant unit. Results of the study strongly
suggest that the mold recovered from indoor air derives
from aerosolization of the shower water.38 These data
support previously espoused views suggesting that re-
aerosolization of mold from shower walls can occur
and serve as a mechanism of infectivity.39

VIRUSES

A number of viruses are known to be transmitted
through water and most notable among them are
rotavirus, para-rotavirus, reovirus (reoviridae), hepatitis
A and E, and norovirus (formerly known as the
Norwalk virus).40 Water-borne hospital acquired viral
infections are documented as well.41,42 However, since
they cannot proliferate outside of a host, their numbers
tend to be naturally lower than other microbes.

PROTOZOA

Community-acquired water-borne infections are
well known, and caused by the protozoans, Cryptospo-
ridium and Giardia where the former was popularized
by an outbreak in Milwaukee, Wisconsin, in 1993
affecting over 400 thousand citizens.43,44 The fact that
ª Ecosse Publishing Limited 2004.
these organisms can pass through treated water that
meets quality standards suggests that these standards
may be inadequate45 and Cryptosporidium as a con-
tributor to nosocomial infection is gaining increasing
attention.25,46 Not surprisingly, there are data demon-
strating nosocomial infections from Cryptosporidium
parvum47 as well as Giardia intestinalis.48

Protozoa can contribute to nosocomial bacterial
infections. Some protozoa can serve to protect bacteria
from the biocidal effects of sanitation treatment
methods.49,50 Protozoa, like those of the Acanthamoeba
species, feed on bacteria. However, some bacteria can
resist the digestive actions of their host and either
destroy it or enjoy a symbiotic relationship providing it
safe passage to an environment free of microbicidal
activity. Organisms known to be involved in such
mechanisms include .‘‘Cryptococcus neoformans,
Legionella sp., Chlamydophila pneumoniae, Mycobacte-
rium avium, Listeria monocytogenes, Pseudomonas
aeruginosa, and Francisella tularensis, and emerging
pathogens, such as Bosea spp., Simkania negevensis,
Parachlamydia acanthamoebae, and Legionella-like
amoebal pathogens.’’49

Therefore, a variety of microorganisms can be found
in hospital water and are shown to have caused
morbidity in patients. Some patients are at greater
risk than others.

PATIENTS AT RISK

Patientswho are immune compromised appearmost
susceptible to the risks of infectious complications
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consequent to exposure to contaminated water sources,
an observation that has been substantiated by a num-
ber of recent reviews.26,51-53 Included in the high-risk
category are intensive care ward patients,15,54-58 neo-
nates59-65 and patients with HIV and AIDS,66-69 cystic
fibrosis,70 those undergoing renal dialysis,71 transplan-
tation,72-75 hematologic procedures,76-80 cancer ther-
apy,81 and burn treatment.82-86

Immune status is not the only predictor of suscep-
tibility to infectious complications as summarized in a
model described by Duncan and Edberg87 (Figure 3).
Microbe virulence, dose of exposure and immunolog-
ical status of the patient or target organ all contribute to
the risk of disease development. Dose and/or virulence
of microbial exposure may be a factor that contributes
to certain water transmitted infectious complications
documented subsequent to surgical,88-90 or moderately
invasive diagnostic procedures such as endos-
copy,13,32,91-93 laparoscopy94 or colonoscopy,95 where
the patients are considered relatively immune compe-
tent. Alternatively, the gut manages a complex immune
response to the myriad challenges presented to it and if
altered by physical trauma or disease, infection can
occur through this route.

It is important to appreciate the source of contam-
inated water reaching the patient. The sources of
water-borne microbial contamination that have been
identified as causative in transmitting disease are
numerous and include hospital water,54,58,62,90 plumb-
ing fixtures, faucets and sinks,61 bathtub,59 showers and
shower heads,11,96 humidifiers,88 ice machines,97-101

hydrotherapy equipment,83,86 pharmacy deionized
water,102 tap water aerators,81 bath toys64 and hemodi-
alysis fluid.103 Allmayderive, of course, froma common
source of tap water.

RELATIVE RISK

The foregoing discussion illustrates the varied
patient population in whom nosocomial infection
derived from water-borne organisms present. Not all
patients fall into the classification of those presumed or
confirmed to be immune compromised. Moreover the
notion of immune competency is more a function of
the immune status of the target organ, number of
microbes (classic dose-response relationship) and the
virulence of the microorganism. This is particular true
for water-borne organisms leading to gastritis and
enteritis.87

However, it is intuitively attractive to view generally
immunocompromised patients as being at greater risk
for any infection compared with those who are
immune competent, and this has been well-detailed
in a recent review.53 The authors summarize the risk
for infection based upon the level of immune compe-
tency, infectious dose, virulence of the organism and
predilection of the pathogen for a target organ or tissue.
From a practical perspective, they emphasize their
previously published104 categorization of patients with
different degrees of immune suppression and sug-
gested corresponding levels of protection against con-
taminated drinking water. An adaptation of their
schema is shown in Table 2, modified by including
additional patient groups derived from the discussion
above. These patients are suspected to be immuno-
compromised to some extent.

It is worth noting that we included transfusion
recipients in the mildly immunocompromised group
although consensus is lacking. However, the con-
troversy over the clinical implications of the im-
munosuppressive effect of transfusion has been
reviewed and there are ample data to support the
view that transfusion recipients are immune
compromised.105,106

Preventing water-borne nosocomial infections can
be approached by controlling that which is amenable
to control. Immune competency of the patient may be
out of reach during the course of treatment. Virulence
of the microorganism is biologically determined and
can be altered by changing the environmental con-
ditions with the presence of antibiotics, pH altering
agents and perhaps even iron chelators. The dose of
microbes, however, is the easiest to address and should
be the first target in preventing or minimizing water-
borne nosocomial infections and we look to standards
for guidance in how to accomplish this.

RISK MANAGEMENT WITH STANDARDS

Unfortunately, there are no international drinking
water standards. The World Health Organization
(WHO) publishes the Guidelines for Drinking Water
Quality,107 which many countries use as the basis to
establish their own national standards for community
water. Guidelines are what the name implies, recom-
mendations that are without legal implication but
‘‘standards’’ have regulatory significance and are
enforceable. The guidelines represent a scientific
assessment of the risks to health from biological
and chemical constituents of drinking water and of
the effectiveness of relevant control and treatment
measures.

Fig 3. Relationship reflecting the risk of acquiring a
nosocomial infection.87
ª Ecosse Publishing Limited 2004.
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Table 2. Characterization of patient populations at risk for infection from drinking water and corresponding risk-risk
reduction behaviors

Immunosuppression

level Patient population Risk reduction behavior

None Minor surgical or diagnostic procedures (endoscopy,

laproscopy, colonscopy)

No exposure of medical devices to tap water

1. Mild Acute or chronic leukemia, malignant lymphoma,

childhood histiocytosis X under maintenance

without neutropenia

Avoid any circumstances with elevated

infection risks (such as drinking water from

uncontrolled sources)

Solid tumors (within 6 mo of chemotherapy)

Long-term corticosteroid therapy with ,20 mg/d

prednisone or equivalent

Autologous stem cell transplant (within 6 mo of

discharge)

Surgical patients.

Blood component transfusion recipient

Cystic fibrosis

Renal dialysis

2. Moderate Acute or chronic leukemia, malignant lymphoma,

childhood histiocytosis X solid tumors under

intensive treatment (expected duration of neu-

tropenia ,500/mL for #10 days)

Drinking water should have an additional

antimicrobial barrier to tap water

Long-term corticosteroid therapy with $20 mg/d

prednisone or equivalent

Bathroom installations should be

controlled for bacterial reservoirs

Solid organ transplant after intensive treatment

phase

AIDS with a count of CD41 cells less than 200 mL

Burns: Second-degree burns covering 15% to 20% of

the body on an adult or covering over 10% to 20%

of the body on a child

3. Severe Acute or chronic leukemia, malignant

lymphoma, childhood histiocytosis X solid tumors

under intensive treatment (expected duration of

neutropenia ,500/mL for .10 days)

Any water for human use should have a

very low bacterial count (use water filters/

controlled carbonated water)

Solid organ transplant under intensive

treatment phase (induction or rejection therapy)

Strict control of bath installation and

water for showering (showering to be avoided if

no control possible)

Allogeneic stem cell transplant (first 6-12 mo

after engraftment)

AIDS with a count of CD41 cells less than 200 mL

and an additional factor of immunosuppression

(eg, neutropenia, corticosteroids)

Second-degree burns covering more than 20%

of the body.

Third-degree burns covering more than 10%

of the body

Any fourth-degree burn.

Neonates

4. Extreme Allogeneic stem cell transplantation

(until engraftment)

Only sterile fluids for drinking, mouth

care, and washing allowed

Adapted from Glasmacher et al53 and Engelhart et al.104
At the current time it is difficult to find a compilation
of guidelines and regulations encompassing a global
view of microbial contaminants in drinking water. The
US FDA has enacted legislation that addresses this topic
in an indirect way.108 If total heterotrophic plate count
(includes all bacteria) exceeds 500 CFU/mL then
attention is directed toward the water treatment
method. Coliforms must not be detected in more
than 5% of samples processed with a minimum of 40
ª Ecosse Publishing Limited 2004.
samples per month. Fewer than 40 per month reduces
the limit of tolerance to no more than 1 coliform
positive sample. It is suggested that the treatment be
adjusted to result in levels of bacteria below this value.
It is implied that Cryptosporidium and Giardia will be
addressed if the treatment method is adequately
adjusted.

There are minor differences throughout the global
community but common to all is a focus on coliform
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bacteria. Canada has established similar limits of,500
CFU/mL total heterotrophic plate counts and zero
coliforms in a 100 mL sample.109 The UK,110 Italy,111

Germany,112 Belgium,113 and New Zealand114 use the
zero coliform in 100 mL sample rule with no attention
afforded to other microorganisms.

RISK MANAGEMENT IN THE HOSPITAL

In hospital or health care settings, nosocomial
infection is a concern, and hospital water may be a
source of patient exposure. What is the approach to
guidelines or standards for hospital water? Table 3
shows a contrast between the US Centers for Disease
Control (CDC) guidelines, Germany’s ordinance and
France’s guidelines where it addresses high-risk
patients exposure to Legionella in hospital water. The
Table shows the European community at least begin-
ning to acknowledge, identify and make recommen-
dations for high-risk patients within the hospital. There
is heterogeneity with approaches for monitoring and
reporting hospital-borne pathogens.

However, attesting to the increased concern over
nosocomial infections, the Joint Commission on Ac-
creditation of Healthcare Organization (JCAHO pro-
nounced ‘‘jayco’’) is implementing a requirement to
report hospital acquired infections (HAI) with a phase-
in beginning January, 2005 before full enactment in
July.115 These data will provide an opportunity to
enhance our understanding of the magnitude of the
contribution of contaminated hospital water to noso-
comial infections. Water should be considered one
unprotected source of exposure to be investigated.
There are good reasons why hospital water has been
above suspicion as a source of nosocomial infections.

CONTAMINATION CAN BE UNDERESTIMATED

Although most guidelines and standards feature
coliforms as the foremost marker of microbial water
quality, there are clearly opportunities for contamina-
tion to be missed and this can lead to clinical morbidity.
These opportunities are availed through:

d plumbing and water flow considerations with the
elaboration of a microbial-derived microenviron-
ment of self-protection in the form of ‘‘biofilm’’ and,

d underestimates of the true bioburden associated with
variations in test methodologies intended to quantify
the microbial bioburden.

BIOFILM

In aqueous environments, microorganisms prefer-
entially colonize surfaces to increase their chances of
survival.116 To aid their adhesion to surfaces, copious
amounts of sticky extracellular polysaccharides (EPS)
are produced which ultimately envelop the cells. Water
channels or void spaces of variable size are dispersed
throughout the EPS and microbial cell complex,
allowing nutrients to diffuse in, and waste products
from cell metabolism to be removed out of the gel-like
network.117 A biofilm may therefore be defined as ‘‘an
organized community of both viable and non-viable
microorganisms, EPS, absorbed nutrients and en-
trained particles adherent to an inert or living sur-
face.’’118 Microbial cells account for only a small
percentage of the volume in biofilms (5-25%), with
the polymer network (which contains 70-90% water)
occupying the remaining volume.119-121 Although
many different microbial species can form biofilms,
the mechanisms involved in biofilm formation are
generally similar in each case.122,123 This process is
summarized for water-borne bacteria colonizing any
environmental surface and further explained with the
assistance of Figure 4.

Briefly, surfaces are rendered attractive to microbes
with a pre-conditioning coat such as protein.124 Bac-
teria are transported to a pre-conditioned surface by a
combination of Brownian motion, frictional drag,
electrostatic attraction, gravitational forces and turbu-
lent ‘‘downsweeps.’’125,126 The cells reversibly attach to
the surface, followed by an irreversible stage when EPS
is produced in large quantities. Cell proliferation
occurs, resulting in a monolayer of cells which
ultimately results in the formation of microcolonies
within an EPS matrix i.e., a biofilm. A typical example
of biofilm is shown in Figure 5 in contrast with similar
surface not exposed to bacteria.

Cell growth in the biofilm continues until a critical
size is reached. Recently, the importance of intercellu-
lar communication between bacterial cells, a phenom-
enon also known as quorum sensing on biofilm
formation has been realized.127-130 During the initial
stages of biofilm formation, bacterial cells adsorb to the
surface and release signals, known as autoinducers,
into the surrounding environment. Autoinducers at-
tract other bacteria to the surface, and induce cell
division of adsorbed cells. The intracellular communi-
cation continues until the population reaches a thresh-
old level at which the biofilm can be sustained.131

Further surface colonizationmay occur if sections of
biofilm are forcibly removed by shear forces operating
on the biofilm (erosion or sloughing), or by the
controlled release of single, daughter cells from the
outer perimeter of the biofilm. Although not fully
understood, the latter is believed to be genetically
controlled,132 and as such, cannot be easily controlled
by existing water quality maintenance programs. Other
factors can contribute to biofilm formation and are
summarized in Table 4. This means that any area of the
ª Ecosse Publishing Limited 2004.
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Table 3. Global potable water quality guidelines and standards

USA-CDC guidelines21
Germany ordinance183

(operative as of January 2003) France guidelines184

Identified organisms

concerned

Legionella species Addresses proliferation of pathogens

as: Legionella species, Pseudomonas

aeruginosa, Acinetobacter, and

others that are bound to biofilms

Legionella pneumophila

Environmental surveillance No recommendation can be

made about routinely culturing

water systems in health care facil-

ities that do not have patient care

areas (eg, transplant units) for

persons at high risk for Legionella

infection

Local public health authorities play

role in inspection, supervision of

water installations, surveillance,

and risk assessments

Routine sampling in hospital area

for high-risk patients (immune

compromised, transplant, NICU,

corticotherapy patients) to assure

that L pneumophila concentration is

below level of detection.

Periodic culturing for Legionellae

in water samples from the trans-

plant unit(s).

Addresses all hospital departments Sampling points and size

recommended

Routine treatment for

water quality

Where practical, maintain potable

water at the outlet at .51�C
(.124�F) or ,20�C (,68�F), es-
pecially in facilities housing organ

transplants or other patients at

high risk

Recognizes biofilms and that they

are less affected by disinfectants

Create safe points of use for

water for high-risk patients where

specific water treatment methods

are employed

Compared with pathogens within

house plumbing, systems are not

allowed at levels that have adverse

effects on human health, eg, con-

centrations ,1 CFU/mL112

The aim of preventative actions is

to eliminate conditions favorable

to the survival and proliferation of

Legionella and limit their distribu-

tion in aerosol form. Point of

interest is not only the tap but

showers and hand sprays.

Disinfection-specific after

outbreak

If heated water system is implicated,

decontaminate by superheating

(71�C-77�C) flushing system mini-

mum of 5 minutes or by hyper-

chlorination

Changing the prevention strategies

and indicate that point-of-use fil-

ters on water taps and fittings in

intensive care units have led to a

distinct reduction of rate of infec-

tions

Treatment option is 0.2-mm filtration.

Advantage of filtration is also

cost cutting potential of antibiotic

use

Continuous use of disinfectants in

hot water is to be avoided

For high-risk areas of

hematology-oncology wards and

intensive care units, point-of use

filter systems are now recommen-

ded

Reporting requirements Contact the local or state health

department or CDC if the disease

is reportable in the state or if

assistance is needed

Every irregularity detected must be

reported to the local public health

authority

Requirements to report to

public health authority and

National Reference for Legionella
water distribution both leading to and within the hos-
pital environment may be subject to biofilm formation
as indicated in Figure 6 and further explained in the
legend.

RESISTANCE OF BIOFILMS

Surface-associated microorganisms greatly outnum-
ber planktonic cells, and research has shown that
biofilm bacteria (sessile bacteria) are profoundly differ-
ent from planktonic cells (free-living bacteria), and
ª Ecosse Publishing Limited 2004.
demonstrate some unique characteristics not observed
if the cells are returned to the planktonic state.125,132-135

It has beenwidely reported that biofilmbacteria have
an increased resistance to antimicrobial agents, com-
pared to their planktonic counterparts. The application
of increasingly sophisticated technologies for studying
biofilms, including confocal scanning laser microscopy
(CSLM) and molecular fluorescent probes have helped
to elucidate some potential factors involved in this
resistance. However, it seems likely that a combination
of factors contributes to this phenomenon:
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Fig 4. Biofilm formation adapted from several references.122,126,204-207
d The antimicrobial agents may fail to penetrate
through the thick EPS, the dense cell aggregates
and microcolonies, or bind to the polymeric matrix
before they reached the target cells.116,136,137

d The chemicals may not be effective over the range of
cell growth rates and microenvironments distributed
through the biofilm (e.g. facultative anaerobes grow-
ing in center of biofilm).138-141

d Resistance of bacterial cells may be increased by
genetic transfer within cells in close proximity in the
biofilm.142,143

REMOVAL OF BIOFILM

Adequate management of hospital water systems is
a key factor in microbial control, and various physical
and chemical approaches are employed (Table 4).
Chlorination is undoubtedly the most commonly
used treatment, though it has been demonstrated that
monochloramine is more effective on biofilms.144,145

Other chemical treatments include the application of
silver or copper ions, which have been shown to be
effective against L. pneumophila.146 Ozonation may
also be considered for microbial control in water
systems, though the short half-life, potential incom-
plete penetration of biofilm and cost associated with
treatment makes this a less commonly employed
mechanism.

Physical treatments include the application of heat,
ultraviolet irradiation and filtration The use of heat
must be carefully considered, as research has shown
that water held in a storage tank at 30-54�Cmay induce
the proliferation of L. pneumophila and thermophilic
non-tuberculosis Mycobacterium (NTM) sp., both of
which are capable of growth in temperatures up to
45�C.25,147 There is also evidence that bacteria may
become resistant to UV irradiation at 254 nm (the
wavelength used for microbial control), and that
exposure time may be inadequate to ensure all micro-
organisms present in the water are treated.148-151

QUANTIFICATION OFWATER-BORNE BACTERIA

In the face of voluminous medical literature it is
difficult to envision how hospital water contamination
has escaped attention as an important source of
microbial exposure to patients. Biofilm has likely
played an important role in perpetuating the mystery
and so too have methods of testing for water-borne
organisms.
ª Ecosse Publishing Limited 2004.
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It should be appreciated that water-borne organisms
grow in nutrient-poor environments and have to adapt
to nutrient-rich physiologic fluids. While most hospi-
tals routinely sample their water sources for bioburden
content, the methods employed vary considerably, and
may lead to potential underestimation of the true
extent of contamination. It is imperative to realize that
bacteria residing in water are fundamentally different
than those surviving in a nutrient-rich environ-
ment.152,153 Due to the low nutrient content of drinking
water, bacteria surviving in such environments, re-
ferred to as oligotrophic bacteria,154 have evolved
several ways to survive, including a broad substrate
range, growth at low nutrient levels (1-15 mg carbon/L),
lower metabolism rates, a decrease in cell size,
and increased cell surface area and adhesion to
surfaces.153,155-158 The methods used to quantify

Fig 5. Electronmicrograph of 0.2-mm nylon
(Posidyne) filter media subjected to sterile saline

(panel A) vs. P. aeruginosa suspension (13 105) CFU/
mL (panel B) for 1 hour daily for 7 consecutive days

at low flow (10 mL/min).
ª Ecosse Publishing Limited 2004.
water-borne organisms should involve the use of
nutrient-poor growth media, such as R2A. Whereas,
attempt to grow water-borne organisms in nutrient-
rich media, such as heterotrophic plate count agar
(HPCA), will underestimate the bioburden.

Therefore, when using plate culture methods to
determine the bacterial content of water, use of a dilute
growth medium such as R2A media159 is generally
favored, and significantly higher bacterial recoveries
have been reported with dilute medium as compared
with recovery on high nutrient growth media e.g.
HPCA.154,159-161 Similarly, plates should be incubated
at 25-30�C for a minimum of 7 days to maximize
bacterial recovery.159,160,162-164 To emphasize the
point, we have undertaken a comparison of HPCA
and R2A media by inoculating plates with each of the
two media using an aliquot of the same water sample
and incubated the plates at 25�C for up to 15 days. The

Table 4. Some factors affecting biofilm formation in
water systems

Factor Influence on biofilms

Reference

numbers

Water chemistry Multivalent cations

(Ca21, Mg21)

stabilize EPS network

185-187

Assimilable organic carbon

(AOC) levels .50 mg/L

may be conducive to

microbial growth

Flow Influences biofilm structure 188

Laminar flow forms circular

microcolonies

Turbulent flow forms

filamentous-like

microcolonies

Water stagnation Dead-legs, heat exchangers,

and holding tanks create

suitable environment for

bacterial colonization and

proliferation

150, 171, 189

Piping materials Smoother, inert surface in

piping minimizes biofilm

formation and allows

improved contact with

disinfectants

190

Piping corrosion Efficiency of chlorination

on biofilm removal

lowered

191

Production of corrosion

products (eg, phosphates,

carbonates) may provide

nutrients to biofilm

High shear stress Increased resistance to

detachment but increased

time required for cell

attachment

192

Regular flushing of piping Increased removal of

planktonic organisms

187
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Fig 6. Pictorial representation of the mechanisms by which contaminated hospital water may contribute to
nosocomial infections (adapted from Anaissie et al6). Flow diagram depicting the accumulation of biofilm from water
treatment facility to its point-of-use in the hospital. Large pipes bear high flows at a location very close to the source of
treatments to limit the bioburden of microorganisms. As the distribution of water is divided into smaller and smaller
pipes with more variable flow with changing patterns of use, biofilm can elaborate to considerably greater extents. At
the point-of-use, biofilm can serve as a repository for the continual presentation of viable microbes to patients, care

givers, and environmental surfaces with which water may come in contact.
data, shown in Figure 7, illustrate the growth of
microbes in R2A far exceed levels obtained from HPCA.

Other methods are available for bacterial detection,
including ATP quantification,165 epifluorescence mi-
croscopy,166 and molecular based methods, such as
polymerase chain reaction (PCR) gene probes151,167

and 16S rRNA sequencing.168 However, these methods
tend to be more costly, require specialized equipment,
and trained operators to ensure correct sample prep-
aration and data interpretation.

There are now sufficient data to support the view
that pathogens contaminate hospital water, biofilm
compromises the efficacy of common treatment
methods, standards are not optimal and testing may
underestimate the true level of contamination. A
simple solution to minimize the bioburden presented
to patients may be a physical barrier in the form of
point-of-use filtration for faucets and shower heads.

THE SIMPLICITY OF FILTRATION

Although 0.45 micron (mm) filtration was the stan-
dard filter grade designed to prevent the passage of
bacteria, it is generally accepted that 0.2 mm filters
represent a more effective barrier to bacteria transmis-
sion.169 Although rare, there are conditions under
ª Ecosse Publishing Limited 2004.
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which water-borne microbes can be recovered in the
filtrate of such sized filters and some have argued 0.1
mm confers more absolute performance.170 The CDC
[United States Centers for Disease Control] has identi-
fied, as an alternative to sterile water, 0.2 um filtered
water to meet the standard of the highest quality of
water that is practical for final rinse of endoscopes and
other medical devices.21,171

In the context of hospital water filtration, 0.2 mm
filters are being used with success. In a pediatric
nephrology unit with a case of Legionellosis, a look
back investigation revealed 5 cases. Legionella pneumo-
phila serotype 6 was identified in hospital water limited
to the unit and clinicians elected to implement point-
of-use water filtration as part of their infection control
strategy since the outbreak was restricted to their unit
and the installation and maintenance of filters were
cost permissive.11

At the 9th European Congress of Clinical Microbiol-
ogy and Infectious Diseases held in Berlin in March,
1999, Hummel and co-workers,172 used point-of-use
water filters. Filters were employed as part of an
infection control strategy to minimize exposure to
Legionella serogroup 1 in a heart transplant unit.

Fig 7. Effect of media composition on growth and
quantification of waterborne bacteria from tap
water samples. Tap water samples (n53) were

recovered from a domicile in a relatively affluent
suburban community just outside of metropolitan

New York. Equal volume aliquots were serially
diluted in distilled deionized water and 100 mL were
plated onto R2A or HPCA, incubated at 25�C and

counted following days of incubation indicated.
ª Ecosse Publishing Limited 2004.
Legionella had been refractory to conventional sanita-
tion treatments. The incidence of Legionella infection
confirmed by urine antigen testing approximated 23%
before point-of use water filters were installed. After
filter installation, as part of the infection control
strategy, the rate dropped to 15% and it was further
reduced to 1.9% with urine Legionella antigen screen-
ing and the corresponding use of antibiotics.

Application of sterile filters on faucets and shower-
heads became part of an infection control program in
response to an outbreak of 6 cases of P. aeruginosa (2
pneumonias, 2 septicemias and 2 wound infections) in
an adult hematology/oncology unit at the University of
Bonn in Germany.173 A survey of 209 environmental
samples revealed contamination in surface cleaning
equipment, taps, wash basin drains and showers. After
implementation of the strategy involving point-of use
water filters, the rate of hospital acquired infection
reverted to pre-outbreak levels.

Vonberg and co-workers of the Medical School
Hannover (Germany) evaluated the performance of
0.2 mm point-of-use tap water filters in 3 intensive care
units involving 785 samples.174 Without filtration, it
was shown that over 90% of 32 samples collected were
positive for Legionella at concentrations ranging from
1–106 CFU/mL. In contrast, 251 samples recovered
from taps fitted with filters for 7 days failed to recover
any Legionella in 250 samples and in the one, the
residual concentration was 1 CFU/mL. Despite claims
to the contrary, not all filters are alike175 and confi-
dence in their use should be based upon performance
claims and actual clinical use experience.

CONCLUSION

The inadequacy of water treatment standards is
being recognized.176 A greater appreciation is devel-
oping for the dangers of water-borne microorganism
that survive within, and are released from, the protec-
tion of biofilm.177-179 Drug therapies are being devel-
oped to target biofilm.180-182 Increasing recognition of
the role that Acanthamoeba, a common water-borne
protozoan, plays in protecting bacteria from sanitation
methods and increasing the likelihood of passing on
the more virulent strains of pathogens contributes to
the mounting concern.

Most importantly, the value of microbial protection
barriers afforded by 0.2 mm filtration at the point-of-
use is gaining momentum with studies such as that by
Trautmann and co-workers, in this issue of FILTRA-
TION, illustrating the benefit of its use. More aggressive
filtration strategies are available to serve as a barrier to
viral particles and, with increasing characterization of
the magnitude of their effect, such technologies are
available and can be implemented easily.
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Table 5. Comparison of water treatment methods for the reduction of microbial contamination

Efficacy

Method

Ease of

installation Cost Maintenance

Short-

term

Long-

term Disadvantage

Reference

numbers

Heat Easy Low Easy Good Poor Failure to maintain consistent

temperature

76, 171, 191, 193

Recolonization at low temperature

Hard to reach all taps with

dead-leg piping and

antiscald valves

Scalding potential

Labor intensive

Recontamination occurs in

30-60 days

Increase in biofilm sloughing

possible

May not penetrate biofilm

Chlorine Difficult must hold

10-50 ppm for

12-24 hr, shock

method or 1-2 ppm

continuous

High Fair-difficult Good Fair Amoeba, harbingers of bacteria, are

resistant to chlorine

25, 76, 166, 171,

194-196

Recolonization after system

disinfection Legionella species more

resistant to chlorination

System corrosion causes pipe

leaks and can promote biofilm

formation

Carcinogenic byproducts

(trihalomethanes)

Chlorine levels checked frequently

Potential resistance of Mycobacteria

Does not penetrate into center

of established biofilms

Chlorine dioxide Fair Low-Moderate Fair-Difficult Good Poor Unknown corrosive properties 193, 197, 198

Unknown maintenance of

effective concentration in hot

water systems

Does not penetrate completely into

biofilm

Costly

Monochloramines Fair Moderate Fair-difficult Good N/A More difficult to remove from

water than chlorine or

chlorine dioxide

199-201

May not penetrate into biofilm

Potential resistance of

Mycobacteria

Must be removed from

water used for dialysis

Copper-silver

ionization

Fair Low-Moderate Moderate Metallic ions added to

drinking water

202

Works well only on water

with low dissolved solids content

Can corrode steel or galvanized pipe

Not equally effective for all pathogens

UV Fair, local effect Moderate Moderate cleaning

for effective energy

transmission

Good Fair Scale problems 148, 149, 151

Electricians required

Poor penetrating power of

UV light in established biofilms
ª Ecosse Publishing Limited 2004.
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Table 5. (continued)

Efficacy

Method

Ease

of installation Cost Maintenance

Short-

term

Long-

term Disadvantage

Reference

numbers

May cause injured cells

Partially degraded organics may

enhance biofilm formation

Ozone Difficult High Moderate Good Poor Disinfects only at the point

of injection

193

Decomposes quickly in hot water

Hard to hold effective concentration

Specialized equipment required to

generate ozone

POU filtration Easy, immediate barrier Low Simple Good Good Correct installation essential for

bacterial removal

203
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